1
|
Fan X, Lei Y, Wang L, Wu X, Li D. Advancing CRISPR base editing technology through innovative strategies and ideas. SCIENCE CHINA. LIFE SCIENCES 2025; 68:610-627. [PMID: 39231901 DOI: 10.1007/s11427-024-2699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Lei
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiushan Wu
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, 510100, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Perez AR, Mavrothalassitis O, Chen JS, Hellman J, Gropper MA. CRISPR: fundamental principles and implications for anaesthesia. Br J Anaesth 2025; 134:839-852. [PMID: 39855935 DOI: 10.1016/j.bja.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based medical therapies are increasingly gaining regulatory approval worldwide. Consequently, patients receiving CRISPR therapy will come under the care of anaesthesiologists. An understanding of CRISPR, its technological implementations, and the characteristics of patients likely to receive this therapy will be essential to caring for this patient population. However, the role of CRISPR in anaesthesiology extends beyond simply caring for patients with prior CRISPR therapy. CRISPR has multiple direct potential applications in anaesthesia, particularly for managing chronic pain and critical illness. Additionally, given the unique skills anaesthesiologists possess, CRISPR potentially allows new roles for anaesthesiologists in the field of oncology. Consequently, CRISPR technology could enable new domains of anaesthetic practice. This review provides a primer on CRISPR for anaesthesiologists and an overview on how the technology could impact the field.
Collapse
Affiliation(s)
- Alexendar R Perez
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Silico Therapeutics, Inc., San Jose, CA, USA.
| | - Orestes Mavrothalassitis
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | | | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Gropper
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Dou B, Li Y, Wang F, Chen L, Zhang W. Chassis engineering for high light tolerance in microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:257-275. [PMID: 38987975 DOI: 10.1080/07388551.2024.2357368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.
Collapse
Affiliation(s)
- Biyun Dou
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Yang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
4
|
Zheng S, Zhao C, Chen Y, Zhang Z, He Y, Wang J, He H, Chen GQ. Engineered Vibrio natriegens with a Toxin-Antitoxin System for High-Productivity Biotransformation of l-Lysine to Cadaverine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39985470 DOI: 10.1021/acs.jafc.4c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Vibrio natriegens, a fast-growing bacterium, is an emerging chassis of next-generation industrial biotechnology capable of thriving under open and continuous culture conditions. Cadaverine, a valuable industrial C5 platform chemical, has various chemical and biological activities. This study found that V. natriegens exhibited superior tolerance to lysine, the substrate of cadaverine production. For the first time, a cadaverine synthesis pathway was introduced into V. natriegens for whole-cell catalysis of cadaverine from lysine. A high-efficiency cadaverine-producing strain harboring a toxin-antitoxin system, V. natriegens (pSEVA341-pTac-ldcC-pHbpBC-hbpBC) with lysE (PN96_RS17440) inactivation, was constructed. In 7 L bioreactors, the cadaverine titer increased from 115 g/L in the original strain to 158 g/L within 11 h of biotransformation, exhibiting a 37% increase in production. Its productivity reached 14.4 g/L/h with a conversion rate as high as 90%. These results confirm V. natriegens as an exceptional chassis for effective cadaverine bioproduction.
Collapse
Affiliation(s)
- Shuang Zheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuemeng Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zonghao Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810000, China
| | - Yuhan He
- Key Lab of Industrial Biocatalysts of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiale Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Lab of Industrial Biocatalysts of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Marnis H, Syahputra K. Advancing Fish Disease Research through CRISPR-Cas Genome Editing: Recent Developments and Future Perspectives. FISH & SHELLFISH IMMUNOLOGY 2025:110220. [PMID: 39988220 DOI: 10.1016/j.fsi.2025.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
CRISPR-Cas genome editing technology has transformed genetic research, by enabling unprecedented precision in modifying DNA sequences across various organisms, including fish. This review explores the significant advancements and potential uses of CRISPR-Cas technology in the study and management of fish diseases, which pose serious challenges to aquaculture and wild fish populations. Fish diseases cause significant economic losses and environmental impacts, therefore effective disease control a top priority. The review highlights the pivotal role of CRISPR-Cas in identifying disease-associated genes, which is critical to comprehending the genetic causes of disease susceptibility and resistance. Some studies have reported key genetic factors that influence disease outcomes, using targeted gene knockouts and modifications to pave the way for the development of disease-resistant fish strains. The creation of such genetically engineered fish holds great promise for enhancing aquaculture sustainability by reducing the reliance on antibiotics and other conventional disease control measures. In addition, CRISPR-Cas has facilitated in-depth studies of pathogen-host interactions, offering new insights into the mechanisms by which pathogens infect and proliferate within their hosts. By manipulating both host and pathogen genes, this technology provides a powerful tool for uncovering the molecular underpinnings of these interactions, leading to the development of more effective treatment strategies. While CRISPR-Cas has shown great promise in fish research, its application remains limited to a few species, primarily model organisms and some freshwater fish. In addition, challenges such as off-target effects, ecological risks, and ethical concerns regarding the release of genetically modified organisms into the environment must be carefully addressed. This review also discusses these challenges and emphasizes the need for robust regulatory frameworks and ongoing research to mitigate risks. Looking forward, the integration of CRISPR-Cas with other emerging technologies, such as multi-omics approaches, promises to further advance our understanding and management of fish diseases. This review concludes by envisioning the future directions of CRISPR-Cas applications in fish health, underscoring its potential to its growing in the field.
Collapse
Affiliation(s)
- Huria Marnis
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia.
| | - Khairul Syahputra
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Chen PR, Wei Y, Li X, Yu HY, Wang SG, Yuan XZ, Xia PF. Precision engineering of the probiotic Escherichia coli Nissle 1917 with prime editing. Appl Environ Microbiol 2025; 91:e0003125. [PMID: 39887239 PMCID: PMC11837520 DOI: 10.1128/aem.00031-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
CRISPR-Cas systems are transforming precision medicine with engineered probiotics as next-generation diagnostics and therapeutics. To promote human health and treat disease, engineering probiotic bacteria demands maximal versatility to enable non-natural functionalities while minimizing undesired genomic interferences. Here, we present a streamlined prime editing approach tailored for probiotic Escherichia coli Nissle 1917 utilizing only essential genetic modules, including Cas9 nickase from Streptococcus pyogenes, a codon-optimized reverse transcriptase, and a prime editing guide RNA, and an optimized workflow with longer induction. As a result, we achieved all types of prime editing in every individual round of experiments with efficiencies of 25.0%, 52.0%, and 66.7% for DNA deletion, insertion, and substitution, respectively. A comprehensive evaluation of off-target effects revealed a significant reduction in unintended mutations, particularly in comparison to two different base editing methods. Leveraging the prime editing system, we inserted a unique DNA sequence to barcode the edited strain and established an antibiotic-resistance-gene-free platform to enable non-natural functionalities. Our prime editing strategy presents a CRISPR-Cas system that can be readily implemented in any laboratories with the basic CRISPR setups, paving the way for future innovations in engineered probiotics.IMPORTANCEOne ultimate goal of gene editing is to introduce designed DNA variations at specific loci in living organisms with minimal unintended interferences in the genome. Achieving this goal is especially critical for creating engineered probiotics as living diagnostics and therapeutics to promote human health and treat diseases. In this endeavor, we report a customized prime editing system for precision engineering of probiotic Escherichia coli Nissle 1917. With such a system, we developed a barcoding system for tracking engineered strains, and we built an antibiotic-resistance-gene-free platform to enable non-natural functionalities. We provide not only a powerful gene editing approach for probiotic bacteria but also new insights into the advancement of innovative CRISPR-Cas systems.
Collapse
Affiliation(s)
- Pei-Ru Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hai-Yan Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Xian-Zheng Yuan
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Xin B, Liu J, Li J, Peng Z, Gan X, Zhang Y, Zhong C. CRISPR-guided base editor enables efficient and multiplex genome editing in bacterial cellulose-producing Komagataeibacter species. Appl Environ Microbiol 2025; 91:e0245524. [PMID: 39887234 PMCID: PMC11837512 DOI: 10.1128/aem.02455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Bacterial cellulose (BC) is an extracellular polysaccharide produced by bacteria that has wide applications in the food industry, tissue engineering, and battery manufacturing. Genome editing of BC-producing Komagataeibacter species is expected to optimize BC production and its properties. However, the available technology can target only one gene at a time and requires foreign DNA templates, which may present a regulatory hurdle for genetically modified organisms. In this study, we developed a clustered regularly interspaced short palindromic repeats (CRISPR)-guided base editing method for Komagataeibacter species using Cas9 nickase and cytidine deaminase. Without foreign DNA templates, C-to-T conversions were performed within an 8 bp editing window with 90% efficiency. Double- and triple-gene editing was achieved with 80%-90% efficiency. Fusing uracil-DNA glycosylase with the base editor enabled C-to-G editing. The base editor worked efficiently with various Komagataeibacter species. Finally, mannitol metabolic genes were investigated using base-editing-mediated gene inactivation. This study provides a powerful tool for multiplex genome editing of Komagataeibacter species. IMPORTANCE Komagataeibacter, a bacterial genus belonging to the family Acetobacteraceae, has important applications in food and material biosynthesis. However, the genome editing of Komagataeibacter relies on traditional homologous recombination methods. Therefore, only one gene can be manipulated in each round using foreign DNA templates, which may present a regulatory hurdle for genetically modified organisms when microorganisms are used in the food industry. In this study, a powerful base editing technology was developed for Komagataeibacter species. C-to-T and C-to-G base conversions were efficiently implemented at up to three loci in the Komagataeibacter genome. This base editing system is expected to accelerate basic and applied research on Komagataeibacter species.
Collapse
Affiliation(s)
- Bo Xin
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Jiaheng Liu
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Jinyang Li
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Zhaojun Peng
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Gan
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Yuxi Zhang
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
8
|
Nakamae K, Suzuki T, Yonezawa S, Yamamoto K, Kakuzaki T, Ono H, Naito Y, Bono H. Risk Prediction of RNA Off-Targets of CRISPR Base Editors in Tissue-Specific Transcriptomes Using Language Models. Int J Mol Sci 2025; 26:1723. [PMID: 40004186 PMCID: PMC11855689 DOI: 10.3390/ijms26041723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Base-editing technologies, particularly cytosine base editors (CBEs), allow precise gene modification without introducing double-strand breaks; however, unintended RNA off-target effects remain a critical concern and are under studied. To address this gap, we developed the Pipeline for CRISPR-induced Transcriptome-wide Unintended RNA Editing (PiCTURE), a standardized computational pipeline for detecting and quantifying transcriptome-wide CBE-induced RNA off-target events. PiCTURE identifies both canonical ACW (W = A or T/U) motif-dependent and non-canonical RNA off-targets, revealing a broader WCW motif that underlies many unanticipated edits. Additionally, we developed two machine learning models based on the DNABERT-2 language model, termed STL and SNL, which outperformed motif-only approaches in terms of accuracy, precision, recall, and F1 score. To demonstrate the practical application of our predictive model for CBE-induced RNA off-target risk, we integrated PiCTURE outputs with the Predicting RNA Off-target compared with Tissue-specific Expression for Caring for Tissue and Organ (PROTECTiO) pipeline and estimated RNA off-target risk for each transcript showing tissue-specific expression. The analysis revealed differences among tissues: while the brain and ovaries exhibited relatively low off-target burden, the colon and lungs displayed relatively high risks. Our study provides a comprehensive framework for RNA off-target profiling, emphasizing the importance of advanced machine learning-based classifiers in CBE safety evaluations and offering valuable insights to inform the development of safer genome-editing therapies.
Collapse
Affiliation(s)
- Kazuki Nakamae
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
| | - Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
| | - Sora Yonezawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
| | | | | | - Hiromasa Ono
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| | - Yuki Naito
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| | - Hidemasa Bono
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| |
Collapse
|
9
|
Fan W, Sun X, Yuan R, Hou X, Wan J, Liao B. HCN4 and arrhythmias: Insights into base mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108534. [PMID: 39922561 DOI: 10.1016/j.mrrev.2025.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
In the human sinoatrial node (SAN), HCN4 is the primary subtype among the four HCN (hyperpolarization activated cyclic nucleotide-gated) family subtypes. A tetramer of HCN subunits forms the ion channel conducting the hyperpolarization-activated "funny" current (If), which plays an important regulatory role in maintaining the pacemaker activity of the SAN. With the advancement of detection technologies over the past 20 years, the relationship between base mutations in the HCN4 gene encoding the HCN4 protein and arrhythmias has been continuously elucidated. The expression and kinetic changes of mutated channels were investigated in COS-7, CHO, HEK-293T cells, and Xenopus oocytes, but their functional changes were not elucidated in human myocardial cells. New genome editing methods, such as Base editor and Prime editor, use components of the CRISPR system and other enzymes to directly install single-gene mutation into cellular DNA without causing double-stranded DNA breaks, which reproduce and correct base mutations. In this review, we summarize all base mutations of the HCN4 gene, discuss the clinical characteristics and function of some base mutations, and combine base editors to explore the establishment of disease models and the potential for future gene correction.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xuemei Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, PR China
| | - Ruoran Yuan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
10
|
Zhang D, Parth F, da Silva LM, Ha TC, Schambach A, Boch J. Engineering a bacterial toxin deaminase from the DYW-family into a novel cytosine base editor for plants and mammalian cells. Genome Biol 2025; 26:18. [PMID: 39901278 PMCID: PMC11789416 DOI: 10.1186/s13059-025-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Base editors are precise editing tools that employ deaminases to modify target DNA bases. The DYW-family of cytosine deaminases is structurally and phylogenetically distinct and might be harnessed for genome editing tools. We report a novel CRISPR/Cas9-cytosine base editor using SsdA, a DYW-like deaminase and bacterial toxin. A G103S mutation in SsdA enhances C-to-T editing efficiency while reducing its toxicity. Truncations result in an extraordinarily small enzyme. The SsdA-base editor efficiently converts C-to-T in rice and barley protoplasts and induces mutations in rice plants and mammalian cells. The engineered SsdA is a highly efficient genome editing tool.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
- Research Institute of Biology and Agriculture, University of Science and Technology, Beijing, 100083, China
| | - Fiona Parth
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Laura Matos da Silva
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany.
| |
Collapse
|
11
|
Ramezani M, Weisbart E, Bauman J, Singh A, Yong J, Lozada M, Way GP, Kavari SL, Diaz C, Leardini E, Jetley G, Pagnotta J, Haghighi M, Batista TM, Pérez-Schindler J, Claussnitzer M, Singh S, Cimini BA, Blainey PC, Carpenter AE, Jan CH, Neal JT. A genome-wide atlas of human cell morphology. Nat Methods 2025:10.1038/s41592-024-02537-7. [PMID: 39870862 DOI: 10.1038/s41592-024-02537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/25/2024] [Indexed: 01/29/2025]
Abstract
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries. This perturbation atlas comprises high-dimensional phenotypic profiles of individual cells with sufficient resolution to cluster thousands of human genes, reconstruct known pathways and protein-protein interaction networks, interrogate subcellular processes and identify culture media-specific responses. Using this atlas, we identify the poorly characterized disease-associated TMEM251/LYSET as a Golgi-resident transmembrane protein essential for mannose-6-phosphate-dependent trafficking of lysosomal enzymes. In sum, this perturbation atlas and screening platform represents a rich and accessible resource for connecting genes to cellular functions at scale.
Collapse
Affiliation(s)
- Meraj Ramezani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin Weisbart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Bauman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanford University, Stanford, CA, USA
| | - Avtar Singh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech Department of Cellular and Tissue Genomics, South San Francisco, CA, USA
| | - John Yong
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Maria Lozada
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory P Way
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sanam L Kavari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Celeste Diaz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanford University, Stanford, CA, USA
| | - Eddy Leardini
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gunjan Jetley
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenlu Pagnotta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Thiago M Batista
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Joaquín Pérez-Schindler
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Melina Claussnitzer
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Beth A Cimini
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Research, MIT, Cambridge, MA, USA
| | | | - Calvin H Jan
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - James T Neal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
12
|
Su-Tobon Q, Fan J, Goldstein M, Feeney K, Ren H, Autissier P, Wang P, Huang Y, Mohanty U, Niu J. CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers. Nat Commun 2025; 16:595. [PMID: 39799111 PMCID: PMC11724954 DOI: 10.1038/s41467-025-55957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimize a bacterial CRISPR-hybrid system coupled with FACS, and identified high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allows effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.
Collapse
Affiliation(s)
- Qiwen Su-Tobon
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jiayi Fan
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Kevin Feeney
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hongyuan Ren
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Peiyi Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Yingzi Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
13
|
Lee JM, Zeng J, Liu P, Nguyen MA, Suchenski Loustaunau D, Bauer DE, Kurt Yilmaz N, Wolfe SA, Schiffer CA. Direct delivery of Cas-embedded cytosine base editors as ribonucleoprotein complexes for efficient and accurate editing of clinically relevant targets. Nucleic Acids Res 2025; 53:gkae1217. [PMID: 39676659 PMCID: PMC11724287 DOI: 10.1093/nar/gkae1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Recently, cytosine base editors (CBEs) have emerged as a promising therapeutic tool for specific editing of single nucleotide variants and disrupting specific genes associated with disease. Despite this promise, the currently available CBEs have the significant liabilities of off-target and bystander editing activities, partly due to the mechanism by which they are delivered, causing limitations in their potential applications. In this study, we engineered optimized, soluble and stable Cas-embedded CBEs (CE_CBEs) that integrate several recent advances, which were efficiently formulated for direct delivery into cells as ribonucleoprotein (RNP) complexes. Our resulting CE_CBE RNP complexes efficiently target cytosines in TC dinucleotides with minimal off-target or bystander mutations. Delivery of additional uracil glycosylase inhibitor protein in trans further increased C-to-T editing efficiency and target purity in a dose-dependent manner, minimizing indel formation. A single electroporation was sufficient to effectively edit the therapeutically relevant locus BCL11A for sickle cell disease in hematopoietic stem and progenitor cells in a dose-dependent manner without cellular toxicity. Significantly, these CE_CBE RNPs permitted highly efficient editing and engraftment of transplanted cells in mice. Thus, our designed CBE proteins provide promising reagents for RNP-based editing at disease-related sites.
Collapse
Affiliation(s)
- Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA01605, USA
| | - My Anh Nguyen
- Division of Hematology/Oncology, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Diego Suchenski Loustaunau
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA01605, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Waterbury AL, Iram I, Liau BB. Building the first base editors. Nat Chem Biol 2025; 21:16-17. [PMID: 39719491 DOI: 10.1038/s41589-024-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Affiliation(s)
- Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Irtiza Iram
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Li X, Wei Y, Wang SY, Wang SG, Xia PF. One-for-all gene inactivation via PAM-independent base editing in bacteria. J Biol Chem 2025; 301:108113. [PMID: 39706269 PMCID: PMC11782819 DOI: 10.1016/j.jbc.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Base editing is preferable for bacterial gene inactivation without generating double-strand breaks, requiring homology recombination, or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif. Herein, we report an unconstrained base-editing system to enable the inactivation of any genes of interest in bacteria. We employed a dCas9 derivative, dSpRY, and activation-induced cytidine deaminase to build a protospacer adjacent motif-independent base editor. Then, we programmed the base editor to exclude the START codon of a gene of interest instead of introducing premature STOP codons to obtain a universal approach for gene inactivation, namely XSTART, with an overall efficiency approaching 100%. By using XSTART, we successfully manipulated the amino acid metabolisms in Escherichia coli, generating glutamine, arginine, and aspartate auxotrophic strains. While we observed a high frequency of off-target events as a trade-off for increased efficiency, refining the regulatory system of XSTART to limit expression levels reduced off-target events by over 60% without sacrificing efficiency, aligning our results with previously reported levels. Finally, the effectiveness of XSTART was also demonstrated in probiotic E. coli Nissle 1917 and photoautotrophic cyanobacterium Synechococcus elongatus, illustrating its potential in reprogramming diverse bacteria.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
16
|
Endo M, Negishi K, Toki S. Precise Base Substitution Using CRISPR/Cas-Mediated Base Editor in Rice. Methods Mol Biol 2025; 2869:101-111. [PMID: 39499471 DOI: 10.1007/978-1-0716-4204-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Base editors, CRISPR/Cas-based precise genome editing tools, enable base conversion at a target site without inducing DNA double-strand breaks. The genome editing targetable range is restricted by the requirement for protospacer adjacent motif (PAM) sequence. Cas9 derived from Streptococcus pyogenes (SpCas9)-most widely used for genome editing in many organisms-requires an NGG sequence adjacent to the target site as a PAM. Then, engineered and natural Cas variants with altered PAM recognition are used for base editor to expand the flexibility of base substitution position. In this chapter, we describe a protocol for base editing based on SpCas9-NG, which is a rationally engineered SpCas9 variant that can recognize relaxed NG PAMs.
Collapse
Affiliation(s)
- Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Katsuya Negishi
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Faculty of Agriculture, Department of Life Science, Ryukoku University, Kyoto, Japan
| |
Collapse
|
17
|
Xu K, Feng H, Zhang H, He C, Kang H, Yuan T, Shi L, Zhou C, Hua G, Cao Y, Zuo Z, Zuo E. Structure-guided discovery of highly efficient cytidine deaminases with sequence-context independence. Nat Biomed Eng 2025; 9:93-108. [PMID: 38831042 PMCID: PMC11754093 DOI: 10.1038/s41551-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/20/2024] [Indexed: 06/05/2024]
Abstract
The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.
Collapse
Affiliation(s)
- Kui Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haihang Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huifang Kang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chikai Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yaqi Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenrui Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
18
|
Yuan Q, Zeng H, Daniel TC, Liu Q, Yang Y, Osikpa EC, Yang Q, Peddi A, Abramson LM, Zhang B, Xu Y, Gao X. Orthogonal and multiplexable genetic perturbations with an engineered prime editor and a diverse RNA array. Nat Commun 2024; 15:10868. [PMID: 39737993 PMCID: PMC11685949 DOI: 10.1038/s41467-024-55134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation. mvGPT can precisely edit human genome via PE coupled with a prime editing guide RNA and a nicking guide RNA, activate endogenous gene expression using PE with a truncated single guide RNA containing MPH-recruiting MS2 aptamers, and silence endogenous gene expression via RNA interference with a short-hairpin RNA. We showcase the versatility of mvGPT by simultaneously correcting a c.3207C>A mutation in the ATP7B gene linked to Wilson's disease, upregulating the PDX1 gene expression to potentially treat Type I diabetes, and suppressing the TTR gene to manage transthyretin amyloidosis. In addition to plasmid delivery, we successfully utilize various methods to deliver the mvGPT payload, demonstrating its potential for future in vivo applications.
Collapse
Affiliation(s)
- Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Hongzhi Zeng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Tyler C Daniel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Emmanuel C Osikpa
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Qiaochu Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Advaith Peddi
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Boyang Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
20
|
Taki T, Morimoto K, Mizuno S, Kuno A. KOnezumi-AID: Automation Software for Efficient Multiplex Gene Knockout Using Target-AID. Int J Mol Sci 2024; 25:13500. [PMID: 39769261 PMCID: PMC11679502 DOI: 10.3390/ijms252413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
With the groundbreaking advancements in genome editing technologies, particularly CRISPR-Cas9, creating knockout mutants has become highly efficient. However, the CRISPR-Cas9 system introduces DNA double-strand breaks, increasing the risk of chromosomal rearrangements and posing a major obstacle to simultaneous multiple gene knockout. Base-editing systems, such as Target-AID, are safe alternatives for precise base modifications without requiring DNA double-strand breaks, serving as promising solutions for existing challenges. Nevertheless, the absence of adequate tools to support Target-AID-based gene knockout highlights the need for a comprehensive system to design guide RNAs (gRNAs) for the simultaneous knockout of multiple genes. Here, we aimed to develop KOnezumi-AID, a command-line tool for gRNA design for Target-AID-mediated genome editing. KOnezumi-AID facilitates gene knockout by inducing the premature termination codons or promoting exon skipping, thereby generating experiment-ready gRNA designs for mouse and human genomes. Additionally, KOnezumi-AID exhibits batch processing capacity, enabling rapid and precise gRNA design for large-scale genome editing, including CRISPR screening. In summary, KOnezumi-AID is an efficient and user-friendly tool for gRNA design, streamlining genome editing workflows and advancing gene knockout research.
Collapse
Affiliation(s)
- Taito Taki
- College of Biological Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Kento Morimoto
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
21
|
Li L, Scott WS, Khristich AN, Armenia JF, Mirkin SM. Recurrent DNA nicks drive massive expansions of (GAA) n repeats. Proc Natl Acad Sci U S A 2024; 121:e2413298121. [PMID: 39585990 PMCID: PMC11626148 DOI: 10.1073/pnas.2413298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Over 50 hereditary degenerative disorders are caused by expansions of short tandem DNA repeats (STRs). (GAA)n repeat expansions are responsible for Friedreich's ataxia as well as late-onset cerebellar ataxias (LOCAs). Thus, the mechanisms of (GAA)n repeat expansions attract broad scientific attention. To investigate the role of DNA nicks in this process, we utilized a CRISPR-Cas9 nickase system to introduce targeted nicks adjacent to the (GAA)n repeat tract. We found that DNA nicks 5' of the (GAA)100 run led to a dramatic increase in both the rate and scale of its expansion in dividing cells. Strikingly, they also promoted large-scale expansions of carrier- and large normal-size (GAA)n repeats, recreating, in a model system, the expansion events that occur in human pedigrees. DNA nicks 3' of the (GAA)100 repeat led to a smaller but significant increase in the expansion rate as well. Our genetic analysis implies that in dividing cells, conversion of nicks into double-strand breaks (DSBs) during DNA replication followed by DSB or fork repair leads to repeat expansions. Finally, we showed that 5' GAA-strand nicks increase expansion frequency in nondividing yeast cells, albeit to a lesser extent than in dividing cells.
Collapse
Affiliation(s)
- Liangzi Li
- Department of Biology, Tufts University, Medford, MA02155
| | - W. Shem Scott
- Department of Biology, Tufts University, Medford, MA02155
| | | | | | | |
Collapse
|
22
|
Koller U, Bauer JW. Emerging DNA & RNA editing strategies for the treatment of epidermolysis bullosa. J DERMATOL TREAT 2024; 35:2391452. [PMID: 39155053 DOI: 10.1080/09546634.2024.2391452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Background: Epidermolysis bullosa (EB) is a clinically-heterogeneous genodermatosis with severe manifestations in the skin and other organs. The significant burden this condition places on patients justifies the development of gene therapeutic strategies targeting the genetic cause of the disease. Methods: Emerging RNA and DNA editing tools have shown remarkable advances in efficiency and safety. Applicable both in ex vivo- and in vivo settings, these gene therapeutics based on gene replacement or editing are either at the pre-clinical or clinical stage. Results: The recent landmark FDA approvals for gene editing based on CRISPR/Cas9, along with the first FDA-approved redosable in vivo gene replacement therapy for EB, will invigorate ongoing research efforts, increasing the likelihood of achieving local cure via CRISPR-based technologies in the near future. Conclusions: This review discusses the status quo of current gene therapeutics that act at the level of RNA or DNA, all with the common aim of improving the quality of life for EB patients.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
23
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
24
|
Oh DH. Mechanism of Genome Editing Tools and Their Application on Genetic Inheritance Disorders. Glob Med Genet 2024; 11:319-329. [PMID: 39583120 PMCID: PMC11405120 DOI: 10.1055/s-0044-1790558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
In the fields of medicine and bioscience, gene editing is increasingly recognized as a promising therapeutic approach for treating pathogenic variants in humans and other living organisms. With advancements in technology and knowledge, it is now understood that most genetic defects are caused by single-base pair variants. The ability to substitute genes using genome editing tools enables scientists and doctors to cure genetic diseases and disorders. Starting with CRISPR (clustered regularly interspaced short palindromic repeats)/Cas, the technology has evolved to become more efficient and safer, leading to the development of base and prime editors. Furthermore, various approaches are used to treat genetic disorders such as hemophilia, cystic fibrosis, and Duchenne muscular dystrophy. As previously mentioned, most genetic defects leading to specific diseases are caused by single-base pair variants, which can occur at many locations in corresponding gene, potentially causing the same disease. This means that, even when using the same genome editing tool, results in terms of editing efficiency or treatment effectiveness may differ. Therefore, different approaches may need to be applied to different types of diseases. Prevalently, due to the safety of adeno-associated virus (AAV) vectors in gene therapy, most clinical trials of gene therapy are based on AAV delivery methods. However, despite their safety and nonintegration into the host genome, their limitations, such as confined capacity, dosage-dependent viral toxicity, and immunogenicity, necessitate the development of new approaches to enhance treatment effects. This review provides the structure and function of each CRISPR-based gene editing tool and focuses on introducing new approaches in gene therapy associated with improving treatment efficiency.
Collapse
Affiliation(s)
- Dae Hwan Oh
- Institute of Green Manufacturing Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Greiner-Tollersrud OK, Krausz M, Boehler V, Polyzou A, Seidl M, Spahiu A, Abdullah Z, Andryka-Cegielski K, Dominick FI, Huebscher K, Goschin A, Smulski CR, Trompouki E, Link R, Ebersbach H, Srinivas H, Marchant M, Sogkas G, Staab D, Vågbø C, Guerini D, Baasch S, Latz E, Hartmann G, Henneke P, Geiger R, Peng XP, Grimbacher B, Bartok E, Alseth I, Warncke M, Proietti M. ADA2 is a lysosomal deoxyadenosine deaminase acting on DNA involved in regulating TLR9-mediated immune sensing of DNA. Cell Rep 2024; 43:114899. [PMID: 39441717 DOI: 10.1016/j.celrep.2024.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Although adenosine deaminase 2 (ADA2) is considered an extracellular ADA, evidence questions the physiological relevance of this activity. Our study reveals that ADA2 localizes within the lysosomes, where it is targeted through modifications of its glycan structures. We show that ADA2 interacts with DNA molecules, altering their sequences by converting deoxyadenosine (dA) to deoxyinosine (dI). We characterize its DNA substrate preferences and provide data suggesting that DNA, rather than free adenosine, is its natural substrate. Finally, we demonstrate that dA-to-dI editing of DNA molecules and ADA2 regulate lysosomal immune sensing of nucleic acids (NAs) by modulating Toll-like receptor 9 (TLR9) activation. Our results describe a mechanism involved in the complex interplay between NA metabolism and immune response, possibly impacting ADA2 deficiency (DADA2) and other diseases involving this pathway, including autoimmune diseases, cancer, or infectious diseases.
Collapse
Affiliation(s)
| | - Máté Krausz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Vincent Boehler
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Aikaterini Polyzou
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Maximilian Seidl
- Institute of Pathology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ambra Spahiu
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | - Katrin Huebscher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Institut für Forstentomologie und Waldschutz, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Goschin
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Cristian R Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Eirini Trompouki
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Regina Link
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Honnappa Srinivas
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Martine Marchant
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Georgios Sogkas
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST - Cluster of Excellence 2155, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dieter Staab
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Cathrine Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Danilo Guerini
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Universitätsklinikum Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Experimental Hematology and Transfusion Medicine Bonn, Bonn, Germany
| | - Philippe Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Eva Bartok
- Institute of Experimental Hematology and Transfusion Medicine Bonn, Bonn, Germany
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Max Warncke
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST - Cluster of Excellence 2155, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
26
|
Schwartz CI, Abell NS, Li A, Aradhana, Tycko J, Truong A, Montgomery SB, Hess GT. Towards optimizing diversifying base editors for high-throughput studies of single- nucleotide variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.621003. [PMID: 39605325 PMCID: PMC11601328 DOI: 10.1101/2024.11.18.621003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Determining the phenotypic effects of single nucleotide variants is critical for understanding the genome and interpreting clinical sequencing results. Base editors, including diversifying base editors that create C>N mutations, are potent tools for installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing. To address this knowledge gap, the effect of various design features, such as deaminase recruitment and delivery method (electroporation or lentiviral transduction), on editing was assessed across ∼200 synthetic target sites. The direct fusion of a hyperactive variant of activation-induced cytidine deaminase to the N-terminus of dCas9 (DivA-BE) produced the highest editing efficiency, ∼4-fold better than the previous CRISPR-X method. Additionally, DivA-BE mutagenized the DNA strand that anneals to the targeting sgRNA to create G>N mutations, which were absent when the deaminase was fused to the C-terminus of dCas9. The DivA-BE editors efficiently diversified their target sites, an ideal characteristic for discovering functional variants. These and other findings provide a comprehensive analysis of how design features influence the activity of several popular base editors.
Collapse
|
27
|
Adli M, Xing D, Bai T, Neyisci O, Paylakhi S, Duval A, Tekin Y. Comparative analysis and directed protein evolution yield an improved degron technology with minimal basal degradation, rapid inducible depletion, and faster recovery of target proteins. RESEARCH SQUARE 2024:rs.3.rs-5348956. [PMID: 39606491 PMCID: PMC11601833 DOI: 10.21203/rs.3.rs-5348956/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Biological mechanisms are inherently dynamic, requiring precise and rapid gene manipulation for effective characterization. Traditional genetic perturbation tools such as siRNA and CRISPR knockout operate on timescales that render them unsuitable for exploring dynamic processes or studying essential genes, where chronic depletion can lead to cell death. Here, we compared four major inducible degron systems-dTAG, HaloPROTAC, and two auxin-inducible degron (AID) tools-in human pluripotent stem cells. We evaluated basal degradation levels, inducible degradation kinetics, and recovery dynamics for endogenously tagged genes. While the AID 2.0 system is the most efficient for rapid protein degradation, it exhibited higher basal degradation and slower recovery after ligand washout. To address these challenges, we applied directed protein evolution, incorporating base-editing-mediated mutagenesis and iterative functional selection and screening. We discovered novel OsTIR1 variants, including S210A, with significantly enhanced overall degron efficiency. The resulting system, designated as AID 3.0, demonstrates minimal basal degradation and rapid and effective target protein depletion and substantially rescues the cellular and molecular phenotypes due to basal degradation or slow target protein recovery in previous systems. We conclude that AID 3.0 represents a superior degron technology, offering a valuable tool for studying gene functions in dynamic biological contexts and exploring therapeutic applications. Additionally, the research strategy used here could be broadly applicable for improving other degron and biological tools.
Collapse
Affiliation(s)
- Mazhar Adli
- Northwestern University, Feinberg School of Medicine
| | - De Xing
- Northwestern University, Feinberg School of Medicine
| | - Tao Bai
- Northwestern University, Feinberg School of Medicine
| | - Ozlem Neyisci
- Northwestern University, Feinberg School of Medicine
| | | | | | - Yasemin Tekin
- Northwestern University, Feinberg School of Medicine
| |
Collapse
|
28
|
Kim Y, Oh HC, Lee S, Kim HH. Saturation profiling of drug-resistant genetic variants using prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02465-z. [PMID: 39533107 DOI: 10.1038/s41587-024-02465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Methods to characterize the functional effects of genetic variants of uncertain significance (VUSs) have been limited by incomplete coverage of the mutational space. In clinical oncology, drug resistance arising from VUSs can prevent optimal treatment. Here we introduce PEER-seq, a high-throughput method based on prime editing that can evaluate the functional effects of single-nucleotide variants (SNVs). PEER-seq introduces both intended SNVs and synonymous marker mutations using prime editing and deep sequences the endogenous target regions to identify the introduced SNVs. We generate and functionally evaluate 2,476 SNVs in the epidermal growth factor receptor gene (EGFR), including 99% of all possible variants in the canonical tyrosine kinase domain. We determined resistance profiles of 95% of all possible EGFR protein variants encoded in the whole tyrosine kinase domain against the common tyrosine kinase inhibitors afatinib, osimertinib and osimertinib in the presence of the co-occurring substitution T790M, in PC-9 cells. Our study has the potential to substantially improve the precision of therapeutic choices in clinical settings.
Collapse
Affiliation(s)
- Younggwang Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeong-Cheol Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital, Department of Surgery, Seoul, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Won-Sang Lee Institute for Hearing Loss, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Alves CRR, Das S, Krishnan V, Ha LL, Fox LR, Stutzman HE, Shamber CE, Kalailingam P, McCarthy S, Lino Cardenas CL, Fong CE, Imai T, Mitra S, Yun S, Wood RK, Benning FMC, Lawton J, Kim N, Silverstein RA, da Silva JF, de la Cruz D, Richa R, Malhotra R, Chung DY, Chao LH, Tsai SQ, Maguire CA, Lindsay ME, Kleinstiver BP, Musolino PL. In vivo Treatment of a Severe Vascular Disease via a Bespoke CRISPR-Cas9 Base Editor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.621817. [PMID: 39605323 PMCID: PMC11601241 DOI: 10.1101/2024.11.11.621817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Genetic vascular disorders are prevalent diseases that have diverse etiologies and few treatment options. Pathogenic missense mutations in the alpha actin isotype 2 gene (ACTA2) primarily affect smooth muscle cell (SMC) function and cause multisystemic smooth muscle dysfunction syndrome (MSMDS), a genetic vasculopathy that is associated with stroke, aortic dissection, and death in childhood. Here, we explored genome editing to correct the most common MSMDS-causative mutation ACTA2 R179H. In a first-in-kind approach, we performed mutation-specific protein engineering to develop a bespoke CRISPR-Cas9 enzyme with enhanced on-target activity against the R179H sequence. To directly correct the R179H mutation, we screened dozens of configurations of base editors (comprised of Cas9 enzymes, deaminases, and gRNAs) to develop a highly precise corrective A-to-G edit with minimal deleterious bystander editing that is otherwise prevalent when using wild-type SpCas9 base editors. We then created a murine model of MSMDS that exhibits phenotypes consistent with human patients, including vasculopathy and premature death, to explore the in vivo therapeutic potential of this base editing strategy. Delivery of the customized base editor via an engineered SMC-tropic adeno-associated virus (AAV-PR) vector substantially prolonged survival and rescued systemic phenotypes across the lifespan of MSMDS mice, including in the vasculature, aorta, and brain. Together, our optimization of a customized base editor highlights how bespoke CRISPR-Cas enzymes can enhance on-target correction while minimizing bystander edits, culminating in a precise editing approach that may enable a long-lasting treatment for patients with MSMDS.
Collapse
Affiliation(s)
- Christiano R R Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sabyasachi Das
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijai Krishnan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren R Fox
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah E Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Claire E Shamber
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Siobhan McCarthy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christian L Lino Cardenas
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire E Fong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahiko Imai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sunayana Mitra
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shuqi Yun
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachael K Wood
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Joseph Lawton
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nahye Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Rachel A Silverstein
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard, Boston, MA, USA
| | - Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Demitri de la Cruz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Rashmi Richa
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mark E Lindsay
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Patricia L Musolino
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Bamidele N, Ansodaria A, Chen Z, Cheng H, Panwala R, Jazbec E, Sontheimer EJ. Rational Design of Enhanced Nme2Cas9 and Nme2 SmuCas9 Nucleases and Base Editors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620986. [PMID: 39554198 PMCID: PMC11565991 DOI: 10.1101/2024.10.30.620986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
CRISPR-Cas genome editing tools enable precise, RNA-guided modification of genomes within living cells. The most clinically advanced genome editors are Cas9 nucleases, but many nuclease technologies provide only limited control over genome editing outcomes. Adenine base editors (ABEs) and cytosine base editors (CBEs) enable precise and efficient nucleotide conversions of A:T-to-G:C and C:G-to-T:A base pairs, respectively. Therapeutic use of base editors (BEs) provides an avenue to correct approximately 30% of human pathogenic variants. Nonetheless, factors such as protospacer adjacent motif (PAM) availability, accuracy, product purity, and delivery limit the full therapeutic potential of BEs. We previously developed Nme2Cas9 and its BE derivatives, including ABEs compatible with single adeno-associated virus (AAV) vector delivery, in part to enable editing near N4CC PAMs. Further engineering yielded domain-inlaid BEs with enhanced activity, as well as Nme2Cas9/SmuCas9 chimeras that target single-cytidine (N4C) PAMs. Here we further enhance Nme2Cas9 and Nme2SmuCas9 editing effectors for improved efficiency and vector compatibility through site-directed mutagenesis and deaminase linker optimization. Finally, we define the editing and specificity profiles of the resulting variants by using paired guide-target libraries.
Collapse
Affiliation(s)
- Nathan Bamidele
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Current address: Profluent, Emeryville, CA 94608, USA
| | - Aditya Ansodaria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Current address: Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Eva Jazbec
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
31
|
Zhang Y, Liu Y, Qin W, Zheng S, Xiao J, Xia X, Yuan X, Zeng J, Shi Y, Zhang Y, Ma H, Varshney GK, Fei JF, Liu Y. Cytosine base editors with increased PAM and deaminase motif flexibility for gene editing in zebrafish. Nat Commun 2024; 15:9526. [PMID: 39496611 PMCID: PMC11535530 DOI: 10.1038/s41467-024-53735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Cytosine base editing is a powerful tool for making precise single nucleotide changes in cells and model organisms like zebrafish, which are valuable for studying human diseases. However, current base editors struggle to edit cytosines in certain DNA contexts, particularly those with GC and CC pairs, limiting their use in modelling disease-related mutations. Here we show the development of zevoCDA1, an optimized cytosine base editor for zebrafish that improves editing efficiency across various DNA contexts and reduces restrictions imposed by the protospacer adjacent motif. We also create zevoCDA1-198, a more precise editor with a narrower editing window of five nucleotides, minimizing off-target effects. Using these advanced tools, we successfully generate zebrafish models of diseases that were previously challenging to create due to sequence limitations. This work enhances the ability to introduce human pathogenic mutations in zebrafish, broadening the scope for genomic research with improved precision and efficiency.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yang Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shaohui Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jiawang Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xinxin Xia
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xuanyao Yuan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jingjing Zeng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yan Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hui Ma
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
32
|
Yao B, Lei Z, Gonçalves MAFV, Sluijter JPG. Integrating Prime Editing and Cellular Reprogramming as Novel Strategies for Genetic Cardiac Disease Modeling and Treatment. Curr Cardiol Rep 2024; 26:1197-1208. [PMID: 39259489 PMCID: PMC11538137 DOI: 10.1007/s11886-024-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine. RECENT FINDINGS Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities. Notably, PE has shown exceptional precision in correcting genetic mutations. Combining PE with iPSC-CMs has emerged as a robust platform for disease modeling and developing innovative treatments for genetic cardiac diseases. The review finds that PE, when combined with iPSC-CMs, holds significant promise for treating genetic cardiac diseases by addressing their root causes. This approach could revolutionize personalized medicine, offering more effective and precise treatments. Future research should focus on refining these technologies and their clinical applications.
Collapse
Affiliation(s)
- Bing Yao
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
34
|
Chen J, Su S, Pickar-Oliver A, Chiarella A, Hahn Q, Goldfarb D, Cloer E, Small G, Sivashankar S, Ramsden D, Major M, Hathaway N, Gersbach C, Liu P. Engineered Cas9 variants bypass Keap1-mediated degradation in human cells and enhance epigenome editing efficiency. Nucleic Acids Res 2024; 52:11536-11551. [PMID: 39228373 PMCID: PMC11514467 DOI: 10.1093/nar/gkae761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
As a potent and convenient genome-editing tool, Cas9 has been widely used in biomedical research and evaluated in treating human diseases. Numerous engineered variants of Cas9, dCas9 and other related prokaryotic endonucleases have been identified. However, as these bacterial enzymes are not naturally present in mammalian cells, whether and how bacterial Cas9 proteins are recognized and regulated by mammalian hosts remain poorly understood. Here, we identify Keap1 as a mammalian endogenous E3 ligase that targets Cas9/dCas9/Fanzor for ubiquitination and degradation in an 'ETGE'-like degron-dependent manner. Cas9-'ETGE'-like degron mutants evading Keap1 recognition display enhanced gene editing ability in cells. dCas9-'ETGE'-like degron mutants exert extended protein half-life and protein retention on chromatin, leading to improved CRISPRa and CRISPRi efficacy. Moreover, Cas9 binding to Keap1 also impairs Keap1 function by competing with Keap1 substrates or binding partners for Keap1 binding, while engineered Cas9 mutants show less perturbation of Keap1 biology. Thus, our study reveals a mammalian specific Cas9 regulation and provides new Cas9 designs not only with enhanced gene regulatory capacity but also with minimal effects on disrupting endogenous Keap1 signaling.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Anna M Chiarella
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Quentin Hahn
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University, St. Louis, MO 63110, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Smaran Sivashankar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Nathaniel A Hathaway
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Hillary VE, Ceasar SA. CRISPR/Cas system-mediated base editing in crops: recent developments and future prospects. PLANT CELL REPORTS 2024; 43:271. [PMID: 39453560 DOI: 10.1007/s00299-024-03346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) genome-editing system has altered plant research by allowing for targeted genome alteration, and they are emerging as powerful tools for evaluating plant gene function and improving crop yield. Even though CRISPR/Cas9 cleavage and subsequent repair are effective ways to precisely replace genes and change base pairs in plants, the dominance of the non-homologous end-joining pathway (NHEJ) and homology-directed repair's (HDR) poor effectiveness in plant cells have restricted their use. Base editing is gaining popularity as a potential alternative to HDR or NHEJ-mediated replacement, allowing for precise changes in the plant genome via programmed conversion of a single base to another without the need for a donor repair template or double-stranded breaks. In this review, we primarily present the mechanisms of base-editing system, including their distinct types such as DNA base editors (cytidine base editor and adenine base editor) and RNA base editors discovered so far. Next, we outline the current potential applications of the base-editing system for crop improvements. Finally, we discuss the limitations and potential future directions of the base-editing system in terms of improving crop quality. We hope that this review will enable the researcher to gain knowledge about base-editing tools and their potential applications in crop improvement.
Collapse
Affiliation(s)
- V Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India.
| |
Collapse
|
36
|
Zhou X, Gao J, Luo L, Huang C, Wu J, Wang X. Comprehensive evaluation and prediction of editing outcomes for near-PAMless adenine and cytosine base editors. Commun Biol 2024; 7:1389. [PMID: 39455714 PMCID: PMC11511846 DOI: 10.1038/s42003-024-07078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Base editors enable the direct conversion of target bases without inducing double-strand breaks, showing great potential for disease modeling and gene therapy. Yet, their applicability has been constrained by the necessity for specific protospacer adjacent motif (PAM). We generate four versions of near-PAMless base editors and systematically evaluate their editing patterns and efficiencies using an sgRNA-target library of 45,747 sequences. Near-PAMless base editors significantly expanded the targeting scope, with both PAM and target flanking sequences as determinants for editing outcomes. We develop BEguider, a deep learning model, to accurately predict editing results for near-PAMless base editors. We also provide experimentally measured editing outcomes of 20,541 ClinVar sites, demonstrating that variants previously inaccessible by NGG PAM base editors can now be precisely generated or corrected. We make our predictive tool and data available online to facilitate development and application of near-PAMless base editors in both research and clinical settings.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, Wenzhou, China
| | - Liheng Luo
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changcai Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiayu Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
37
|
Gandadireja AP, Vos PD, Siira SJ, Filipovska A, Rackham O. Hyperactive Nickase Activity Improves Adenine Base Editing. ACS Synth Biol 2024; 13:3128-3136. [PMID: 39298405 DOI: 10.1021/acssynbio.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Base editing technologies enable programmable single-nucleotide changes in target DNA without double-stranded DNA breaks. Adenine base editors (ABEs) allow precise conversion of adenine (A) to guanine (G). However, limited availability of optimized deaminases as well as their variable efficiencies across different target sequences can limit the ability of ABEs to achieve effective adenine editing. Here, we explored the use of a TurboCas9 nickase in an ABE to improve its genome editing activity. The resulting TurboABE exhibits amplified editing efficiency on a variety of adenine target sites without increasing off-target editing in DNA and RNA. An interesting feature of TurboABE is its ability to significantly improve the editing frequency at bases with normally inefficient editing rates in the editing window of each target DNA. Development of improved ABEs provides new possibilities for precise genetic modification of genes in living cells.
Collapse
Affiliation(s)
- Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Stefan J Siira
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Centre for Child Health Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Centre for Child Health Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
38
|
Bzhilyanskaya V, Ma L, Liu S, Fox LR, Whittaker MN, Meis RJ, Choi U, Lawson A, Ma M, Theobald N, Burkett S, Sweeney CL, Lazzarotto CR, Tsai SQ, Lack JB, Wu X, Dahl GA, Malech HL, Kleinstiver BP, De Ravin SS. High-fidelity PAMless base editing of hematopoietic stem cells to treat chronic granulomatous disease. Sci Transl Med 2024; 16:eadj6779. [PMID: 39413163 PMCID: PMC11753194 DOI: 10.1126/scitranslmed.adj6779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
X-linked chronic granulomatous disease (X-CGD) is an inborn error of immunity (IEI) resulting from genetic mutations in the cytochrome b-245 beta chain (CYBB) gene. The applicability of base editors (BEs) to correct mutations that cause X-CGD is constrained by the requirement of Cas enzymes to recognize specific protospacer adjacent motifs (PAMs). Our recently engineered PAMless Cas enzyme, SpRY, can overcome the PAM limitation. However, the efficiency, specificity, and applicability of SpRY-based BEs to correct mutations in human hematopoietic stem and progenitor cells (HSPCs) have not been thoroughly examined. Here, we demonstrated that the adenine BE ABE8e-SpRY can access a range of target sites in HSPCs to correct mutations causative of X-CGD. For the prototypical X-CGD mutation CYBB c.676C>T, ABE8e-SpRY achieved up to 70% correction, reaching efficiencies greater than three-and-one-half times higher than previous CRISPR nuclease and donor template approaches. We profiled potential off-target DNA edits, transcriptome-wide RNA edits, and chromosomal perturbations in base-edited HSPCs, which together revealed minimal off-target or bystander edits. Edited alleles persisted after transplantation of the base-edited HSPCs into immunodeficient mice. Together, these investigational new drug-enabling studies demonstrated efficient and precise correction of an X-CGD mutation with PAMless BEs, supporting a first-in-human clinical trial (NCT06325709) and providing a potential blueprint for treatment of other IEI mutations.
Collapse
Affiliation(s)
- Vera Bzhilyanskaya
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Siyuan Liu
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Lauren R. Fox
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Madelynn N. Whittaker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ronald J. Meis
- CELLSCRIPT, Madison, WI, 53713, USA
- Wisconsin Institute for Immune and Cell Therapy (WIICT), Madison, WI, 53713, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amanda Lawson
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle Ma
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narda Theobald
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Colin L. Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children‘s Research Hospital, Memphis, TN, 38105, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children‘s Research Hospital, Memphis, TN, 38105, USA
| | - Justin B. Lack
- Bioinformatics (NCBR)/Integrated Data Sciences Section (IDSS), Research Technology Branch/DIR/NIAID, Frederick, MD, 21702, USA
| | - Xiaolin Wu
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Gary A. Dahl
- CELLSCRIPT, Madison, WI, 53713, USA
- Wisconsin Institute for Immune and Cell Therapy (WIICT), Madison, WI, 53713, USA
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Suk See De Ravin
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
39
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Yan H, Tang W. Programmed RNA editing with an evolved bacterial adenosine deaminase. Nat Chem Biol 2024; 20:1361-1370. [PMID: 38969862 DOI: 10.1038/s41589-024-01661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Programmed RNA editing presents an attractive therapeutic strategy for genetic disease. In this study, we developed bacterial deaminase-enabled recoding of RNA (DECOR), which employs an evolved Escherichia coli transfer RNA adenosine deaminase, TadA8e, to deposit adenosine-to-inosine editing to CRISPR-specified sites in the human transcriptome. DECOR functions in a variety of cell types, including human lung fibroblasts, and delivers on-target activity similar to ADAR-overexpressing RNA-editing platforms with 88% lower off-target effects. High-fidelity DECOR further reduces off-target effects to basal level. We demonstrate the clinical potential of DECOR by targeting Van der Woude syndrome-causing interferon regulatory factor 6 (IRF6) insufficiency. DECOR-mediated RNA editing removes a pathogenic upstream open reading frame (uORF) from the 5' untranslated region of IRF6 and rescues primary ORF expression from 12.3% to 36.5%, relative to healthy transcripts. DECOR expands the current portfolio of effector proteins and opens new territory in programmed RNA editing.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Ye L, Zhao D, Li J, Wang Y, Li B, Yang Y, Hou X, Wang H, Wei Z, Liu X, Li Y, Li S, Liu Y, Zhang X, Bi C. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat Biotechnol 2024; 42:1538-1547. [PMID: 38168994 DOI: 10.1038/s41587-023-02050-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity-CDG-nCas9 and TDG-nCas9-with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5' end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.
Collapse
Affiliation(s)
- Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yiran Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueting Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huibin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhandong Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoqi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yajing Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
42
|
Shamjetsabam ND, Rana R, Malik P, Ganguly NK. CRISPR/Cas9: an overview of recent developments and applications in cancer research. Int J Surg 2024; 110:6198-6213. [PMID: 38377059 PMCID: PMC11486967 DOI: 10.1097/js9.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) has risen as a potent gene editing method with vast potential across numerous domains, including its application in cancer research and therapy. This review article provides an extensive overview of the research that has been done so far on CRISPR-Cas9 with an emphasis on how it could be utilized in the treatment of cancer. The authors go into the underlying ideas behind CRISPR-Cas9, its mechanisms of action, and its application for the study of cancer biology. Furthermore, the authors investigate the various uses of CRISPR-Cas9 in cancer research, spanning from the discovery of genes and the disease to the creation of novel therapeutic approaches. The authors additionally discuss the challenges and limitations posed by CRISPR-Cas9 technology and offer insights into the potential applications and future directions of this cutting-edge field of research. The article intends to consolidate the present understanding and stimulate more research into CRISPR-Cas9's promise as a game-changing tool for cancer research and therapy.
Collapse
Affiliation(s)
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital New Delhi
| | - Priyanka Malik
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | |
Collapse
|
43
|
Lian M, Chen T, Chen M, Peng X, Yang Y, Luo X, Chi Y, Wang J, Tang C, Zhou X, Zhang K, Qin C, Lai L, Zhou J, Zou Q. A modified glycosylase base editor without predictable DNA off-target effects. FEBS Lett 2024; 598:2557-2565. [PMID: 38946058 DOI: 10.1002/1873-3468.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Glycosylase base editor (GBE) can induce C-to-G transversion in mammalian cells, showing great promise for the treatment of human genetic disorders. However, the limited efficiency of transversion and the possibility of off-target effects caused by Cas9 restrict its potential clinical applications. In our recent study, we have successfully developed TaC9-CBE and TaC9-ABE by separating nCas9 and deaminase, which eliminates the Cas9-dependent DNA off-target effects without compromising editing efficiency. We developed a novel GBE called TaC9-GBEYE1, which utilizes the deaminase and UNG-nCas9 guided by TALE and sgRNA, respectively. TaC9-GBEYE1 showed comparable levels of on-target editing efficiency to traditional GBE at 19 target sites, without any off-target effects caused by Cas9 or TALE. The TaC9-GBEYE1 is a safe tool for gene therapy.
Collapse
Affiliation(s)
- Meng Lian
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Research Unit of Generation of Large Animal Disease Models, Guangzhou, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaohua Peng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yang Yang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xian Luo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liangxue Lai
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Research Unit of Generation of Large Animal Disease Models, Guangzhou, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jizeng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
44
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
45
|
Li B, Zhu X, Zhao D, Li Y, Yang Y, Li J, Bi C, Zhang X. igRNA Prediction and Selection AI Models (igRNA-PS) for Bystander-less ABE Base Editing. J Mol Biol 2024; 436:168714. [PMID: 39029887 DOI: 10.1016/j.jmb.2024.168714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
CRISPR derived base editing techniques tend to edit multiple bases in the targeted region, which impedes precise reversion of disease-associated single nucleotide variations (SNVs). We designed an imperfect gRNA (igRNA) editing strategy to achieve bystander-less single-base editing. To predict the performance and provide ready-to-use igRNAs, we employed a high-throughput method to edit 5000 loci, each with approximate 19 systematically designed ABE igRNAs. Through deep learning of the relationship of editing efficiency, original gRNA sequence and igRNA sequence, AI models were constructed and tested, designated igRNA Prediction and Selection AI models (igRNA-PS). The models have three functions, First, they can identify the major editing site from the bystanders on a gRNA protospacer with a near 90% accuracy. second, a modified single-base editing efficiency (SBE), considering both single-base editing efficiency and product purity, can be predicted for any given igRNAs. Third, for an editing locus, a set of 64 igRNAs derived from a gRNA can be generated, evaluated through igRNA-PS to select for the best performer, and provided to the user. In this work, we overcome one of the most significant obstacles of base editors, and provide a convenient and efficient approach for single-base bystander-less ABE base editing.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China
| | - Xiagu Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300000, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300000, China.
| |
Collapse
|
46
|
Clark M, Nguyen C, Nguyen H, Tay A, Beach SJ, Maselko M, López Del Amo V. Expanding the CRISPR base editing toolbox in Drosophila melanogaster. Commun Biol 2024; 7:1126. [PMID: 39266668 PMCID: PMC11392945 DOI: 10.1038/s42003-024-06848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
CRISPR base editors can introduce point mutations into DNA precisely, and cytosine base editors (CBEs) catalyze C to T transitions. While CBEs have been thoroughly explored in cell culture and organisms such as mice, little is known about DNA base editing in insects. In this study, we evaluated germline editing rates of three different CBEs expressed under actin (ubiquitous) or nanos (germline) promoters utilizing Drosophila melanogaster. The original Rattus norvegicus-derived cytosine deaminase APOBEC1 (rAPO-1) displayed high base editing rates (~99%) with undetectable indel formation. Additionally, we show that base editors can be used for generating male sterility and female lethality. Overall, this study highlights the importance of promoter choice and sex-specific transmission for efficient base editing in flies while providing new insights for future genetic biocontrol designs in insects.
Collapse
Affiliation(s)
- Michael Clark
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Christina Nguyen
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Nguyen
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Aidan Tay
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Samuel J Beach
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
| | - Víctor López Del Amo
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
47
|
Zhang Y, Zheng Y, Hu Q, Hu Z, Sun J, Cheng P, Rao X, Jiang XR. Simultaneous multiplex genome loci editing of Halomonas bluephagenesis using an engineered CRISPR-guided base editor. Synth Syst Biotechnol 2024; 9:586-593. [PMID: 38720820 PMCID: PMC11076302 DOI: 10.1016/j.synbio.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100 % within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100 % in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100 % and 41.67 % in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100 % editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.
Collapse
Affiliation(s)
- Yulin Zhang
- Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yang Zheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiyuan Sun
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ping Cheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiancai Rao
- Medical Research Institute, Southwest University, Chongqing, 400716, China
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiao-Ran Jiang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
48
|
Sato K, Sasaguri H, Kumita W, Sakuma T, Morioka T, Nagata K, Inoue T, Kurotaki Y, Mihira N, Tagami M, Manabe RI, Ozaki K, Okazaki Y, Yamamoto T, Suematsu M, Saido TC, Sasaki E. Production of a heterozygous exon skipping model of common marmosets using gene-editing technology. Lab Anim (NY) 2024; 53:244-251. [PMID: 39215182 PMCID: PMC11368816 DOI: 10.1038/s41684-024-01424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Nonhuman primates (NHPs), which are closely related to humans, are useful in biomedical research, and an increasing number of NHP disease models have been reported using gene editing. However, many disease-related genes cause perinatal death when manipulated homozygously by gene editing. In addition, NHP resources, which are limited, should be efficiently used. Here, to address these issues, we developed a method of introducing heterozygous genetic modifications into common marmosets by combining Platinum transcription activator-like effector nuclease (TALEN) and a gene-editing strategy in oocytes. We succeeded in introducing the heterozygous exon 9 deletion mutation in the presenilin 1 gene, which causes familial Alzheimer's disease in humans, using this technology. As a result, we obtained animals with the expected genotypes and confirmed several Alzheimer's disease-related biochemical changes. This study suggests that highly efficient heterozygosity-oriented gene editing is possible using TALEN and oocytes and is an effective method for producing genetically modified animals.
Collapse
Affiliation(s)
- Kenya Sato
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Wakako Kumita
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoe Morioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Yoko Kurotaki
- Center of Basic Technology in Marmoset, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kokoro Ozaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Makoto Suematsu
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- WPI-Bio2Q Research Center, Keio University, Tokyo, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
49
|
He Y, Han Y, Ma Y, Liu S, Fan T, Liang Y, Tang X, Zheng X, Wu Y, Zhang T, Qi Y, Zhang Y. Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2488-2503. [PMID: 38713743 PMCID: PMC11331784 DOI: 10.1111/pbi.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.
Collapse
Affiliation(s)
- Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Yangshuo Han
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Yanqin Ma
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanling Liang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhou University, YangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhou University, YangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology Research, University of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
50
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|