1
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
3
|
Csordas A, Sipos B, Kurucova T, Volfova A, Zamola F, Tichy B, Hicks DG. Cell Tree Rings: the structure of somatic evolution as a human aging timer. GeroScience 2024; 46:3005-3019. [PMID: 38172489 PMCID: PMC11009167 DOI: 10.1007/s11357-023-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
Collapse
Affiliation(s)
- Attila Csordas
- AgeCurve Limited, Cambridge, CB2 1SD, UK.
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, H-6720, Hungary.
| | | | - Terezia Kurucova
- CEITEC - Central European Institute of Technology, Masaryk University, 62500, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czechia
| | - Andrea Volfova
- HealthyLongevity.clinic Inc, 540 University Ave, Palo Alto, CA, 94301, USA
| | - Frantisek Zamola
- HealthyLongevity.clinic Inc, 540 University Ave, Palo Alto, CA, 94301, USA
| | - Boris Tichy
- CEITEC - Central European Institute of Technology, Masaryk University, 62500, Brno, Czechia
| | - Damien G Hicks
- AgeCurve Limited, Cambridge, CB2 1SD, UK
- Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
4
|
Wang K, Hou L, Wang X, Zhai X, Lu Z, Zi Z, Zhai W, He X, Curtis C, Zhou D, Hu Z. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nat Biotechnol 2024; 42:778-789. [PMID: 37524958 DOI: 10.1038/s41587-023-01887-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/28/2023] [Indexed: 08/02/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful approach for studying cellular differentiation, but accurately tracking cell fate transitions can be challenging, especially in disease conditions. Here we introduce PhyloVelo, a computational framework that estimates the velocity of transcriptomic dynamics by using monotonically expressed genes (MEGs) or genes with expression patterns that either increase or decrease, but do not cycle, through phylogenetic time. Through integration of scRNA-seq data with lineage information, PhyloVelo identifies MEGs and reconstructs a transcriptomic velocity field. We validate PhyloVelo using simulated data and Caenorhabditis elegans ground truth data, successfully recovering linear, bifurcated and convergent differentiations. Applying PhyloVelo to seven lineage-traced scRNA-seq datasets, generated using CRISPR-Cas9 editing, lentiviral barcoding or immune repertoire profiling, demonstrates its high accuracy and robustness in inferring complex lineage trajectories while outperforming RNA velocity. Additionally, we discovered that MEGs across tissues and organisms share similar functions in translation and ribosome biogenesis.
Collapse
Affiliation(s)
- Kun Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Liangzhen Hou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangwei Zhai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhaolian Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhike Zi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Zhai
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Xue G, Zhang X, Li W, Zhang L, Zhang Z, Zhou X, Zhang D, Zhang L, Li Z. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 2024; 12:RP88742. [PMID: 38652107 PMCID: PMC11037919 DOI: 10.7554/elife.88742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.
Collapse
Affiliation(s)
- Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaoyi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Wanqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaolin Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Beijing International Center for Mathematical Research, Center for Machine Learning Research, Peking UniversityBeijingChina
| | - Zhiyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| |
Collapse
|
6
|
Senoussi M, Artieres T, Villoutreix P. Partial label learning for automated classification of single-cell transcriptomic profiles. PLoS Comput Biol 2024; 20:e1012006. [PMID: 38578796 PMCID: PMC11023635 DOI: 10.1371/journal.pcbi.1012006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/17/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
Single-cell RNA sequencing (scRNASeq) data plays a major role in advancing our understanding of developmental biology. An important current question is how to classify transcriptomic profiles obtained from scRNASeq experiments into the various cell types and identify the lineage relationship for individual cells. Because of the fast accumulation of datasets and the high dimensionality of the data, it has become challenging to explore and annotate single-cell transcriptomic profiles by hand. To overcome this challenge, automated classification methods are needed. Classical approaches rely on supervised training datasets. However, due to the difficulty of obtaining data annotated at single-cell resolution, we propose instead to take advantage of partial annotations. The partial label learning framework assumes that we can obtain a set of candidate labels containing the correct one for each data point, a simpler setting than requiring a fully supervised training dataset. We study and extend when needed state-of-the-art multi-class classification methods, such as SVM, kNN, prototype-based, logistic regression and ensemble methods, to the partial label learning framework. Moreover, we study the effect of incorporating the structure of the label set into the methods. We focus particularly on the hierarchical structure of the labels, as commonly observed in developmental processes. We show, on simulated and real datasets, that these extensions enable to learn from partially labeled data, and perform predictions with high accuracy, particularly with a nonlinear prototype-based method. We demonstrate that the performances of our methods trained with partially annotated data reach the same performance as fully supervised data. Finally, we study the level of uncertainty present in the partially annotated data, and derive some prescriptive results on the effect of this uncertainty on the accuracy of the partial label learning methods. Overall our findings show how hierarchical and non-hierarchical partial label learning strategies can help solve the problem of automated classification of single-cell transcriptomic profiles, interestingly these methods rely on a much less stringent type of annotated datasets compared to fully supervised learning methods.
Collapse
Affiliation(s)
- Malek Senoussi
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Turing Centre for Living Systems, Marseille, France
| | - Thierry Artieres
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Turing Centre for Living Systems, Marseille, France
- Ecole Centrale de Marseille, Marseille, France
| | - Paul Villoutreix
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living systems, Marseille, France
| |
Collapse
|
7
|
Deng S, Gong H, Zhang D, Zhang M, He X. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat Methods 2024; 21:597-608. [PMID: 38379073 DOI: 10.1038/s41592-024-02189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Quantifying the number of progenitor cells that found an organ, tissue or cell population is of fundamental importance for understanding the development and homeostasis of a multicellular organism. Previous efforts rely on marker genes that are specifically expressed in progenitors. This strategy is, however, often hindered by the lack of ideal markers. Here we propose a general statistical method to quantify the progenitors of any tissues or cell populations in an organism, even in the absence of progenitor-specific markers, by exploring the cell phylogenetic tree that records the cell division history during development. The method, termed targeting coalescent analysis (TarCA), computes the probability that two randomly sampled cells of a tissue coalesce within the tissue-specific monophyletic clades. The inverse of this probability then serves as a measure of the progenitor number of the tissue. Both mathematic modeling and computer simulations demonstrated the high accuracy of TarCA, which was then validated using real data from nematode, fruit fly and mouse, all with related cell phylogenetic trees. We further showed that TarCA can be used to identify lineage-specific upregulated genes during embryogenesis, revealing incipient cell fate commitments in mouse embryos.
Collapse
Affiliation(s)
- Shanjun Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Han Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Di Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mengdong Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Exciting times for evolutionary biology. Nat Ecol Evol 2024; 8:593-594. [PMID: 38605230 DOI: 10.1038/s41559-024-02402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
|
9
|
Tran M, Askary A, Elowitz MB. Lineage motifs as developmental modules for control of cell type proportions. Dev Cell 2024; 59:812-826.e3. [PMID: 38359830 DOI: 10.1016/j.devcel.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way this is achieved is through committed progenitor cells or extrinsic interactions that produce specific patterns of descendant cell types on lineage trees. However, cell fate commitment is probabilistic in most contexts, making it difficult to infer these dynamics and understand how they establish overall cell type proportions. Here, we introduce Lineage Motif Analysis (LMA), a method that recursively identifies statistically overrepresented patterns of cell fates on lineage trees as potential signatures of committed progenitor states or extrinsic interactions. Applying LMA to published datasets reveals spatial and temporal organization of cell fate commitment in zebrafish and rat retina and early mouse embryonic development. Comparative analysis of vertebrate species suggests that lineage motifs facilitate adaptive evolutionary variation of retinal cell type proportions. LMA thus provides insight into complex developmental processes by decomposing them into simpler underlying modules.
Collapse
Affiliation(s)
- Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
10
|
Zhang Q, Yu S, Shang J, He S, Liu X, Wang F. Spatiotemporally Programmed Disassembly of Multifunctional Integrated DNAzyme Nanoplatfrom for Amplified Intracellular MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305672. [PMID: 37670211 DOI: 10.1002/smll.202305672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Indexed: 09/07/2023]
Abstract
The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Shizhen He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| |
Collapse
|
11
|
Croydon-Veleslavov IA, Stumpf MPH. Repeated Decision Stumping Distils Simple Rules from Single-Cell Data. J Comput Biol 2024; 31:21-40. [PMID: 38170180 DOI: 10.1089/cmb.2021.0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Single-cell data afford unprecedented insights into molecular processes. But the complexity and size of these data sets have proved challenging and given rise to a large armory of statistical and machine learning approaches. The majority of approaches focuses on either describing features of these data, or making predictions and classifying unlabeled samples. In this study, we introduce repeated decision stumping (ReDX) as a method to distill simple models from single-cell data. We develop decision trees of depth one-hence "stumps"-to identify in an inductive manner, gene products involved in driving cell fate transitions, and in applications to published data we are able to discover the key players involved in these processes in an unbiased manner without prior knowledge. Our algorithm is deliberately targeting the simplest possible candidate hypotheses that can be extracted from complex high-dimensional data. There are three reasons for this: (1) the predictions become straightforwardly testable hypotheses; (2) the identified candidates form the basis for further mechanistic model development, for example, for engineering and synthetic biology interventions; and (3) this approach complements existing descriptive modeling approaches and frameworks. The approach is computationally efficient, has remarkable predictive power, including in simulation studies where the ground truth is known, and yields robust and statistically stable predictors; the same set of candidates is generated by applying the algorithm to different subsamples of experimental data.
Collapse
Affiliation(s)
- Ivan A Croydon-Veleslavov
- Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Michael P H Stumpf
- Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
- School of BioSciences, University of Melbourne, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| |
Collapse
|
12
|
Broz AK, Sloan DB, Johnston IG. Stochastic organelle genome segregation through Arabidopsis development and reproduction. THE NEW PHYTOLOGIST 2024; 241:896-910. [PMID: 37925790 PMCID: PMC10841260 DOI: 10.1111/nph.19288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
13
|
Borgsmüller N, Valecha M, Kuipers J, Beerenwinkel N, Posada D. Single-cell phylogenies reveal changes in the evolutionary rate within cancer and healthy tissues. CELL GENOMICS 2023; 3:100380. [PMID: 37719146 PMCID: PMC10504633 DOI: 10.1016/j.xgen.2023.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Cell lineages accumulate somatic mutations during organismal development, potentially leading to pathological states. The rate of somatic evolution within a cell population can vary due to multiple factors, including selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a statistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages, leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often evolve at different rates within cancer and healthy tissues.
Collapse
Affiliation(s)
- Nico Borgsmüller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
14
|
Johnson B, Shuai Y, Schweinsberg J, Curtius K. cloneRate: fast estimation of single-cell clonal dynamics using coalescent theory. Bioinformatics 2023; 39:btad561. [PMID: 37699006 PMCID: PMC10534056 DOI: 10.1093/bioinformatics/btad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
MOTIVATION While evolutionary approaches to medicine show promise, measuring evolution itself is difficult due to experimental constraints and the dynamic nature of body systems. In cancer evolution, continuous observation of clonal architecture is impossible, and longitudinal samples from multiple timepoints are rare. Increasingly available DNA sequencing datasets at single-cell resolution enable the reconstruction of past evolution using mutational history, allowing for a better understanding of dynamics prior to detectable disease. There is an unmet need for an accurate, fast, and easy-to-use method to quantify clone growth dynamics from these datasets. RESULTS We derived methods based on coalescent theory for estimating the net growth rate of clones using either reconstructed phylogenies or the number of shared mutations. We applied and validated our analytical methods for estimating the net growth rate of clones, eliminating the need for complex simulations used in previous methods. When applied to hematopoietic data, we show that our estimates may have broad applications to improve mechanistic understanding and prognostic ability. Compared to clones with a single or unknown driver mutation, clones with multiple drivers have significantly increased growth rates (median 0.94 versus 0.25 per year; P = 1.6×10-6). Further, stratifying patients with a myeloproliferative neoplasm (MPN) by the growth rate of their fittest clone shows that higher growth rates are associated with shorter time to MPN diagnosis (median 13.9 versus 26.4 months; P = 0.0026). AVAILABILITY AND IMPLEMENTATION We developed a publicly available R package, cloneRate, to implement our methods (Package website: https://bdj34.github.io/cloneRate/). Source code: https://github.com/bdj34/cloneRate/.
Collapse
Affiliation(s)
- Brian Johnson
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Yubo Shuai
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
| | - Jason Schweinsberg
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
- VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
15
|
Prusokiene A, Prusokas A, Retkute R. Machine learning based lineage tree reconstruction improved with knowledge of higher level relationships between cells and genomic barcodes. NAR Genom Bioinform 2023; 5:lqad077. [PMID: 37608801 PMCID: PMC10440785 DOI: 10.1093/nargab/lqad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Tracking cells as they divide and progress through differentiation is a fundamental step in understanding many biological processes, such as the development of organisms and progression of diseases. In this study, we investigate a machine learning approach to reconstruct lineage trees in experimental systems based on mutating synthetic genomic barcodes. We refine previously proposed methodology by embedding information of higher level relationships between cells and single-cell barcode values into a feature space. We test performance of the algorithm on shallow trees (up to 100 cells) and deep trees (up to 10 000 cells). Our proposed algorithm can improve tree reconstruction accuracy in comparison to reconstructions based on a maximum parsimony method, but this comes at a higher computational time requirement.
Collapse
Affiliation(s)
- Alisa Prusokiene
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
16
|
Amini S, Doyle JJ, Libault M. The evolving definition of plant cell type. FRONTIERS IN PLANT SCIENCE 2023; 14:1271070. [PMID: 37692436 PMCID: PMC10485272 DOI: 10.3389/fpls.2023.1271070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Sahand Amini
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY, United States
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
17
|
Hamede R, Fountain‐Jones NM, Arce F, Jones M, Storfer A, Hohenlohe PA, McCallum H, Roche B, Ujvari B, Thomas F. The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils. Evol Appl 2023; 16:1316-1327. [PMID: 37492149 PMCID: PMC10363845 DOI: 10.1111/eva.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023] Open
Abstract
Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective processes. Phylodynamics is a robust framework to understand the interaction of pathogen evolutionary processes with epidemiological dynamics, providing a powerful tool to evaluate disease control strategies. Tasmanian devils have been threatened by a fatal transmissible cancer, devil facial tumour disease (DFTD), for more than two decades. Here we employ a phylodynamic approach using tumour mitochondrial genomes to assess the role of tumour genetic diversity in epidemiological and population dynamics in a devil population subject to 12 years of intensive monitoring, since the beginning of the epidemic outbreak. DFTD molecular clock estimates of disease introduction mirrored observed estimates in the field, and DFTD genetic diversity was positively correlated with estimates of devil population size. However, prevalence and force of infection were the lowest when devil population size and tumour genetic diversity was the highest. This could be due to either differential virulence or transmissibility in tumour lineages or the development of host defence strategies against infection. Our results support the view that evolutionary processes and epidemiological trade-offs can drive host-pathogen coexistence, even when disease-induced mortality is extremely high. We highlight the importance of integrating pathogen and population evolutionary interactions to better understand long-term epidemic dynamics and evaluating disease control strategies.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le CancerMontpellierFrance
| | | | - Fernando Arce
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Andrew Storfer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdahoUSA
| | - Hamish McCallum
- Centre for Planetary Health and Food SecurityGriffith University, Nathan CampusNathanQueenslandAustralia
| | - Benjamin Roche
- CREEC, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpelierFrance
| | - Beata Ujvari
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le CancerMontpellierFrance
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Frédéric Thomas
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le CancerMontpellierFrance
- CREEC, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpelierFrance
| |
Collapse
|
18
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
19
|
Lewinsohn MA, Bedford T, Müller NF, Feder AF. State-dependent evolutionary models reveal modes of solid tumour growth. Nat Ecol Evol 2023; 7:581-596. [PMID: 36894662 PMCID: PMC10089931 DOI: 10.1038/s41559-023-02000-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023]
Abstract
Spatial properties of tumour growth have profound implications for cancer progression, therapeutic resistance and metastasis. Yet, how spatial position governs tumour cell division remains difficult to evaluate in clinical tumours. Here, we demonstrate that faster division on the tumour periphery leaves characteristic genetic patterns, which become evident when a phylogenetic tree is reconstructed from spatially sampled cells. Namely, rapidly dividing peripheral lineages branch more extensively and acquire more mutations than slower-dividing centre lineages. We develop a Bayesian state-dependent evolutionary phylodynamic model (SDevo) that quantifies these patterns to infer the differential division rates between peripheral and central cells. We demonstrate that this approach accurately infers spatially varying birth rates of simulated tumours across a range of growth conditions and sampling strategies. We then show that SDevo outperforms state-of-the-art, non-cancer multi-state phylodynamic methods that ignore differential sequence evolution. Finally, we apply SDevo to single-time-point, multi-region sequencing data from clinical hepatocellular carcinomas and find evidence of a three- to six-times-higher division rate on the tumour edge. With the increasing availability of high-resolution, multi-region sequencing, we anticipate that SDevo will be useful in interrogating spatial growth restrictions and could be extended to model non-spatial factors that influence tumour progression.
Collapse
Affiliation(s)
- Maya A Lewinsohn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Trevor Bedford
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Nicola F Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Cappello L, Kim J, Palacios JA. adaPop: Bayesian inference of dependent population dynamics in coalescent models. PLoS Comput Biol 2023; 19:e1010897. [PMID: 36940209 PMCID: PMC10063170 DOI: 10.1371/journal.pcbi.1010897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/30/2023] [Accepted: 01/25/2023] [Indexed: 03/21/2023] Open
Abstract
The coalescent is a powerful statistical framework that allows us to infer past population dynamics leveraging the ancestral relationships reconstructed from sampled molecular sequence data. In many biomedical applications, such as in the study of infectious diseases, cell development, and tumorgenesis, several distinct populations share evolutionary history and therefore become dependent. The inference of such dependence is a highly important, yet a challenging problem. With advances in sequencing technologies, we are well positioned to exploit the wealth of high-resolution biological data for tackling this problem. Here, we present adaPop, a probabilistic model to estimate past population dynamics of dependent populations and to quantify their degree of dependence. An essential feature of our approach is the ability to track the time-varying association between the populations while making minimal assumptions on their functional shapes via Markov random field priors. We provide nonparametric estimators, extensions of our base model that integrate multiple data sources, and fast scalable inference algorithms. We test our method using simulated data under various dependent population histories and demonstrate the utility of our model in shedding light on evolutionary histories of different variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Lorenzo Cappello
- Departments of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Julia A. Palacios
- Departments of Statistics and Biomedical Data Science, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Domcke S, Shendure J. A reference cell tree will serve science better than a reference cell atlas. Cell 2023; 186:1103-1114. [PMID: 36931241 DOI: 10.1016/j.cell.2023.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Single-cell biology is facing a crisis of sorts. Vast numbers of single-cell molecular profiles are being generated, clustered and annotated. However, this is overwhelmingly ad hoc, and we continue to lack a principled, unified, and well-moored system for defining, naming, and organizing cell types. In this perspective, we argue against an atlas or periodic table-like discretization as the right metaphor for a reference taxonomy of cell types. In its place, we advocate for a data-driven, tree-based nomenclature that is rooted in a "consensus ontogeny" spanning the life cycle of a given species. We explore how such a reference cell tree, inclusive of both lineage histories and molecular states, could be constructed, represented, and segmented in practice. Analogous to the taxonomic classification of species, a consensus ontogeny would provide a universal, stable, and extendable framework for precise scientific communication, both contemporaneously and across the ages.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
22
|
Kang S, Borgsmüller N, Valecha M, Kuipers J, Alves JM, Prado-López S, Chantada D, Beerenwinkel N, Posada D, Szczurek E. SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data. Genome Biol 2022; 23:248. [PMID: 36451239 PMCID: PMC9714196 DOI: 10.1186/s13059-022-02813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.
Collapse
Affiliation(s)
- Senbai Kang
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Nico Borgsmüller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Joao M. Alves
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Sonia Prado-López
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Institute of Solid State Electronics E362, Technische Universität Wien, Vienna, Austria
| | - Débora Chantada
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| | - Ewa Szczurek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Fang W, Bell CM, Sapirstein A, Asami S, Leeper K, Zack DJ, Ji H, Kalhor R. Quantitative fate mapping: A general framework for analyzing progenitor state dynamics via retrospective lineage barcoding. Cell 2022; 185:4604-4620.e32. [PMID: 36423582 PMCID: PMC9708097 DOI: 10.1016/j.cell.2022.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
Natural and induced somatic mutations that accumulate in the genome during development record the phylogenetic relationships of cells; whether these lineage barcodes capture the complex dynamics of progenitor states remains unclear. We introduce quantitative fate mapping, an approach to reconstruct the hierarchy, commitment times, population sizes, and commitment biases of intermediate progenitor states during development based on a time-scaled phylogeny of their descendants. To reconstruct time-scaled phylogenies from lineage barcodes, we introduce Phylotime, a scalable maximum likelihood clustering approach based on a general barcoding mutagenesis model. We validate these approaches using realistic in silico and in vitro barcoding experiments. We further establish criteria for the number of cells that must be analyzed for robust quantitative fate mapping and a progenitor state coverage statistic to assess the robustness. This work demonstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate and dynamics long after embryonic development in any organism.
Collapse
Affiliation(s)
- Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claire M Bell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abel Sapirstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Soichiro Asami
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathleen Leeper
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J Zack
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Seidel S, Stadler T. TiDeTree: a Bayesian phylogenetic framework to estimate single-cell trees and population dynamic parameters from genetic lineage tracing data. Proc Biol Sci 2022; 289:20221844. [PMID: 36350216 PMCID: PMC9653226 DOI: 10.1098/rspb.2022.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The development of organisms and tissues is dictated by an elaborate balance between cell division, apoptosis and differentiation: the cell population dynamics. To quantify these dynamics, we propose a phylodynamic inference approach based on single-cell lineage recorder data. We developed a Bayesian phylogenetic framework-time-scaled developmental trees (TiDeTree)-that uses lineage recorder data to estimate time-scaled single-cell trees. By implementing TiDeTree within BEAST 2, we enable joint inference of the time-scaled trees and the cell population dynamics. We validated TiDeTree using simulations and showed that performance further improves when including multiple independent sources of information into the inference, such as frequencies of editing outcomes or experimental replicates. We benchmarked TiDeTree against state-of-the-art methods and show comparable performance in terms of tree topology, plus direct assessment of uncertainty and co-estimation of additional parameters. To demonstrate TiDeTree's use in practice, we analysed a public dataset containing lineage data from approximately 100 stem cell colonies. We estimated a time-scaled phylogeny for each colony; as well as the cell division and apoptosis rates underlying the growth dynamics of all colonies. We envision that TiDeTree will find broad application in the analysis of single-cell lineage tracing data, which will improve our understanding of cellular processes during development.
Collapse
Affiliation(s)
- Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
25
|
Sankaran VG, Weissman JS, Zon LI. Cellular barcoding to decipher clonal dynamics in disease. Science 2022; 378:eabm5874. [PMID: 36227997 PMCID: PMC10111813 DOI: 10.1126/science.abm5874] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cellular barcodes are distinct DNA sequences that enable one to track specific cells across time or space. Recent advances in our ability to detect natural or synthetic cellular barcodes, paired with single-cell readouts of cell state, have markedly increased our knowledge of clonal dynamics and genealogies of the cells that compose a variety of tissues and organs. These advances hold promise to redefine our view of human disease. Here, we provide an overview of cellular barcoding approaches, discuss applications to gain new insights into disease mechanisms, and provide an outlook on future applications. We discuss unanticipated insights gained through barcoding in studies of cancer and blood cell production and describe how barcoding can be applied to a growing array of medical fields, particularly with the increasing recognition of clonal contributions in human diseases.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Abstract
In his 1972 landmark paper "More is Different," Philip W. Anderson established "complexity" as a fundamentally important subject of inquiry. He highlighted the profound limitations of reductionist approaches in understanding nature's complexity, and he set in motion new lines of investigation that have, among other things, led to systems biology.
Collapse
Affiliation(s)
- Michael P H Stumpf
- Melbourne Integrative Genomics, University of Melbourne, Australia; School of BioScience, University of Melbourne, Australia; School of Mathematics and Statistics, University of Melbourne, Australia.
| |
Collapse
|
27
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
28
|
Zeng H. What is a cell type and how to define it? Cell 2022; 185:2739-2755. [PMID: 35868277 DOI: 10.1016/j.cell.2022.06.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Cell types are the basic functional units of an organism. Cell types exhibit diverse phenotypic properties at multiple levels, making them challenging to define, categorize, and understand. This review provides an overview of the basic principles of cell types rooted in evolution and development and discusses approaches to characterize and classify cell types and investigate how they contribute to the organism's function, using the mammalian brain as a primary example. I propose a roadmap toward a conceptual framework and knowledge base of cell types that will enable a deeper understanding of the dynamic changes of cellular function under healthy and diseased conditions.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
29
|
Featherstone LA, Zhang JM, Vaughan TG, Duchene S. Epidemiological inference from pathogen genomes: A review of phylodynamic models and applications. Virus Evol 2022; 8:veac045. [PMID: 35775026 PMCID: PMC9241095 DOI: 10.1093/ve/veac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experienced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic models beginning with foundational models and assumptions. Our target audience is public health researchers, epidemiologists, and biologists seeking a working knowledge of the links between epidemiology, evolutionary models, and resulting epidemiological inference. We discuss the assumptions linking evolutionary models of pathogen population size to epidemiological models of the infected population size. We then describe statistical inference for phylodynamic models and list how output parameters can be rearranged for epidemiological interpretation. We go on to cover more sophisticated models and finish by highlighting future directions.
Collapse
Affiliation(s)
- Leo A Featherstone
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Joshua M Zhang
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Timothy G Vaughan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1015, Switzerland
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
30
|
Yang D, Jones MG, Naranjo S, Rideout WM, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, Horns F, Qiu X, Chen MZ, Freed-Pastor WA, McGinnis CS, Patterson DM, Gartner ZJ, Chow ED, Bivona TG, Chan MM, Yosef N, Jacks T, Weissman JS. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 2022; 185:1905-1923.e25. [PMID: 35523183 DOI: 10.1016/j.cell.2022.04.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
Collapse
Affiliation(s)
- Dian Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew G Jones
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kyung Hoi Joseph Min
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Raymond Ho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L Page
- Cell and Genome Engineering Core, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey J Quinn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaojie Qiu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Z Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher S McGinnis
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David M Patterson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Advanced Technology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Anderson DJ, Pauler FM, McKenna A, Shendure J, Hippenmeyer S, Horwitz MS. Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Syst 2022; 13:438-453.e5. [PMID: 35452605 DOI: 10.1016/j.cels.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans.
Collapse
Affiliation(s)
- Donovan J Anderson
- Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Jay Shendure
- Allen Discovery Center for Lineage Tracing, Department of Genome Sciences, and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Marshall S Horwitz
- Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Speed TP, Hicks DG. Spectral PCA for MANOVA and data over binary trees. J MULTIVARIATE ANAL 2022. [DOI: 10.1016/j.jmva.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Evolution during primary HIV infection does not require adaptive immune selection. Proc Natl Acad Sci U S A 2022; 119:2109172119. [PMID: 35145025 PMCID: PMC8851487 DOI: 10.1073/pnas.2109172119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Modern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The optimal model of primary infection required no positive selection, suggesting that the host adaptive immune system reduces viral load but surprisingly does not drive observed viral evolution. Rather, the fitness (infectivity) of mutant variants is drawn from an exponential distribution in which most variants are slightly less infectious than their parents (nearly neutral evolution). This distribution was not largely different from either in vivo fitness distributions recorded beyond primary infection or in vitro distributions that are observed without adaptive immunity, suggesting the intrinsic viral fitness distribution may drive evolution. Simulated phylogenetic trees also agree with independent data and illuminate how phylogenetic inference must consider viral and immune-cell population dynamics to gain accurate mechanistic insights.
Collapse
|
34
|
KING AARONA, LIN QIANYING, IONIDES EDWARDL. Markov genealogy processes. Theor Popul Biol 2022; 143:77-91. [PMID: 34896438 PMCID: PMC8846264 DOI: 10.1016/j.tpb.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/03/2023]
Abstract
We construct a family of genealogy-valued Markov processes that are induced by a continuous-time Markov population process. We derive exact expressions for the likelihood of a given genealogy conditional on the history of the underlying population process. These lead to a nonlinear filtering equation which can be used to design efficient Monte Carlo inference algorithms. We demonstrate these calculations with several examples. Existing full-information approaches for phylodynamic inference are special cases of the theory.
Collapse
Affiliation(s)
- AARON A. KING
- Department of Ecology & Evolutionary Biology, Center for the Study of Complex Systems, Center for Computational Medicine & Biology, and Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - QIANYING LIN
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - EDWARD L. IONIDES
- Department of Statistics and Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
35
|
Kozlov A, Alves JM, Stamatakis A, Posada D. CellPhy: accurate and fast probabilistic inference of single-cell phylogenies from scDNA-seq data. Genome Biol 2022; 23:37. [PMID: 35081992 PMCID: PMC8790911 DOI: 10.1186/s13059-021-02583-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/20/2021] [Indexed: 01/15/2023] Open
Abstract
We introduce CellPhy, a maximum likelihood framework for inferring phylogenetic trees from somatic single-cell single-nucleotide variants. CellPhy leverages a finite-site Markov genotype model with 16 diploid states and considers amplification error and allelic dropout. We implement CellPhy into RAxML-NG, a widely used phylogenetic inference package that provides statistical confidence measurements and scales well on large datasets with hundreds or thousands of cells. Comprehensive simulations suggest that CellPhy is more robust to single-cell genomics errors and outperforms state-of-the-art methods under realistic scenarios, both in accuracy and speed. CellPhy is freely available at https://github.com/amkozlov/cellphy .
Collapse
Affiliation(s)
- Alexey Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Joao M. Alves
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
36
|
Mircea M, Semrau S. How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification. Biochem Soc Trans 2021; 49:2509-2525. [PMID: 34854897 PMCID: PMC8786291 DOI: 10.1042/bst20210135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
On its path from a fertilized egg to one of the many cell types in a multicellular organism, a cell turns the blank canvas of its early embryonic state into a molecular profile fine-tuned to achieve a vital organismal function. This remarkable transformation emerges from the interplay between dynamically changing external signals, the cell's internal, variable state, and tremendously complex molecular machinery; we are only beginning to understand. Recently developed single-cell omics techniques have started to provide an unprecedented, comprehensive view of the molecular changes during cell-type specification and promise to reveal the underlying gene regulatory mechanism. The exponentially increasing amount of quantitative molecular data being created at the moment is slated to inform predictive, mathematical models. Such models can suggest novel ways to manipulate cell types experimentally, which has important biomedical applications. This review is meant to give the reader a starting point to participate in this exciting phase of molecular developmental biology. We first introduce some of the principal molecular players involved in cell-type specification and discuss the important organizing ability of biomolecular condensates, which has been discovered recently. We then review some of the most important single-cell omics methods and relevant findings they produced. We devote special attention to the dynamics of the molecular changes and discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a conceptual framework that connects all molecular agents in a mathematical model and helps us make sense of the experimental data.
Collapse
Affiliation(s)
- Maria Mircea
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
37
|
Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods 2021; 18:1506-1514. [PMID: 34857936 DOI: 10.1038/s41592-021-01325-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Mapping the cell phylogeny of a complex multicellular organism relies on somatic mutations accumulated from zygote to adult. Available cell barcoding methods can record about three mutations per barcode, enabling only low-resolution mapping of the cell phylogeny of complex organisms. Here we developed SMALT, a substitution mutation-aided lineage-tracing system that outperforms the available cell barcoding methods in mapping cell phylogeny. We applied SMALT to Drosophila melanogaster and obtained on average more than 20 mutations on a three-kilobase-pair barcoding sequence in early-adult cells. Using the barcoding mutations, we obtained high-quality cell phylogenetic trees, each comprising several thousand internal nodes with 84-93% median bootstrap support. The obtained cell phylogenies enabled a population genetic analysis that estimates the longitudinal dynamics of the number of actively dividing parental cells (Np) in each organ through development. The Np dynamics revealed the trajectory of cell births and provided insight into the balance of symmetric and asymmetric cell division.
Collapse
|
38
|
Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, Le XC. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chem Soc Rev 2021; 50:11844-11869. [PMID: 34611682 DOI: 10.1039/d1cs00098e] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems have revolutionized biological and biomedical sciences in many ways. The last few years have also seen tremendous interest in deploying the CRISPR-Cas toolbox for analytical and diagnostic assay development because CRISPR-Cas is one of the most powerful classes of molecular machineries for the recognition and manipulation of nucleic acids. In the short period of development, many CRISPR-enabled assays have already established critical roles in clinical diagnostics, biosensing, and bioimaging. We describe in this review the recent advances and design principles of CRISPR mediated analytical tools with an emphasis on the functional roles of CRISPR-Cas machineries as highly efficient binders and molecular scissors. We highlight the diverse engineering approaches for molecularly modifying CRISPR-Cas machineries and for devising better readout platforms. We discuss the potential roles of these new approaches and platforms in enhancing assay sensitivity, specificity, multiplexity, and clinical outcomes. By illustrating the biochemical and analytical processes, we hope this review will help guide the best use of the CRISPR-Cas toolbox in detecting, quantifying and imaging biologically and clinically important molecules and inspire new ideas, technological advances and engineering strategies for addressing real-world challenges such as the on-going COVID-19 pandemic.
Collapse
Affiliation(s)
- Yanan Tang
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Lu Gao
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Wei Feng
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Chen Guo
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Qianfan Yang
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Feng Li
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China. .,Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, T6G 2G3, Canada
| |
Collapse
|
39
|
Kohrman AQ, Kim-Yip RP, Posfai E. Imaging developmental cell cycles. Biophys J 2021; 120:4149-4161. [PMID: 33964274 PMCID: PMC8516676 DOI: 10.1016/j.bpj.2021.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
The last decade has seen a major expansion in development of live biosensors, the tools needed to genetically encode them into model organisms, and the microscopic techniques used to visualize them. When combined, these offer us powerful tools with which to make fundamental discoveries about complex biological processes. In this review, we summarize the availability of biosensors to visualize an essential cellular process, the cell cycle, and the techniques for single-cell tracking and quantification of these reporters. We also highlight studies investigating the connection of cellular behavior to the cell cycle, particularly through live imaging, and anticipate exciting discoveries with the combination of these technologies in developmental contexts.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|