1
|
Prokop P. Urban environment decreases pollinator availability, fertility, and prolongs anthesis in the field bindweed ( Convolvulus arvensis Linnaeus, 1753). PLANT SIGNALING & BEHAVIOR 2024; 19:2325225. [PMID: 38448395 PMCID: PMC10936644 DOI: 10.1080/15592324.2024.2325225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/23/2023] [Indexed: 03/08/2024]
Abstract
Urbanization alters the natural environment, with broad negative impacts on living organisms. Urbanization can also disrupt plant-pollinator networks by reducing the abundance and diversity of invertebrates. Firstly, I investigated whether the field bindweed (Convolvulus arvensis) is an obligatory entomophilous plant because previous reports were ambiguous. Secondly, I investigated how the obligatory entomophilous plant, field bindweed, responds to urbanization by comparing the flowering duration (anthesis) and the reproductive success of field bindweeds in urban and rural populations. Unlike cross-pollinated flowers and controls, flowers experimentally prevented from pollination and self-pollinated flowers did not produce seeds, suggesting that the field bindweed is self-incompatible and obligatory entomophilous. The abundance of urban pollinators was 5-6 times lower than the abundance of rural pollinators, and flies (Diptera), beetles (Coleoptera) and moths (Lepidoptera) were significantly more negatively influenced by the urban environment than hymenopterans (Hymenoptera). Urban plants showed significantly longer anthesis duration and lower reproductive success than rural plants. Illuminance and low pollinator abundance were negatively associated with the duration of the anthesis, but relative humidity did not affect the anthesis. Prolonged duration of the anthesis may be an adaptation to pollinator scarcity because more prolonged flowering increases the likelihood of pollination. Future research should unravel whether the longer anthesis of urban flowers is determined by behavioral plasticity or by the evolutionary selection of plants with a genetically determined longer anthesis.
Collapse
Affiliation(s)
- Pavol Prokop
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Horváth G, Dárdai B, Bíró M, Slíz-Balogh J, Száz D, Barta A, Egri Á. The all-day pollinator visits of sunflower inflorescences in Helianthus annuus plantations are independent of head orientation: Testing a widespread hypothesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39395022 DOI: 10.1111/tpj.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
Mature inflorescences of sunflowers (Helianthus annuus) orient constantly on average to the geographical east. According to one of the explanations of this phenomenon, the eastward orientation of sunflower inflorescences increases the number of attracted insect pollinators. We tested this hypothesis in three field experiments performed in flowering sunflower plantations. In experiments 1 and 2 we measured the number of insects trapped by the vertical walls of sticky sunflower models facing north, east, south, and west. In experiment 3 we counted the pollinators' landings on real sunflower inflorescences facing naturally east or turned artificially toward north, south, and west. We found that the all-day number of pollinators (predominantly bees) attracted to model and real sunflowers in H. annuus plantations is independent of the azimuth direction of sunflower heads, and after 10 h in the morning, the average number of pollinators counted every 20 min is practically constant in the rest of the day.
Collapse
Affiliation(s)
- Gábor Horváth
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Bence Dárdai
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Máté Bíró
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Judit Slíz-Balogh
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Dénes Száz
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - András Barta
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Ádám Egri
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
- HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29-31, Budapest, H-1113, Hungary
| |
Collapse
|
3
|
Zeng X, Wang Y, Morishima K. Design and Demonstration of Hingeless Pneumatic Actuators Inspired by Plants. Biomimetics (Basel) 2024; 9:597. [PMID: 39451803 PMCID: PMC11506502 DOI: 10.3390/biomimetics9100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation. To improve the modes of motion, two pneumatic actuators that mimic the principles of the plants (the birds-of-paradise plant and the waterwheel plant) were designed, simulated, and tested using physical models in this study. The most common deformation pattern of the pneumatic actuator, bending deformation, was utilized and hingeless structures based on the plants were fabricated for a more complex motion of the lobes. Here, an ABP (actuator inspired by the birds-of-paradise plant) could bend its midrib downward to open the lobes, but an AWP (actuator inspired by the waterwheel plant) could bend its midrib upward to open the two lobes. In both the computational and physical models, the associated movements of the midrib and lobes could be observed and measured. As it lacks multiple parts that have to be assembled using joints, the actuator would be simpler to fabricate, have a variety of deformation modes, and be applicable in more fields.
Collapse
Affiliation(s)
| | | | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan; (X.Z.); (Y.W.)
| |
Collapse
|
4
|
Koski MH, Heiling JM, Apland JS. Behavioural Thermoregulation of Flowers via Petal Movement. Ecol Lett 2024; 27:e14524. [PMID: 39354899 DOI: 10.1111/ele.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Widely documented in animals, behavioural thermoregulation mitigates negative impacts of climate change. Plants experience especially strong thermal variability but evidence for plant behavioural thermoregulation is limited. Along a montane elevation gradient, Argentina anserina flowers warm more in alpine populations than at lower elevation. We linked floral temperature with phenotypes to identify warming mechanisms and documented petal movement and pollinator visitation using time-lapse cameras. High elevation flowers were more cupped, focused light deeper within flowers and were more responsive to air temperature than low; cupping when cold and flattening when warm. At high elevation, a 20° increase in petal angle resulted in a 0.46°C increase in warming. Warming increased pollinator visitation, especially under cooler high elevation temperatures. A plasticity study revealed constitutive elevational differences in petal cupping and stronger temperature-induced floral plasticity in high elevation populations. Thus, plant populations have evolved different behavioural responses to temperature driving differences in thermoregulatory capacity.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Jacob M Heiling
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Biology Department, Western Carolina University, Cullowhee, North Carolina, USA
| | - Jennifer S Apland
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Michigan State University Herbarium, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Nisa WU, Sandhu S, Nair SK, Kaur H, Kumar A, Rashid Z, Saykhedkar G, Vikal Y. Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India. BMC Genomics 2024; 25:760. [PMID: 39103778 DOI: 10.1186/s12864-024-10655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
Collapse
Affiliation(s)
- Wajhat- Un- Nisa
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Sandhu
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| | | | - Harleen Kaur
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, Ludhiana, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Gajanan Saykhedkar
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
6
|
Guerra S, Castiello U, Bonato B, Dadda M. Handedness in Animals and Plants. BIOLOGY 2024; 13:502. [PMID: 39015821 PMCID: PMC7616222 DOI: 10.3390/biology13070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Structural and functional asymmetries are traceable in every form of life, and some lateralities are homologous. Functionally speaking, the division of labour between the two halves of the brain is a basic characteristic of the nervous system that arose even before the appearance of vertebrates. The most well-known expression of this specialisation in humans is hand dominance, also known as handedness. Even if hand/limb/paw dominance is far more commonly associated with the presence of a nervous system, it is also observed in its own form in aneural organisms, such as plants. To date, little is known regarding the possible functional significance of this dominance in plants, and many questions remain open (among them, whether it reflects a generalised behavioural asymmetry). Here, we propose a comparative approach to the study of handedness, including plants, by taking advantage of the experimental models and paradigms already used to study laterality in humans and various animal species. By taking this approach, we aim to enrich our knowledge of the concept of handedness across natural kingdoms.
Collapse
Affiliation(s)
- Silvia Guerra
- Department of General Psychology (DPG), University of Padova, 35131 Padova, Italy; (U.C.); (B.B.); (M.D.)
| | | | | | | |
Collapse
|
7
|
Harrap MJM, de Vere N, Hempel de Ibarra N, Whitney HM, Rands SA. Variations of floral temperature in changing weather conditions. Ecol Evol 2024; 14:e11651. [PMID: 38952664 PMCID: PMC11214831 DOI: 10.1002/ece3.11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Floral temperature is a flower characteristic that has the potential to impact the fitness of flowering plants and their pollinators. Likewise, the presence of floral temperature patterns, areas of contrasting temperature across the flower, can have similar impacts on the fitness of both mutualists. It is currently poorly understood how floral temperature changes under the influence of different weather conditions, and how floral traits may moderate these changes. The way that floral temperature changes with weather conditions will impact how stable floral temperatures are over time and their utility to plants and pollinators. The stability of floral temperature cues is likely to facilitate effective plant-pollinator interactions and play a role in the plant's reproductive success. We use thermal imaging to monitor how floral temperatures and temperature patterns of four plant species (Cistus 'snow fire' and 'snow white', Coreopsis verticillata and Geranium psilostemon) change with several weather variables (illumination, temperature; windspeed; cloud cover; humidity and pressure) during times that pollinators are active. All weather variables influenced floral temperature in one or more species. The directionality of these relationships was similar across species. In all species, light conditions (illumination) had the greatest influence on floral temperatures overall. Floral temperature and the extent to which flowers showed contrasting temperature patterns were influenced predominantly by light conditions. However, several weather variables had additional, lesser, influences. Furthermore, differences in floral traits, pigmentation and structure, likely resulted in differences in temperature responses to given conditions between species and different parts of the same flower. However, floral temperatures and contrasting temperature patterns that are sufficiently elevated for detection by pollinators were maintained across most conditions if flowers received moderate illumination. This suggests the presence of elevated floral temperature and contrasting temperature patterns are fairly constant and may have potential to influence plant-pollinator interactions across weather conditions.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological SciencesUniversity of BristolBristolUK
- Centre for Research in Animal Behaviour, School of PsychologyUniversity of ExeterExeterUK
- Institute of Biology IAlbert‐Ludwigs‐Universität FreiburgFreiburgGermany
| | - Natasha de Vere
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Sean A. Rands
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
8
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
9
|
Moore CD, Farman DI, Särkinen T, Stevenson PC, Vallejo-Marín M. Floral scent changes in response to pollen removal are rare in buzz-pollinated Solanum. PLANTA 2024; 260:15. [PMID: 38829528 PMCID: PMC11147924 DOI: 10.1007/s00425-024-04403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/30/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.
Collapse
Affiliation(s)
- C Douglas Moore
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Philip C Stevenson
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
10
|
Luo Y, Patel DK, Li Z, Hu Y, Luo H, Yao L, Majidi C. Intrinsically Multistable Soft Actuator Driven by Mixed-Mode Snap-Through Instabilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307391. [PMID: 38447200 PMCID: PMC11095224 DOI: 10.1002/advs.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 03/08/2024]
Abstract
Actuators utilizing snap-through instabilities are widely investigated for high-performance fast actuators and shape reconfigurable structures owing to their rapid response and limited reliance on continuous energy input. However, prevailing approaches typically involve a combination of multiple bistable actuator units and achieving multistability within a single actuator unit still remains an open challenge. Here, a soft actuator is presented that uses shape memory alloy (SMA) and mixed-mode elastic instabilities to achieve intrinsically multistable shape reconfiguration. The multistable actuator unit consists of six stable states, including two pure bending states and four bend-twist states. The actuator is composed of a pre-stretched elastic membrane placed between two elastomeric frames embedded with SMA coils. By controlling the sequence and duration of SMA activation, the actuator is capable of rapid transition between all six stable states within hundreds of milliseconds. Principles of energy minimization are used to identify actuation sequences for various types of stable state transitions. Bending and twisting angles corresponding to various prestretch ratios are recorded based on parameterizations of the actuator's geometry. To demonstrate its application in practical conditions, the multistable actuator is used to perform visual inspection in a confined space, light source tracking during photovoltaic energy harvesting, and agile crawling.
Collapse
Affiliation(s)
- Yichi Luo
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Dinesh K. Patel
- Human‐Computer Interaction Institute, School of Computer ScienceCarnegie Mellon UniversityPittsburghPA15213USA
| | - Zefang Li
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Yafeng Hu
- Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Hao Luo
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Lining Yao
- Human‐Computer Interaction Institute, School of Computer ScienceCarnegie Mellon UniversityPittsburghPA15213USA
| | - Carmel Majidi
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
11
|
Zhou Y, Kusmec A, Schnable PS. Genetic regulation of self-organizing azimuthal canopy orientations and their impacts on light interception in maize. THE PLANT CELL 2024; 36:1600-1621. [PMID: 38252634 PMCID: PMC11062469 DOI: 10.1093/plcell/koae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
The efficiency of solar radiation interception contributes to the photosynthetic efficiency of crop plants. Light interception is a function of canopy architecture, including plant density; leaf number, length, width, and angle; and azimuthal canopy orientation. We report on the ability of some maize (Zea mays) genotypes to alter the orientations of their leaves during development in coordination with adjacent plants. Although the upper canopies of these genotypes retain the typical alternate-distichous phyllotaxy of maize, their leaves grow parallel to those of adjacent plants. A genome-wide association study (GWAS) on this parallel canopy trait identified candidate genes, many of which are associated with shade avoidance syndrome, including phytochromeC2. GWAS conducted on the fraction of photosynthetically active radiation (PAR) intercepted by canopies also identified multiple candidate genes, including liguleless1 (lg1), previously defined by its role in ligule development. Under high plant densities, mutants of shade avoidance syndrome and liguleless genes (lg1, lg2, and Lg3) exhibit altered canopy patterns, viz, the numbers of interrow leaves are greatly reduced as compared to those of nonmutant controls, resulting in dramatically decreased PAR interception. In at least the case of lg2, this phenotype is not a consequence of abnormal ligule development. Instead, liguleless gene functions are required for normal light responses, including azimuth canopy re-orientation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Aaron Kusmec
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
12
|
Hsu JL, Atamian HS, Avendano-Woodruff K. Promoting student interest in plant biology through an inquiry-based module exploring plant circadian rhythm, gene expression, and defense against insects. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0016623. [PMID: 38661410 PMCID: PMC11044644 DOI: 10.1128/jmbe.00166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 04/26/2024]
Abstract
We present a weeklong curricular module for high school biology students that promotes knowledge of phytohormones, the circadian clock, and the Central Dogma. The module, which relies on easily accessible items and requires minimal space, integrates a hands-on experiment that guides students through replicating research examining circadian entrainment in postharvest cabbage from groceries. This work found that plants have cyclical, circadian expression of genes that produce phytohormones, and that such cyclical expression influences herbivory by caterpillars. Such cyclical patterns were found in plants both in situ and in postharvest cabbage. This work thus provides an ideal platform to shape student conceptions of circadian rhythms, gene expression, and plant herbivory by having students use light timers to entrain postharvest cabbage to alternating light and dark cycles and then measuring herbivory in these plants. The results should replicate previous work and demonstrate less herbivory when both plant and caterpillar are entrained to the same light and dark cycles since the expression of phytohormones involved in plant defense will be greatest when caterpillars are active. The module then concludes with a discussion of gene regulation and how this influences phytohormones. This module was field tested at four public schools, reaching over 600 students, and we present data demonstrating that the module led to learning gains and likely increases in interest in plant biology and self-efficacy.
Collapse
Affiliation(s)
- Jeremy L. Hsu
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Hagop S. Atamian
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | | |
Collapse
|
13
|
Jabbur ML, Dani C, Spoelstra K, Dodd AN, Johnson CH. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution. J Biol Rhythms 2024; 39:115-134. [PMID: 38185853 PMCID: PMC10994774 DOI: 10.1177/07487304231219206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Chitrang Dani
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
14
|
Sun Y, Li X, Wang Z, Jiang L, Mei B, Fan W, Wang J, Zhu J, Lee JM. Biomimetic Design of a Dynamic M-O-V Pyramid Electron Bridge for Enhanced Nitrogen Electroreduction. J Am Chem Soc 2024; 146:7752-7762. [PMID: 38447176 DOI: 10.1021/jacs.3c14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Electrochemical nitrogen reduction reaction (eNRR) offers a sustainable route for ammonia synthesis; however, current electrocatalysts are limited in achieving optimal performance within narrow potential windows. Herein, inspired by the heliotropism of sunflowers, we present a biomimetic design of Ru-VOH electrocatalyst, featuring a dynamic Ru-O-V pyramid electron bridge for eNRR within a wide potential range. In situ spectroscopy and theoretical investigations unravel the fact that the electrons are donated from Ru to V at lower overpotentials and retrieved at higher overpotentials, maintaining a delicate balance between N2 activation and proton hydrogenation. Moreover, N2 adsorption and activation were found to be enhanced by the Ru-O-V moiety. The catalyst showcases an outstanding Faradaic efficiency of 51.48% at -0.2 V (vs RHE) with an NH3 yield rate exceeding 115 μg h-1 mg-1 across the range of -0.2 to -0.4 V (vs RHE), along with impressive durability of over 100 cycles. This dynamic M-O-V pyramid electron bridge is also applicable to other metals (M = Pt, Rh, and Pd).
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xuheng Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiqi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lili Jiang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
15
|
Pramanik D, Vaskimo L, Batenburg KJ, Kostenko A, Droppert K, Smets E, Gravendeel B. Orchid fruit and root movement analyzed using 2D photographs and a bioinformatics pipeline for processing sequential 3D scans. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11567. [PMID: 38369982 PMCID: PMC10873816 DOI: 10.1002/aps3.11567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 02/20/2024]
Abstract
Premise Most studies of the movement of orchid fruits and roots during plant development have focused on morphological observations; however, further genetic analysis is required to understand the molecular mechanisms underlying this phenomenon. A precise tool is required to observe these movements and harvest tissue at the correct position and time for transcriptomics research. Methods We utilized three-dimensional (3D) micro-computed tomography (CT) scans to capture the movement of fast-growing Erycina pusilla roots, and built an integrated bioinformatics pipeline to process 3D images into 3D time-lapse videos. To record the movement of slowly developing E. pusilla and Phalaenopsis equestris fruits, two-dimensional (2D) photographs were used. Results The E. pusilla roots twisted and resupinated multiple times from early development. The first period occurred in the early developmental stage (77-84 days after germination [DAG]) and the subsequent period occurred later in development (140-154 DAG). While E. pusilla fruits twisted 45° from 56-63 days after pollination (DAP), the fruits of P. equestris only began to resupinate a week before dehiscence (133 DAP) and ended a week after dehiscence (161 DAP). Discussion Our methods revealed that each orchid root and fruit had an independent direction and degree of torsion from the initial to the final position. Our innovative approaches produced detailed spatial and temporal information on the resupination of roots and fruits during orchid development.
Collapse
Affiliation(s)
- Dewi Pramanik
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Research Center for Horticulture, Research Organization for Agriculture and FoodNational Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN)Cibinong Science Center, Jl. Raya Jakarta‐Bogor, Pakansari, CibinongWest Java16915Indonesia
| | - Lotta Vaskimo
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 112333 CKLeidenThe Netherlands
| | - K. Joost Batenburg
- Leiden Institute of Advanced Computer Science, Faculty of ScienceLeiden University, SnelliusNiels Bohrweg 12333 CALeidenThe Netherlands
- Computational ImagingCentrum Wiskunde en InformaticaScience Park 1231090 GBAmsterdamThe Netherlands
| | - Alexander Kostenko
- Computational ImagingCentrum Wiskunde en InformaticaScience Park 1231090 GBAmsterdamThe Netherlands
| | - Kevin Droppert
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 112333 CKLeidenThe Netherlands
| | - Erik Smets
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU LeuvenKasteelpark Arenberg 31, BOX 24353001LeuvenBelgium
| | - Barbara Gravendeel
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Radboud Institute for Biological and Environmental SciencesRadboud UniversityHeyendaalseweg 1356500 GLNijmegenThe Netherlands
| |
Collapse
|
16
|
Davies C, Burbidge CA, Böttcher C, Dodd AN. Loss of Diel Circadian Clock Gene Cycling Is a Part of Grape Berry Ripening. PLANT & CELL PHYSIOLOGY 2023; 64:1386-1396. [PMID: 37769233 DOI: 10.1093/pcp/pcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Diel cycles of gene expression are thought to adapt plants to 24-h changes in environmental conditions. The circadian clock contributes to this process, but less is known about circadian programs in developing reproductive organs. While model plants and controlled conditions have contributed greatly to our knowledge of circadian clock function, there is a need to better understand its role in crop plants under field conditions with fluctuating light and temperature. In this study, we investigated changes in the circadian clock during the development of grape berries of Vitis vinifera L. We found that the transcripts of circadian clock homologs had high-amplitude oscillations prior to, but not during, ripening. As ripening progressed, the amplitude and rhythmicity of the diel oscillations decreased until most transcripts tested had no significant fluctuation over the 24-h cycle. Despite this loss of rhythmicity, the majority of circadian clock genes investigated were expressed at or near their abundance at the nadir of their pre-ripening oscillation although the berries remained transcriptionally active. From this, it can be concluded that cycling of the canonical circadian clock appears unnecessary for berry ripening. Our data suggest that changes in circadian clock dynamics during reproductive organ development may have important functional consequences.
Collapse
Affiliation(s)
| | | | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7RU, UK
| |
Collapse
|
17
|
Brooks CJ, Atamian HS, Harmer SL. Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol 2023; 21:e3002344. [PMID: 37906610 PMCID: PMC10617704 DOI: 10.1371/journal.pbio.3002344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.
Collapse
Affiliation(s)
- Christopher J. Brooks
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Hagop S. Atamian
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
- Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Wang JY, Jin F, Dong XZ, Liu J, Zhou MX, Li T, Zheng ML. Dual-Stimuli Cooperative Responsive Hydrogel Microactuators Via Two-Photon Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303166. [PMID: 37264716 DOI: 10.1002/smll.202303166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Indexed: 06/03/2023]
Abstract
With the development of bionics as well as materials science, intelligent soft actuators have shown promising applications in many fields such as soft robotics, sensing, and remote manipulation. Microfabrication technologies have enabled the reduction of the size of responsive soft actuators to the micron level. However, it is still challenging to construct microscale actuators capable of responding to different external stimuli in complex and diverse conditions. Here, this work demonstrates a dual-stimuli cooperative responsive hydrogel microactuator by asymmetric fabrication via femtosecond laser direct writing. The dual response of the hydrogel microstructure is achieved by employing responsive hydrogel with functional monomer 2-(dimethylamino)ethyl methacrylate. Raman spectra of the hydrogel microstructures suggest that the pH and temperature response of the hydrogel is generated by the changes in tertiary amine groups and hydrogen bonds, respectively. The asymmetric hydrogel microstructures show opposite bending direction when being heated to high temperature or exposed to acid solution, and can independently accomplish the grasp of polystyrene microspheres. Moreover, this work depicts the cooperative response of the hydrogel microactuator to pH and temperature at the same time. The dual-stimuli cooperative responsive hydrogel microactuators will provide a strategy for designing and fabricating controllable microscale actuators with promising applications in microrobotics and microfluidics.
Collapse
Affiliation(s)
- Jian-Yu Wang
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Ming-Xia Zhou
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Wang YZ, Lin YX, Liu Q, Liu J, Barrett SCH. A new type of cell related to organ movement for selfing in plants. Natl Sci Rev 2023; 10:nwad208. [PMID: 37601240 PMCID: PMC10434738 DOI: 10.1093/nsr/nwad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Many plants employ osmotic and hydrostatic pressure to generate movement for survival, but little is known about the cellular mechanisms involved. Here, we report a new cell type in angiosperms termed 'contractile cells' in the stigmas of the flowering plant Chirita pumila with a much-expanded rough endoplasmic reticulum (RER). Cryo-scanning electron microscopy and transmission electron microscopy analyses revealed that the RER is continuously distributed throughout the entirety of cells, confirmed by endoplasmic reticulum (ER)-specific fluorescent labeling, and is distinct from the common feature of plant ER. The RER is water-sensitive and extremely elongated with water absorption. We show that the contractile cells drive circadian stigma closing-bending movements in response to day-to-night moisture changes. RNA-seq analyses demonstrated that contractile cells have distinct molecular components. Furthermore, multiple microstructural changes in stigma movements convert an anti-selfing structure into a device promoting selfing-a unique cellular mechanism of reproductive adaptation for uncertain pollination environments.
Collapse
Affiliation(s)
- Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Xiang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qi Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
20
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
21
|
Zhao Z, Chen T, Yue J, Pu N, Liu J, Luo L, Huang M, Guo T, Xiao W. Small Auxin Up RNA 56 (SAUR56) regulates heading date in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:62. [PMID: 37521314 PMCID: PMC10374499 DOI: 10.1007/s11032-023-01409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Heading date is a critical agronomic trait that determines crop yield. Although numerous genes associated with heading date have been identified in rice, the mechanisms involving Small Auxin Up RNA (SAUR) family have not been elucidated. In this study, the biological function of several SAUR genes was initially investigated using the CRISPR-Cas9 technology in the Japonica cultivar Zhonghua11 (ZH11) background. Further analysis revealed that the loss-of-function of OsSAUR56 affected heading date in both NLD (natural long-day) and ASD (artificial short-day). OsSAUR56 exhibited predominant expression in the anther, with its protein localized in both the cytoplasm and nucleus. OsSAUR56 regulated flowering time and heading date by modulating the expression of the clock gene OsGI, as well as two repressors Ghd7 and DTH8. Furthermore, haplotype-phenotype association analysis revealed a strong correlation between OsSAUR56 and heading date, suggesting its role in selection during the domestication of rice. In summary, these findings highlights the importance of OsSAUR56 in the regulation of heading date for further potential facilitating genetic engineering for flowering time during rice breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01409-w.
Collapse
Affiliation(s)
- Zhe Zhao
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Tengkui Chen
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jicheng Yue
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Na Pu
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jinzhao Liu
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Lixin Luo
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Ming Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- Heyuan Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, 517000 Guangdong China
| | - Wuming Xiao
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- Heyuan Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, 517000 Guangdong China
| |
Collapse
|
22
|
Ohlendorf R, Tan NYH, Nakayama N. Engineering Themes in Plant Forms and Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:777-801. [PMID: 37216204 DOI: 10.1146/annurev-arplant-061422-094751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs-bilayer actuator, slender-bodied functional surface, and self-similarity-and provide an overview of their structure-function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.
Collapse
Affiliation(s)
- Rahel Ohlendorf
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| | | | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
23
|
Bao N, Liu Q, Reynolds M, Figueras M, Smith E, Wang W, Cao M, Muller D, Mavrikakis M, Cohen I, McEuen P, Abbott N. Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets. Proc Natl Acad Sci U S A 2023; 120:e2221740120. [PMID: 37126707 PMCID: PMC10175785 DOI: 10.1073/pnas.2221740120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023] Open
Abstract
Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.
Collapse
Affiliation(s)
- Nanqi Bao
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14853
| | - Qingkun Liu
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
| | - Michael F. Reynolds
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
| | - Marc Figueras
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Evangelos Smith
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Wei Wang
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY14853
| | - Michael C. Cao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Itai Cohen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Paul L. McEuen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14853
| |
Collapse
|
24
|
Pelham JF, Mosier AE, Altshuler SC, Rhodes ML, Kirchhoff CL, Fall WB, Mann C, Baik LS, Chiu JC, Hurley JM. Conformational changes in the negative arm of the circadian clock correlate with dynamic interactomes involved in post-transcriptional regulation. Cell Rep 2023; 42:112376. [PMID: 37043358 PMCID: PMC10562519 DOI: 10.1016/j.celrep.2023.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Biology is tuned to the Earth's diurnal cycle by the circadian clock, a transcriptional/translational negative feedback loop that regulates physiology via transcriptional activation and other post-transcriptional mechanisms. We hypothesize that circadian post-transcriptional regulation might stem from conformational shifts in the intrinsically disordered proteins that comprise the negative arm of the feedback loop to coordinate variation in negative-arm-centered macromolecular complexes. This work demonstrates temporal conformational fluidity in the negative arm that correlates with 24-h variation in physiologically diverse macromolecular complex components in eukaryotic clock proteins. Short linear motifs on the negative-arm proteins that correspond with the interactors localized to disordered regions and known temporal phosphorylation sites suggesting changes in these macromolecular complexes could be due to conformational changes imparted by the temporal phospho-state. Interactors that oscillate in the macromolecular complexes over circadian time correlate with post-transcriptionally regulated proteins, highlighting how time-of-day variation in the negative-arm protein complexes may tune cellular physiology.
Collapse
Affiliation(s)
- Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexander E Mosier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Samuel C Altshuler
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Morgan L Rhodes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - William B Fall
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Mann
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lisa S Baik
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
25
|
Hou J, Xu Y, Zhang S, Yang X, Wang S, Hong J, Dong C, Zhang P, Yuan L, Zhu S, Chen G, Tang X, Huang X, Zhang J, Wang C. Auxin participates in regulating the leaf curl development of Wucai (Brassica campestris L.). PHYSIOLOGIA PLANTARUM 2023; 175:e13908. [PMID: 37022777 DOI: 10.1111/ppl.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) belongs to the Brassica genus of the Cruciferae family, and its leaf curl is a typical feature that distinguishes Wucai from other nonheading cabbage subspecies. Our previous research found that plant hormones were involved in the development of the leaf curl in Wucai. However, the molecular mechanisms and the hormones regulating the formation of leaf curl in Wucai have not yet been reported. This study aimed to understand the molecular functions related to hormone metabolism during the formation of leaf curl in Wucai. A total of 386 differentially expressed genes (DEGs) were identified by transcriptome sequencing of two different morphological parts of the same leaf of Wucai germplasm W7-2, and 50 DEGs were found to be related to plant hormones, which were mainly involved in the auxin signal transduction pathway. Then, we measured the content of endogenous hormones in two different forms of the same leaf of Wucai germplasm W7-2. A total of 17 hormones with differential content were identified, including auxin, cytokinins, jasmonic acids, salicylic acids, and abscisic acid. And we found that treatment with auxin transport inhibitor N-1-naphthylphthalamic acid can affect the leaf curl phenotype of Wucai and pak choi (Brassica rapa L. subsp. Chinensis). These results indicated that plant hormones, especially auxin, are involved in developing the leaf curl of Wucai. Our findings provide a potentially valuable reference for future research on the development of leaf curls.
Collapse
Affiliation(s)
- Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Ying Xu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Xiaona Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Shuangshuang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Jie Hong
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Cuina Dong
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Ping Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Xingxue Huang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Jinlong Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| |
Collapse
|
26
|
Chen L, Meng Y, Bai Y, Yu H, Qian Y, Zhang D, Zhou Y. Starch and Sucrose Metabolism and Plant Hormone Signaling Pathways Play Crucial Roles in Aquilegia Salt Stress Adaption. Int J Mol Sci 2023; 24:ijms24043948. [PMID: 36835360 PMCID: PMC9966690 DOI: 10.3390/ijms24043948] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Salt stress is one of the main abiotic stresses that strongly affects plant growth. Clarifying the molecular regulatory mechanism in ornamental plants under salt stress is of great significance for the ecological development of saline soil areas. Aquilegia vulgaris is a perennial with a high ornamental and commercial value. To narrow down the key responsive pathways and regulatory genes, we analyzed the transcriptome of A. vulgaris under a 200 mM NaCl treatment. A total of 5600 differentially expressed genes were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis pointed out that starch and sucrose metabolism and plant hormone signal transduction were significantly improved. The above pathways played crucial roles when A. vulgaris was coping with salt stress, and their protein-protein interactions (PPIs) were predicted. This research provides new insights into the molecular regulatory mechanism, which could be the theoretical basis for screening candidate genes in Aquilegia.
Collapse
|
27
|
Yang Y, Wang W, Hu Q, Raman H, Liu J. Genome-wide association and RNA-seq analyses identify loci for pod orientation in rapeseed ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2023; 13:1097534. [PMID: 36714779 PMCID: PMC9880488 DOI: 10.3389/fpls.2022.1097534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Spatial distribution and orientation of pods on the main raceme (stem) and branches could affect rapeseed yield. However, genomic regions underlying the pod orientation were not described in Brassica species. Here, we determined the extent of genetic variation in pod orientation, described as the angles of pedicel on raceme (APR) and angles of the pod on pedicel (APP) among 136 rapeseed accessions grown across three environments of the upper, middle and lower Yangtze River in China. The APR ranged from 59° to 109°, while the APP varied from 142° to 178°. Statistical analysis showed that phenotypic variation was due to genotypic (G) and environmental (E) effects. Using the genome-wide association analysis (GWAS) approach, two QTLs for APR (qBnAPR.A02 and qBnAPR.C02) and two for APP (qBnAPP.A05 and qBnAPP.C05), having minor to moderate allelic effects (4.30% to 19.47%) were identified. RNA-seq analysis revealed 606 differentially expressed genes (DEGs) in two rapeseed accessions representing the extreme phenotypes for pod orientation and different alleles at the QTLs of APR. Three DEGs (BnLAZY4.A02, BnSAUR32.A02, and BnSAUR32.C02) were identified as the most likely candidates responsible for variation in pod orientation (APR). This study elucidates the genomic regions and putative candidate genes underlying pod orientation in B. napus.
Collapse
Affiliation(s)
- Yuting Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Shenzhen Graduate School, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenxiang Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Harsh Raman
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
28
|
Marshall CM, Thompson VL, Creux NM, Harmer SL. The circadian clock controls temporal and spatial patterns of floral development in sunflower. eLife 2023; 12:80984. [PMID: 36637156 PMCID: PMC9977281 DOI: 10.7554/elife.80984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023] Open
Abstract
Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.
Collapse
Affiliation(s)
- Carine M Marshall
- Department of Plant Biology, University of California, DavisDavisUnited States
| | - Veronica L Thompson
- Department of Plant Biology, University of California, DavisDavisUnited States
| | - Nicky M Creux
- Department of Plant Biology, University of California, DavisDavisUnited States
- Department of Plant and Soil Sciences, FABI, Innovation Africa, University of PretoriaPretoriaSouth Africa
| | - Stacey L Harmer
- Department of Plant Biology, University of California, DavisDavisUnited States
| |
Collapse
|
29
|
Temporal and spatial niche complementarity in sunflower pollinator communities and pollination function. Basic Appl Ecol 2023. [DOI: 10.1016/j.baae.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Zhang B, Luo H, Ai B, Gou Q, Deng J, Wang J, Zheng Y, Xiao J, Li M. Modulating Surface Electron Density of Heterointerface with Bio-Inspired Light-Trapping Nano-Structure to Boost Kinetics of Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205431. [PMID: 36336631 DOI: 10.1002/smll.202205431] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Herein, inspired by natural sunflower heads' properties increasing the temperature of dish-shaped flowers by tracking the sun, a novel hybrid heterostructure (MoS2 /Ni3 S2 @CA, CA means carbon nanowire arrays) with the sunflower-like structure to boost the kinetics of water splitting is proposed. Density functional theory (DFT) reveals that it can modulate the active electronic states of NiMo atoms around the Fermi-level through the charge transfer between the metallic atoms of Ni3 S2 and MoMo bonds of MoS2 to boost overall water splitting. Most importantly, the finite difference time domain (FDTD) could find that its unique bio-inspired micro-nano light-trapping structure has high solar photothermal conversion efficiency. With the assistance of the photothermal field, the kinetics of water-splitting is improved, affording low overpotentials of 96 and 229 mV at 10 mA cm-2 for HER and OER, respectively. Moreover, the Sun-MoS2 /Ni3 S2 @CA enables the overall alkaline water splitting at a low cell voltage of 1.48 and 1.64 V to achieve 10 and 100 mA cm-2 with outstanding catalytic durability. This study may open up a new route for rationally constructing bionic sunflower micro-nano light-trapping structure to maximize their photothermal conversion and electrochemical performances, and accelerate the development of nonprecious electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Ben Zhang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Haoran Luo
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing, 400044, China
| | - Qianzhi Gou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiangbin Deng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiacheng Wang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Juanxiu Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
31
|
Wang S, Chang H, Li L, Wang D, Deng H. Solar Interface Evaporation System Assisted by Mirror Reflection Heat Collection Based on Sunflower Chasing the Sun. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44958-44968. [PMID: 36129184 DOI: 10.1021/acsami.2c10946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a photothermal material, C-CP/MnO2, was prepared by compounding corrugated paper (CP) and MnO2, with excellent photothermal conversion efficiency. The porous structure and the presence of oxygen-containing functional groups enabled the material to have a good water transport function and a fast vapor escape rate. The special semihollow structure also allowed C-CP/MnO2 to have better thermal management and an evaporation rate that could reach 2.563 kg m-2 h-1 with an efficiency of 98.82% under 1 sun. The continuous arch structure inside C-CP/MnO2 was able to induce the Marangoni effect to achieve continuous desalination of high-concentration brine. The mirror heat collector achieved efficient light capture on the material surface through multiple reflections of light. This could increase the amount of radiation on the material surface by nearly 80%, and the evaporation rate could reach 4.314 kg m-2 h-1 under 1 sun. Moreover, this study demonstrated the light propagation path by simulating the light using Zemax to verify the correctness of the experimental results. Inspired by the sunflower chasing the sun, we designed a chasing heat collection system powered by solar panels to achieve efficient evaporation outdoors. This provided new ideas for further development of solar interface evaporation and also provided guidance for other industrial applications.
Collapse
Affiliation(s)
- Shuai Wang
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hanyu Chang
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Longjiang Li
- Machinery and Electricity Engineering College of Shihezi University, Shihezi 832003 Xinjiang, China
| | - Di Wang
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hui Deng
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003 Xinjiang, China
| |
Collapse
|
32
|
Tu Z, Wang J, Liu W, Chen Z, Huang J, Li J, Lou H, Qiu X. A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy. MATERIALS HORIZONS 2022; 9:2613-2625. [PMID: 35959764 DOI: 10.1039/d2mh00859a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fast-response artificial phototropic materials are a promising tool for solar energy utilisation, yet their preparation remains challenging. Herein, we report the so-called photothermal domino strategy for constructing fast-response artificial phototropic materials. In this strategy, photothermal generation, heat conduction and thermal actuation are sequentially optimised by a coordination effect. For the first time, lignin-based organic radicals boosted by this coordination effect are used to significantly enhance photothermal conversion. Interfacial coordination bonds between lignin and an elastomer matrix promote interfacial heat conduction. Light-stimulated thermal actuation is significantly improved by coordination-assisted mechanical training. The prepared biomimetic phototropic material exhibits excellent phototropic ability, with a 2.5 s light-tracking process, showing great application potential for efficient solar energy utilisation. This strategy shows great significance for fabricating high-performance intelligent phototropic materials using widely available, green raw materials.
Collapse
Affiliation(s)
- Zhikai Tu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jin Wang
- The National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinxing Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
33
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
34
|
Oravec MW, Greenham K. The adaptive nature of the plant circadian clock in natural environments. PLANT PHYSIOLOGY 2022; 190:968-980. [PMID: 35894658 PMCID: PMC9516730 DOI: 10.1093/plphys/kiac337] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 05/10/2023]
Abstract
The plant circadian clock coordinates developmental, physiological, and metabolic processes with diel changes in light and temperature throughout the year. The balance between the persistence and plasticity of the clock in response to predictable and unpredictable environmental changes may be key to the clock's adaptive nature across temporal and spatial scales. Studies under controlled conditions have uncovered critical signaling pathways involved in light and temperature perception by the clock; however, they don't account for the natural lag of temperature behind photoperiod. Studies in natural environments provide key insights into the clock's adaptive advantage under more complex natural settings. Here, we discuss the role of the circadian clock in light and temperature perception and signaling, how the clock integrates these signals for a coordinated and adaptive response, and the adaptive advantage conferred by the clock across time and space in natural environments.
Collapse
Affiliation(s)
- Madeline W Oravec
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
35
|
Okada M, Yang Z, Mas P. Circadian autonomy and rhythmic precision of the Arabidopsis female reproductive organ. Dev Cell 2022; 57:2168-2180.e4. [PMID: 36115345 DOI: 10.1016/j.devcel.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
The plant circadian clock regulates essential biological processes including flowering time or petal movement. However, little is known about how the clock functions in flowers. Here, we identified the circadian components and transcriptional networks contributing to the generation of rhythms in pistils, the female reproductive organ. When detached from the rest of the flower, pistils sustain highly precise rhythms, indicating organ-specific circadian autonomy. Analyses of clock mutants and chromatin immunoprecipitation assays showed distinct expression patterns and specific regulatory functions for clock activators and repressors in pistils. Genetic interaction studies also suggested a hierarchy of the repressing activities that provide robustness and precision to the pistil clock. Globally, the circadian function in pistils primarily governs responses to environmental stimuli and photosynthesis and controls pistil growth and seed weight and production. Understanding the circadian intricacies in reproductive organs may prove useful for optimizing plant reproduction and productivity.
Collapse
Affiliation(s)
- Masaaki Okada
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Zhiyuan Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain.
| |
Collapse
|
36
|
McMinn R, Salmela MJ, Weinig C. Naturally segregating genetic variation in circadian period exhibits a regional elevational and climatic cline. PLANT, CELL & ENVIRONMENT 2022; 45:2696-2707. [PMID: 35686466 DOI: 10.1111/pce.14377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Circadian clocks confer adaptation to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevation gradient spanning 2460-3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7-20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher-elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings suggest that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.
Collapse
Affiliation(s)
- Rob McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
37
|
Takács P, Slíz‐Balogh J, Száz D, Horváth G. East-facing Helianthus annuus has maximal number and mass of kernel-filled seeds: Seed traits versus head orientation. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:130-139. [PMID: 37284427 PMCID: PMC10168033 DOI: 10.1002/pei3.10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/08/2023]
Abstract
After anthesis, the majority of mature sunflower (Helianthus annuus) inflorescences face constantly East, which direction ensures maximal light energy absorbed by the inflorescences in regions where afternoons are on average cloudier than mornings. Several theories have tried to explain the function(s) of this eastward orientation. Their common assumption is that eastward facing has certain advantages for sunflowers. In sunflower plantations, the capitulum of many plants can also face North, South, or upward. Large deviations from the conducive East direction can decrease the plant's reproductive fitness. A larger mass and number of seeds, for example, can guarantee safer seed germination and better early development of more offspring. Thus, our hypothesis was that the East facing of sunflower inflorescences ensures a larger seed number and mass compared to disoriented inflorescences. This idea was tested in a sunflower plantation, where we compared the number and mass of seeds in plants, the inflorescences of which were naturally or artificially oriented northward, eastward, southward, westward, or upward. Our study tested head diameter, seed weight, and seed number in a normal agronomic field setting being different from earlier investigations. The other difference was that we tested five head orientations and only East showed significantly increased seed weight and number. Using radiational computations, we showed that East facing ensures more absorbed light energy than other orientations, except upward. This finding can be one of the reasons for the maximal seed number and mass in East-facing sunflower capitula. Although upward-facing horizontal inflorescences absorbed maximal light energy, they had the fewest and lightest seeds probably because of the larger temperature and humidity as well as the too much sunlight, all three factors impairing the normal seed development. This study is the first that compares the seed traits of all head orientations of Helianthus annuus and proposes that the absorbed radiation could play a major role in the maximal seed number and mass of east-facing heads.
Collapse
Affiliation(s)
- Péter Takács
- Department of Biological PhysicsELTE Eötvös Loránd UniversityBudapestHungary
| | - Judit Slíz‐Balogh
- Department of Biological PhysicsELTE Eötvös Loránd UniversityBudapestHungary
| | - Dénes Száz
- Department of Biological PhysicsELTE Eötvös Loránd UniversityBudapestHungary
| | - Gábor Horváth
- Department of Biological PhysicsELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
38
|
Maluf RP, Alzate-Marin AL, Silva CC, Pansarin LM, Bonifácio-Anacleto F, Schuster I, de Mello Prado R, Martinez CA. Warming and soil water availability affect plant-flower visitor interactions for Stylosanthes capitata, a tropical forage legume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152982. [PMID: 35031369 DOI: 10.1016/j.scitotenv.2022.152982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The reproductive success of a zoophilous plant species depends on biological interaction with pollinators, which involves both the provision and exploitation of flower resources. Currently, there is little information about how future climate change scenarios will impact interactions between plants and their flower visitors in the tropics. This study analyzes the effects of warming and two soil water conditions on interactions between the tropical forage legume species Stylosanthes capitata and its floral visitors during the flowering period. We used a temperature-free air-controlled enhancement (T-FACE) facility to simulate future warming scenarios by increasing canopy temperature. The tested treatments were: irrigated and ambient canopy temperature (Control); non-irrigated and ambient canopy temperature (wS); irrigated and elevated canopy temperature (eT, +2 °C above ambient canopy temperature); and non-irrigated and elevated canopy temperature (wSeT). The effects of treatments on the time of flower opening and closing, sugar concentration in the nectar, and plant-flower visitor interactions were assessed. In the warmed treatments, S. capitata flower opening occurred ~45 min earlier compared to non-warmed treatments, and flowers remained opened for only ~3 h. Further, the sugar concentration in the nectar from eT was 39% higher than in the Control. The effects of warming on floral biology and flower resource production in S. capitata had an impact on the plant-floral visitor relationships with the bees Apis mellifera and Paratrigona lineata, the most abundant potential pollinating floral visitors, and the butterfly visitor Hemiargus hanno. Additionally, around noon, the interactive and additive effects of the combined wS and eT treatments decreased insect visiting frequency. These results suggest that warming and soil water deficiency could affect flower-visitor interactions and thus the reproductive success of S. capitata in tropical belts.
Collapse
Affiliation(s)
- Raquel Pérez Maluf
- Department of Natural Sciences, Semi-Arid Biodiversity Laboratory - Labisa, State University of Southwest Bahia, Estrada do Bem Querer, Km 04, UESB, 45031-900 Vitoria da Conquista, BA, Brazil
| | - Ana Lilia Alzate-Marin
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Carolina Costa Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Ludmila Mickeliunas Pansarin
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Fernando Bonifácio-Anacleto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Ivan Schuster
- Longping High-Tech, SP-330, km 296, 14140-000 Cravinhos, SP, Brazil
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, School of Agricultural and Veterinary Sciences, University of São Paulo State, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil
| | - Carlos A Martinez
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
39
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
40
|
Takács P, Kovács Z, Száz D, Egri Á, Bernáth B, Slíz-Balogh J, Nagy-Czirok M, Lengyel Z, Horváth G. Mature Sunflower Inflorescences Face Geographical East to Maximize Absorbed Light Energy: Orientation of Helianthus annuus Heads Studied by Drone Photography. FRONTIERS IN PLANT SCIENCE 2022; 13:842560. [PMID: 35371122 PMCID: PMC8969559 DOI: 10.3389/fpls.2022.842560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 06/08/2023]
Abstract
Mature sunflower (Helianthus annuus) inflorescences, which no longer follow the Sun, face the eastern celestial hemisphere. Whether they orient toward the azimuth of local sunrise or the geographical east? It was recently shown that they absorb maximum light energy if they face almost exactly the geographical east, and afternoons are usually cloudier than mornings. However, the exact average and standard deviation (SD) of the azimuth angle of the normal vector of mature sunflower inflorescences have never been measured on numerous individuals. It is imaginable that they prefer the direction of sunrise rather than that of the geographical east. To decide between these two photobiological possibilities, we photographed mature inflorescences of 14 sunflower plantations using a drone and determined the average and SD of the azimuth angle of the normal vector of 2,800 sunflower heads. We found that the average azimuth αinflorescence = 89.5° ± 42.8° (measured clockwise from the geographical north) of inflorescences practically coincided with the geographical eastern direction (αeast = 90°) instead of the azimuth of local sunrise αsunrise = 56.14° - 57.55°. Although the SD of the orientation of individual inflorescences was large (± 42.8°), our finding experimentally corroborated the earlier theoretical prediction that the energetically ideal azimuth of sunflower inflorescences is east, if mornings are usually less cloudy than afternoons, which is typical for the domestication region of H. annuus. However, the average orientation of inflorescences of two plantations in hilly landscapes more or less differed from that of the majority of plantations in plane landscapes. The reason for this deviation may be that the illumination conditions in hilly sites more or less differed from those in plane landscapes. Furthermore, in a plantation, we observed a group of south-facing inflorescences that were in shadow for about 5 h both after sunrise and before sunset. This southern orientation can be explained by the southern maximum of total light energy absorbed by the partly shadowed inflorescences during the day, as computed by our software integrating both the diffuse skylight and the direct sunlight received by sunflower inflorescences.
Collapse
Affiliation(s)
- Péter Takács
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Kovács
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dénes Száz
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Egri
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Balázs Bernáth
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
- Estrato Research and Development Ltd., Budapest, Hungary
| | - Judit Slíz-Balogh
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Astronomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - Gábor Horváth
- Department of Biological Physics, Environmental Optics Laboratory, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
41
|
Brody DC. Open quantum dynamics for plant motions. Sci Rep 2022; 12:3042. [PMID: 35197530 PMCID: PMC8866431 DOI: 10.1038/s41598-022-07102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Stochastic Schrödinger equations that govern the dynamics of open quantum systems are given by the equations for signal processing. In particular, the Brownian motion that drives the wave function of the system does not represent noise, but provides purely the arrival of new information. Thus the wave function is guided by the optimal signal detection about the conditions of the environments under noisy observations. This behaviour is similar to biological systems that detect environmental cues, process this information, and adapt to them optimally by minimising uncertainties about the conditions of their environments. It is postulated that information-processing capability is a fundamental law of nature, and hence that models describing open quantum systems can equally be applied to biological systems to model their dynamics. For illustration, simple stochastic models are considered to capture heliotropic and gravitropic motions of plants. The advantage of such dynamical models is that they allow for the quantification of information processed by the plants. By considering the consequence of information erasure, it is argued that biological systems can process environmental signals relatively close to the Landauer limit of computation, and that loss of information must lie at the heart of ageing in biological systems.
Collapse
Affiliation(s)
- Dorje C Brody
- Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK. .,St Petersburg National Research University of Information Technologies, Mechanics and Optics, St Petersburg, Russia, 197101.
| |
Collapse
|
42
|
Todesco M, Bercovich N, Kim A, Imerovski I, Owens GL, Dorado Ruiz Ó, Holalu SV, Madilao LL, Jahani M, Légaré JS, Blackman BK, Rieseberg LH. Genetic basis and dual adaptive role of floral pigmentation in sunflowers. eLife 2022; 11:72072. [PMID: 35040432 PMCID: PMC8765750 DOI: 10.7554/elife.72072] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/28/2021] [Indexed: 12/25/2022] Open
Abstract
Variation in floral displays, both between and within species, has been long known to be shaped by the mutualistic interactions that plants establish with their pollinators. However, increasing evidence suggests that abiotic selection pressures influence floral diversity as well. Here, we analyse the genetic and environmental factors that underlie patterns of floral pigmentation in wild sunflowers. While sunflower inflorescences appear invariably yellow to the human eye, they display extreme diversity for patterns of ultraviolet pigmentation, which are visible to most pollinators. We show that this diversity is largely controlled by cis-regulatory variation affecting a single MYB transcription factor, HaMYB111, through accumulation of ultraviolet (UV)-absorbing flavonol glycosides in ligules (the ‘petals’ of sunflower inflorescences). Different patterns of ultraviolet pigments in flowers are strongly correlated with pollinator preferences. Furthermore, variation for floral ultraviolet patterns is associated with environmental variables, especially relative humidity, across populations of wild sunflowers. Ligules with larger ultraviolet patterns, which are found in drier environments, show increased resistance to desiccation, suggesting a role in reducing water loss. The dual role of floral UV patterns in pollinator attraction and abiotic response reveals the complex adaptive balance underlying the evolution of floral traits. Flowers are an important part of how many plants reproduce. Their distinctive colours, shapes and patterns attract specific pollinators, but they can also help to protect the plant from predators and environmental stresses. Many flowers contain pigments that absorb ultraviolet (UV) light to display distinct UV patterns – although invisible to the human eye, most pollinators are able to see them. For example, when seen in UV, sunflowers feature a ‘bullseye’ with a dark centre surrounded by a reflective outer ring. The sizes and thicknesses of these rings vary a lot within and between flower species, and so far, it has been unclear what causes this variation and how it affects the plants. To find out more, Todesco et al. studied the UV patterns in various wild sunflowers across North America by considering the ecology and molecular biology of different plants. This revealed great variation between the UV patterns of the different sunflower populations. Moreover, Todesco et al. found that a gene called HaMYB111 is responsible for the diverse UV patterns in the sunflowers. This gene controls how plants make chemicals called flavonols that absorb UV light. Flavonols also help to protect plants from damage caused by droughts and extreme temperatures. Todesco et al. showed that plants with larger bullseyes had more flavonols, attracted more pollinators, and were better at conserving water. Accordingly, these plants were found in drier locations. This study suggests that, at least in sunflowers, UV patterns help both to attract pollinators and to control water loss. These insights could help to improve pollination – and consequently yield – in cultivated plants, and to develop plants with better resistance to extreme weather. This work also highlights the importance of combining biology on small and large scales to understand complex processes, such as adaptation and evolution.
Collapse
Affiliation(s)
- Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | - Ivana Imerovski
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia
- Department of Biology, University of Victoria
| | - Óscar Dorado Ruiz
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | | | - Lufiani L Madilao
- Michael Smith Laboratory and Wine Research Centre, University of British Columbia
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | - Jean-Sébastien Légaré
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia
| |
Collapse
|
43
|
Foley T, Swann DE, Sotelo G, Perkins N, Winkler DE. Asynchronous flowering patterns in saguaro cacti (
Carnegiea gigantea
). Ecosphere 2021. [DOI: 10.1002/ecs2.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Theresa Foley
- Sonora Environmental Research Institute, Inc. (SERI) P.O. Box 65782 Tucson Arizona 85728 USA
| | - Don E. Swann
- Saguaro National Park 3693 South Old Spanish Trail Tucson Arizona 85748 USA
| | - Guadalupe Sotelo
- Saguaro National Park 3693 South Old Spanish Trail Tucson Arizona 85748 USA
| | - Nicholas Perkins
- Saguaro National Park 3693 South Old Spanish Trail Tucson Arizona 85748 USA
| | - Daniel E. Winkler
- U.S. Geological Survey Southwest Biological Science Center Tucson Arizona 85719 USA
| |
Collapse
|
44
|
Hotta CT. From crops to shops: how agriculture can use circadian clocks. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7668-7679. [PMID: 34363668 DOI: 10.1093/jxb/erab371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about environmental and biological rhythms can lead to more sustainable agriculture in a climate crisis and resource scarcity scenario. When rhythms are considered, more efficient and cost-effective management practices can be designed for food production. The circadian clock is used to anticipate daily and seasonal changes, organize the metabolism during the day, integrate internal and external signals, and optimize interaction with other organisms. Plants with a circadian clock in synchrony with the environment are more productive and use fewer resources. In medicine, chronotherapy is used to increase drug efficacy, reduce toxicity, and understand the health effects of circadian clock disruption. Here, I show evidence of why circadian biology can be helpful in agriculture. However, as evidence is scattered among many areas, they frequently lack field testing, integrate poorly with other rhythms, or suffer inconsistent results. These problems can be mitigated if researchers of different areas start collaborating under a new study area-circadian agriculture.
Collapse
Affiliation(s)
- Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Sharma SR, Singh B, Kaur M. Hybrid SFO and TLBO optimization for biodegradable classification. Soft comput 2021. [DOI: 10.1007/s00500-021-06196-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Shu Y, Ye K, Sun J, Yue Y, Liu C, Wang H, Lu R. Thermo-Induced Single-Crystal-to-Single-Crystal Transformations and Photo-Induced [2+2] Cycloaddition Reactions in Polymorphs of Chalcone-Based Molecular Crystals: Multi-Stimuli Responsive Actuators. Chemistry 2021; 27:17960-17969. [PMID: 34786776 DOI: 10.1002/chem.202103228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/09/2022]
Abstract
The polymorphs of 2ClChMe-4 in Form I (ribbon-like crystal) and Form II (block-like crystal) were prepared, and they exhibited curling/flipping and expansion upon heating on account of single-crystal-to-single-crystal transformations. The irreversible phase transformations occurred separately at 53.2 °C and 57.8 °C for the crystals in Form I and Form II, during which the molecular conformation of 2ClChMe-4 changed and the molecules slipped along the (100) plane. Movement at the molecular level resulted in changes of cell parameters, which in turn led to macroscopic motions of the crystals upon heating. Additionally, the ribbon-like crystals of 2ClChMe-4 showed photo-induced bending driven by [2+2] cycloaddition. Accordingly, an actuator showing reversible bending behavior was fabricated triggered by light and heat successively. Like biomimetic self-actuators, such multi-stimuli mechanical responsive molecular crystals might have potential applications in soft robots, artificial muscles and microfluidic systems.
Collapse
Affiliation(s)
- Yuanhong Shu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Yuan Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Cheng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Haoran Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
47
|
Li S, Yaermaimaiti S, Tian XM, Wang ZW, Xu WJ, Luo J, Kong LY. Dynamic metabolic and transcriptomic profiling reveals the biosynthetic characteristics of hydroxycinnamic acid amides (HCAAs) in sunflower pollen. Food Res Int 2021; 149:110678. [PMID: 34600680 DOI: 10.1016/j.foodres.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Sunflower pollen is a natural nutritious food with a long history and multiple functions, however, the main chemical components apart from flavonoids and their biosynthesis processes have not been thoroughly investigated. In this study, seven hydroxycinnamic acid amides (HCAAs) (1-7) abundant in sunflower pollen were isolated and identified as one type of the pollen's main chemicals. For a comprehensive understanding of HCAA biosynthesis in Helianthus annuus flowers, RNA-seq, metabolomics, and key genes related to biosynthesis in the sunflower were studied. A large number of compounds at different sunflower growth stages (the 7th, 14th, 21st, and 28th days) and high expression levels of related genes in the transcriptome were detected. A molecular network was constructed to clarify the synthetic pathway of HCAAs, which revealed high transcriptional levels of spermidine hydroxycinnamoyl transferase genes (HaSHT2795 and HaSHT2436) in 14-21-days-old flowers. HaSHT2795 enzymes catalyze tri-coumaroylspermidine formation, and virus-induced gene silencing to inhibit HaSHT2795 and HaSHT2436 could significantly reduce the synthesis of hydroxycinnamic acid amides in sunflower pollen. HCAAs were inferred to be related to the formation of pollen walls and the health effects of pollen. Analyzing HCAA biosynthesis and accumulation in H. annuus pollen will be helpful to understand the functions of HCAAs in the development of pollen and its nutritional value.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Meng Tian
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zi-Wen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Jun Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
48
|
Creux NM, Brown EA, Garner AG, Saeed S, Scher CL, Holalu SV, Yang D, Maloof JN, Blackman BK, Harmer SL. Flower orientation influences floral temperature, pollinator visits and plant fitness. THE NEW PHYTOLOGIST 2021; 232:868-879. [PMID: 34318484 DOI: 10.1111/nph.17627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.
Collapse
Affiliation(s)
- Nicky M Creux
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Plant and Soil Sciences, FABI, Innovation Africa, University of Pretoria, Lynwood Road, Hatfield, 0002, South Africa
| | - Evan A Brown
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Austin G Garner
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Sana Saeed
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - C Lane Scher
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Daniel Yang
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
49
|
Serrano AM, Vanhaelewyn L, Vandenbussche F, Boccalandro HE, Maldonado B, Van Der Straeten D, Ballaré CL, Arana MV. Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. PLANT, CELL & ENVIRONMENT 2021; 44:3246-3256. [PMID: 34181245 DOI: 10.1111/pce.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.
Collapse
Affiliation(s)
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - Belén Maldonado
- Instituto Argentino de Investigación de las Zonas Áridas, Mendoza, Argentina
| | | | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
50
|
Zhu JD, Wang J, Guo XN, Shang BS, Yan HR, Zhang X, Zhao X. A high concentration of abscisic acid inhibits hypocotyl phototropism in Gossypium arboreum by reducing accumulation and asymmetric distribution of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6365-6381. [PMID: 34145440 DOI: 10.1093/jxb/erab298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Hypocotyl phototropism is mediated by the phototropins and plays a critical role in seedling morphogenesis by optimizing growth orientation. However, the mechanisms by which phototropism influences morphogenesis require additional study, especially for polyploid crops such as cotton. Here, we found that hypocotyl phototropism was weaker in Gossypium arboreum than in G. raimondii (two diploid cotton species), and LC-MS analysis indicated that G. arboreum hypocotyls had a higher content of abscisic acid (ABA) and a lower content of indole-3-acetic acid (IAA) and bioactive gibberellins (GAs). Consistently, the expression of ABA2, AAO3, and GA2OX1 was higher in G. arboreum than in G. raimondii, and that of GA3OX was lower; these changes promoted ABA synthesis and the transformation of active GA to inactive GA. Higher concentrations of ABA inhibited the asymmetric distribution of IAA across the hypocotyl and blocked the phototropic curvature of G. raimondii. Application of IAA or GA3 to the shaded and illuminated sides of the hypocotyl enhanced and inhibited phototropic curvature, respectively, in G. arboreum. The application of IAA, but not GA, to one side of the hypocotyl caused hypocotyl curvature in the dark. These results indicate that the asymmetric distribution of IAA promotes phototropic growth, and the weakened phototropic curvature of G. arboreum may be attributed to its higher ABA concentrations that inhibit the action of auxin, which is regulated by GA signaling.
Collapse
Affiliation(s)
- Jin-Dong Zhu
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jing Wang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xi-Ning Guo
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bao-Shuan Shang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hong-Ru Yan
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiao Zhang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|