1
|
Lu ZW, Guo L, Ababekri M, Zhang JL, Weng XF, Wu Y, Niu YF, Li JX. Angular Momentum Resolved Inelastic Electron Scattering for Nuclear Giant Resonances. PHYSICAL REVIEW LETTERS 2025; 134:052501. [PMID: 39983168 DOI: 10.1103/physrevlett.134.052501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
Giant resonances (GRs) provide crucial insights into nuclear physics and astrophysics. Exciting GRs using particles like electrons is effective, yet the angular momentum (AM) transfer of electrons, including both intrinsic spin and orbital degrees of freedom in inelastic scattering, has never been studied. Here, we investigate AM transfer in GRs excited by plane-wave and vortex electrons, developing a comprehensive AM-resolved inelastic electron scattering theory. We find that even plane-wave electrons can model-independently extract transition strengths of higher multipolarity by selecting specific AM states of scattered electrons. Additionally, relativistic vortex electrons with an orbital angular momentum of ±1 can be efficiently generated. Vortex electrons can also be used to extract GR transition strength as in the plane-wave case, regardless of the position of the nucleus relative to the beam axis. Furthermore, relativistic vortex electrons with larger orbital angular momentum can be generated for on-axis nuclei due to AM conservation. Our method offers new perspectives for nuclear structure research and paves the way for generating vortex particles.
Collapse
Affiliation(s)
- Zhi-Wei Lu
- Xi'an Jiaotong University, Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an 710049, China
| | - Liang Guo
- Lanzhou University, School of Nuclear Science and Technology, Lanzhou 730000, China
- Lanzhou University, Frontiers Science Center for Rare isotopes, Lanzhou 730000, China
| | - Mamutjan Ababekri
- Xi'an Jiaotong University, Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an 710049, China
| | - Jia-Lin Zhang
- Xi'an Jiaotong University, Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an 710049, China
| | - Xiu-Feng Weng
- Northwest Institute of Nuclear Technology, National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi'an, 710024, China
| | - Yuanbin Wu
- Nankai University, School of Physics, Tianjin 300071, China
| | - Yi-Fei Niu
- Lanzhou University, School of Nuclear Science and Technology, Lanzhou 730000, China
- Lanzhou University, Frontiers Science Center for Rare isotopes, Lanzhou 730000, China
| | - Jian-Xing Li
- Xi'an Jiaotong University, Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an 710049, China
- China Institute of Atomic Energy, Department of Nuclear Physics, P.O. Box 275(7), Beijing 102413, China
| |
Collapse
|
2
|
Wang J, Gao SN, Liu A, He L, Zhao X. Non vertical ionization-dissociation model for strong IR induced dissociation dynamics of [Formula: see text]. Sci Rep 2025; 15:117. [PMID: 39747152 PMCID: PMC11695604 DOI: 10.1038/s41598-024-83209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Electron-nuclear coupling plays a crucial role in strong laser induced molecular dissociation dynamics. The interplay between electronic and nuclear degrees of freedom determines the pathways and outcomes of molecular fragmentation. However, a full quantum mechanical treatment of electron-nuclear dynamics is computationally intensive. In this work, we have developed a Strong Laser Induced non-adiabatic Multi-Ionic-Multi-Electric States (SLIMIMES) approach, which contains the electron-laser and electron-nuclear couplings. We validate our model using a showcase example: water dissociation under strong infrared (IR) laser pulses. Our investigation reveals the predominant role of a non-vertical dissociation pathway in the photo-ionization dissociation (PID) process of [Formula: see text]. This pathway originates from neutral [Formula: see text], which undergoes vertical multi-photon-single-ionization, reaching the intermediate dissociation states of [Formula: see text] within [Formula: see text]. Subsequently, [Formula: see text] dissociates into [Formula: see text], with both [Formula: see text] and [Formula: see text] fragments potentially ionizing an electron during interaction with the IR laser. This sequential PID pathway significantly contributes to the dissociation yields of water dication. Our calculations are consistent with recent experimental data, which focus on measuring the branching ratio of water dication dissociation. We aim for our model to provide a deeper understanding and a fresh perspective on the coupling between electron and nuclear dynamics induced by a strong IR laser field.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Shu Ning Gao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Aihua Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Lanhai He
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xi Zhao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Jyde NK, Kristensen HH, Kranabetter L, Christensen JK, Hansen E, Carlsen MB, Stapelfeldt H. Time-resolved Coulomb explosion imaging of vibrational wave packets in alkali dimers on helium nanodroplets. J Chem Phys 2024; 161:224301. [PMID: 39651812 DOI: 10.1063/5.0239196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment. For both K2 and Rb2, P(R, t) exhibits a periodic oscillatory structure throughout the respective 300 and 100 ps observation times. The oscillatory structure is reflected in the time-dependent mean value of R, ⟨R⟩(t). The Fourier transformation of ⟨R⟩(t) shows that the wave packets are composed mainly of the vibrational ground state and the first excited vibrational state, in agreement with numerical simulations. In the case of K2, the oscillations are observed for 300 ps, corresponding to more than 180 vibrational periods with an amplitude that decreases gradually from 0.035 to 0.020 Å. Using time-resolved spectral analysis, we find that the decay time of the amplitude is ∼260 ps. The decrease is ascribed to the weak coupling between the vibrating dimers and the droplet.
Collapse
Affiliation(s)
- Nicolaj K Jyde
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Kristensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Lorenz Kranabetter
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jeppe K Christensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emil Hansen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Mads B Carlsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Yoshikawa K, Kanno M, Xue H, Kishimoto N, Goto S, Ota F, Tamura Y, Trinter F, Fehre K, Kaiser L, Stindl J, Tsitsonis D, Schöffler M, Dörner R, Boll R, Erk B, Mazza T, Mullins T, Rivas DE, Schmidt P, Usenko S, Meyer M, Wang E, Rolles D, Rudenko A, Kukk E, Jahnke T, Díaz-Tendero S, Martín F, Hatada K, Ueda K. Time-resolved photoelectron diffraction imaging of methanol photodissociation involving molecular hydrogen ejection. Phys Chem Chem Phys 2024; 26:25118-25130. [PMID: 39311030 DOI: 10.1039/d4cp01015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Imaging ultrafast atomic and molecular hydrogen motion with femtosecond time resolution is a challenge for ultrafast spectroscopy due to the low mass and small scattering cross section of the moving neutral hydrogen atoms and molecules. Here, we propose time- and momentum-resolved photoelectron diffraction (TMR-PED) as a way to overcome limitations of existing methodologies and illustrate its performance using a prototype molecular dissociation process involving the sequential ejection of a neutral hydrogen molecule and a proton from the methanol dication. By combining state-of-the-art molecular dynamics and electron-scattering methods, we show that TMR-PED allows for direct imaging of hydrogen atoms in action. More specifically, the fingerprint of hydrogen dynamics reflects the time evolution of polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) as would be recorded in X-ray pump/X-ray probe experiments with few-femtosecond resolution. We present the results of two precursor experiments that support the feasibility of this approach.
Collapse
Affiliation(s)
- Kazuki Yoshikawa
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Manabu Kanno
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Hao Xue
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Naoki Kishimoto
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Soki Goto
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Fukiko Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Yoshiaki Tamura
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Leon Kaiser
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jonathan Stindl
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Dimitrios Tsitsonis
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Benjamin Erk
- FLASH, DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Enliang Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Till Jahnke
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain.
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Yang Y, Hu X, Wu L, Wang Z, Li X, Zhou S, Wang Z, Guo F, He L, Luo S, Zhang D, Wang J, Chen X, Wu Y, Wang C, Ding D. Extraction of Molecular-Frame Electron-Ion Differential Scattering Cross Sections Based on Elliptical Laser-Induced Electron Diffraction. PHYSICAL REVIEW LETTERS 2024; 133:113203. [PMID: 39331986 DOI: 10.1103/physrevlett.133.113203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses. Accordingly, the incident angle-resolved DCSs of returning electrons for spherically symmetric targets (Xe^{+} and Ar^{+}) were successfully extracted as a proof-of-principle for ELIED. The MFDCSs for N_{2}^{+} were experimentally obtained at incident angles of 4° and 7°, which were well reproduced by the simulations. The ELIED approach is the only successful method so far for obtaining incident angle-resolved ionic MFDCS, which provides a new sensitive observable for the transient structure retrieval of N_{2}^{+}. Our results suggest that the ELIED has the potential to extract the structural tomographic information of polyatomic molecules with femtosecond and subangstrom spatiotemporal resolutions that can enable the visualization of the nuclear motions in complex chemical reactions as well as chiral recognition.
Collapse
|
6
|
Hui D, Alqattan H, Sennary M, Golubev NV, Hassan MT. Attosecond electron microscopy and diffraction. SCIENCE ADVANCES 2024; 10:eadp5805. [PMID: 39167650 PMCID: PMC11338230 DOI: 10.1126/sciadv.adp5805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Advances in attosecond spectroscopy have enabled tracing and controlling the electron motion dynamics in matter, although they have yielded insufficient information about the electron dynamic in the space domain. Hence, ultrafast electron and x-ray imaging tools have been developed to image the ultrafast dynamics of matter in real time and space. The cutting-edge temporal resolution of these imaging tools is on the order of a few tens to a hundred femtoseconds, limiting imaging to the atomic dynamics and leaving electron motion imaging out of reach. Here, we obtained the attosecond temporal resolution in the transmission electron microscope, which we coined "attomicroscopy." We demonstrated this resolution by the attosecond diffraction measurements of the field-driven electron dynamics in graphene. This attosecond imaging tool would provide more insights into electron motion and directly connect it to the structural dynamics of matter in real-time and space domains, opening the door for long-anticipated real-life attosecond science applications in quantum physics, chemistry, and biology.
Collapse
Affiliation(s)
| | | | - Mohamed Sennary
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
7
|
He L, Yuen CH, He Y, Sun S, Goetz E, Le AT, Deng Y, Xu C, Lan P, Lu P, Lin CD. Ultrafast Picometer-Resolved Molecular Structure Imaging by Laser-Induced High-Order Harmonics. PHYSICAL REVIEW LETTERS 2024; 133:023201. [PMID: 39073922 DOI: 10.1103/physrevlett.133.023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
Real-time visualization of molecular transformations is a captivating yet challenging frontier of ultrafast optical science and physical chemistry. While ultrafast x-ray and electron diffraction methods can achieve the needed subangstrom spatial resolution, their temporal resolution is still limited to hundreds of femtoseconds, much longer than the few femtoseconds required to probe real-time molecular dynamics. Here, we show that high-order harmonics generated by intense femtosecond lasers can be used to image molecules with few-ten-attosecond temporal resolution and few-picometer spatial resolution. This is achieved by exploiting the sensitive dependence of molecular recombination dipole moment to the geometry of the molecule at the time of harmonic emission. In a proof-of-principle experiment, we have applied this high-harmonic structure imaging (HHSI) method to monitor the structural rearrangement in NH_{3}, ND_{3}, and N_{2} from one to a few femtoseconds after the molecule is ionized by an intense laser. Our findings establish HHSI as an effective approach to resolve molecular dynamics with unprecedented spatiotemporal resolution, which can be extended to trace photochemical reactions in the future.
Collapse
|
8
|
Chirvi K, Biegert J. Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:041301. [PMID: 39221452 PMCID: PMC11365610 DOI: 10.1063/4.0000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.
Collapse
Affiliation(s)
- K. Chirvi
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - J. Biegert
- Author to whom correspondence should be addressed:
| |
Collapse
|
9
|
Othman MAK, Gabriel AE, Snively EC, Kozina ME, Shen X, Ji F, Lewis S, Weathersby S, Vasireddy P, Luo D, Wang X, Hoffmann MC, Nanni EA. Improved temporal resolution in ultrafast electron diffraction measurements through THz compression and time-stamping. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024311. [PMID: 38655563 PMCID: PMC11037933 DOI: 10.1063/4.0000230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
We present an experimental demonstration of ultrafast electron diffraction (UED) with THz-driven electron bunch compression and time-stamping that enables UED probes with improved temporal resolution. Through THz-driven longitudinal bunch compression, a compression factor of approximately four is achieved. Moreover, the time-of-arrival jitter between the compressed electron bunch and a pump laser pulse is suppressed by a factor of three. Simultaneously, the THz interaction imparts a transverse spatiotemporal correlation on the electron distribution, which we utilize to further enhance the precision of time-resolved UED measurements. We use this technique to probe single-crystal gold nanofilms and reveal transient oscillations in the THz near fields with a temporal resolution down to 50 fs. These oscillations were previously beyond reach in the absence of THz compression and time-stamping.
Collapse
Affiliation(s)
- Mohamed A. K. Othman
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Annika E. Gabriel
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Emma C. Snively
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Michael E. Kozina
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Samantha Lewis
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Stephen Weathersby
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Praful Vasireddy
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Duan Luo
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | | | | |
Collapse
|
10
|
Kuraoka T, Goto S, Kanno M, Díaz-Tendero S, Reino-González J, Trinter F, Pier A, Sommerlad L, Melzer N, McGinnis OD, Kruse J, Wenzel T, Jahnke T, Xue H, Kishimoto N, Yoshikawa K, Tamura Y, Ota F, Hatada K, Ueda K, Martín F. Tracing Photoinduced Hydrogen Migration in Alcohol Dications from Time-Resolved Molecular-Frame Photoelectron Angular Distributions. J Phys Chem A 2024; 128:1241-1249. [PMID: 38324399 PMCID: PMC10895665 DOI: 10.1021/acs.jpca.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.
Collapse
Affiliation(s)
- T. Kuraoka
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - S. Goto
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - M. Kanno
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S. Díaz-Tendero
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - J. Reino-González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| | - F. Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - A. Pier
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - L. Sommerlad
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - N. Melzer
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - O. D. McGinnis
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - J. Kruse
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Wenzel
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Jahnke
- Max-Planck-Institut
für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- European
XFEL, Holzkoppel
4, Schenefeld 22869, Germany
| | - H. Xue
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - N. Kishimoto
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - K. Yoshikawa
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Y. Tamura
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Ota
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Hatada
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - F. Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
11
|
Velasco CI, Di Giulio V, García de Abajo FJ. Radiative loss of coherence in free electrons: a long-range quantum phenomenon. LIGHT, SCIENCE & APPLICATIONS 2024; 13:31. [PMID: 38272893 PMCID: PMC10810897 DOI: 10.1038/s41377-023-01361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Quantum physics rules the dynamics of small objects as they interact over microscopic length scales. Nevertheless, quantum correlations involving macroscopic distances can be observed between entangled photons as well as in atomic gases and matter waves at low temperatures. The long-range nature of the electromagnetic coupling between charged particles and extended objects could also trigger quantum phenomena over large distances. Here, we reveal a manifestation of quantum mechanics that involves macroscopic distances and results in a nearly complete depletion of coherence associated with which-way free-electron interference produced by electron-radiation coupling in the presence of distant extended objects. This is a ubiquitous effect that we illustrate through a rigorous theoretical analysis of a two-path electron beam interacting with a semi-infinite metallic plate and find the inter-path coherence to vanish proportionally to the path separation at zero temperature and exponentially at finite temperature. The investigated regime of large distances originates in the coupling of the electron to radiative modes assisted by diffraction at material structures but without any involvement of material excitations. Besides the fundamental interest of this macroscopic quantum phenomenon, our results suggest an approach to measuring the vacuum temperature and nondestructively sensing the presence of distant objects.
Collapse
Affiliation(s)
- Cruz I Velasco
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Valerio Di Giulio
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
12
|
Robinson MS, Küpper J. Unraveling the ultrafast dynamics of thermal-energy chemical reactions. Phys Chem Chem Phys 2024; 26:1587-1601. [PMID: 38131437 DOI: 10.1039/d3cp03954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this perspective, we discuss how one can initiate, image, and disentangle the ultrafast elementary steps of thermal-energy chemical dynamics, building upon advances in technology and scientific insight. We propose that combinations of ultrashort mid-infrared laser pulses, controlled molecular species in the gas phase, and forefront imaging techniques allow to unravel the elementary steps of general-chemistry reaction processes in real time. We detail, for prototypical first reaction systems, experimental methods enabling these investigations, how to sufficiently prepare and promote gas-phase samples to thermal-energy reactive states with contemporary ultrashort mid-infrared laser systems, and how to image the initiated ultrafast chemical dynamics. The results of such experiments will clearly further our understanding of general-chemistry reaction dynamics.
Collapse
Affiliation(s)
- Matthew S Robinson
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
13
|
Min Y, Xu X, Lv X, Zhang Y, Lu Y, Hao X, Tan J. Probing the electron motion in molecules using forward-scattering photoelectron holography. OPTICS EXPRESS 2024; 32:857-870. [PMID: 38175105 DOI: 10.1364/oe.513783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Charge migration initiated by the coherent superposition of several electronic states is a basic process in intense laser-matter interactions. Observing this process on its intrinsic timescale is one of the central goals of attosecond science. Here, using forward-scattering photoelectron holography we theoretically demonstrate a scheme to probe the charge migration in molecules. In our scheme, by solving the time-dependent Schrödinger equation, the photoelectron momentum distributions (PEMDs) for strong-field tunneling ionization of the molecule are obtained. For a superposition state, it is shown that an intriguing shift of the holographic interference appears in the PEMDs, when the molecule is aligned perpendicularly to the linearly polarized laser field. With the quantum-orbit analysis, we demonstrate that this shift of the interference fringes is caused by the time evolution of the non-stationary superposition state. By analyzing the dependence of the shift on the final parallel momentum of the electrons, the relative phase and the expansion coefficient ratio of the two electronic states involved in the superposition state are determined accurately. Our study provides an efficient method for probing the charge migration in molecules. It will facilitate the application of the forward-scattering photoelectron holography to survey the electronic dynamics in more complex molecules.
Collapse
|
14
|
Janoš J, Slavíček P. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. J Chem Theory Comput 2023; 19:8273-8284. [PMID: 37939301 PMCID: PMC10688183 DOI: 10.1021/acs.jctc.3c00908] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
Collapse
Affiliation(s)
- Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
15
|
Champenois EG, List NH, Ware M, Britton M, Bucksbaum PH, Cheng X, Centurion M, Cryan JP, Forbes R, Gabalski I, Hegazy K, Hoffmann MC, Howard AJ, Ji F, Lin MF, Nunes JPF, Shen X, Yang J, Wang X, Martinez TJ, Wolf TJA. Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction. PHYSICAL REVIEW LETTERS 2023; 131:143001. [PMID: 37862660 DOI: 10.1103/physrevlett.131.143001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 08/12/2023] [Indexed: 10/22/2023]
Abstract
Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time.
Collapse
Affiliation(s)
- Elio G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nanna H List
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Matthew Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Xinxin Cheng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruaridh Forbes
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ian Gabalski
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Kareem Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | | | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Pedro F Nunes
- Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J Martinez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
16
|
Wang Z, Hu X, Xue X, Zhou S, Li X, Yang Y, Zhou J, Shu Z, Zhao B, Yu X, Gong M, Wang Z, Ma P, Wu Y, Chen X, Wang J, Ren X, Wang C, Ding D. Directly imaging excited state-resolved transient structures of water induced by valence and inner-shell ionisation. Nat Commun 2023; 14:5420. [PMID: 37669964 PMCID: PMC10480213 DOI: 10.1038/s41467-023-41204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Real-time imaging of transient structure of the electronic excited state is fundamentally critical to understand and control ultrafast molecular dynamics. The ejection of electrons from the inner-shell and valence level can lead to the population of different excited states, which trigger manifold ultrafast relaxation processes, however, the accurate imaging of such electronic state-dependent structural evolutions is still lacking. Here, by developing the laser-induced electron recollision-assisted Coulomb explosion imaging approach and molecular dynamics simulations, snapshots of the vibrational wave-packets of the excited (A) and ground states (X) of D2O+ are captured simultaneously with sub-10 picometre and few-femtosecond precision. We visualise that θDOD and ROD are significantly increased by around 50∘ and 10 pm, respectively, within approximately 8 fs after initial ionisation for the A state, and the ROD further extends 9 pm within 2 fs along the ground state of the dication in the present condition. Moreover, the ROD can stretch more than 50 pm within 5 fs along autoionisation state of dication. The accuracies of the results are limited by the simulations. These results provide comprehensive structural information for studying the fascinating molecular dynamics of water, and pave the way towards to make a movie of excited state-resolved ultrafast molecular dynamics and light-induced chemical reaction.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiaoqing Hu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Shengpeng Zhou
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Yizhang Yang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Zheng Shu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Banchi Zhao
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xitao Yu
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Maomao Gong
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi' an, China
| | - Zhenpeng Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Yong Wu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China.
- HEDPS, Center of Applied Physics and Technology, Peking University, 100871, Beijing, China.
| | - Xiangjun Chen
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
| | - Jianguo Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| | - Dajun Ding
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| |
Collapse
|
17
|
Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schröter CD, Pfeifer T, Moshammer R, Mašín Z, Patchkovskii S, Sansone G. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. SCIENCE ADVANCES 2023; 9:eadh7747. [PMID: 37647394 PMCID: PMC10468127 DOI: 10.1126/sciadv.adh7747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.
Collapse
Affiliation(s)
- Dominik Ertel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - David Busto
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ioannis Makos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Marvin Schmoll
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jakub Benda
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | - Hamed Ahmadi
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Matteo Moioli
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabio Frassetto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | - Luca Poletto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - Zdeněk Mašín
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | | | - Giuseppe Sansone
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Howard AJ, Britton M, Streeter ZL, Cheng C, Forbes R, Reynolds JL, Allum F, McCracken GA, Gabalski I, Lucchese RR, McCurdy CW, Weinacht T, Bucksbaum PH. Filming enhanced ionization in an ultrafast triatomic slingshot. Commun Chem 2023; 6:81. [PMID: 37106058 PMCID: PMC10140156 DOI: 10.1038/s42004-023-00882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Filming atomic motion within molecules is an active pursuit of molecular physics and quantum chemistry. A promising method is laser-induced Coulomb Explosion Imaging (CEI) where a laser pulse rapidly ionizes many electrons from a molecule, causing the remaining ions to undergo Coulomb repulsion. The ion momenta are used to reconstruct the molecular geometry which is tracked over time (i.e., filmed) by ionizing at an adjustable delay with respect to the start of interatomic motion. Results are distorted, however, by ultrafast motion during the ionizing pulse. We studied this effect in water and filmed the rapid "slingshot" motion that enhances ionization and distorts CEI results. Our investigation uncovered both the geometry and mechanism of the enhancement which may inform CEI experiments in many other polyatomic molecules.
Collapse
Affiliation(s)
- Andrew J Howard
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zachary L Streeter
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Joshua L Reynolds
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Felix Allum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gregory A McCracken
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Ian Gabalski
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Robert R Lucchese
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - C William McCurdy
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Philip H Bucksbaum
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Department of Physics, Stanford University, Stanford, CA, 94305, USA.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
19
|
Dalla-Barba G, Jargot G, Lassonde P, Tóth S, Haddad E, Boschini F, Delagnes JC, Leblanc A, Ibrahim H, Cormier E, Légaré F. Mid-infrared frequency domain optical parametric amplifier. OPTICS EXPRESS 2023; 31:14954-14964. [PMID: 37157348 DOI: 10.1364/oe.487813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report on an optical architecture delivering sub-120 femtosecond laser pulses of 20 µJ tunable from 5.5 µm to 13 µm in the mid-infrared range (mid-IR). The system is based on a dual-band frequency domain optical parametric amplifier (FOPA) optically pumped by a Ti:Sapphire laser and amplifying 2 synchronized femtosecond pulses each with a widely tunable wavelength around 1.6 and 1.9 µm respectively. These amplified pulses are then combined in a GaSe crystal to produce the mid-IR few-cycle pulses by means of difference frequency generation (DFG). The architecture provides a passively stabilized carrier-envelope phase (CEP) whose fluctuations has been characterized to 370 mrad RMS.
Collapse
|
20
|
Kim HY, Garg M, Mandal S, Seiffert L, Fennel T, Goulielmakis E. Attosecond field emission. Nature 2023; 613:662-666. [PMID: 36697865 PMCID: PMC9876796 DOI: 10.1038/s41586-022-05577-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 01/26/2023]
Abstract
Field emission of electrons underlies great advances in science and technology, ranging from signal processing at ever higher frequencies1 to imaging of the atomic-scale structure of matter2 with picometre resolution. The advancing of electron microscopy techniques to enable the complete visualization of matter on the native spatial (picometre) and temporal (attosecond) scales of electron dynamics calls for techniques that can confine and examine the field emission on sub-femtosecond time intervals. Intense laser pulses have paved the way to this end3,4 by demonstrating femtosecond confinement5,6 and sub-optical cycle control7,8 of the optical field emission9 from nanostructured metals. Yet the measurement of attosecond electron pulses has remained elusive. We used intense, sub-cycle light transients to induce optical field emission of electron pulses from tungsten nanotips and a weak replica of the same transient to directly investigate the emission dynamics in real time. Access to the temporal properties of the electron pulses rescattering off the tip surface, including the duration τ = (53 as ± 5 as) and chirp, and the direct exploration of nanoscale near fields open new prospects for research and applications at the interface of attosecond physics and nano-optics.
Collapse
Affiliation(s)
- H Y Kim
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - M Garg
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - S Mandal
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - L Seiffert
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - T Fennel
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - E Goulielmakis
- Institut für Physik, Universität Rostock, Rostock, Germany.
| |
Collapse
|
21
|
Onvlee J, Trippel S, Küpper J. Ultrafast light-induced dynamics in the microsolvated biomolecular indole chromophore with water. Nat Commun 2022; 13:7462. [PMID: 36460654 PMCID: PMC9718776 DOI: 10.1038/s41467-022-33901-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions between proteins and their solvent environment can be studied in a bottom-up approach using hydrogen-bonded chromophore-solvent clusters. The ultrafast dynamics following UV-light-induced electronic excitation of the chromophores, potential radiation damage, and their dependence on solvation are important open questions. The microsolvation effect is challenging to study due to the inherent mix of the produced gas-phase aggregates. We use the electrostatic deflector to spatially separate different molecular species in combination with pump-probe velocity-map-imaging experiments. We demonstrate that this powerful experimental approach reveals intimate details of the UV-induced dynamics in the near-UV-absorbing prototypical biomolecular indole-water system. We determine the time-dependent appearance of the different reaction products and disentangle the occurring ultrafast processes. This approach ensures that the reactants are well-known and that detailed characteristics of the specific reaction products are accessible - paving the way for the complete chemical-reactivity experiment.
Collapse
Affiliation(s)
- Jolijn Onvlee
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
22
|
Allum F, McManus J, Denby O, Burt M, Brouard M. Photoionization and Photofragmentation Dynamics of I 2 in Intense Laser Fields: A Velocity-Map Imaging Study. J Phys Chem A 2022; 126:8577-8587. [PMID: 36351075 PMCID: PMC9706571 DOI: 10.1021/acs.jpca.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Indexed: 11/10/2022]
Abstract
The photoionization and photofragmentation dynamics of I2 in intense femtosecond near-infrared laser fields were studied using velocity-map imaging of cations, electrons, and anions. A series of photofragmentation pathways originating from different cationic electronic states were observed following single ionization, leading to I+ fragments with distinct kinetic energies, which could not be resolved in previous studies. Photoelectron spectra indicate that these high-lying dissociative states are primarily produced through nonresonant ionization from several molecular orbitals (MO) of the neutral. The photoelectron spectra also show clear signatures of resonant ionization pathways (Freeman resonances) to low-lying bound ionic states via Rydberg states of the neutral moiety. To investigate the role of these Rydberg states further, we imaged anionic products (I-) formed through ion-pair dissociations of neutral molecules excited to these Rydberg states by the intense femtosecond laser pulse. Collectively, these results shed significant new light on the complex dynamics of I2 molecules in intense laser fields and on the important role of neutral Rydberg states in a full description of strong-field phenomena in molecules.
Collapse
Affiliation(s)
| | - Joseph McManus
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Oskar Denby
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Michael Burt
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
23
|
Tian K, Wang W, Li C, Wan Z, Hu B, He L, Xiang M, Yao J, Wu H, Liang H. Ultrabroad (3.7-17 µm) tunable femtosecond optical parametric amplifier based on BaGa 4Se 7 crystal. OPTICS LETTERS 2022; 47:5973-5976. [PMID: 37219150 DOI: 10.1364/ol.477361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 05/24/2023]
Abstract
We demonstrate the first (to the best of our knowledge) tunable femtosecond (fs) mid-infrared (MIR) optical parametric amplifier (OPA) based on BaGa4Se7 (BGSe) crystal with an ultra-broadband spectral range. Benefiting from the broad transparency range, high nonlinearity, and relatively large bandgap of BGSe, the MIR OPA pumped at 1030 nm with a repetition of 50 kHz has an output spectrum that is tunable across an extremely wide spectral range spanning from 3.7 to 17 µm. The maximum output power of the MIR laser source is measured as 10 mW at a center wavelength of 16 µm, corresponding to a quantum conversion efficiency of 5%. Power scaling is straightforwardly achieved by using a stronger pump in BGSe with an available large aperture size. A pulse width of 290 fs centered at 16 µm is supported by the BGSe OPA. Our experimental result indicates that BGSe crystal could serve as a promising nonlinear crystal for fs MIR generation with an ultra-broadband tuning spectral range via parametric downconversion for applications such as MIR ultrafast spectroscopy.
Collapse
|
24
|
Ohmura S, Ohmura H, Kato T, Koseki S, Kono H. Investigation of the multielectron dynamics of CO in intense laser fields by the effective potential analysis of natural orbitals. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Akbari K, Di Giulio V, García de Abajo FJ. Optical manipulation of matter waves. SCIENCE ADVANCES 2022; 8:eabq2659. [PMID: 36260664 DOI: 10.1126/sciadv.abq2659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Light is used to steer the motion of atoms in free space, enabling cooling and trapping of matter waves through ponderomotive forces and Doppler-mediated photon scattering. Likewise, light interaction with free electrons has recently emerged as a versatile approach to modulate the electron wave function for applications in ultrafast electron microscopy. Here, we combine these two worlds, theoretically demonstrating that matter waves can be optically manipulated via inelastic interactions with optical fields. This allows us to modulate the translational part of the wave function and produce temporally and spatially compressed atomic beam pulses. We realize such modulation through stimulated photon absorption and emission by atoms traversing phase-matching evanescent optical fields generated upon light scattering by a nanostructure and via stimulated Compton scattering in free space without any assistance from material media. Our results support optical manipulation of matter waves as a powerful tool for microscopy, spectroscopy, and exploration of fundamental phenomena associated with light-atom interactions.
Collapse
Affiliation(s)
- Kamran Akbari
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Valerio Di Giulio
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
26
|
Milošević DB, Habibović D. Nondipole effects in terahetz-pulse-assisted strong-field ionization. OPTICS EXPRESS 2022; 30:29979-29990. [PMID: 36242110 DOI: 10.1364/oe.468146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Nondipole effects in processes assisted by a THz field having the strength of a few MV/cm can be significant due to its long wavelength. We illustrate this for strong-laser-field-induced ionization assisted by a THz field. To this end, we generalize our strong-field-approximation theory so that it includes the first-order term in a 1/c expansion of the vector potential. We show that in this case, in addition to a shift of the maximum of the photoelectron momentum distribution, the differential ionization probability as well as the cutoff energy can be significantly increased. For an explanation of these unexpected results we use the saddle-point method adjusted to include nondipole effects.
Collapse
|
27
|
Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy. Nat Commun 2022; 13:4595. [PMID: 35933558 PMCID: PMC9357086 DOI: 10.1038/s41467-022-32313-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Here we demonstrate that, by using machine learning algorithm to analyze high-order harmonics generated by two-color laser pulses, we are able to retrieve the complex amplitudes and phases of harmonics of single fixed-in-space molecules. These complex dipoles enable us to construct movies of laser-driven electron migration after tunnel ionization of N2 and CO2 molecules at time steps of 50 attoseconds. Moreover, the angular dependence of the migration dynamics is fully resolved. By examining the movies, we observe that electron holes do not just migrate along the laser polarization direction, but may swirl around the atom centers. Our result establishes a general scheme for studying ultrafast electron dynamics in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.
Collapse
|
28
|
Zhang M, Guo Z, Mi X, Li Z, Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J Phys Chem Lett 2022; 13:1668-1680. [PMID: 35147438 DOI: 10.1021/acs.jpclett.1c03916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The requirement of high space-time resolution and brightness is a great challenge for imaging atomic motion and making molecular movies. Important breakthroughs in ultrabright tabletop laser, X-ray, and electron sources have enabled the direct imaging of evolving molecular structures in chemical processes, and recent experimental advances in preparing ultrafast laser and electron pulses resulted in molecular imaging with femtosecond time resolution. This Perspective presents an overview of the versatile imaging methods of molecular dynamics. High-order harmonic generation imaging and photoelectron diffraction imaging are based on laser-induced ionization and rescattering processes. Coulomb explosion imaging retrieves molecular structural information by detecting the momentum vectors of fragmented ions. Diffraction imaging encodes molecular structural and electronic information in reciprocal space. We also present various applications of these ultrafast imaging methods in resolving laser-induced nuclear and electronic dynamics.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhengning Guo
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Identifying the complexity of the holographic structures in strong field ionization. Sci Rep 2022; 12:2877. [PMID: 35190560 PMCID: PMC8861099 DOI: 10.1038/s41598-022-06768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
We present numerical investigations of the strong-field attosecond photoelectron holography by analyzing the holographic interference structures in the two-dimensional photoelectron momentum distribution (PMD) in hydrogen atom target induced by a strong infrared laser pulse. The PMDs are calculated by solving the full-dimensional time-dependent Schrödinger equation. The effect of the number of optical cycles on the PMD is considered and analyzed. We show how the complex interference patterns are formed from a single-cycle pulse to multi-cycle pulses. Furthermore, snapshots of the PMD during the time evolution are presented for a single-cycle pulse in order to track the formation of the so-called fish-bone like holographic structure. The spider- and fan-like holographic structures are also identified and investigated. We found that the fan-like structure could only be identified clearly for pulses with three or more optical cycles and its symmetry depends closely on the number of optical cycles. In addition, we found that the intensity and wavelength of the laser pulse affect the density of interference fringes in the holographic patterns. We show that the longer the wavelength, the more the holographic structures are confined to the polarization axis.
Collapse
|
30
|
Schouder CA, Chatterley AS, Pickering JD, Stapelfeldt H. Laser-Induced Coulomb Explosion Imaging of Aligned Molecules and Molecular Dimers. Annu Rev Phys Chem 2022; 73:323-347. [PMID: 35081323 DOI: 10.1146/annurev-physchem-090419-053627] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nanodroplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
31
|
Kastirke G, Ota F, Rezvan DV, Schöffler MS, Weller M, Rist J, Boll R, Anders N, Baumann TM, Eckart S, Erk B, De Fanis A, Fehre K, Gatton A, Grundmann S, Grychtol P, Hartung A, Hofmann M, Ilchen M, Janke C, Kircher M, Kunitski M, Li X, Mazza T, Melzer N, Montano J, Music V, Nalin G, Ovcharenko Y, Pier A, Rennhack N, Rivas DE, Dörner R, Rolles D, Rudenko A, Schmidt P, Siebert J, Strenger N, Trabert D, Vela-Perez I, Wagner R, Weber T, Williams JB, Ziolkowski P, Schmidt LPH, Czasch A, Tamura Y, Hara N, Yamazaki K, Hatada K, Trinter F, Meyer M, Ueda K, Demekhin PV, Jahnke T. Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses. Phys Chem Chem Phys 2022; 24:27121-27127. [DOI: 10.1039/d2cp02408j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The X-ray-induced charge-up and fragmentation process of a small molecule is examined in great detail by measuring the molecular-frame photoelectron interference pattern in conjunction with other observables in coincidence.
Collapse
Affiliation(s)
- G. Kastirke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - F. Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - D. V. Rezvan
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - M. S. Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Weller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J. Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - R. Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N. Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - T. M. Baumann
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S. Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - B. Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A. De Fanis
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Fehre
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A. Gatton
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S. Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - P. Grychtol
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A. Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Hofmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Janke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Kircher
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - X. Li
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - T. Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N. Melzer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J. Montano
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - V. Music
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G. Nalin
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Y. Ovcharenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A. Pier
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N. Rennhack
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. E. Rivas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D. Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - A. Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ph. Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Siebert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N. Strenger
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D. Trabert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - I. Vela-Perez
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - R. Wagner
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Th. Weber
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
| | - J. B. Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - P. Ziolkowski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - L. Ph. H. Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A. Czasch
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Y. Tamura
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - N. Hara
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - K. Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Trinter
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M. Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Ph. V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - T. Jahnke
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
32
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|
33
|
Fehre K, Novikovskiy NM, Grundmann S, Kastirke G, Eckart S, Trinter F, Rist J, Hartung A, Trabert D, Janke C, Pitzer M, Zeller S, Wiegandt F, Weller M, Kircher M, Nalin G, Hofmann M, Schmidt LPH, Knie A, Hans A, Ben Ltaief L, Ehresmann A, Berger R, Fukuzawa H, Ueda K, Schmidt-Böcking H, Williams JB, Jahnke T, Dörner R, Demekhin PV, Schöffler MS. A new route for enantio-sensitive structure determination by photoelectron scattering on molecules in the gas phase. Phys Chem Chem Phys 2022; 24:26458-26465. [DOI: 10.1039/d2cp03090j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combination of Coulomb explosion imaging, molecular frame diffraction imaging, and ab initio computations provide a route for enantio-sensitive structure determination.
Collapse
Affiliation(s)
- Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Nikolay M. Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
- Institute of Physics, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Christian Janke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Martin Pitzer
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Stefan Zeller
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Florian Wiegandt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Miriam Weller
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Max Kircher
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Giammarco Nalin
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Max Hofmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Lothar Ph. H. Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - André Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Andreas Hans
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Ltaief Ben Ltaief
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Robert Berger
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Horst Schmidt-Böcking
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | | | - Till Jahnke
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Philipp V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Markus S. Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Li L, Lan P, Zhu X, Lu P. Huygens-Fresnel Picture for High Harmonic Generation in Solids. PHYSICAL REVIEW LETTERS 2021; 127:223201. [PMID: 34889630 DOI: 10.1103/physrevlett.127.223201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
High harmonic generation (HHG) is usually described by the laser-induced recollision of particlelike electrons, which lies at the heart of attosecond physics and also inspires numerous attosecond spectroscopic methods. Here, we demonstrate that the wavelike behavior of electrons plays an important role in solid HHG. By taking an analogy to the Huygens-Fresnel principle, an electron wave perspective on solid HHG is proposed by using the wavelet stationary-phase method. From this perspective, we have explained the deviation between the cutoff law predicted by the particlelike recollision model and the numerical simulation of semiconductor Bloch equations. Moreover, the emission times of HHG can be well predicted with our method involving the wave property of electrons. However, in contrast, the prediction with the particlelike recollision model shows obvious deviations compared to the semiconductor Bloch equations simulation. The wavelike properties of the electron motion can also be revealed by the HHG in a two-color field.
Collapse
Affiliation(s)
- Liang Li
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengfei Lan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaosong Zhu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
35
|
Rist J, Klyssek K, Novikovskiy NM, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A, Melzer N, Schwarz C, Anders N, Kaiser L, Fehre K, Hartung A, Eckart S, Schmidt LPH, Schöffler MS, Davis VT, Williams JB, Trinter F, Dörner R, Demekhin PV, Jahnke T. Measuring the photoelectron emission delay in the molecular frame. Nat Commun 2021; 12:6657. [PMID: 34789736 PMCID: PMC8599449 DOI: 10.1038/s41467-021-26994-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion's potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons' emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.
Collapse
Affiliation(s)
- Jonas Rist
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany.
| | - Kim Klyssek
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Nikolay M Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany
- Institute of Physics, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Max Kircher
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Isabel Vela-Pérez
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Daniel Trabert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Sven Grundmann
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Dimitrios Tsitsonis
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Juliane Siebert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Angelina Geyer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Niklas Melzer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Christian Schwarz
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Nils Anders
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Leon Kaiser
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Kilian Fehre
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Alexander Hartung
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Sebastian Eckart
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Vernon T Davis
- Department of Physics, University of Nevada, Reno, NV, 89557, USA
| | | | - Florian Trinter
- FS-PETRA-S, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.
| | - Till Jahnke
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany.
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| |
Collapse
|
36
|
Liu X, Amini K, Sanchez A, Belsa B, Steinle T, Biegert J. Machine learning for laser-induced electron diffraction imaging of molecular structures. Commun Chem 2021; 4:154. [PMID: 36697668 PMCID: PMC9814146 DOI: 10.1038/s42004-021-00594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
Ultrafast diffraction imaging is a powerful tool to retrieve the geometric structure of gas-phase molecules with combined picometre spatial and attosecond temporal resolution. However, structural retrieval becomes progressively difficult with increasing structural complexity, given that a global extremum must be found in a multi-dimensional solution space. Worse, pre-calculating many thousands of molecular configurations for all orientations becomes simply intractable. As a remedy, here, we propose a machine learning algorithm with a convolutional neural network which can be trained with a limited set of molecular configurations. We demonstrate structural retrieval of a complex and large molecule, Fenchone (C10H16O), from laser-induced electron diffraction (LIED) data without fitting algorithms or ab initio calculations. Retrieval of such a large molecular structure is not possible with other variants of LIED or ultrafast electron diffraction. Combining electron diffraction with machine learning presents new opportunities to image complex and larger molecules in static and time-resolved studies.
Collapse
Affiliation(s)
- Xinyao Liu
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Kasra Amini
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Aurelien Sanchez
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Blanca Belsa
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Tobias Steinle
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jens Biegert
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ,grid.425902.80000 0000 9601 989XICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
37
|
Abstract
Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Martin Centurion
- Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska, USA;
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, China;
| |
Collapse
|
38
|
Wang SJ, Daněk J, Blaga CI, DiMauro LF, Biegert J, Lin CD. Two-dimensional retrieval methods for ultrafast imaging of molecular structure using laser-induced electron diffraction. J Chem Phys 2021; 155:164104. [PMID: 34717362 DOI: 10.1063/5.0064761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular structural retrieval based on electron diffraction has been proposed to determine the atomic positions of molecules with sub-angstrom spatial and femtosecond temporal resolutions. Given its success on small molecular systems, in this work, we point out that the accuracy of structure retrieval is constrained by the availability of a wide range of experimental data in the momentum space in all molecular systems. To mitigate the limitations, for laser-induced electron diffraction, here we retrieve molecular structures using two-dimensional (energy and angle) electron momentum spectra in the laboratory frame for a number of small molecular systems, which have previously been studied with 1D methods. Compared to the conventional single-energy or single-angle analysis, our 2D methods effectively expand the momentum range of the measured data. Besides utilization of the 2D data, two complementary methods are developed for consistency check on the retrieved results. The 2D nature of our methods also offers a way of estimating the error from retrieval, which has never been explored before. Comparing with results from prior experiments, our findings show evidence that our 2D methods outperform the conventional 1D methods. Paving the way to the retrieval of large molecular systems, in which their tunneling ionization rates are challenging to obtain, we estimate the error of using the isotropic model in place of including the orientation-dependent ionization rate.
Collapse
Affiliation(s)
- Su-Ju Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jiří Daněk
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Cosmin I Blaga
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jens Biegert
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - C D Lin
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
39
|
Shaikh M, Liu X, Amini K, Steinle T, Biegert J. High density molecular jets of complex neutral organic molecules with Tesla valves. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:104103. [PMID: 34717433 DOI: 10.1063/5.0060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Supersonic jets of gas-phase atoms and small molecules have enabled a variety of ultrafast and ultracold chemical studies. However, extension to larger, more complex neutral molecules proves challenging for two reasons: (i) Complex molecules, such as cis-stilbene, exist in a liquid or solid phase at room temperature and ambient pressure and (ii) a unidirectional flow of high-density gaseous beams of such molecules to the interaction region is required. No delivery system currently exists that can deliver dense enough molecular jets of neutral complex molecules without ionizing or exciting the target for use in gas-phase structural dynamics studies. Here, we present a novel delivery system utilizing Tesla valves, which generates more than an order-of-magnitude denser gaseous beam of molecules compared to a bubbler without Tesla valves at the interaction region by ensuring a fast unidirectional flow of the gaseous sample. We present combined experimental and flow simulations of the Tesla valve setup. Our results open new possibilities of studying large complex neutral molecules in the gas-phase with low vapor pressures in future ultrafast and ultracold studies.
Collapse
Affiliation(s)
- Moniruzzaman Shaikh
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Xinyao Liu
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Kasra Amini
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Tobias Steinle
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jens Biegert
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
40
|
Ota F, Abe S, Hatada K, Ueda K, Díaz-Tendero S, Martín F. Imaging intramolecular hydrogen migration with time- and momentum-resolved photoelectron diffraction. Phys Chem Chem Phys 2021; 23:20174-20182. [PMID: 34473148 DOI: 10.1039/d1cp02055b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging ultrafast hydrogen migration with few- or sub-femtosecond time resolution is a challenge for ultrafast spectroscopy due to the lightness and small scattering cross-section of the moving hydrogen atom. Here we propose time- and momentum-resolved photoelectron diffraction (TMR-PED) as a way to overcome limitations of existing methodologies and illustrate its performance in the ethanol molecule. By combining different theoretical methods, namely molecular dynamics and electron scattering methods, we show that TMR-PED, along with a judicious choice of the reference frame for multi-coincidence detection, allows for direct imaging of single and double hydrogen migration in doubly-charged ethanol with both few-fs and Å resolutions, all the way from its birth to the very end. It also provides hints of proton extraction following H2 roaming. The signature of hydrogen dynamics shows up in polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) as moving features that allow for a straightforward visualization in space.
Collapse
Affiliation(s)
- Fukiko Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Shigeru Abe
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, EU, Spain
| |
Collapse
|
41
|
Quantum state tomography of molecules by ultrafast diffraction. Nat Commun 2021; 12:5441. [PMID: 34521840 PMCID: PMC8440554 DOI: 10.1038/s41467-021-25770-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments capture only the probability density of the nuclear wavepackets to determine the time-dependent molecular structures, while the full quantum state has not been accessed. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix, which encodes the amplitude and phase of the wavepacket, for molecules of arbitrary degrees of freedom, will enable the reconstruction of a quantum molecular movie from experimental x-ray or electron diffraction data. Ultrafast diffraction is fundamental in capturing the structural dynamics of molecules. Here, the authors establish a variant of quantum state tomography for arbitrary degrees of freedom to characterize the molecular quantum states, which will enable the reconstruction of a quantum molecular movie from diffraction data.
Collapse
|
42
|
Allum F, Cheng C, Howard AJ, Bucksbaum PH, Brouard M, Weinacht T, Forbes R. Multi-Particle Three-Dimensional Covariance Imaging: "Coincidence" Insights into the Many-Body Fragmentation of Strong-Field Ionized D 2O. J Phys Chem Lett 2021; 12:8302-8308. [PMID: 34428066 DOI: 10.1021/acs.jpclett.1c02481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We demonstrate the applicability of covariance analysis to three-dimensional velocity-map imaging experiments using a fast time stamping detector. Studying the photofragmentation of strong-field doubly ionized D2O molecules, we show that combining high count rate measurements with covariance analysis yields the same level of information typically limited to the "gold standard" of true, low count rate coincidence experiments, when averaging over a large ensemble of photofragmentation events. This increases the effective data acquisition rate by approximately 2 orders of magnitude, enabling a new class of experimental studies. This is illustrated through an investigation into the dependence of three-body D2O2+ dissociation on the intensity of the ionizing laser, revealing mechanistic insights into the nuclear dynamics driven during the laser pulse. The experimental methodology laid out, with its drastic reduction in acquisition time, is expected to be of great benefit to future photofragment imaging studies.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Chuan Cheng
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
43
|
Wang W, Zhou J, Liu B, Wang X. Exciting the Isomeric ^{229}Th Nuclear State via Laser-Driven Electron Recollision. PHYSICAL REVIEW LETTERS 2021; 127:052501. [PMID: 34397255 DOI: 10.1103/physrevlett.127.052501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
We propose a new approach to excite the isomeric ^{229}Th nuclear state, which has attracted much attention recently as a potential "nuclear clock." Our approach is based on a laser-driven electron recollision process, the core process of strong-field atomic physics. Bringing together knowledge of recollision physics and of the related nuclear physics, we calculate the isomeric excitation probability. This new approach does not require precise knowledge of the energy of the isomeric state. The excitation is well timed which may be exploited to control the coherence of the isomeric state. Experimental realization is within reach using tabletop laser systems.
Collapse
Affiliation(s)
- Wu Wang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jie Zhou
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| | - Boqun Liu
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| | - Xu Wang
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
44
|
Li S, Jochim B, Jackson JE, Dantus M. Femtosecond dynamics and coherence of ionic retro-Diels-Alder reactions. J Chem Phys 2021; 155:044303. [PMID: 34340396 DOI: 10.1063/5.0048380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrafast tunnel ionization enables femtosecond time-resolved dynamic measurements of the retro-Diels-Alder reactions of positively charged cyclohexene, norbornene, and dicyclopentadiene. Unlike the reaction times of 500-600 ps that are observed following UV excitation of neutral species, on the ionic potential energy surfaces, these reactions occur on a single picosecond timescale and, in some cases, exhibit vibrational coherence. In the case of norbornene, a 270 cm-1 vibrational mode is found to modulate the retro-Diels-Alder reaction.
Collapse
Affiliation(s)
- Shuai Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Bethany Jochim
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
45
|
Abstract
In the past decade, mid-infrared (MIR) few-cycle lasers have attracted remarkable research efforts for their applications in strong-field physics, MIR spectroscopy, and bio-medical research. Here we present a review of MIR few-cycle pulse generation and amplification in the wavelength range spanning from 2 to ~20 μm. In the first section, a brief introduction on the importance of MIR ultrafast lasers and the corresponding methods of MIR few-cycle pulse generation is provided. In the second section, different nonlinear crystals including emerging non-oxide crystals, such as CdSiP2, ZnGeP2, GaSe, LiGaS2, and BaGa4Se7, as well as new periodically poled crystals such as OP-GaAs and OP-GaP are reviewed. Subsequently, in the third section, the various techniques for MIR few-cycle pulse generation and amplification including optical parametric amplification, optical parametric chirped-pulse amplification, and intra-pulse difference-frequency generation with all sorts of designs, pumped by miscellaneous lasers, and with various MIR output specifications in terms of pulse energy, average power, and pulse width are reviewed. In addition, high-energy MIR single-cycle pulses are ideal tools for isolated attosecond pulse generation, electron dynamic investigation, and tunneling ionization harness. Thus, in the fourth section, examples of state-of-the-art work in the field of MIR single-cycle pulse generation are reviewed and discussed. In the last section, prospects for MIR few-cycle lasers in strong-field physics, high-fidelity molecule detection, and cold tissue ablation applications are provided.
Collapse
|
46
|
Nautiyal VV, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V. Orientation and Alignment dynamics of polar molecule driven by shaped laser pulses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119663. [PMID: 33827039 DOI: 10.1016/j.saa.2021.119663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We review the theoretical status of intense laser induced orientation and alignment-a field of study which lies at the interface of intense laser physics and chemical dynamics and having potential applications such as high harmonic generation, nano-scale processing and control of chemical reactions. The evolution of the rotational wave packet and its dynamics leading to orientation and alignment is the topic of the present discussion. The major part of this article primarily presents an overview of recent theoretical progress in controlling the orientation and alignment dynamics of a molecule by means of shaped laser pulses. The various theoretical approaches that lead to orientation and alignment such as static electrostatic field in combination with laser field(s), combination of orienting and aligning field, combination of aligning fields, combination of orienting fields, application of train of pulses etc. are discussed. It is observed that the train of pulses is quite an efficient tool for increasing the orientation or alignment of a molecule without causing the molecule to ionize. The orientation and alignment both can occur in adiabatic and non-adiabatic conditions with the rotational period of the molecule taken under consideration. The discussion is mostly limited to non-adiabatic rotational excitation (NAREX) i.e. cases in which the pulse duration is shorter than the rotational period of the molecule. We have emphasised on the so called half-cycle pulse (HCP) and square pulse (SQP). The effect of ramped pulses and of collision on the various laser parameters is also studied. We summarize the current discussion by presenting a consistent theoretical approach for describing the action of such pulses on movement of molecules. The impact of a particular pulse shape on the post-pulse dynamics is also calculated and analysed. In addition to this, the roles played by various laser parameters including the laser frequency, the pulse duration and the system temperature etc. are illustrated and discussed. The concept of alignment is extended from one-dimensional alignment to three-dimensional alignment with the proper choice of molecule and the polarised light. We conclude the article by discussing the potential applications of intense laser orientation and alignment.
Collapse
Affiliation(s)
- Vijit V Nautiyal
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India
| | - Sumana Devi
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India; Department of Physics, Miranda House College, University of Delhi, Delhi, Delhi 110007, India
| | - Ashish Tyagi
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India
| | - Bhavna Vidhani
- Department of Physics, Hansraj College, University of Delhi, Delhi, Delhi 110007, India
| | - Anjali Maan
- Department of Physics, Pt.N.R.S.G.C.Rohtak, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vinod Prasad
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India.
| |
Collapse
|
47
|
Karamatskos ET, Yarlagadda S, Patchkovskii S, Vrakking MJJ, Welsch R, Küpper J, Rouzée A. Time-resolving the UV-initiated photodissociation dynamics of OCS. Faraday Discuss 2021; 228:413-431. [PMID: 33570531 DOI: 10.1039/d0fd00119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | - Ralph Welsch
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arnaud Rouzée
- Max Born Institute, Max-Born-Straße 2a, 12489 Berlin, Germany.
| |
Collapse
|
48
|
Ivanov M. Concluding remarks: The age of molecular movies. Faraday Discuss 2021; 228:622-629. [PMID: 33960352 DOI: 10.1039/d1fd90033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Faraday Discussion has demonstrated enormous progress towards using advanced light sources, together with a variety of experimental and theoretical tools and techniques, to film the motion of both electrons and nuclei in molecules undergoing photo-induced reactions. The new tools are beginning to offer reliable opportunities for achieving the required spatio-temporal resolution, all the way to sub-femtosecond and sub-angstrom scales. The age of quantum molecular movies has arrived.
Collapse
Affiliation(s)
- Misha Ivanov
- Max Born Institute, Max Born Str. 2A, Berlin, Germany
| |
Collapse
|
49
|
García
de Abajo FJ, Di Giulio V. Optical Excitations with Electron Beams: Challenges and Opportunities. ACS PHOTONICS 2021; 8:945-974. [PMID: 35356759 PMCID: PMC8939335 DOI: 10.1021/acsphotonics.0c01950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Free electron beams such as those employed in electron microscopes have evolved into powerful tools to investigate photonic nanostructures with an unrivaled combination of spatial and spectral precision through the analysis of electron energy losses and cathodoluminescence light emission. In combination with ultrafast optics, the emerging field of ultrafast electron microscopy utilizes synchronized femtosecond electron and light pulses that are aimed at the sampled structures, holding the promise to bring simultaneous sub-Å-sub-fs-sub-meV space-time-energy resolution to the study of material and optical-field dynamics. In addition, these advances enable the manipulation of the wave function of individual free electrons in unprecedented ways, opening sound prospects to probe and control quantum excitations at the nanoscale. Here, we provide an overview of photonics research based on free electrons, supplemented by original theoretical insights and discussion of several stimulating challenges and opportunities. In particular, we show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile, whereas the probability for two or more modulated electrons depends on their relative spatial arrangement, thus reflecting the quantum nature of their interactions. We derive first-principles analytical expressions that embody these results and have general validity for arbitrarily shaped electrons and any type of electron-sample interaction. We conclude with some perspectives on various exciting directions that include disruptive approaches to noninvasive spectroscopy and microscopy, the possibility of sampling the nonlinear optical response at the nanoscale, the manipulation of the density matrices associated with free electrons and optical sample modes, and appealing applications in optical modulation of electron beams, all of which could potentially revolutionize the use of free electrons in photonics.
Collapse
Affiliation(s)
- F. Javier García
de Abajo
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- E-mail:
| | - Valerio Di Giulio
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
50
|
Sanchez A, Amini K, Wang SJ, Steinle T, Belsa B, Danek J, Le AT, Liu X, Moshammer R, Pfeifer T, Richter M, Ullrich J, Gräfe S, Lin CD, Biegert J. Molecular structure retrieval directly from laboratory-frame photoelectron spectra in laser-induced electron diffraction. Nat Commun 2021; 12:1520. [PMID: 33750798 PMCID: PMC7943781 DOI: 10.1038/s41467-021-21855-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Ubiquitous to most molecular scattering methods is the challenge to retrieve bond distance and angle from the scattering signals since this requires convergence of pattern matching algorithms or fitting methods. This problem is typically exacerbated when imaging larger molecules or for dynamic systems with little a priori knowledge. Here, we employ laser-induced electron diffraction (LIED) which is a powerful means to determine the precise atomic configuration of an isolated gas-phase molecule with picometre spatial and attosecond temporal precision. We introduce a simple molecular retrieval method, which is based only on the identification of critical points in the oscillating molecular interference scattering signal that is extracted directly from the laboratory-frame photoelectron spectrum. The method is compared with a Fourier-based retrieval method, and we show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide (OCS), which is confirmed by our quantum-classical calculations.
Collapse
Affiliation(s)
- A Sanchez
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - K Amini
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S-J Wang
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - T Steinle
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - B Belsa
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - J Danek
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - A T Le
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, USA
| | - X Liu
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - R Moshammer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - M Richter
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - J Ullrich
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - S Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - C D Lin
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - J Biegert
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|