1
|
Shi Y, Du C, Chen B, Ding B, Li A, Ji B. Evaluating the performance and stability of microalgal-bacterial granular sludge in municipal wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123912. [PMID: 39731956 DOI: 10.1016/j.jenvman.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The microalgal-bacterial granular sludge (MBGS) process shows potential for carbon-neutral wastewater treatment, yet its application in wastewater treatment plants remains underexplored. This study attempted to use a continuous-flow raceway reactor to treat real municipal wastewater using the MBGS process. The results showed that the removal efficiencies of organics peaked on the fifth day, while declining trends were observed for nitrogen and phosphorus removal. Microbial community and functional gene analyses indicated that the removal of organics, nitrogen, and phosphorus might be heavily influenced by Proteobacteria, suggesting that fluctuations in their abundance significantly impacted the performance of MBGS. Bacteroidota and Actinobacteria played a vital role in cellulose decomposition via the cbhA gene. Moreover, energy shortages caused by light attenuation due to wastewater turbidity and environmental fluctuations disrupted the microbial balance, shifting metabolic activity towards carbon pathways. Key challenges for the broader application of the MBGS process include managing wastewater turbidity and ensuring process stability. These findings highlight the need for pretreatment measures and robust operational strategies to mitigate environmental fluctuations and maintain system performance.
Collapse
Affiliation(s)
- Yuting Shi
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chao Du
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingheng Chen
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingyi Ding
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Xu Z, Li R, KuoK Ho Tang D, Zhang X, Zhang X, Liu H, Quan F. Enhancing nitrogen transformation and humification in cow manure composting through psychrophilic and thermophilic nitrifying bacterial consortium inoculation. BIORESOURCE TECHNOLOGY 2024; 413:131507. [PMID: 39303947 DOI: 10.1016/j.biortech.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China
| | - Daniel KuoK Ho Tang
- School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Hong Liu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Wali AF, Talath S, Sridhar SB, Shareef J, Goud M, Rangraze IR, Alaani NN, Mohamed OI. A Comprehensive Review on Bioactive Molecules and Advanced Microorganism Management Technologies. Curr Issues Mol Biol 2024; 46:13223-13251. [PMID: 39590383 PMCID: PMC11592628 DOI: 10.3390/cimb46110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The advent of new strains of resistant microbes and the concomitant growth in multidrug resistance have made antimicrobial resistance an urgent public health concern. New antimicrobials are desperately needed to boost the success rates of treating infectious diseases and save lives. There are many intriguing biomolecules with antibacterial action, which are mostly unexplored in microorganisms. This review article describes the importance of natural compounds against microorganisms using advanced techniques to protect individuals from diseases. We have conducted an extensive literature review using databases such as SCOPUS, SCI, PUBMED, ScienceDirect, and Medline to gather relevant information. Our review covers various microorganism sources for antimicrobials, antifungal drugs, micro-culturing techniques, and microbial-based microsystems' applications. Every kind of higher trophic life depends on microorganisms for sustenance. The unseen majority is essential to understanding how humans and other living forms can survive anthropogenic climate change. The article discusses antimicrobial substances and the latest techniques and strategies for developing effective treatments. Novel model systems and cutting-edge biomolecular and computational methodologies could help researchers enhance antimicrobial resistance by completely capitalizing on lead antimicrobials.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sathvik B. Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (S.B.S.); (J.S.)
| | - Javedh Shareef
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (S.B.S.); (J.S.)
| | - Manjunatha Goud
- Department of Biochemistry, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Nowar Nizar Alaani
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (N.N.A.); (O.I.M.)
| | - Omnia Ibrahim Mohamed
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (N.N.A.); (O.I.M.)
| |
Collapse
|
4
|
Peng B, Wang M, Wu Y, Huang S, Zhang Y, Huang J, Wang Y, Chen C. Anthropogenic activities affect the diverse autotrophic communities of coastal sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124817. [PMID: 39197647 DOI: 10.1016/j.envpol.2024.124817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Coastal sediments are a critical domain for carbon sequestration and are profoundly impacted by human activities. Therefore, it is essential to understand the structure and components of benthic autotrophs that play a crucial role in carbon sequestration processes, as well as the influence of anthropogenic activities on their communities. This study utilized an urban estuary, an industrial sea bay, a maricultural sea region, and two mangrove coastlines within the coastal areas of Guangdong Province, China. The micro-benthos in these environments, including prokaryotes and eukaryotes, were identified through high-throughput sequencing of 16S rRNA and 18S rRNA genes. The findings show that the autotrophic composition was altered by the interactions of anthropogenic heavy metals (Cd and Zn) and micro-eukaryotes (protazoa, metazoa, and parasitic organisms). Industrial pollution reduced the abundance of both prokaryotic and eukaryotic autotrophs. Mangroves induced a substantial transformation in the sediment eukaryotic and prokaryotic composition, increasing the proportion of autotrophs, notably sulfur-oxidizing and iron-oxidizing bacteria and microalgae. This alteration suggests an increase in specific sulfur and iron cycling with simultaneous carbon sequestration within mangrove sediments. These results indicate that anthropogenic activities affect sediment carbon sequestration by altering autotrophic assemblages along coastlines, thereby inducing consequential shifts in overall elemental cycling processes.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Research Center of Low Carbon Economy for Guangzhou Region, Guangzhou, China
| | - Min Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Yanli Wu
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yun Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jilin Huang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Yuannan Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China.
| |
Collapse
|
5
|
Fan S, Tang Y, Yang H, Hu Y, Zeng Y, Wang Y, Zhao Y, Chen X, Wu Y, Wang G. Effects of Fertilization and Planting Modes on Soil Organic Carbon and Microbial Community Formation of Tree Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2665. [PMID: 39339637 PMCID: PMC11434958 DOI: 10.3390/plants13182665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biochar and organic fertilizer can significantly increase soil organic carbon (SOC) and promote agricultural production, but it is still unclear how they affect forest SOC after. Here, low-quality plantation soil was subjected to four distinct fertilization treatments: (CK, without fertilization; BC, tea seed shell biochar alone; OF, tea meal organic fertilizer alone; BCF, tea seed shell biochar plus tea meal organic fertilizer). Cunninghamia lanceolata (Lamb.) Hook and Cyclobalanopsis glauca (Thunb.) Oersted seedlings were then planted in pots at the ratios of 2:0, 1:1, and 0:2 (SS, SQ, QQ) and grown for one year. The results showed that the BCF treatment had the best effect on promoting seedling growth and increasing SOC content. BCF changed soil pH and available nutrient content, resulting in the downregulation of certain oligotrophic groups (Acidobacteria and Basidiomycetes) and the upregulation of eutrophic groups (Ascomycota and Proteobacteria). Key bacterial groups, which were identified by Line Discriminant Analysis Effect Size analysis, were closely associated with microbial biomass carbon (MBC) and SOC. Pearson correlation analysis showed that bacterial community composition exhibited a positive correlation with SOC, MBC, available phosphorus, seedling biomass, and plant height, whereas fungal community composition was predominantly positively correlated with seedling underground biomass. It suggested that environmental differences arising from fertilization and planting patterns selectively promote microbial communities that contribute to organic carbon formation. In summary, the combination of biochar and organic fertilizers would enhance the improvement and adaptation of soil microbial communities, playing a crucial role in increasing forest soil organic carbon and promoting tree growth.
Collapse
Affiliation(s)
- Sutong Fan
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yao Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongzhi Yang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuda Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yelin Zeng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghong Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunlin Zhao
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
| | - Yaohui Wu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guangjun Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Ma J, Wen L, Li X, Dai J, Song J, Wang Q, Xu K, Yuan H, Duan L. Different fates of particulate matters driven by marine hypoxia: A case study of oxygen minimum zone in the Western Pacific. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106648. [PMID: 39043062 DOI: 10.1016/j.marenvres.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The oxygen minimum zone (OMZ) is an important representative of marine hypoxia in the open ocean, and it is developing rapidly under the context of global warming. However, the research on OMZ in the Western Pacific is still deficient. This study focused on its basic characteristics and impact on the degradation of particulate matters in the M4 seamount of Western Pacific. The results showed that the OMZ is located at 290-1100 m, just below the high-salinity area and thermocline. The M4 seamount has a weak impact on the OMZ, and only the bottom waters contacting with the seamount have a weak decrease in dissolved oxygen (DO). With the increase of water depth, particulate nitrogen and phosphorus decrease first above and in the OMZ and then increase below the OMZ, while particulate organic carbon (POC) gradually decreases. The low-DO environment in the OMZ is not conducive to the degradation of particulate matters, which promotes the transport of particulate matters to the deep sea, and most particulate matters have the lowest degradation rate here. The waters above the OMZ have the fastest change rate of particulate matters, in which particulate organic phosphorus (POP) and particulate inorganic phosphorus (PIP) are preferentially degraded, and the degradation rate of them is significantly higher than particulate organic nitrogen (PON) and particulate inorganic nitrogen (PIN). The particulate nitrogen and phosphorus in the waters below the OMZ continue to increase, while PON/total particulate nitrogen (TPN) and POP/total particulate phosphorus (TPP) increase significantly, and the increase rate of PIN and PIP is far lower than PON and POP, indicating that the increase of organic matters in particulate matters is more significant. It is speculated that this phenomenon might be related to the input of Antarctic Bottom Water or the in-situ production by microorganisms. This study revealed the relationship between OMZ and different particulate matters, which may provide a valuable pathway for the biogeochemical effects of OMZ in the Western Pacific.
Collapse
Affiliation(s)
- Jun Ma
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Lilian Wen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiajia Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Qidong Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kuidong Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huamao Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Liqin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Li Y, Zhu D, Niu L, Zhang W, Wang L, Zhang H, Zou S, Zhou C. Carbon-fixing bacteria in diverse groundwaters of karst area: Distribution patterns, ecological interactions, and driving factors. WATER RESEARCH 2024; 261:121979. [PMID: 38941678 DOI: 10.1016/j.watres.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
The biological carbon pump in karst areas is of great significance for maintaining the effectiveness of karst carbon sinks. However, the spatial distribution and carbon-fixing potential of microorganisms in different aquifers within karst areas remain poorly understood. In this study, the distribution patterns, ecological roles, and environmental drivers of microbiota associated with CO2 fixation were investigated in karst groundwater (KW), porous groundwater (PW), fractured groundwater (FW), and surface water (SW) within a typical karst watershed, located in Guilin, southwest China. KW, PW, and FW displayed the similar community structure and indicative carbon-fixing bacteria composition, which were dominated by chemoautotrophic bacteria compared to SW. Higher abundances of indicative carbon-fixing bacteria and carbon-fixing genes, as well as richer proportions of microbial-derived DOC, indicated the more significant microbial carbon-fixing potential in KW and PW. At the profile of KW, a carbon-fixing hotspot was discovered at the depths of 0-50 m. Correlation analysis between carbon-fixing bacteria and DOC revealed that the chemoautotrophic process driven by nitrogen and sulfur oxidation predominated the microbial carbon fixation in groundwater. Co-occurrence network analysis demonstrated that carbon-fixing bacteria exhibited cooperation with other bacterial taxa in KW, while competition was the dominant interaction in PW. Moreover, carbon-fixing bacteria was found to lead bacterial assembly more deterministic in KW. The analysis of environmental factors and microbial diversity illustrated that inorganic carbon and redox state drove community variations across groundwaters. Structural equation model (SEM) further confirmed that ORP was the primary factor influencing the carbon fixation potential. This study provides a new insight into biological carbon fixation in karst aquatic systems, which holds significance in the accurate assessment of karst carbon sinks.
Collapse
Affiliation(s)
- Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Danni Zhu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Shengzhang Zou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin 541004, China
| | - Changsong Zhou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin 541004, China
| |
Collapse
|
8
|
Zhao X, Liu Y, Xie L, Fu X, Wang L, Gao MT, Hu J. Biochar promotes microbial CO 2 fixation by regulating feedback inhibition of metabolites. BIORESOURCE TECHNOLOGY 2024; 406:130990. [PMID: 38885727 DOI: 10.1016/j.biortech.2024.130990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Chemoautotrophs, the crucial contributors to biological carbon fixation, derive energy from reducing specific inorganic substances and utilize CO2 for growth. However, the release of extracellular free organic carbon (EFOC) by chemoautotrophic microorganisms can inhibit their own growth and metabolism. To reduce the feedback inhibition effect, a low-release biochar (BC-LR) was applied to adsorb EFOC. BC-LR not only adsorbed EFOC, but also selectively adsorbed the main inhibitory component, low molecular weight organics, in EFOC. In contrast, ordinary biochar could not effectively adsorb EFOC and its addition inhibited microbial growth and CO2 fixation. In Transwell culture, BC-LR promoted microbial growth by 190% and CO2 fixation by 29%, and exhibited better economic advantage, when compared with granular activated carbon. These findings provide a novel insight into the interaction between biochar and autotrophic microbial metabolism, offering an economically feasible approach to mitigate feedback inhibition of metabolites and promoting biological CO2 fixation.
Collapse
Affiliation(s)
- Xiaodi Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China
| | - Yundong Liu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China
| | - Li Xie
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China.
| |
Collapse
|
9
|
Zhao Z, Amano C, Reinthaler T, Baltar F, Orellana MV, Herndl GJ. Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean. Nat Commun 2024; 15:6411. [PMID: 39080340 PMCID: PMC11289388 DOI: 10.1038/s41467-024-50867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Proteins in the open ocean represent a significant source of organic matter, and their profiles reflect the metabolic activities of marine microorganisms. Here, by analyzing metaproteomic samples collected from the Pacific, Atlantic and Southern Ocean, we reveal size-fractionated patterns of the structure and function of the marine microbiota protein pool in the water column, particularly in the dark ocean (>200 m). Zooplankton proteins contributed three times more than algal proteins to the deep-sea community metaproteome. Gammaproteobacteria exhibited high metabolic activity in the deep-sea, contributing up to 30% of bacterial proteins. Close virus-host interactions of this taxon might explain the dominance of gammaproteobacterial proteins in the dissolved fraction. A high urease expression in nitrifiers suggested links between their dark carbon fixation and zooplankton urea production. In summary, our results uncover the taxonomic contribution of the microbiota to the oceanic protein pool, revealing protein fluxes from particles to the dissolved organic matter pool.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Mónica V Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands.
- Environmental & Climate Research Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Li J, Xiang S, Li Y, Cheng R, Lai Q, Wang L, Li G, Dong C, Shao Z. Arcobacteraceae are ubiquitous mixotrophic bacteria playing important roles in carbon, nitrogen, and sulfur cycling in global oceans. mSystems 2024; 9:e0051324. [PMID: 38904399 PMCID: PMC11265409 DOI: 10.1128/msystems.00513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Mixotrophy is an important trophic strategy for bacterial survival in the ocean. However, the global relevance and identity of the major mixotrophic taxa remain largely elusive. Here, we combined phylogenetic, metagenomic, and metatranscriptomic analyses to characterize ubiquitous Arcobacteraceae based on our deep-sea in situ incubations and the global data. The phylogenomic tree of Arcobacteraceae is divided into three large clades, among which members of clades A and B are almost all from terrestrial environments, while those of clade C are widely distributed in various marine habitats in addition to some terrestrial origins. All clades harbor genes putatively involved in chitin degradation, sulfide oxidation, hydrogen oxidation, thiosulfate oxidation, denitrification, dissimilatory nitrate reduction to ammonium, microaerophilic respiration, and metal (iron/manganese) reduction. Additionally, in clade C, more unique pathways were retrieved, including thiosulfate disproportionation, ethanol fermentation, methane oxidation, fatty acid oxidation, cobalamin synthesis, and dissimilatory reductions of sulfate, perchlorate, and arsenate. Within this clade, two mixotrophic Candidatus genera represented by UBA6211 and CAIJNA01 harbor genes putatively involved in the reverse tricarboxylic acid pathway for carbon fixation. Moreover, the metatranscriptomic data in deep-sea in situ incubations indicated that the latter genus is a mixotroph that conducts carbon fixation by coupling sulfur oxidation and denitrification and metabolizing organic matter. Furthermore, global metatranscriptomic data confirmed the ubiquitous distribution and global relevance of Arcobacteraceae in the expression of those corresponding genes across all oceanic regions and depths. Overall, these results highlight the contribution of previously unrecognized Arcobacteraceae to carbon, nitrogen, and sulfur cycling in global oceans.IMPORTANCEMarine microorganisms exert a profound influence on global carbon cycling and ecological relationships. Mixotrophy, characterized by the simultaneous utilization of both autotrophic and heterotrophic nutrition, has a significant impact on the global carbon cycling. This report characterizes a group of uncultivated bacteria Arcobacteraceae that thrived on the "hot time" of bulky particulate organic matter and exhibited mixotrophic strategy during the in situ organic mineralization. Compared with clades A and B, more unique metabolic pathways were retrieved in clade C, including the reverse tricarboxylic acid pathway for carbon fixation, thiosulfate disproportionation, methane oxidation, and fatty acid oxidation. Global metatranscriptomic data from the Tara Oceans expeditions confirmed the ubiquitous distribution and extensive transcriptional activity of Arcobacteraceae with the expression of genes putatively involved in carbon fixation, methane oxidation, multiple sulfur compound oxidation, and denitrification across all oceanic regions and depths.
Collapse
Affiliation(s)
- Jianyang Li
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Shizheng Xiang
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Liping Wang
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Guizhen Li
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
11
|
Wang S, Zhang Z, Yang K, Zhao J, Zhang W, Wang Z, Liang Z, Zhang Y, Zhang Y, Liu J, Zhang L. SMMP: A Deep-Coverage Marine Metaproteome Method for Microbial Community Analysis throughout the Water Column Using 1 L of Seawater. Anal Chem 2024; 96:12030-12039. [PMID: 39001809 DOI: 10.1021/acs.analchem.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Marine microbes drive pivotal transformations in planetary-scale elemental cycles and have crucial impacts on global biogeochemical processes. Metaproteomics is a powerful tool for assessing the metabolic diversity and function of marine microbes. However, hundreds of liters of seawater are required for normal metaproteomic analysis due to the sparsity of microbial populations in seawater, which poses a substantial challenge to the widespread application of marine metaproteomics, particularly for deep seawater. Herein, a sensitive marine metaproteomics workflow, named sensitive marine metaproteome analysis (SMMP), was developed by integrating polycarbonate filter-assisted microbial enrichment, solid-phase alkylation-based anti-interference sample preparation, and narrow-bore nanoLC column for trace peptide separation and characterization. The method provided more than 8500 proteins from 1 L of bathypelagic seawater samples, which covered diverse microorganisms and crucial functions, e.g., the detection of key enzymes associated with the Wood-Ljungdahl pathway. Then, we applied SMMP to investigate vertical variations in the metabolic expression patterns of marine microorganisms from the euphotic zone to the bathypelagic zone. Methane oxidation and carbon monoxide (CO) oxidation were active processes, especially in the bathypelagic zone, which provided a remarkable energy supply for the growth and proliferation of heterotrophic microorganisms. In addition, marker protein profiles detected related to ammonia transport, ammonia oxidation, and carbon fixation highlighted that Thaumarchaeota played a critical role in primary production based on the coupled carbon-nitrogen process, contributing to the storage of carbon and nitrogen in the bathypelagic regions. SMMP has low microbial input requirements and yields in-depth metaproteome analysis, making it a prospective approach for comprehensive marine metaproteomic investigations.
Collapse
Affiliation(s)
- Songduo Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zenghu Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao New Energy Shandong Laboratory, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Kaiguang Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiulong Zhao
- Qingdao New Energy Shandong Laboratory, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Weijie Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiting Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyu Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao New Energy Shandong Laboratory, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yukui Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Liu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Huang Y, Zhang X, Xin Y, Tian J, Li M. Distinct microbial nitrogen cycling processes in the deepest part of the ocean. mSystems 2024; 9:e0024324. [PMID: 38940525 PMCID: PMC11265455 DOI: 10.1128/msystems.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.
Collapse
Affiliation(s)
- Yuhan Huang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Jiwei Tian
- MOE Key Laboratory of Physical Oceanography, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Zhao Z, Zhao Y, Marotta F, Xamxidin M, Li H, Xu J, Hu B, Wu M. The microbial community structure and nitrogen cycle of high-altitude pristine saline lakes on the Qinghai-Tibetan plateau. Front Microbiol 2024; 15:1424368. [PMID: 39132143 PMCID: PMC11312105 DOI: 10.3389/fmicb.2024.1424368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 08/13/2024] Open
Abstract
The nitrogen (N) cycle is the foundation of the biogeochemistry on Earth and plays a crucial role in global climate stability. It is one of the most important nutrient cycles in high-altitude lakes. The biogeochemistry of nitrogen is almost entirely dependent on redox reactions mediated by microorganisms. However, the nitrogen cycling of microbial communities in the high-altitude saline lakes of the Qinghai-Tibet Plateau (QTP), the world's "third pole" has not been investigated extensively. In this study, we used a metagenomic approach to investigate the microbial communities in four high-altitude pristine saline lakes in the Altun mountain on the QTP. We observed that Proteobacteria, Bacteroidota, and Actinobacteriota were dominant in these lakes. We reconstructed 1,593 bacterial MAGs and 8 archaeal MAGs, 1,060 of which were found to contain nitrogen cycle related genes. Our analysis revealed that nitrite reduction, nitrogen fixation, and assimilatory nitrate reduction processes might be active in the lakes. Denitrification might be a major mechanism driving the potential nitrogen loss, while nitrification might be inactive. A wide variety of microorganisms in the lake, dominated by Proteobacteria, participate together in the nitrogen cycle. The prevalence of the dominant taxon Yoonia in these lakes may be attributed to its well-established nitrogen functions and the coupled proton dynamics. This study is the first to systematically investigate the structure and nitrogen function of the microbial community in the high-altitude pristine saline lakes in the Altun mountain on the QTP. As such, it contributes to a better comprehension of biogeochemistry of high-altitude saline lakes.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yuxiang Zhao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Federico Marotta
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Huan Li
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Junquan Xu
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Cai R, Yao P, Yi Y, Merder J, Li P, He D. The Hunt for Chemical Dark Matter across a River-to-Ocean Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11988-11997. [PMID: 38875444 DOI: 10.1021/acs.est.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.
Collapse
Affiliation(s)
- Ruanhong Cai
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Piao Yao
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Yuanbi Yi
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Julian Merder
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Penghui Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ding He
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
15
|
Jiao N, Luo T, Chen Q, Zhao Z, Xiao X, Liu J, Jian Z, Xie S, Thomas H, Herndl GJ, Benner R, Gonsior M, Chen F, Cai WJ, Robinson C. The microbial carbon pump and climate change. Nat Rev Microbiol 2024; 22:408-419. [PMID: 38491185 DOI: 10.1038/s41579-024-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
The ocean has been a regulator of climate change throughout the history of Earth. One key mechanism is the mediation of the carbon reservoir by refractory dissolved organic carbon (RDOC), which can either be stored in the water column for centuries or released back into the atmosphere as CO2 depending on the conditions. The RDOC is produced through a myriad of microbial metabolic and ecological processes known as the microbial carbon pump (MCP). Here, we review recent research advances in processes related to the MCP, including the distribution patterns and molecular composition of RDOC, links between the complexity of RDOC compounds and microbial diversity, MCP-driven carbon cycles across time and space, and responses of the MCP to a changing climate. We identify knowledge gaps and future research directions in the role of the MCP, particularly as a key component in integrated approaches combining the mechanisms of the biological and abiotic carbon pumps for ocean negative carbon emissions.
Collapse
Affiliation(s)
- Nianzhi Jiao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China.
| | - Tingwei Luo
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Quanrui Chen
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Zhao Zhao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Xilin Xiao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Jihua Liu
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zhimin Jian
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Helmuth Thomas
- Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Ronald Benner
- Department of Biological Sciences, School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC, USA
| | - Micheal Gonsior
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, USA
| | - Feng Chen
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Wei-Jun Cai
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | - Carol Robinson
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China.
- Centre for Ocean and Atmospheric Sciences (COAS), School of Environmental Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
16
|
Ricci F, Greening C. Chemosynthesis: a neglected foundation of marine ecology and biogeochemistry. Trends Microbiol 2024; 32:631-639. [PMID: 38296716 DOI: 10.1016/j.tim.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024]
Abstract
Chemosynthesis is a metabolic process that transfers carbon to the biosphere using reduced compounds. It is well recognised that chemosynthesis occurs in much of the ocean, but it is often thought to be a negligible process compared to photosynthesis. Here we propose that chemosynthesis is the underlying process governing primary production in much of the ocean and suggest that it extends to a much wider range of compounds, microorganisms, and ecosystems than previously thought. In turn, this process has had a central role in controlling marine biogeochemistry, ecology, and carbon budgets across the vast realms of the ocean, from the dawn of life to contemporary times.
Collapse
Affiliation(s)
- Francesco Ricci
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Sun F, Chen J, Sun Z, Zheng X, Tang M, Yang Y. Promoting bioremediation of brewery wastewater, production of bioelectricity and microbial community shift by sludge microbial fuel cells using biochar as anode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172418. [PMID: 38631622 DOI: 10.1016/j.scitotenv.2024.172418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Seeking low-cost and eco-friendly electrode catalyst of microbial fuel cell (MFC) reactor has received extensive attention in recent decades. In this study, a sludge MFC was coupled with biochar-modified-anode (BC-300, BC-400, and BC-500) for actual brewery wastewater treatment. The physicochemical properties of biochar largely depended on the pyrolysis temperature, further affecting the removal efficiency of wastewater indicators. BC-400 MFC proved to be efficient for TN and NH4+-N removal, while the maximum removal efficiencies of COD and TP were achieved by BC-500 MFC, reaching respectively 97.14 % and 89.67 %. Biochar could promote the degradation of dissolved organic matter (DOM) in wastewater by increasing the electrochemical performances of MFC. The maximum output voltage of BC-400 MFC reached 410.24 mV, and the maximum electricity generation of 108.05 mW/m2 was also obtained, surpassing the pristine MFC (BCC-MFC) by 4.67 times. High-throughput sequencing results illustrated that the enrichment of electrochemically active bacteria (EAB) and functional bacteria (Longilinea, Denitratisoma, and Pseudomonas) in BC-MFCs, contributed to pollutants degradation and electron transfer. Furthermore, biochar affected directly the electrical conductivity of wastewater, simultaneously changing microbial community composition of MFC anode. Considering both enhanced removal efficiency of pollutants and increased power generation, the results of this study would offer technical reference for the application of biochar as MFC catalyst for brewery wastewater treatment.
Collapse
Affiliation(s)
- Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| | - Ziren Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Xingjia Zheng
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
18
|
Liu S, Pan Y, Jin X, Zhao S, Xu X, Chen Y, Shen Z, Chen C. A novel Biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124254. [PMID: 38815893 DOI: 10.1016/j.envpol.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
There is currently increasing pressure on agriculture to simultaneously remediate soil and ensure safe agricultural production. In this study, we investigate the potential of a novel combination of biochar and plant growth-promoting bacteria (PGPB) as a promising approach. Two types of biochar, corn stover and rice husk-derived, were used in combination with a PGPB strain, Bacillus sp. PGP5, to remediate Cd and Pb co-contaminated soil and enhance lettuce performance. The contaminated soil was pre-incubated with biochar prior to PGP5 inoculation. The combined application of biochar and PGPB reduced the diethylenetriaminepentaacetic acid (DTPA) -extractable Cd and Pb concentrations in the soil by 46.45%-55.96% and 42.08%-44.83%, respectively. Additionally, this combined application increased lettuce yield by 23.37%-65.39% and decreased Cd and Pb concentrations in the edible parts of the lettuce by 57.39%-68.04% and 13.57%-32.50%. The combined application showed a better promotion on lettuce growth by facilitating chlorophyll synthesis and reducing oxidative stress. These demonstrated a synergistic effect between biochar and PGPB. Furthermore, our study elucidated the specific role of the biochar-PGPB combination in soil microbial communities. Biochar application promoted the survival of PGP5 in the soil. The impact of biochar or PGPB on microbial communities was found to be most significant in the early stage, while the development of plants had a greater influence on rhizosphere microbial communities in later stage. Plants showed a tendency to recruit plant-associated microbes, such as Cyanobacteria, to facilitate growth processes. Notably, the combined application of biochar and PGPB expedited the assembly of microbial communities, enabling them more closely with the rhizosphere microbial communities in late stage of plant development and thus enhancing their effects on promoting plant growth. This study highlights the "accelerating" advantage of the biochar-PGPB combination in the assembly of rhizosphere microbiomes and offers a new strategy for simultaneous soil remediation and safe agricultural production.
Collapse
Affiliation(s)
- Sijia Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yiwen Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Shangjun Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
19
|
Zhao Z, Amano C, Reinthaler T, Orellana MV, Herndl GJ. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. SCIENCE ADVANCES 2024; 10:eadn5143. [PMID: 38748788 PMCID: PMC11095472 DOI: 10.1126/sciadv.adn5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Environmental and Climate Research Hub, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
20
|
Ricci F, Leggat W, Pasella MM, Bridge T, Horowitz J, Girguis PR, Ainsworth T. Deep sea treasures - Insights from museum archives shed light on coral microbial diversity within deepest ocean ecosystems. Heliyon 2024; 10:e27513. [PMID: 38468949 PMCID: PMC10926130 DOI: 10.1016/j.heliyon.2024.e27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals. Here, we explored the microbial diversity of deep sea corals by recovering nucleic acids from museum archive specimens. Firstly, we amplified and sequenced the V1-V3 regions of the 16S rRNA gene of these specimens, then we utilized the generated sequences to shed light on the microbial diversity associated with seven families of corals collected from depth in the Coral Sea (depth range 1309 to 2959 m) and Southern Ocean (depth range 1401 to 2071 m) benthic habitats. Surprisingly, Cyanobacteria sequences were consistently associated with six out of seven coral families from both sampling locations, suggesting that these bacteria are potentially ubiquitous members of the microbiome within these cold and deep sea water corals. Additionally, we show that Cnidaria might benefit from symbiotic associations with a range of chemosynthetic bacteria including nitrite, carbon monoxide and sulfur oxidizers. Consistent with previous studies, we show that sequences associated with the bacterial phyla Proteobacteria, Verrucomicrobia, Planctomycetes and Acidobacteriota dominated the microbial community of corals in the deep sea. We also explored genomes of the bacterial genus Mycoplasma, which we identified as associated with specimens of three deep sea coral families, finding evidence that these bacteria may aid the host immune system. Importantly our results show that museum specimens retain components of host microbiome that can provide new insights into the diversity of deep sea coral microbiomes (and potentially other organisms), as well as the diversity of microbes writ large in deep sea ecosystems.
Collapse
Affiliation(s)
- Francesco Ricci
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
- Monash University, Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - William Leggat
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, NSW, Australia
| | - Marisa M. Pasella
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
| | - Tom Bridge
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jeremy Horowitz
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Peter R. Girguis
- University of Harvard, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Tracy Ainsworth
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
| |
Collapse
|
21
|
Li H, Chen J, Yu L, Fan G, Li T, Li L, Yuan H, Wang J, Wang C, Li D, Lin S. In situ community transcriptomics illuminates CO 2-fixation potentials and supporting roles of phagotrophy and proton pump in plankton in a subtropical marginal sea. Microbiol Spectr 2024; 12:e0217723. [PMID: 38319114 PMCID: PMC10913738 DOI: 10.1128/spectrum.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Lineage-wise physiological activities of plankton communities in the ocean are important but challenging to characterize. Here, we conducted whole-assemblage metatranscriptomic profiling at continental shelf and slope sites in the South China Sea to investigate carbon fixation potential in different lineages. RuBisCO expression, the proxy of Calvin carbon fixation (CCF) potential, was mainly contributed by Bacillariophyta, Chlorophyta, Cyanobacteria, and Haptophyta, which was differentially affected by environmental factors among lineages. CCF potential exhibited positive or negative correlations with phagotrophy gene expression, suggesting phagotrophy possibly enhances or complements CCF. Our data also reveal significant non-Calvin carbon fixation (NCF) potential, as indicated by the active expression of genes in all five currently recognized NCF pathways, mainly contributed by Flavobacteriales, Alteromonadales, and Oceanospirillales. Furthermore, in Flavobacteriales, Alteromonadales, Pelagibacterales, and Rhodobacterales, NCF potential was positively correlated with proton-pump rhodopsin (PPR) expression, suggesting that NCF might be energetically supported by PPR. The novel insights into the lineage-differential potential of carbon fixation, widespread mixotrophy, and PPR as an energy source for NCF lay a methodological and informational foundation for further research to understand carbon fixation and the trophic landscape in the ocean.IMPORTANCEMarine plankton plays an important role in global carbon cycling and climate regulation. Phytoplankton and cyanobacteria fix CO2 to produce organic compounds using solar energy and mainly by the Calvin cycle, whereas autotrophic bacteria and archaea may fix CO2 by non-Calvin cycle carbon fixation pathways. How active individual lineages are in carbon fixation and mixotrophy, and what energy source bacteria may employ in non-Calvin carbon fixation, in a natural plankton assemblage are poorly understood and underexplored. Using metatranscriptomics, we studied carbon fixation in marine plankton with lineage resolution in tropical marginal shelf and slope areas. Based on the sequencing results, we characterized the carbon fixation potential of different lineages and assessed Calvin- and non-Calvin- carbon fixation activities and energy sources. Data revealed a high number of unigenes (4.4 million), lineage-dependent differential potentials of Calvin carbon fixation and responses to environmental conditions, major contributors of non-Calvin carbon fixation, and their potential energy source.
Collapse
Affiliation(s)
- Hongfei Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Jianwei Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Denghui Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
- Qingdao Innovation Center of Seaweed Biotechnology, Qingdao, Shandong, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
22
|
Xu Z, Li R, Zhang X, Wang S, Xu X, Ho Daniel Tang K, Emmanuel Scriber K, Zhang Z, Quan F. Molecular mechanisms of humus formation mediated by new ammonifying microorganisms in compost. CHEMICAL ENGINEERING JOURNAL 2024; 483:149341. [DOI: 10.1016/j.cej.2024.149341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
23
|
Liu B, Zheng Y, Wang X, Qi L, Zhou J, An Z, Wu L, Chen F, Lin Z, Yin G, Dong H, Li X, Liang X, Han P, Liu M, Hou L. Active dark carbon fixation evidenced by 14C isotope assimilation and metagenomic data across the estuarine-coastal continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169833. [PMID: 38190922 DOI: 10.1016/j.scitotenv.2023.169833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Estuaries, as important land-ocean transitional zones across the Earth's surface, are hotspots of microbially driven dark carbon fixation (DCF), yet understanding of DCF process remains limited across the estuarine-coastal continuum. This study explored DCF activities and associated chemoautotrophs along the estuarine and coastal environmental gradients, using radiocarbon labelling and molecular techniques. Significantly higher DCF rates were observed at middle- and high-salinity regions (0.65-2.31 and 0.66-2.82 mmol C m-2 d-1, respectively), compared to low-salinity zone (0.07-0.19 mmol C m-2 d-1). Metagenomic analysis revealed relatively stable DCF pathways along the estuarine-coastal continuum, primarily dominated by Calvin-Benson-Bassham (CBB) cycle and Wood-Ljungdahl (WL) pathway. Nevertheless, chemoautotrophic communities driving DCF exhibited significant spatial variations. It is worth noting that although CBB cycle played an important role in DCF in estuarine sediments, WL pathway might play a more significant role, which has not been previously recognized. Overall, this study highlights that DCF activities coincide with the genetic potential of chemoautotrophy and the availability of reductive substrates across the estuarine-coastal continuum, and provides an important scientific basis for accurate quantitative assessment of global estuarine carbon sink.
Collapse
Affiliation(s)
- Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Xinyu Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
24
|
Dames NR, Rocke E, Pitcher G, Rybicki E, Pfaff M, Moloney CL. Ecological roles of nano-picoplankton in stratified waters of an embayment in the southern Benguela. FEMS Microbiol Lett 2024; 371:fnae094. [PMID: 39508239 PMCID: PMC11643359 DOI: 10.1093/femsle/fnae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024] Open
Abstract
Nano-picoplankton are the dominant primary producers during the postupwelling period in St Helena Bay, South Africa. Their dynamics on short timescales are not well-understood and neither are the community composition, structure, and potential functionality of the surrounding microbiome. Samples were collected over five consecutive days in March 2018 from three depths (1, 25, and 50 m) at a single sampling station in St Helena Bay. There was clear depth-differentiation between the surface and depth in both diversity and function throughout the sampling period for the archaea, bacteria, and eukaryotes. Daily difference in eukaryote diversity, was more pronounced at 1 and 25 m with increased abundances of Syndiniales and Bacillariophyta. Surface waters were dominated by photosynthetic and photoheterotrophic microorganisms, while samples at depth were linked to nitrogen cycling processes, with high abundances of nitrifiers and denitrifiers. Strong depth gradients found in the nutrient transporters for ammonia were good indicators of measured uptake rates. This study showed that nano-picoplankton dynamics were driven by light availability, nutrient concentrations, carbon biomass, and oxygenation. The nano-picoplankton help sustain ecosystem functioning in St Helena Bay through their ecological roles, which emphasizes the need to monitor this size fraction of the plankton.
Collapse
Affiliation(s)
- Nicole R Dames
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
- Marine and Antarctic Centre for Innovation and Sustainability, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, United States
| | - Emma Rocke
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
- Marine and Antarctic Centre for Innovation and Sustainability, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| | - Grant Pitcher
- Coastal and Marine Research, Department of Forestry, Fisheries and Environment, Martin Hammerschlag Way, Cape Town, South Africa
| | - Edward Rybicki
- Biopharming Research Unit, Department of Cell and Molecular Biology, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| | - Maya Pfaff
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| | - Coleen L Moloney
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| |
Collapse
|
25
|
Bayer B, Liu S, Louie K, Northen TR, Wagner M, Daims H, Carlson CA, Santoro AE. Metabolite release by nitrifiers facilitates metabolic interactions in the ocean. THE ISME JOURNAL 2024; 18:wrae172. [PMID: 39244747 PMCID: PMC11428151 DOI: 10.1093/ismejo/wrae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean.
Collapse
Affiliation(s)
- Barbara Bayer
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
| | - Shuting Liu
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
- Department of Environmental & Sustainability Sciences,Kean University, 1000 Morris Avenue, Union, NJ 07083, United States
| | - Katherine Louie
- Environmental Genomics and Systems Biology Division and DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division and DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Fredrik Bajers Vej 7H, Aalborg University, 9220 Aalborg, Denmark
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- The Comammox Research Platform, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
| |
Collapse
|
26
|
Fortin SG, Sun X, Jayakumar A, Ward BB. Nitrite-oxidizing bacteria adapted to low-oxygen conditions dominate nitrite oxidation in marine oxygen minimum zones. THE ISME JOURNAL 2024; 18:wrae160. [PMID: 39141833 PMCID: PMC11373643 DOI: 10.1093/ismejo/wrae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean's oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean's fixed nitrogen inventory.
Collapse
Affiliation(s)
- Samantha G Fortin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
27
|
Rasmussen AN, Francis CA. Dynamics and activity of an ammonia-oxidizing archaea bloom in South San Francisco Bay. THE ISME JOURNAL 2024; 18:wrae148. [PMID: 39077992 PMCID: PMC11334935 DOI: 10.1093/ismejo/wrae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Transient or recurring blooms of ammonia-oxidizing archaea (AOA) have been reported in several estuarine and coastal environments, including recent observations of AOA blooms in South San Francisco Bay. Here, we measured nitrification rates, quantified AOA abundance, and analyzed both metagenomic and metatranscriptomic data to examine the dynamics and activity of nitrifying microorganisms over the course of an AOA bloom in South San Francisco Bay during the autumn of 2018 and seasonally throughout 2019. Nitrification rates were correlated with AOA abundance in quantitative polymerase chain reaction (PCR) data, and both increased several orders of magnitude between the autumn AOA bloom and spring and summer seasons. From bloom samples, we recovered an extremely abundant, high-quality Candidatus Nitrosomarinus catalina-like AOA metagenome-assembled genome that had high transcript abundance during the bloom and expressed >80% of genes in its genome. We also recovered a putative nitrite-oxidizing bacteria metagenome-assembled genome from within the Nitrospinaceae that was of much lower abundance and had lower transcript abundance than AOA. During the AOA bloom, we observed increased transcript abundance for nitrogen uptake and oxidative stress genes in non-nitrifier metagenome-assembled genomes. This study confirms AOA are not only abundant but also highly active during blooms oxidizing large amounts of ammonia to nitrite-a key intermediate in the microbial nitrogen cycle-and producing reactive compounds that may impact other members of the microbial community.
Collapse
Affiliation(s)
- Anna N Rasmussen
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
- Oceans Department, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
28
|
Arandia-Gorostidi N, Jaffe AL, Parada AE, Kapili BJ, Casciotti KL, Salcedo RSR, Baumas CMJ, Dekas AE. Urea assimilation and oxidation support activity of phylogenetically diverse microbial communities of the dark ocean. THE ISME JOURNAL 2024; 18:wrae230. [PMID: 39530358 PMCID: PMC11697164 DOI: 10.1093/ismejo/wrae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Urea is hypothesized to be an important source of nitrogen and chemical energy to microorganisms in the deep sea; however, direct evidence for urea use below the epipelagic ocean is lacking. Here, we explore urea utilization from 50 to 4000 meters depth in the northeastern Pacific Ocean using metagenomics, nitrification rates, and single-cell stable-isotope-uptake measurements with nanoscale secondary ion mass spectrometry. We find that on average 25% of deep-sea cells assimilated urea-derived N (60% of detectably active cells), and that cell-specific nitrogen-incorporation rates from urea were higher than that from ammonium. Both urea concentrations and assimilation rates relative to ammonium generally increased below the euphotic zone. We detected ammonia- and urea-based nitrification at all depths at one of two sites analyzed, demonstrating their potential to support chemoautotrophy in the mesopelagic and bathypelagic regions. Using newly generated metagenomes we find that the ureC gene, encoding the catalytic subunit of urease, is found within 39% of deep-sea cells in this region, including the Nitrososphaeria (syn., Thaumarchaeota; likely for nitrification) as well as members of thirteen other phyla such as Proteobacteria, Verrucomicrobia, Plantomycetota, Nitrospinota, and Chloroflexota (likely for assimilation). Analysis of public metagenomes estimated ureC within 10-46% of deep-sea cells around the world, with higher prevalence below the photic zone, suggesting urea is widely available to the deep-sea microbiome globally. Our results demonstrate that urea is a nitrogen source to abundant and diverse microorganisms in the dark ocean, as well as a significant contributor to deep-sea nitrification and therefore fuel for chemoautotrophy.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Alexander L Jaffe
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Bennett J Kapili
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Karen L Casciotti
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
- Oceans Department, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Rebecca S R Salcedo
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Chloé M J Baumas
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| |
Collapse
|
29
|
Prabhu A, Tule S, Chuvochina M, Bodén M, McIlroy SJ, Zaugg J, Rinke C. Machine learning and metagenomics identifies uncharacterized taxa inferred to drive biogeochemical cycles in a subtropical hypereutrophic estuary. ISME COMMUNICATIONS 2024; 4:ycae067. [PMID: 39866676 PMCID: PMC11758582 DOI: 10.1093/ismeco/ycae067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 01/28/2025]
Abstract
Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal-spatial dataset, from a subtropical hypereutrophic estuary. Screening 54 water samples across brackish to marine sites revealed that nutrient concentrations and salinity best explained spatial community variations, whereas temperature and dissolved oxygen likely drive seasonal shifts. By combining short and long read sequencing data, we recovered 2,459 metagenome-assembled genomes, proposed new taxon names for previously uncharacterised lineages, and created an extensive, habitat specific genome reference database. Community profiling based on this genome reference database revealed a diverse prokaryotic community comprising 61 bacterial and 18 archaeal phyla, and resulted in an improved taxonomic resolution at lower ranks down to genus level. We found that the vast majority (61 out of 73) of abundant genera (>1% average) represented unnamed and novel lineages, and that all genera could be clearly separated into brackish and marine ecotypes with inferred habitat specific functions. Applying supervised machine learning and metabolic reconstruction, we identified several microbial indicator taxa responding directly or indirectly to elevated nitrate and total phosphorus concentrations. In conclusion, our analysis highlights the importance of improved taxonomic resolution, sheds light on the role of previously uncharacterised lineages in estuarine nutrient cycling, and identifies microbial indicators for nutrient levels crucial in estuary health assessments.
Collapse
Affiliation(s)
- Apoorva Prabhu
- School of Chemistry and Molecular Biosciences, Australian
Centre for Ecogenomics, The University of Queensland, QLD
4072, Australia
| | - Sanjana Tule
- School of Chemistry and Molecular Biosciences, The University of
Queensland, QLD 4072, Australia
| | - Maria Chuvochina
- School of Chemistry and Molecular Biosciences, Australian
Centre for Ecogenomics, The University of Queensland, QLD
4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of
Queensland, QLD 4072, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical
Sciences, Translational Research Institute, Queensland University of
Technology, QLD 4102, Australia
| | - Julian Zaugg
- School of Chemistry and Molecular Biosciences, Australian
Centre for Ecogenomics, The University of Queensland, QLD
4072, Australia
| | - Christian Rinke
- School of Chemistry and Molecular Biosciences, Australian
Centre for Ecogenomics, The University of Queensland, QLD
4072, Australia
- Department of Microbiology, University of Innsbruck, 6020
Innsbruck, Austria
| |
Collapse
|
30
|
Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME COMMUNICATIONS 2024; 4:ycad017. [PMID: 38317822 PMCID: PMC10839748 DOI: 10.1093/ismeco/ycad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
31
|
Liu Q, Chen Y, Xu XW. Genomic insight into strategy, interaction and evolution of nitrifiers in metabolizing key labile-dissolved organic nitrogen in different environmental niches. Front Microbiol 2023; 14:1273211. [PMID: 38156017 PMCID: PMC10753782 DOI: 10.3389/fmicb.2023.1273211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB), nitrite-oxidizing bacteria (NOB), and complete ammonia oxidizers (comammox) are responsible for nitrification in nature; however, some groups have been reported to utilize labile-dissolved organic nitrogen (LDON) for satisfying nitrogen demands. To understand the universality of their capacity of LDON metabolism, we collected 70 complete genomes of AOA, AOB, NOB, and comammox from typical environments for exploring their potentials in the metabolism of representative LDON (urea, polyamines, cyanate, taurine, glycine betaine, and methylamine). Genomic analyses showed that urea was the most popular LDON used by nitrifiers. Each group harbored unique urea transporter genes (AOA: dur3 and utp, AOB: utp, and NOB and comammox: urtABCDE and utp) accompanied by urease genes ureABC. The differentiation in the substrate affinity of these transporters implied the divergence of urea utilization efficiency in nitrifiers, potentially driving them into different niches. The cyanate transporter (cynABD and focA/nirC) and degradation (cynS) genes were detected mostly in NOB, indicating their preference for a wide range of nitrogen substrates to satisfy high nitrogen demands. The lack of genes involved in the metabolism of polyamines, taurine, glycine betaine, and methylamines in most of nitrifiers suggested that they were not able to serve as a source of ammonium, only if they were degraded or oxidized extracellularly as previously reported. The phylogenetic analyses assisted with comparisons of GC% and the Codon Adaptation Index between target genes and whole genomes of nitrifiers implied that urea metabolic genes dur3 and ureC in AOA evolved independently from bacteria during the transition from Thaumarchaeota to AOA, while utp in terrestrial AOA was acquired from bacteria via lateral gene transfer (LGT). Cyanate transporter genes cynS and focA/nirC detected only in a terrestrial AOA Candidadus Nitrsosphaera gargensis Ga9.2 could be gained synchronously with Nitrospira of NOB by an ancient LGT. Our results indicated that LDON utilization was a common feature in nitrifiers, but metabolic potentials were different among nitrifiers, possibly being intensely interacted with their niches, survival strategies, and evolutions.
Collapse
Affiliation(s)
- Qian Liu
- Donghai Laboratory, Zhoushan, Zhejiang, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
- Ocean College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuhao Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
- Ocean College, Zhejiang University, Hangzhou, Zhejiang, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Guo J, Wang X, Cao X, Qi W, Peng J, Liu H, Qu J. The influence of wet-to-dry season shifts on the microbial community stability and nitrogen cycle in the Poyang Lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166036. [PMID: 37544457 DOI: 10.1016/j.scitotenv.2023.166036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
In lake environments, seasonal changes can cause exposure of the lake sediment, leading to soil formation. Although previous studies have explored how environmental changes influence microbial functioning in the water-level-fluctuating zone, few studies have investigated how wholescale habitat changes affect microbial composition, community stability and ecological functions in lake environments. To address this issue, our study investigated the effects of sediment-to-soil conversion on microbial composition, community stability and subsequent ecological functioning in Poyang Lake, China. Our results revealed that, during sediment-to-soil conversion, the number of total and unique operational taxonomic units (OTUs) decreased by 40 % and 55 %, respectively. Moreover, sediment-to-soil conversion decreased the microbial community connectivity and complexity while significantly increasing its stability, as evidenced by increased absolute values of negative/positive cohesion. In sediment and soil, the abundance of dominant bacteria, and bacterial diversity strongly affected microbial community stability, although this phenomenon was not true in water. Furthermore, the specific microbial phyla and genes involved in the nitrogen cycle changed significantly following sediment-to-soil conversion, with the major nitrogen cycling processes altering from denitrification and dissimilatory nitrate reduction to ammonium to nitrification and assimilatory nitrate reduction to ammonia. Moreover, a compensation mechanism was observed in the functional genes related to the nitrogen cycle, such that all the processes in the nitrogen cycle were maintained following sediment-to-soil conversion. The oxidation-reduction potential strongly affected network complexity, microbial stability, and nitrogen cycling in the sediment and soil. These results aid in the understanding of responses of microorganisms to climate change and extreme drought. Our findings have considerable implications for predicting the ecological consequences of habitat conversion and for ecosystem management.
Collapse
Affiliation(s)
- Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xu Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Srivastava A, De Corte D, Garcia JAL, Swan BK, Stepanauskas R, Herndl GJ, Sintes E. Interplay between autotrophic and heterotrophic prokaryotic metabolism in the bathypelagic realm revealed by metatranscriptomic analyses. MICROBIOME 2023; 11:239. [PMID: 37925458 PMCID: PMC10625248 DOI: 10.1186/s40168-023-01688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic matter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. METHODS Seawater samples were collected from Labrador Sea Water (LSW, ~ 2000 m depth) in the North Atlantic and incubated in the dark at in situ temperature unamended, amended with 1 µM thiosulfate, or with 1 µM thiosulfate plus 10 µM glucose and 10 µM acetate (thiosulfate plus dissolved organic matter, DOM). Inorganic carbon fixation was measured in the different treatments and samples for metatranscriptomic analyses were collected after 1 h and 72 h of incubation. RESULTS Amendment of LSW with thiosulfate and thiosulfate plus DOM enhanced prokaryotic inorganic carbon fixation. The energy generated via chemoautotrophy and heterotrophy in the amended prokaryotic communities was used for the biosynthesis of glycogen and phospholipids as storage molecules. The addition of thiosulfate stimulated unclassified bacteria, sulfur-oxidizing Deltaproteobacteria (SAR324 cluster bacteria), Epsilonproteobacteria (Sulfurimonas sp.), and Gammaproteobacteria (SUP05 cluster bacteria), whereas, the amendment with thiosulfate plus DOM stimulated typically copiotrophic Gammaproteobacteria (closely related to Vibrio sp. and Pseudoalteromonas sp.). CONCLUSIONS The gene expression pattern of thiosulfate utilizing microbes specifically of genes involved in energy production via sulfur oxidation and coupled to CO2 fixation pathways coincided with the change in the transcriptional profile of the heterotrophic prokaryotic community (genes involved in promoting energy storage), suggesting a fine-tuned metabolic interplay between chemoautotrophic and heterotrophic microbes in the dark ocean. Video Abstract.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria.
| | - Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University, Oldenburg, Germany
- Currently at Ocean Technology and Engineering Department, National Oceanography Centre, Southampton, UK
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Informatics, INS La Ferreria, 08110, Montcada i Reixach, Spain
| | - Brandon K Swan
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, 21702, USA
| | | | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Eva Sintes
- Ecosystem Oceanography Group (GRECO), Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Baleares, Palma, Spain.
| |
Collapse
|
34
|
Mueller AJ, Daebeler A, Herbold CW, Kirkegaard RH, Daims H. Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales. THE ISME JOURNAL 2023; 17:2123-2133. [PMID: 37749300 PMCID: PMC10579370 DOI: 10.1038/s41396-023-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). These findings mainly resulted from studies of terrestrial species, whereas less attention has been given to marine Nitrospirales. In this study, we cultured three new marine Nitrospirales enrichments and one isolate. Three of these four NOB represent new Nitrospira species while the fourth represents a novel genus. This fourth organism, tentatively named "Ca. Nitronereus thalassa", represents the first cultured member of a Nitrospirales lineage that encompasses both free-living and sponge-associated nitrite oxidizers, is highly abundant in the environment, and shows distinct habitat distribution patterns compared to the marine Nitrospira species. Partially explaining this, "Ca. Nitronereus thalassa" harbors a unique combination of genes involved in carbon fixation and respiration, suggesting differential adaptations to fluctuating oxygen concentrations. Furthermore, "Ca. Nitronereus thalassa" appears to have a more narrow substrate range compared to many other marine nitrite oxidizers, as it lacks the genomic potential to utilize formate, cyanate, and urea. Lastly, we show that the presumed marine Nitrospirales lineages are not restricted to oceanic and saline environments, as previously assumed.
Collapse
Affiliation(s)
- Anna J Mueller
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Anne Daebeler
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 7, 370 05, Budweis, Czech Republic
| | - Craig W Herbold
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Rasmus H Kirkegaard
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Holger Daims
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Xu Z, Liang W, Zhang X, Yang X, Zhou S, Li R, Syed A, Bahkali AH, Kumar Awasthi M, Zhang Z. Effects of magnesite on nitrogen conversion and bacterial community during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 384:129325. [PMID: 37315627 DOI: 10.1016/j.biortech.2023.129325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
36
|
Xu Z, Li R, Zhang X, Liu J, Xu X, Wang S, Lan T, Zhang K, Gao F, He Q, Pan J, Quan F, Zhang Z. Mechanisms and effects of novel ammonifying microorganisms on nitrogen ammonification in cow manure waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:167-178. [PMID: 37442037 DOI: 10.1016/j.wasman.2023.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
It is essential to reduce nitrogen losses and to improve nitrogen conversion during organic waste composting because of environmental protection and sustainable development. To reveal newly domesticated ammonifying microorganisms (AM) cultures on the ammonification and nitrogen conversion during the composting, the screened microbial agents were inoculated at 5 % concentration (in weight basis) into cow manure compost under five different treatments: sterilized distilled water (Control), Amm-1 (mesophilic fungus-F1), Amm-2 (mesophilic bacterium-Z1), Amm-3 (thermotolerant bacterium-Z2), and Amm-4 (consortium: F1, Z1, and Z2), and composted for 42 days. Compared to control, AM inoculation prolonged the thermophilic phases to 9-19 days, increased the content of NH4+-N to 1.60-1.96 g/kg in the thermophilic phase, reduced N2O and NH3 emissions by 22.85-61.13 % and 8.45-23.29 %, increased total Kjeldahl nitrogen, and improved cell count and viability by 12.09-71.33 % and 66.71-72.91 %. AM was significantly associated with different nitrogen and microbial compositions. The structural equation model (SEM) reveals NH4+-N is the preferable nitrogen for the majority of bacterial and fungal growth and that AM is closely associated with the conversion between NH3 and NH4+-N. Among the treatments, inoculation with Amm-4 was more effective, as it significantly enhanced the driving effect of the critical microbial composition on nitrogen conversion and accelerated nitrogen ammonification and sequestration. This study provided new concepts for the dynamics of microbial in the ammonification process of new AM bacterial agents in cow manure compost, and an understanding of the ecological mechanism underlying the ammonification process and its contribution to nitrogen (N) cycling from the perspective of microbial communities.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tianyang Lan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qifu He
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
37
|
He P, Wang H, Shi J, Xin M, Wang W, Xie L, Wei Q, Huang M, Shi X, Fan Y, Chen H. Prokaryote Distribution Patterns along a Dissolved Oxygen Gradient Section in the Tropical Pacific Ocean. Microorganisms 2023; 11:2172. [PMID: 37764016 PMCID: PMC10534896 DOI: 10.3390/microorganisms11092172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Oceanic oxygen levels are decreasing significantly in response to global climate change; however, the microbial diversity and ecological functional responses to dissolved oxygen (DO) in the open ocean are largely unknown. Here, we present prokaryotic distribution coupled with physical and biogeochemical variables and DO gradients from the surface to near the bottom of a water column along an approximately 12,000-km transect from 13° N to 18° S in the Tropical Pacific Ocean. Nitrate (11.42%), temperature (10.90%), pH (10.91%), silicate (9.34%), phosphate (4.25%), chlorophyll a (3.66%), DO (3.50%), and salinity (3.48%) significantly explained the microbial community variations in the studied area. A distinct microbial community composition broadly corresponding to the water masses formed vertically. Additionally, distinct ecotypes of Thaumarchaeota and Nitrospinae belonging to diverse phylogenetic clades that coincided with specific vertical niches were observed. Moreover, the correlation analysis revealed large-scale natural feedback in which chlorophyll a (organic matter) promoted Thaumarchaeotal biomass at depths that subsequently coupled with Nitrospina, produced and replenished nitrate for phytoplankton productivity at the surface. Low DO also favored Thaumarchaeota growth and fueled nitrate production.
Collapse
Affiliation(s)
- Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| | - Huan Wang
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| | - Jie Shi
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| | - Ming Xin
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Weimin Wang
- Center for Ocean and Climate Research, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China;
| | - Linping Xie
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Qinsheng Wei
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Mu Huang
- Key Laboratory of State Oceanic Administration for Marine Sedimentology & Environmental Geology, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (M.H.); (X.S.)
| | - Xuefa Shi
- Key Laboratory of State Oceanic Administration for Marine Sedimentology & Environmental Geology, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (M.H.); (X.S.)
| | - Yaqin Fan
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Hao Chen
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| |
Collapse
|
38
|
Liu L, Chen M, Wan XS, Du C, Liu Z, Hu Z, Jiang ZP, Zhou K, Lin H, Shen H, Zhao D, Yuan L, Hou L, Yang JYT, Li X, Kao SJ, Zakem EJ, Qin W, Dai M, Zhang Y. Reduced nitrite accumulation at the primary nitrite maximum in the cyclonic eddies in the western North Pacific subtropical gyre. SCIENCE ADVANCES 2023; 9:eade2078. [PMID: 37585519 PMCID: PMC10431711 DOI: 10.1126/sciadv.ade2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Nitrite, an intermediate product of the oxidation of ammonia to nitrate (nitrification), accumulates in upper oceans, forming the primary nitrite maximum (PNM). Nitrite concentrations in the PNM are relatively low in the western North Pacific subtropical gyre (wNPSG), where eddies are frequent and intense. To explain these low nitrite concentrations, we investigated nitrification in cyclonic eddies in the wNPSG. We detected relatively low half-saturation constants (i.e., high substrate affinities) for ammonia and nitrite oxidation at 150 to 200 meter water depth. Eddy-induced displacement of high-affinity nitrifiers and increased substrate supply enhanced ammonia and nitrite oxidation, depleting ambient substrate concentrations in the euphotic zone. Nitrite oxidation is more strongly enhanced by the cyclonic eddies than ammonia oxidation, reducing concentrations and accelerating the turnover of nitrite in the PNM. These findings demonstrate a spatial decoupling of the two steps of nitrification in response to mesoscale processes and provide insights into physical-ecological controls on the PNM.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xianhui S. Wan
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Chuanjun Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhiyu Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhendong Hu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | | | - Kuanbo Zhou
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongyang Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui Shen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Duo Zhao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lanying Yuan
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lei Hou
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jin-Yu T. Yang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Emily J. Zakem
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Wei Qin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
39
|
Qi L, Zheng Y, Hou L, Liu B, Zhou J, An Z, Wu L, Chen F, Lin Z, Yin G, Dong H, Li X, Liang X, Liu M. Potential response of dark carbon fixation to global warming in estuarine and coastal waters. GLOBAL CHANGE BIOLOGY 2023; 29:3821-3832. [PMID: 37021604 DOI: 10.1111/gcb.16702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
Dark carbon fixation (DCF), through which chemoautotrophs convert inorganic carbon to organic carbon, is recognized as a vital process of global carbon biogeochemical cycle. However, little is known about the response of DCF processes in estuarine and coastal waters to global warming. Using radiocarbon labelling method, the effects of temperature on the activity of chemoautotrophs were investigated in benthic water of the Yangtze estuarine and coastal areas. A dome-shaped thermal response pattern was observed for DCF rates (i.e., reduced rates at lower or higher temperatures), with the optimum temperature (Topt ) varying from about 21.9 to 32.0°C. Offshore sites showed lower Topt values and were more vulnerable to global warming compared with nearshore sites. Based on temperature seasonality of the study area, it was estimated that warming would accelerate DCF rate in winter and spring but inhibit DCF activity in summer and fall. However, at an annual scale, warming showed an overall promoting effect on DCF rates. Metagenomic analysis revealed that the dominant chemoautotrophic carbon fixation pathways in the nearshore area were Calvin-Benson-Bassham (CBB) cycle, while the offshore sites were co-dominated by CBB and 3-hydroxypropionate/4-hydroxybutyrate cycles, which may explain the differential temperature response of DCF along the estuarine and coastal gradients. Our findings highlight the importance of incorporating DCF thermal response into biogeochemical models to accurately estimate the carbon sink potential of estuarine and coastal ecosystems in the context of global warming.
Collapse
Affiliation(s)
- Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| |
Collapse
|
40
|
Huang J, Yang J, Han M, Wang B, Sun X, Jiang H. Microbial carbon fixation and its influencing factors in saline lake water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162922. [PMID: 36933719 DOI: 10.1016/j.scitotenv.2023.162922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Microbial carbon fixation in saline lakes constitutes an important part of the global lacustrine carbon budget. However, the microbial inorganic carbon uptake rates in saline lake water and its influencing factors are still not fully understood. Here, we studied in situ microbial carbon uptake rates under light-dependent and dark conditions in the saline water of Qinghai Lake using a carbon isotopic labeling (14C-bicarbonate) technique, followed by geochemical and microbial analyses. The results showed that the light-dependent inorganic carbon uptake rates were 135.17-293.02 μg C L-1 h-1 during the summer cruise, while dark inorganic carbon uptake rates ranged from 4.27 to 14.10 μg C L-1 h-1. Photoautotrophic prokaryotes and algae (e.g. Oxyphotobacteria, Chlorophyta, Cryptophyta and Ochrophyta) may be the major contributors to light-dependent carbon fixation processes. Microbial inorganic carbon uptake rates were mainly influenced by the level of nutrients (e.g., ammonium, dissolved inorganic carbon, dissolved organic carbon, total nitrogen), with dissolved inorganic carbon content being predominant. Environmental and microbial factors jointly regulate the total, light-dependent and dark inorganic carbon uptake rates in the studied saline lake water. In summary, microbial light-dependent and dark carbon fixation processes are active and contribute significantly to carbon sequestration in saline lake water. Therefore, more attention should be given to microbial carbon fixation and its response to climate and environmental changes of the lake carbon cycle in the context of climate change.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
41
|
Baltar F, Martínez-Pérez C, Amano C, Vial M, Robaina-Estévez S, Reinthaler T, Herndl GJ, Zhao Z, Logares R, Morales SE, González JM. A ubiquitous gammaproteobacterial clade dominates expression of sulfur oxidation genes across the mesopelagic ocean. Nat Microbiol 2023; 8:1137-1148. [PMID: 37095175 DOI: 10.1038/s41564-023-01374-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023]
Abstract
The deep ocean (>200 m depth) is the largest habitat on Earth. Recent evidence suggests sulfur oxidation could be a major energy source for deep ocean microbes. However, the global relevance and the identity of the major players in sulfur oxidation in the oxygenated deep-water column remain elusive. Here we combined single-cell genomics, community metagenomics, metatranscriptomics and single-cell activity measurements on samples collected beneath the Ross Ice Shelf in Antarctica to characterize a ubiquitous mixotrophic bacterial group (UBA868) that dominates expression of RuBisCO genes and of key sulfur oxidation genes. Further analyses of the gene libraries from the 'Tara Oceans' and 'Malaspina' expeditions confirmed the ubiquitous distribution and global relevance of this enigmatic group in the expression of sulfur oxidation and dissolved inorganic carbon fixation genes across the global mesopelagic ocean. Our study also underscores the unrecognized importance of mixotrophic microbes in the biogeochemical cycles of the deep ocean.
Collapse
Affiliation(s)
- Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
| | - Clara Martínez-Pérez
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Marion Vial
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, AB Den Burg, The Netherlands
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain.
| |
Collapse
|
42
|
Anstett J, Plominsky AM, DeLong EF, Kiesser A, Jürgens K, Morgan-Lang C, Stepanauskas R, Stewart FJ, Ulloa O, Woyke T, Malmstrom R, Hallam SJ. A compendium of bacterial and archaeal single-cell amplified genomes from oxygen deficient marine waters. Sci Data 2023; 10:332. [PMID: 37244914 DOI: 10.1038/s41597-023-02222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.
Collapse
Affiliation(s)
- Julia Anstett
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Alvaro M Plominsky
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Alyse Kiesser
- School of Engineering, The University of British Columbia, Kelowna, BC, Canada
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Osvaldo Ulloa
- Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
- Instituto Milenio de Oceanografía, Casilla 1313, 4070386, Concepción, Chile
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven J Hallam
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
43
|
Vigneron A, Cruaud P, Lovejoy C, Vincent WF. Genomic insights into cryptic cycles of microbial hydrocarbon production and degradation in contiguous freshwater and marine microbiomes. MICROBIOME 2023; 11:104. [PMID: 37173775 PMCID: PMC10176705 DOI: 10.1186/s40168-023-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cyanobacteria and eukaryotic phytoplankton produce long-chain alkanes and generate around 100 times greater quantities of hydrocarbons in the ocean compared to natural seeps and anthropogenic sources. Yet, these compounds do not accumulate in the water column, suggesting rapid biodegradation by co-localized microbial populations. Despite their ecological importance, the identities of microbes involved in this cryptic hydrocarbon cycle are mostly unknown. Here, we identified genes encoding enzymes involved in the hydrocarbon cycle across the salinity gradient of a remote, vertically stratified, seawater-containing High Arctic lake that is isolated from anthropogenic petroleum sources and natural seeps. Metagenomic analysis revealed diverse hydrocarbon cycling genes and populations, with patterns of variation along gradients of light, salinity, oxygen, and sulfur that are relevant to freshwater, oceanic, hadal, and anoxic deep sea ecosystems. RESULTS Analyzing genes and metagenome-assembled genomes down the water column of Lake A in the Canadian High Arctic, we detected microbial hydrocarbon production and degradation pathways at all depths, from surface freshwaters to dark, saline, anoxic waters. In addition to Cyanobacteria, members of the phyla Flavobacteria, Nitrospina, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia had pathways for alkane and alkene production, providing additional sources of biogenic hydrocarbons. Known oil-degrading microorganisms were poorly represented in the system, while long-chain hydrocarbon degradation genes were identified in various freshwater and marine lineages such as Actinobacteria, Schleiferiaceae, and Marinimicrobia. Genes involved in sulfur and nitrogen compound transformations were abundant in hydrocarbon producing and degrading lineages, suggesting strong interconnections with nitrogen and sulfur cycles and a potential for widespread distribution in the ocean. CONCLUSIONS Our detailed metagenomic analyses across water column gradients in a remote petroleum-free lake derived from the Arctic Ocean suggest that the current estimation of bacterial hydrocarbon production in the ocean could be substantially underestimated by neglecting non-phototrophic production and by not taking low oxygen zones into account. Our findings also suggest that biogenic hydrocarbons may sustain a large fraction of freshwater and oceanic microbiomes, with global biogeochemical implications for carbon, sulfur, and nitrogen cycles. Video Abstract.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Takuvik Joint International Laboratory, CNRS / Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, CNRS / Université Laval, Québec, QC, Canada
- Québec Océan, Université Laval, Québec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, CNRS / Université Laval, Québec, QC, Canada
| |
Collapse
|
44
|
D'Angelo T, Goordial J, Lindsay MR, McGonigle J, Booker A, Moser D, Stepanauskus R, Orcutt BN. Replicated life-history patterns and subsurface origins of the bacterial sister phyla Nitrospirota and Nitrospinota. THE ISME JOURNAL 2023; 17:891-902. [PMID: 37012337 DOI: 10.1038/s41396-023-01397-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic repository for the coding potential of ancestral metabolic traits.
Collapse
Affiliation(s)
- Timothy D'Angelo
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Jacqueline Goordial
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Melody R Lindsay
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Julia McGonigle
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
- Basepaws Pet Genetics, 1820 W. Carson Street, Suite 202-351, Torrance, CA, 90501, USA
| | - Anne Booker
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Duane Moser
- Desert Research Institute, 755 East Flamingo Road, Las Vegas, NV, 89119, USA
| | - Ramunas Stepanauskus
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA.
| |
Collapse
|
45
|
Cummings S, Ardor Bellucci LM, Seabrook S, Raineault NA, McPhail KL, Thurber AR. Variations and gradients between methane seep and off-seep microbial communities in a submarine canyon system in the Northeast Pacific. PeerJ 2023; 11:e15119. [PMID: 37009161 PMCID: PMC10064993 DOI: 10.7717/peerj.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46-47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats.
Collapse
Affiliation(s)
- Susie Cummings
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States of America
| | - Lila M. Ardor Bellucci
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Sarah Seabrook
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | | | - Kerry L. McPhail
- College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | - Andrew R. Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States of America
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
46
|
Habibi N, Uddin S, Al-Sarawi H, Aldhameer A, Shajan A, Zakir F, Abdul Razzack N, Alam F. Metagenomes from Coastal Sediments of Kuwait: Insights into the Microbiome, Metabolic Functions and Resistome. Microorganisms 2023; 11:microorganisms11020531. [PMID: 36838497 PMCID: PMC9960530 DOI: 10.3390/microorganisms11020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting in undesirable effects on ecosystem functioning, thus necessitating the need to understand their composition and functions. In the present investigation, we studied the metagenomes of 12 coastal surface sediments through whole genome shot-gun sequencing. Taxonomic binning of the genes predicted about 86% as bacteria, 1% as archaea, >0.001% as viruses and Eukaryota, and 12% as other communities. The dominant bacterial, archaeal, and fungal genera were Woeseia, Nitrosopumilus, and Rhizophagus, respectively. The most prevalent viral families were Myoviridae and Siphoviridae, and the T4 virus was the most dominant bacteriophage. The unigenes further aligned to 26 clusters of orthologous genes (COGs) and five carbohydrate-active enzymes (CAZy) classes. Glycoside hydrolases (GH) and glycoside transferase (GT) were the highest-recorded CAzymes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 functions were subjugated by purine metabolism > ABC transporters > oxidative phosphorylation > two-component system > pyrimidine metabolism > pyruvate metabolism > quorum sensing > carbon fixation pathways > ribosomes > and glyoxalate and dicarboxylate metabolism. Sequences allying with plasmids, integrons, insertion sequences and antibiotic-resistance genes were also observed. Both the taxonomies and functional abundances exhibited variation in relative abundances, with limited spatial variability (ANOVA p > 0.05; ANOSIM-0.05, p > 0.05). This study underlines the dominant microbial communities and functional genes in the marine sediments of Kuwait as a baseline for future biomonitoring programs.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
- Correspondence:
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Hanan Al-Sarawi
- Environment Public Authority, Fourth Ring Road, Shuwaikh Industrial 70050, Kuwait
| | - Ahmed Aldhameer
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Faiz Alam
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
47
|
Wang H, Zhang W, Li Y, Gao Y, Yang N, Niu L, Zhang H, Wang L. Trophic interactions regulate microbial responses to environmental conditions and partially counteract nitrogen transformation potential in urban river bends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116889. [PMID: 36462486 DOI: 10.1016/j.jenvman.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
River bends are distinguished by high biodiversity and elevated rates of biogeochemical activities due to complex hydromorphological processes that form diverse geomorphic units, making it challenging to elucidate the impact of trophic interactions on community assembly and biogeochemical processes. Here, we clarify the effect of trophic interactions in determining the assembly of multi-trophic microbial communities and the impact on nitrogen transformation potential by distinguishing the direct and cascading effects of environmental conditions based on 32 samples collected from a typical urban river bends. It was found that both bacterial and micro-eukaryotic communities were determined by homogeneous selection (indicated by β-nearest taxon index, accounted for 85% and 48.3%, respectively), whereas the dominant environmental factors were different, being sediment particle size (P < 0.05) and nitrogen (P < 0.05), respectively. Both the microbial co-occurrence network and the significant association (P < 0.05) between β-nearest taxon index and trophic transfer efficiency changes showed that the trophic interactions strongly shaped microbial communities in the urban river bends. The path modeling suggested that environmental conditions resulted in an increase in abundance of multi-trophic microbial communities via direct effects (mean standardized effects = 0.21), but reductions in abundance of bacteria via cascading effects, i.e., trophic interaction (mean standardized effects = -0.1). When considering direct and cascading effects together, environmental conditions in urban river bends were found to enhance the abundance of microbial communities, with decreasing magnitude at the higher trophic level. Analogously, the path modeling also indicated the nitrogen transformation potential enhanced by environmental conditions via direct effects, but partly counteracted by trophic interactions via cascading effects. The obtained results could provide a theoretical basis for the regulation and restoration of urban rivers.
Collapse
Affiliation(s)
- Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
48
|
Ma J, Li X, Song J, Wen L, Wang Q, Xu K, Dai J, Zhong G. The effects of seawater thermodynamic parameters on the oxygen minimum zone (OMZ) in the tropical western Pacific Ocean. MARINE POLLUTION BULLETIN 2023; 187:114579. [PMID: 36634538 DOI: 10.1016/j.marpolbul.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The continuous expansion of the oxygen minimum zone (OMZ) is a microcosm of marine hypoxia problem. Based on a survey in M4 seamount area of Tropical Western Pacific Ocean, the effects of thermodynamic parameters on OMZ were discussed. The study showed thermodynamic parameters mainly affect the upper oxycline of OMZ. The increase in temperature aggravates seawater stratification, which not only shallows oxycline but also increases the strength of DO stratification, promoting the expansion of OMZ. Based on relationships between thermodynamic parameters, water mass and DO, OMZ in this area is defined as follows: the water layer with low DO between the lower boundary of high-salt area and 1000 m. Moreover, the study showed that though there is no "seamount effect" on a scale of 3000 m, low-value areas of DO form at the bottom of seamount. This study will provide an evidence for expansion of OMZ exacerbated by global warming.
Collapse
Affiliation(s)
- Jun Ma
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Lilian Wen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qidong Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuidong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiajia Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Guorong Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
49
|
Chen H, Liu K, Yang E, Chen J, Gu Y, Wu S, Yang M, Wang H, Wang D, Li H. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159462. [PMID: 36257429 DOI: 10.1016/j.scitotenv.2022.159462] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The novel biological nitrogen removal process has been extensively studied for its high nitrogen removal efficiency, energy efficiency, and greenness. A successful novel biological nitrogen removal process has a stable microecological equilibrium and benign interactions between the various functional bacteria. However, changes in the external environment can easily disrupt the dynamic balance of the microecology and affect the activity of functional bacteria in the novel biological nitrogen removal process. Therefore, this review focuses on the microecology in existing the novel biological nitrogen removal process, including the growth characteristics of functional microorganisms and their interactions, together with the effects of different influencing factors on the evolution of microbial communities. This provides ideas for achieving a stable dynamic balance of the microecology in a novel biological nitrogen removal process. Furthermore, to investigate deeply the mechanisms of microbial interactions in novel biological nitrogen removal process, this review also focuses on the influence of quorum sensing (QS) systems on nitrogen removal microbes, regulated by which bacteria secrete acyl homoserine lactones (AHLs) as signaling molecules to regulate microbial ecology in the novel biological nitrogen removal process. However, the mechanisms of action of AHLs on the regulation of functional bacteria have not been fully determined and the composition of QS system circuits requires further investigation. Meanwhile, it is necessary to further apply molecular analysis techniques and the theory of systems ecology in the future to enhance the exploration of microbial species and ecological niches, providing a deeper scientific basis for the development of a novel biological nitrogen removal process.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Ke Liu
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Yanling Gu
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China.
| | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
50
|
Herndl GJ, Bayer B, Baltar F, Reinthaler T. Prokaryotic Life in the Deep Ocean's Water Column. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:461-483. [PMID: 35834811 DOI: 10.1146/annurev-marine-032122-115655] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oceanic waters below a depth of 200 m represent, in terms of volume, the largest habitat of the biosphere, harboring approximately 70% of the prokaryotic biomass in the oceanic water column. These waters are characterized by low temperature, increasing hydrostatic pressure, and decreasing organic matter supply with depth. Recent methodological advances in microbial oceanography have refined our view of the ecology of prokaryotes in the dark ocean. Here, we review the ecology of prokaryotes of the dark ocean, present data on the biomass distribution and heterotrophic and chemolithoautotrophic prokaryotic production in the major oceanic basins, and highlight the phylogenetic and functional diversity of this part of the ocean. We describe the connectivity of surface and deep-water prokaryotes and the molecular adaptations of piezophilic prokaryotes to high hydrostatic pressure. We also highlight knowledge gaps in the ecology of the dark ocean's prokaryotes and their role in the biogeochemical cycles in the largest habitat of the biosphere.
Collapse
Affiliation(s)
- Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, The Netherlands
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| |
Collapse
|