1
|
Ali N, Ali F, Choi H, Waheed S, Huang Y, Nigmatulin F, Wang Z, Park H, Shin H, Lee K, Ahmed F, Kang B, Sun Z, Yoo WJ. Disorder- and Interaction-Driven Quantum Criticality in WSe 2. ACS NANO 2025; 19:11728-11737. [PMID: 40111289 DOI: 10.1021/acsnano.4c12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Quantum fluctuations resulting from strong Coulomb interactions or strong disorders lead to quantum phase transitions (QPTs) in 2D materials. However, understanding of disorder- and interaction-driven QPTs remains a fundamental challenge in 2D materials owing to the presence of strong disorder and strong Coulomb interactions. Here, we study the systematic interplay of strong disorder and strong Coulomb interactions by controlling the thickness of WSe2 to elucidate the disorder- and interaction-driven metal-insulator QPTs. An observation of metal-insulator transitions (MITs) with a conductivity of ∼e2/h in thin-WSe2 agrees with the Mott-Ioffe-Regel limit, excluding bad-metal behavior; conversely, MITs with a conductivity of
Collapse
Affiliation(s)
- Nasir Ali
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Fida Ali
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Hyungyu Choi
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- Department of Nano Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Sobia Waheed
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Youqiang Huang
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Fedor Nigmatulin
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Zhenping Wang
- Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06510, United States
| | - Hyokwang Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- Department of Nano Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hoseong Shin
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- Department of Nano Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Kwangro Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Boseok Kang
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- Department of Nano Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- Department of Nano Engineering and Department of Semiconductor Convergence Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
2
|
Huang S, Zhu L, Zhao Y, Watanabe K, Taniguchi T, Xiao J, Wang L, Mei J, Huang H, Zhang F, Wang M, Fu D, Zhang R. Giant magnetoresistance induced by spin-dependent orbital coupling in Fe 3GeTe 2/graphene heterostructures. Nat Commun 2025; 16:2866. [PMID: 40128534 PMCID: PMC11933411 DOI: 10.1038/s41467-025-58224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Information technology has a great demand for magnetoresistance (MR) sensors with high sensitivity and wide-temperature-range operation. It is well known that space charge inhomogeneity in graphene (Gr) leads to finite MR in its pristine form, and can be enhanced by increasing the degree of spatial disorder. However, the enhanced MR usually diminishes drastically as the temperature decreases. Here, by stacking a van der Waals ferromagnet Fe3GeTe2 (FGT) on top of graphene to form an FGT/Gr heterostructure, we demonstrate a positive MR of up to ~9400% under a magnetic field of 9 T at room temperature (RT), an order of magnitude larger MR compared to pure graphene. More strikingly, the giant MR of the FGT/Gr heterostructure sustains over a wide temperature range from RT down to 4 K. Both control experiments and DFT calculations show that the enhanced MR originates from spin-dependent orbital coupling between FGT and graphene, which is temperature insensitive. Our results open a new route for realizing high-sensitivity and wide-temperature-range MR sensors.
Collapse
Affiliation(s)
- Shiming Huang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| | - Lianying Zhu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| | - Yongxin Zhao
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Jie Xiao
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Mei
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Huolin Huang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Feng Zhang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China.
| | - Maoyuan Wang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China.
| | - Deyi Fu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China.
| | - Rong Zhang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Kim J, Altman E, Chatterjee S. Linear magnetoresistance from glassy orders. Proc Natl Acad Sci U S A 2024; 121:e2405720121. [PMID: 39480850 PMCID: PMC11551371 DOI: 10.1073/pnas.2405720121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
Several strongly correlated metals display B-linear magnetoresistance (LMR) with a universal slope, in sharp contrast to the [Formula: see text] scaling predicted by Fermi liquid theory. We provide a unifying explanation of the origin of LMR by focusing on a common feature in their phase diagrams-proximity to symmetry-breaking orders. Specifically, we demonstrate via two microscopic models that LMR with a universal slope arises ubiquitously near ordered phases, provided the order parameter either i) has a finite wave-vector, or ii) has nodes on the Fermi surface. We elucidate the distinct physical mechanisms at play in these two scenarios and derive upper and lower bounds on the field range for which LMR is observed. Finally, we discuss possible extensions of our picture to strange metal physics at higher temperatures and argue that our theory provides an understanding of recent experimental results on thin film cuprates and moiré materials.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Physics, University of California, Berkeley, CA94720
| | - Ehud Altman
- Department of Physics, University of California, Berkeley, CA94720
| | | |
Collapse
|
4
|
Ayres J, Berben M, Duffy C, Hinlopen RDH, Hsu YT, Cuoghi A, Leroux M, Gilmutdinov I, Massoudzadegan M, Vignolles D, Huang Y, Kondo T, Takeuchi T, Friedemann S, Carrington A, Proust C, Hussey NE. Universal correlation between H-linear magnetoresistance and T-linear resistivity in high-temperature superconductors. Nat Commun 2024; 15:8406. [PMID: 39333487 PMCID: PMC11436940 DOI: 10.1038/s41467-024-52564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The signature feature of the 'strange metal' state of high-Tc cuprates-its linear-in-temperature resistivity-has a coefficient α1 that correlates with Tc, as expected were α1 derived from scattering off the same bosonic fluctuations that mediate pairing. Recently, an anomalous linear-in-field magnetoresistance (=γ1H) has also been observed, but only over a narrow doping range, leaving its relation to the strange metal state and to the superconductivity unclear. Here, we report in-plane magnetoresistance measurements on three hole-doped cuprate families spanning a wide range of temperatures, magnetic field strengths and doping. In contrast to expectations from Boltzmann transport theory, γ1 is found to correlate universally with α1. A phenomenological model incorporating real-space inhomogeneity is proposed to explain this correlation. Within this picture, superconductivity in hole-doped cuprates is governed not by the strength of quasiparticle interactions with a bosonic bath, but by the concentration of strange metallic carriers.
Collapse
Affiliation(s)
- J Ayres
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK.
| | - M Berben
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - C Duffy
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
- LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, INSA-T, Toulouse, France
| | - R D H Hinlopen
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK
- Max-Planck-Institute for the Structure and Dynamics of Materials, Hamburg, Germany
| | - Y-T Hsu
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
| | - A Cuoghi
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - M Leroux
- LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, INSA-T, Toulouse, France
| | - I Gilmutdinov
- LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, INSA-T, Toulouse, France
| | - M Massoudzadegan
- LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, INSA-T, Toulouse, France
| | - D Vignolles
- LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, INSA-T, Toulouse, France
| | - Y Huang
- Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, Netherlands
| | - T Kondo
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Japan
| | - T Takeuchi
- Toyota Technological Institute, Nagoya, 468-8511, Japan
| | - S Friedemann
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - A Carrington
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - C Proust
- LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, INSA-T, Toulouse, France
| | - N E Hussey
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK.
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands.
| |
Collapse
|
5
|
Mandal I, Freire H. Transport properties in non-Fermi liquid phases of nodal-point semimetals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:443002. [PMID: 39038487 DOI: 10.1088/1361-648x/ad665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
In this review, we survey the current progress in computing transport properties in semimetals which harbour non-Fermi liquid (NFL) phases. We first discuss the widely-used Kubo formalism, which can be applied to the effective theory describing the stable NFL phase obtained via a renormalization group procedure and, hence, is applicable for temperatures close to zero (e.g. optical conductivity). For finite-temperature regimes, which apply to the computations of the generalized DC conductivity tensors, we elucidate the memory matrix approach. This approach is based on an effective hydrodynamic description of the system, and is especially suited for tackling transport calculations in strongly-interacting quantum field theories, because it does not rely on the existence of long-lived quasiparticles. As a concrete example, we apply these two approaches to find the response of the so-calledLuttinger-Abrikosov-Benelavskii phaseof isotropic three-dimensional Luttinger semimetals, which arises under the effects of long-ranged (unscreened) Coulomb interactions, with the chemical potential fine-tuned to cut exactly the nodal point. In particular, we focus on the electric conductivity tensors, thermal and thermoelectric response, Raman response, free energy, entropy density, and shear viscosity.
Collapse
Affiliation(s)
- Ipsita Mandal
- Department of Physics, Shiv Nadar Institution of Eminence (SNIoE), Gautam Buddha Nagar, Uttar Pradesh 201314, India
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, D-79104 Freiburg, Germany
| | - Hermann Freire
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, GO, Brazil
| |
Collapse
|
6
|
Aydin A, Keski-Rahkonen J, Heller EJ. Quantum acoustics unravels Planckian resistivity. Proc Natl Acad Sci U S A 2024; 121:e2404853121. [PMID: 38968118 PMCID: PMC11253009 DOI: 10.1073/pnas.2404853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024] Open
Abstract
Strange metals exhibit universal linear-in-temperature resistivity described by a Planckian scattering rate, the origin of which remains elusive. By employing an approach inspired by quantum optics, we arrive at the coherent state representation of lattice vibrations: quantum acoustics. Utilizing this nonperturbative framework, we demonstrate that lattice vibrations could serve as active drivers in the Planckian resistivity phenomenon, challenging prevailing theories. By treating charge carriers as quantum wave packets negotiating the dynamic acoustic field, we find that a competition ensues between localization and delocalization giving rise to the previously conjectured universal quantum bound of diffusion, [Formula: see text], independent of temperature or any other material parameters. This leads to the enigmatic T-linear resistivity over hundreds of degrees, except at very low temperatures. Quantum diffusion also explains why strange metals have much higher electrical resistivity than typical metals. Our work elucidates the critical role of phonons in Planckian resistivity from a unique perspective and reconsiders their significance in the transport properties of strange metals.
Collapse
Affiliation(s)
- Alhun Aydin
- Department of Physics, Harvard University, 02138Cambridge, MA
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956Tuzla, Istanbul, Türkiye
| | - Joonas Keski-Rahkonen
- Department of Physics, Harvard University, 02138Cambridge, MA
- Computational Physics Laboratory, Tampere University, FI-33101Tampere, Finland
| | - Eric J. Heller
- Department of Physics, Harvard University, 02138Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, 02138Cambridge, MA
| |
Collapse
|
7
|
Ali N, Singh B, Srivastava PK, Ali F, Lee M, Park H, Shin H, Lee K, Choi H, Lee S, Ngo TD, Hassan Y, Watanabe K, Taniguchi T, Lee C, Yoo WJ. Link between T-Linear Resistivity and Quantum Criticality in Ambipolar Black Phosphorus. ACS NANO 2024; 18:11978-11987. [PMID: 38652759 DOI: 10.1021/acsnano.4c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The interplay between strong Coulomb interactions and kinetic energy leads to intricate many-body competing ground states owing to quantum fluctuations in 2D electron and hole gases. However, the simultaneous observation of quantum critical phenomena in both electron and hole regimes remains elusive. Here, we utilize anisotropic black phosphorus (BP) to show density-driven metal-insulator transition with a critical conductance ∼e2/h which highlights the significant role of quantum fluctuations in both hole and electron regimes. We observe a T-linear resistivity from the deep metallic phase to the metal-insulator boundary at moderate temperatures, while it turns to Fermi liquid behavior in the deep metallic phase at low temperatures in both regimes. An analysis of the resistivity suggests that disorder-dominated transport leads to T-linear behavior in the hole regime, while in the electron regime, the T-linear resistivity results from strong Coulomb interactions, suggestive of strange-metal behavior. Successful scaling collapse of the resistivity in the T-linear region demonstrates the link between quantum criticality and the T-linear resistivity in both regimes. Our study provides compelling evidence that ambipolar BP could serve as an exciting testbed for investigating exotic states and quantum critical phenomena in hole and electron regimes of 2D semiconductors.
Collapse
Affiliation(s)
- Nasir Ali
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Budhi Singh
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Pawan Kumar Srivastava
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Fida Ali
- Department of Electronic and Nanoengineering, Aalto University, P.O. Box 13500, Aalto FI-00076, Finland
| | - Myeongjin Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hyokwang Park
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hoseong Shin
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Kwangro Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hyungyu Choi
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Sungwon Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Tien Dat Ngo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Yasir Hassan
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Changgu Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
8
|
Guguchia Z, Gawryluk DJ, Shin S, Hao Z, Mielke Iii C, Das D, Plokhikh I, Liborio L, Shenton JK, Hu Y, Sazgari V, Medarde M, Deng H, Cai Y, Chen C, Jiang Y, Amato A, Shi M, Hasan MZ, Yin JX, Khasanov R, Pomjakushina E, Luetkens H. Hidden magnetism uncovered in a charge ordered bilayer kagome material ScV 6Sn 6. Nat Commun 2023; 14:7796. [PMID: 38016982 PMCID: PMC10684576 DOI: 10.1038/s41467-023-43503-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Charge ordered kagome lattices have been demonstrated to be intriguing platforms for studying the intertwining of topology, correlation, and magnetism. The recently discovered charge ordered kagome material ScV6Sn6 does not feature a magnetic groundstate or excitations, thus it is often regarded as a conventional paramagnet. Here, using advanced muon-spin rotation spectroscopy, we uncover an unexpected hidden magnetism of the charge order. We observe an enhancement of the internal field width sensed by the muon ensemble, which takes place within the charge ordered state. More importantly, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. Taken together with the hidden magnetism found in AV3Sb5 (A = K, Rb, Cs) and FeGe kagome systems, our results suggest ubiqitous time-reversal symmetry-breaking in charge ordered kagome lattices.
Collapse
Affiliation(s)
- Z Guguchia
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland.
| | - D J Gawryluk
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| | - S Shin
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Z Hao
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - C Mielke Iii
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - D Das
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - I Plokhikh
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - L Liborio
- Scientific Computing Department, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - J Kane Shenton
- Scientific Computing Department, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Y Hu
- Photon Science Division, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - V Sazgari
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - M Medarde
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - H Deng
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Y Cai
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - C Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Y Jiang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - A Amato
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - M Shi
- Photon Science Division, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - M Z Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ, 08540, USA
- Quantum Science Center, Oak Ridge, TN, 37831, USA
| | - J-X Yin
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - R Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - E Pomjakushina
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - H Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| |
Collapse
|
9
|
Arpaia R, Martinelli L, Sala MM, Caprara S, Nag A, Brookes NB, Camisa P, Li Q, Gao Q, Zhou X, Garcia-Fernandez M, Zhou KJ, Schierle E, Bauch T, Peng YY, Di Castro C, Grilli M, Lombardi F, Braicovich L, Ghiringhelli G. Signature of quantum criticality in cuprates by charge density fluctuations. Nat Commun 2023; 14:7198. [PMID: 37938250 PMCID: PMC10632404 DOI: 10.1038/s41467-023-42961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.
Collapse
Affiliation(s)
- Riccardo Arpaia
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden.
| | - Leonardo Martinelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Marco Moretti Sala
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Sergio Caprara
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
- CNR-ISC, via dei Taurini 19, I-00185, Roma, Italy
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Nicholas B Brookes
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Pietro Camisa
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, CN-100871, Beijing, China
| | - Qiang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, CN-100190, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, CN-100190, Beijing, China
| | | | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Enrico Schierle
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489, Berlin, Germany
| | - Thilo Bauch
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Ying Ying Peng
- International Center for Quantum Materials, School of Physics, Peking University, CN-100871, Beijing, China
| | - Carlo Di Castro
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
| | - Marco Grilli
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
- CNR-ISC, via dei Taurini 19, I-00185, Roma, Italy
| | - Floriana Lombardi
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Lucio Braicovich
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Giacomo Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy.
- CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy.
| |
Collapse
|
10
|
Michon B, Berthod C, Rischau CW, Ataei A, Chen L, Komiya S, Ono S, Taillefer L, van der Marel D, Georges A. Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat. Nat Commun 2023; 14:3033. [PMID: 37236962 DOI: 10.1038/s41467-023-38762-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Materials tuned to a quantum critical point display universal scaling properties as a function of temperature T and frequency ω. A long-standing puzzle regarding cuprate superconductors has been the observed power-law dependence of optical conductivity with an exponent smaller than one, in contrast to T-linear dependence of the resistivity and ω-linear dependence of the optical scattering rate. Here, we present and analyze resistivity and optical conductivity of La2-xSrxCuO4 with x = 0.24. We demonstrate ℏω/kBT scaling of the optical data over a wide range of frequency and temperature, T-linear resistivity, and optical effective mass proportional to [Formula: see text] corroborating previous specific heat experiments. We show that a T, ω-linear scaling Ansatz for the inelastic scattering rate leads to a unified theoretical description of the experimental data, including the power-law of the optical conductivity. This theoretical framework provides new opportunities for describing the unique properties of quantum critical matter.
Collapse
Affiliation(s)
- Bastien Michon
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Christophe Berthod
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland
| | - Carl Willem Rischau
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland
| | - Amirreza Ataei
- Institut Quantique, Département de Physique & RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lu Chen
- Institut Quantique, Département de Physique & RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Seiki Komiya
- Energy Transformation Research Laboratory, Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan
| | - Shimpei Ono
- Energy Transformation Research Laboratory, Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan
| | - Louis Taillefer
- Institut Quantique, Département de Physique & RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Dirk van der Marel
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland.
| | - Antoine Georges
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland.
- Collège de France, Paris, France.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
- CPHT, CNRS, École Polytechnique, IP Paris, Palaiseau, France.
| |
Collapse
|
11
|
Xin N, Lourembam J, Kumaravadivel P, Kazantsev AE, Wu Z, Mullan C, Barrier J, Geim AA, Grigorieva IV, Mishchenko A, Principi A, Fal'ko VI, Ponomarenko LA, Geim AK, Berdyugin AI. Giant magnetoresistance of Dirac plasma in high-mobility graphene. Nature 2023; 616:270-274. [PMID: 37045919 PMCID: PMC10097601 DOI: 10.1038/s41586-023-05807-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.
Collapse
Affiliation(s)
- Na Xin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - James Lourembam
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Piranavan Kumaravadivel
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - A E Kazantsev
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Zefei Wu
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Ciaran Mullan
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Julien Barrier
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Alexandra A Geim
- National Graphene Institute, University of Manchester, Manchester, UK
| | - I V Grigorieva
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - A Mishchenko
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - A Principi
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - V I Fal'ko
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - L A Ponomarenko
- Department of Physics, University of Lancaster, Lancaster, UK.
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Alexey I Berdyugin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Wu J, Bozovic I. Superconductivity in a strange metal. Sci Bull (Beijing) 2023; 68:851-853. [PMID: 37031079 DOI: 10.1016/j.scib.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Gadzhimagomedov SK, Presnyakov MY, Muslimov AE, Gadzhiev MK, Rabadanov MK, Palchaev DK, Alikhanov NMR, Emirov RM, Murlieva ZK, Saypulaev PM. Surface Structure of the YBa2Cu3O7 – δ Ceramics after Exposure to Plasma Flow. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Abstract
In traditional metals, the temperature (
T
) dependence of electrical resistivity vanishes at low or high
T
, albeit for different reasons. Here, we review a class of materials, known as “strange” metals, that can violate both of these principles. In strange metals, the change in slope of the resistivity as the mean free path drops below the lattice constant, or as
T
→ 0, can be imperceptible, suggesting continuity between the charge carriers at low and high
T
. We focus on transport and spectroscopic data on candidate strange metals in an effort to isolate and identify a unifying physical principle. Special attention is paid to quantum criticality, Planckian dissipation, Mottness, and whether a new gauge principle is needed to account for the nonlocal transport seen in these materials.
Collapse
Affiliation(s)
- Philip W. Phillips
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois, Urbana, IL 61801, USA
| | - Nigel E. Hussey
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Peter Abbamonte
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Harrison N, Chan MK. Magic Gap Ratio for Optimally Robust Fermionic Condensation and Its Implications for High-T_{c} Superconductivity. PHYSICAL REVIEW LETTERS 2022; 129:017001. [PMID: 35841553 DOI: 10.1103/physrevlett.129.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Bardeen-Schrieffer-Cooper (BCS) and Bose-Einstein condensation (BEC) occur at opposite limits of a continuum of pairing interaction strength between fermions. A crossover between these limits is readily observed in a cold atomic Fermi gas. Whether it occurs in other systems such as the high temperature superconducting cuprates has remained an open question. We uncover here unambiguous evidence for a BCS-BEC crossover in the cuprates by identifying a universal magic gap ratio 2Δ/k_{B}T_{c}≈6.5 (where Δ is the pairing gap and T_{c} is the transition temperature) at which paired fermion condensates become optimally robust. At this gap ratio, corresponding to the unitary point in a cold atomic Fermi gas, the measured condensate fraction N_{0} and the height of the jump δγ(T_{c}) in the coefficient γ of the fermionic specific heat at T_{c} are strongly peaked. In the cuprates, δγ(T_{c}) is peaked at this gap ratio when Δ corresponds to the antinodal spectroscopic gap, thus reinforcing its interpretation as the pairing gap. We find the peak in δγ(T_{c}) also to coincide with a normal state maximum in γ, which is indicative of a pairing fluctuation pseudogap above T_{c}.
Collapse
Affiliation(s)
- N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M K Chan
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
16
|
Hussey NE, Duffy C. Strange metallicity and high-T c superconductivity: quantifying the paradigm. Sci Bull (Beijing) 2022; 67:985-987. [PMID: 36546252 DOI: 10.1016/j.scib.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nigel E Hussey
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK; HFML-FELIX and Institute for Molecules and Materials, Radboud University, Nijmegen 6525ED, Netherlands.
| | - Caitlin Duffy
- HFML-FELIX and Institute for Molecules and Materials, Radboud University, Nijmegen 6525ED, Netherlands
| |
Collapse
|
17
|
Varma CM. Quantum-Critical Resistivity of Strange Metals in a Magnetic Field. PHYSICAL REVIEW LETTERS 2022; 128:206601. [PMID: 35657895 DOI: 10.1103/physrevlett.128.206601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Resistivity in the quantum-critical fluctuation region of several metallic compounds such as the cuprates, the heavy fermions, Fe chalogenides and pnictides, Moiré bilayer graphene, and WSe_{2} is linear in temperature T as well as in the magnetic field H_{z} perpendicular to the planes. Scattering of fermions by the fluctuations of a time-reversal odd polar vector field Ω has been shown to give a linear in T resistivity and other marginal Fermi-liquid properties. An extension of this theory to an applied magnetic field is presented. A magnetic field is shown to generate a density of vortices in the field Ω proportional to H_{z}. The elastic scattering of fermions from the vortices gives a resistivity linear in H_{z} with the coefficient varying as the marginal Fermi-liquid susceptibility ln(ω_{c}/T). Quantitative comparison with experiments is presented for cuprates and Moiré bilayer graphene.
Collapse
Affiliation(s)
- Chandra M Varma
- Physics Department, University of California, Berkeley 94704, California, USA and Physics Department, University of California, Riverside 92521, California, USA
| |
Collapse
|
18
|
Yang G, El Loubani M, Hill D, Lee D. Control of crystallographic orientation in Ruddlesden-Popper for fast oxygen reduction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abstract
Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat.
Collapse
|
20
|
Signatures of a strange metal in a bosonic system. Nature 2022; 601:205-210. [PMID: 35022592 DOI: 10.1038/s41586-021-04239-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Fermi liquid theory forms the basis for our understanding of the majority of metals: their resistivity arises from the scattering of well defined quasiparticles at a rate where, in the low-temperature limit, the inverse of the characteristic time scale is proportional to the square of the temperature. However, various quantum materials1-15-notably high-temperature superconductors1-10-exhibit strange-metallic behaviour with a linear scattering rate in temperature, deviating from this central paradigm. Here we show the unexpected signatures of strange metallicity in a bosonic system for which the quasiparticle concept does not apply. Our nanopatterned YBa2Cu3O7-δ (YBCO) film arrays reveal linear-in-temperature and linear-in-magnetic field resistance over extended temperature and magnetic field ranges. Notably, below the onset temperature at which Cooper pairs form, the low-field magnetoresistance oscillates with a period dictated by the superconducting flux quantum, h/2e (e, electron charge; h, Planck's constant). Simultaneously, the Hall coefficient drops and vanishes within the measurement resolution with decreasing temperature, indicating that Cooper pairs instead of single electrons dominate the transport process. Moreover, the characteristic time scale τ in this bosonic system follows a scale-invariant relation without an intrinsic energy scale: ħ/τ ≈ a(kBT + γμBB), where ħ is the reduced Planck's constant, a is of order unity7,8,11,12, kB is Boltzmann's constant, T is temperature, μB is the Bohr magneton and γ ≈ 2. By extending the reach of strange-metal phenomenology to a bosonic system, our results suggest that there is a fundamental principle governing their transport that transcends particle statistics.
Collapse
|
21
|
Quantum criticality in twisted transition metal dichalcogenides. Nature 2021; 597:345-349. [PMID: 34526705 DOI: 10.1038/s41586-021-03815-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022]
Abstract
Near the boundary between ordered and disordered quantum phases, several experiments have demonstrated metallic behaviour that defies the Landau Fermi paradigm1-5. In moiré heterostructures, gate-tuneable insulating phases driven by electronic correlations have been recently discovered6-23. Here, we use transport measurements to characterize metal-insulator transitions (MITs) in twisted WSe2 near half filling of the first moiré subband. We find that the MIT as a function of both density and displacement field is continuous. At the metal-insulator boundary, the resistivity displays strange metal behaviour at low temperatures, with dissipation comparable to that at the Planckian limit. Further into the metallic phase, Fermi liquid behaviour is recovered at low temperature, and this evolves into a quantum critical fan at intermediate temperatures, before eventually reaching an anomalous saturated regime near room temperature. An analysis of the residual resistivity indicates the presence of strong quantum fluctuations in the insulating phase. These results establish twisted WSe2 as a new platform to study doping and bandwidth-controlled metal-insulator quantum phase transitions on the triangular lattice.
Collapse
|
22
|
Else DV, Senthil T. Strange Metals as Ersatz Fermi Liquids. PHYSICAL REVIEW LETTERS 2021; 127:086601. [PMID: 34477402 DOI: 10.1103/physrevlett.127.086601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
A long-standing mystery of fundamental importance in correlated electron physics is to understand strange non-Fermi liquid metals that are seen in diverse quantum materials. A striking experimental feature of these metals is a resistivity that is linear in temperature (T). In this Letter we ask what it takes to obtain such non-Fermi liquid physics down to zero temperature in a translation invariant metal. If in addition the full frequency (ω) dependent conductivity satisfies ω/T scaling, we argue that the T-linear resistivity must come from the intrinsic physics of the low energy fixed point. Combining with earlier arguments that compressible translation invariant metals are "ersatz Fermi liquids" with an infinite number of emergent conserved quantities, we obtain powerful and practical conclusions. We show that there is necessarily a diverging susceptibility for an operator that is odd under inversion and time reversal symmetries, and has zero crystal momentum. We discuss a few other experimental consequences of our arguments, as well as potential loopholes, which necessarily imply other exotic phenomena.
Collapse
Affiliation(s)
- Dominic V Else
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Senthil
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 2021; 595:661-666. [PMID: 34321672 DOI: 10.1038/s41586-021-03622-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Strange metals possess highly unconventional electrical properties, such as a linear-in-temperature resistivity1-6, an inverse Hall angle that varies as temperature squared7-9 and a linear-in-field magnetoresistance10-13. Identifying the origin of these collective anomalies has proved fundamentally challenging, even in materials such as the hole-doped cuprates that possess a simple bandstructure. The prevailing consensus is that strange metallicity in the cuprates is tied to a quantum critical point at a doping p* inside the superconducting dome14,15. Here we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond p*. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high values of the ratio of the field and the temperature, indicating that the strange-metal regime extends well beyond p*. Moreover, the magnitude of the magnetoresistance is found to be much larger than predicted by conventional theory and is insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange-metal region hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant 'Planckian' dissipators.
Collapse
|
24
|
Linear-in temperature resistivity from an isotropic Planckian scattering rate. Nature 2021; 595:667-672. [PMID: 34321673 DOI: 10.1038/s41586-021-03697-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
A variety of 'strange metals' exhibit resistivity that decreases linearly with temperature as the temperature decreases to zero1-3, in contrast to conventional metals where resistivity decreases quadratically with temperature. This linear-in-temperature resistivity has been attributed to charge carriers scattering at a rate given by ħ/τ = αkBT, where α is a constant of order unity, ħ is the Planck constant and kB is the Boltzmann constant. This simple relationship between the scattering rate and temperature is observed across a wide variety of materials, suggesting a fundamental upper limit on scattering-the 'Planckian limit'4,5-but little is known about the underlying origins of this limit. Here we report a measurement of the angle-dependent magnetoresistance of La1.6-xNd0.4SrxCuO4-a hole-doped cuprate that shows linear-in-temperature resistivity down to the lowest measured temperatures6. The angle-dependent magnetoresistance shows a well defined Fermi surface that agrees quantitatively with angle-resolved photoemission spectroscopy measurements7 and reveals a linear-in-temperature scattering rate that saturates at the Planckian limit, namely α = 1.2 ± 0.4. Remarkably, we find that this Planckian scattering rate is isotropic, that is, it is independent of direction, in contrast to expectations from 'hotspot' models8,9. Our findings suggest that linear-in-temperature resistivity in strange metals emerges from a momentum-independent inelastic scattering rate that reaches the Planckian limit.
Collapse
|
25
|
Abstract
The magnetic-field scale at which superconducting vortices persist in underdoped cuprate superconductors has remained a controversial subject. Here we present an electrical transport study on three distinctly different cuprate families, at temperatures down to 0.32 K and magnetic fields up to 45 T. We reveal the presence of an anomalous vortex liquid state with a highly nonohmic resistivity in all three materials, irrespective of the level of disorder or structural details. The doping and field regime over which this anomalous vortex state persists suggests its occurrence is tied to the presence of long-range charge order under high magnetic field. Our results demonstrate that the intricate interplay between charge order and superconductivity can lead to an exotic vortex state. The interplay between charge order and d-wave superconductivity in high-Tc cuprates remains an open question. While mounting evidence from spectroscopic probes indicates that charge order competes with superconductivity, to date little is known about the impact of charge order on charge transport in the mixed state, when vortices are present. Here we study the low-temperature electrical resistivity of three distinctly different cuprate families under intense magnetic fields, over a broad range of hole doping and current excitations. We find that the electronic transport in the doping regime where long-range charge order is known to be present is characterized by a nonohmic resistivity, the identifying feature of an anomalous vortex liquid. The field and temperature range in which this nonohmic behavior occurs indicates that the presence of long-range charge order is closely related to the emergence of this anomalous vortex liquid, near a vortex solid boundary that is defined by the excitation current in the T→ 0 limit. Our findings further suggest that this anomalous vortex liquid, a manifestation of fragile superconductivity with a suppressed critical current density, is ubiquitous in the high-field state of charge-ordered cuprates.
Collapse
|
26
|
Fernández-Lomana M, Barrena V, Wu B, Delgado S, Mompeán F, García-Hernández M, Suderow H, Guillamón I. Large magnetoresistance in the iron-free pnictide superconductor LaRu 2P 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:145501. [PMID: 33445159 DOI: 10.1088/1361-648x/abdbea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The magnetoresistance (MR) of iron pnictide superconductors is often dominated by electron-electron correlations and deviates from theH2or saturating behaviors expected for uncorrelated metals. Contrary to similar Fe-based pnictide systems, the superconductor LaRu2P2(Tc= 4 K) shows no enhancement of electron-electron correlations. Here we report a non-saturating MR deviating from theH2or saturating behaviors in LaRu2P2. We present results in single crystals of LaRu2P2, where we observe a MR followingH1.3up to 22 T. We discuss our result by comparing the bandstructure of LaRu2P2with that of Fe based pnictide superconductors. The different orbital structures of Fe and Ru leads to a 3D Fermi surface with negligible bandwidth renormalization in LaRu2P2, that contains a large open sheet over the whole Brillouin zone. We show that the large MR in LaRu2P2is unrelated to the one obtained in materials with strong electron-electron correlations and that it is compatible instead with conduction due to open orbits on the rather complex Fermi surface structure of LaRu2P2.
Collapse
Affiliation(s)
- Marta Fernández-Lomana
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Víctor Barrena
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Beilun Wu
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Sara Delgado
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Federico Mompeán
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Unidad Asociada UAM-CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mar García-Hernández
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Unidad Asociada UAM-CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Hermann Suderow
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Isabel Guillamón
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
27
|
Campbell DJ, Collini J, Sławińska J, Autieri C, Wang L, Wang K, Wilfong B, Eo YS, Neves P, Graf D, Rodriguez EE, Butch NP, Nardelli MB, Paglione J. Topologically driven linear magnetoresistance in helimagnetic FeP. NPJ QUANTUM INFORMATION 2021; 6:10.1038/s41535-021-00337-2. [PMID: 37731847 PMCID: PMC10510734 DOI: 10.1038/s41535-021-00337-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/24/2021] [Indexed: 09/22/2023]
Abstract
The helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure, which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high-quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero-field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure, which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of magnetoresistance-large amplitude and linear field dependence-arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.
Collapse
Affiliation(s)
- D. J. Campbell
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Present address: LNCMI, CNRS, EMFL, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, Grenoble, France
| | - J. Collini
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, NIST, Gaithersburg, MD, USA
| | - J. Sławińska
- Department of Physics, University of North Texas, Denton, TX, USA
- Present address: Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - C. Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Consiglio Nazionale delle Ricerche CNR-SPIN, UOS Salerno, Fisciano, Salerno, Italy
| | - L. Wang
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
| | - K. Wang
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
| | - B. Wilfong
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - Y. S. Eo
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
| | - P. Neves
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, NIST, Gaithersburg, MD, USA
| | - D. Graf
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - E. E. Rodriguez
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - N. P. Butch
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, NIST, Gaithersburg, MD, USA
| | | | - J. Paglione
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
28
|
Andrei EY, MacDonald AH. Graphene bilayers with a twist. NATURE MATERIALS 2020; 19:1265-1275. [PMID: 33208935 DOI: 10.1038/s41563-020-00840-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/24/2020] [Indexed: 05/02/2023]
Abstract
Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation. Among other phenomena, magic-angle twisted bilayer graphene hosts superconductivity, interaction-induced insulating states, magnetism, electronic nematicity, linear-in-temperature low-temperature resistivity and quantized anomalous Hall states. We highlight some key research results in this field, point to important questions that remain open and comment on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world.
Collapse
Affiliation(s)
- Eva Y Andrei
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Allan H MacDonald
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Torshin IY, Rudakov KV. Topological Data Analysis in Materials Science: The Case of High-Temperature Cuprate Superconductors. PATTERN RECOGNITION AND IMAGE ANALYSIS 2020. [DOI: 10.1134/s1054661820020157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Chan MK, McDonald RD, Ramshaw BJ, Betts JB, Shekhter A, Bauer ED, Harrison N. Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa 2CuO 4+δ. Proc Natl Acad Sci U S A 2020; 117:9782-9786. [PMID: 32317380 PMCID: PMC7211972 DOI: 10.1073/pnas.1914166117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High magnetic fields have revealed a surprisingly small Fermi surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue concerns the doping extent of such a state and its relationship to the principal pseudogap and superconducting phases. We employ pulsed magnetic-field measurements on the cuprate [Formula: see text]Cu[Formula: see text] to identify signatures of Fermi-surface reconstruction from a sign change of the Hall effect and a peak in the temperature-dependent planar resistivity. We trace the termination of Fermi-surface reconstruction to two hole concentrations where the superconducting upper critical fields are found to be enhanced. One of these points is associated with the pseudogap endpoint near optimal doping. These results connect the Fermi-surface reconstruction to both superconductivity and the pseudogap phenomena.
Collapse
Affiliation(s)
- Mun K Chan
- Pulsed Field Facility, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545;
| | - Ross D McDonald
- Pulsed Field Facility, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - B J Ramshaw
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853
| | - Jon B Betts
- Pulsed Field Facility, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Arkady Shekhter
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Eric D Bauer
- Materials Physics and Applications-QUANTUM, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Neil Harrison
- Pulsed Field Facility, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
31
|
Lim ZS, Li C, Chi X, Omar GJ, Ma HH, Huang Z, Zeng S, Yang P, Venkatesan T, Rusydi A, Pennycook SJ, Ariando A. Magnetic Anisotropy of a Quasi Two-Dimensional Canted Antiferromagnet. NANO LETTERS 2020; 20:1890-1895. [PMID: 32004008 DOI: 10.1021/acs.nanolett.9b05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the control of the interplane magnetic exchange coupling in CaIrO3 perovskite thin films and superlattices with SrTiO3. By analyzing the anisotropic magneto-transport data, we demonstrate that a semimetallic paramagnetic CaIrO3 turns into a canted antiferromagnetic Mott insulator at reduced dimensions. The emergence of a biaxial magneto-crystalline anisotropy indicates the canted moment responding to the cubic symmetry. Extending to superlattices and probing oxygen octahedral rotation by half-integer X-ray Braggs diffraction, a more complete picture about the canted moment evolution with interplane coupling can be understood. Remarkably, a rotation of the canted moments' easy axes by 45° is also observed by a sign reversal of the in-plane strain. These results demonstrate the robustness of anisotropic magnetoresistance in revealing quasi two-dimensional canted antiferromagnets, as well as valuable insights about quadrupolar magnetoelastic coupling, relevant for designing future antiferromagnetic spintronic devices.
Collapse
Affiliation(s)
- Zhi Shiuh Lim
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Changjian Li
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077
| | - Xiao Chi
- Department of Physics, National University of Singapore, Singapore 117542
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603
| | - Ganesh Ji Omar
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Haijiao Harsan Ma
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Zhen Huang
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
| | - Shengwei Zeng
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Ping Yang
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603
| | - Thirumalai Venkatesan
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077
| | - Andrivo Rusydi
- Department of Physics, National University of Singapore, Singapore 117542
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077
| | - Ariando Ariando
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
32
|
Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P. Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. PHYSICAL REVIEW LETTERS 2020; 124:076801. [PMID: 32142336 DOI: 10.1103/physrevlett.124.076801] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/23/2019] [Indexed: 05/25/2023]
|
33
|
Prochaska L, Li X, MacFarland DC, Andrews AM, Bonta M, Bianco EF, Yazdi S, Schrenk W, Detz H, Limbeck A, Si Q, Ringe E, Strasser G, Kono J, Paschen S. Singular charge fluctuations at a magnetic quantum critical point. Science 2020; 367:285-288. [DOI: 10.1126/science.aag1595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/07/2019] [Accepted: 12/05/2019] [Indexed: 11/02/2022]
Affiliation(s)
- L. Prochaska
- Institute of Solid State Physics, Technischen Universität (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - X. Li
- Department of Electrical and Computer Engineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - D. C. MacFarland
- Institute of Solid State Physics, Technischen Universität (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - A. M. Andrews
- Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - M. Bonta
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - E. F. Bianco
- Department of Chemistry, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - S. Yazdi
- Department of Materials Science and Nanoengineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - W. Schrenk
- Center for Micro- and Nanostructures, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - H. Detz
- Center for Micro- and Nanostructures, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - A. Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Q. Si
- Department of Physics and Astronomy, Center for Quantum Materials, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - E. Ringe
- Department of Materials Science and Nanoengineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - G. Strasser
- Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
- Center for Micro- and Nanostructures, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - J. Kono
- Department of Electrical and Computer Engineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
- Department of Materials Science and Nanoengineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Center for Quantum Materials, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - S. Paschen
- Institute of Solid State Physics, Technischen Universität (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- Department of Physics and Astronomy, Center for Quantum Materials, 6100 Main Street, Rice University, Houston, TX 77005, USA
| |
Collapse
|
34
|
Hao L, Wang Z, Yang J, Meyers D, Sanchez J, Fabbris G, Choi Y, Kim JW, Haskel D, Ryan PJ, Barros K, Chu JH, Dean MPM, Batista CD, Liu J. Anomalous magnetoresistance due to longitudinal spin fluctuations in a J eff = 1/2 Mott semiconductor. Nat Commun 2019; 10:5301. [PMID: 31757946 PMCID: PMC6874576 DOI: 10.1038/s41467-019-13271-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
As a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antiferromagnetic order that resists external control. We report on the observation of a positive magnetoresistance that probes the staggered susceptibility of a pseudospin-half square-lattice Mott insulator built as an artificial SrIrO3/SrTiO3 superlattice. Its size is particularly large in the high-temperature insulating paramagnetic phase near the Néel transition. This magnetoresistance originates from a collective charge response to the large longitudinal spin fluctuations under a linear coupling between the external magnetic field and the staggered magnetization enabled by strong spin-orbit interaction. Our results demonstrate a magnetic control of the binding energy of the fluctuating particle-hole pairs in the Slater-Mott crossover regime analogous to the Bardeen-Cooper-Schrieffer-to-Bose-Einstein condensation crossover of ultracold-superfluids. Spin-charge interactions are at the core of electronic correlation phenomena in Mott insulators. Here, the authors observe a positive anomalous magnetoresistance in a SrIrO3/SrTiO3 superlattice, indicative of strong spin-charge fluctuations in this pseudospin-half square-lattice Mott insulator.
Collapse
Affiliation(s)
- Lin Hao
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhentao Wang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Junyi Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - D Meyers
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Joshua Sanchez
- Department of Physics, University of Washington, Seattle, WA, 98105, USA
| | - Gilberto Fabbris
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Daniel Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA.,School of Physical Sciences, Dublin City University, Dublin 9, Ireland
| | - Kipton Barros
- Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, WA, 98105, USA
| | - M P M Dean
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Cristian D Batista
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.,Quantum Condensed Matter Division and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
35
|
Pauli-limit upper critical field of high-temperature superconductor La 1.84Sr 0.16CuO 4. Sci Rep 2019; 9:16949. [PMID: 31740679 PMCID: PMC6861275 DOI: 10.1038/s41598-019-52973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/26/2019] [Indexed: 11/09/2022] Open
Abstract
The upper critical field of a cuprate high-temperature superconductor, La1.84Sr0.16CuO4, was investigated by high-frequency self-resonant contactless electrical conductivity measurements in magnetic fields up to 102 T. An irreversible transition was observed at 85 T (T = 4.2 K), defined as the upper critical field. The temperature-dependent upper critical field was argued on the basis of the Werthamer-Helfand-Hohenberg theory. The Pauli-limiting pair-breaking process with a small contribution of the spin-orbit coupling explained the first-order phase transition exhibiting a hysteresis observed at low temperatures.
Collapse
|
36
|
Sarkar T, Mandal PR, Poniatowski NR, Chan MK, Greene RL. Correlation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate. SCIENCE ADVANCES 2019; 5:eaav6753. [PMID: 31114800 PMCID: PMC6524976 DOI: 10.1126/sciadv.aav6753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called "strange metal" state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates-in contrast to hole-doped cuprates-it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La2-x Ce x CuO4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping (x) above the putative QCP (x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome (x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high-T c superconductivity.
Collapse
Affiliation(s)
- Tarapada Sarkar
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - P. R. Mandal
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - N. R. Poniatowski
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - M. K. Chan
- The National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Richard L. Greene
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|