1
|
Li T, Niu D, Ji L, Li Q, Guan B, Wang H, Ouyang G, Liu M. Supramolecular rosette intermediated homochiral double helix. Nat Commun 2025; 16:1698. [PMID: 39962065 PMCID: PMC11833066 DOI: 10.1038/s41467-025-57059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Precise organization of organic molecules into homochiral double-helix remains a challenge due to the difficulty in controlling both self-assembly process and chirality transfer across length scales. Here, we report that a type of bisnaphthalene bisurea molecule could assemble into chirality-controlled nanoscale double-helices by a supramolecular rosette-intermediated hierarchical self-assembly mechanism. A solvent-mixing self-assembly protocol is adopted to direct bisnaphthalene bisurea cyclization into chiral discrete rosettes through cooperative intramolecular and intermolecular hydrogen bonds. Controlled hexagonal packing of rosettes at higher concentrations gives one-dimensional single-stranded nanofibers, which intertwine into well-defined double-helix nanostructures with preferred chirality that depends on the absolute configurations of bisnaphthalene bisurea. The hierarchical organization of bisnaphthalene bisurea molecules enables effective excitation energy delocalization within the double-helix, which contributes to near-unity energy transfer from double-helix to adsorbed acceptor dyes even in donor/acceptor ratios over 1000, leading to bright circularly polarized luminescence from the originally achiral acceptor. The experimental and theoretical simulation results not only provide a hierarchical strategy to fabricate homochiral double-helix but also bring insights in understanding the high-efficiency light-harvesting process in photosystem II.
Collapse
Affiliation(s)
- Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Dian Niu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Lukang Ji
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Qian Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Bo Guan
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Izri Z, Noireaux V. Membraneless Compartmentalization of Cell-Free Transcription-Translation by Polymer-Assisted Liquid-Liquid Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403243. [PMID: 39641187 DOI: 10.1002/smll.202403243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Living cells use liquid-liquid phase separation (LLPS) to compartmentalize metabolic functions into mesoscopic-sized droplets. Deciphering the mechanisms at play in LLPS is therefore critical to understanding the structuration and functions of cells at the subcellular level. Although observed and achieved to a significant degree of control in vivo, the reconstitution of LLPS integrating advanced biological functions, such as gene expression, has been so far limited in vitro. LLPS of cell-free transcription-translation (TXTL) reactions require multi-step experimental approaches that lack biomimetic and have relatively poor efficacy, thus limiting their usage in cell-free engineered systems such as synthetic cells. Here the polymer-assisted LLPS of TXTL reactions are reported as the single-pot one-step compartmentalization of a model complex metabolic system obtain without using solvents or surfactants. LLPS occurs by adding the biocompatible polymers poly(ethylene glycol), poly(vinyl alcohol), and dextran to a TXTL reaction, that remains highly active. These polymers serve as partitioning agents that localize TXTL in mesoscopic-sized droplets rich in dextran. Cytoplasmic and membrane-interacting proteins are synthesized preferentially inside these droplets, and localize either uniformly or preferentially at the interface, depending on their nature. The LLPS-TXTL system presented in this work is a step toward the design of synthetic membraneless active organelles.
Collapse
Affiliation(s)
- Ziane Izri
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Southeast, Minneapolis, MN, 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Southeast, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Chen Z, Ji M, Qian J, Zhang Z, Zhang X, Gao H, Wang H, Wang R, Qi Y. ProBID-Net: a deep learning model for protein-protein binding interface design. Chem Sci 2024; 15:19977-19990. [PMID: 39568891 PMCID: PMC11575592 DOI: 10.1039/d4sc02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Protein-protein interactions are pivotal in numerous biological processes. The computational design of these interactions facilitates the creation of novel binding proteins, crucial for advancing biopharmaceutical products. With the evolution of artificial intelligence (AI), protein design tools have swiftly transitioned from scoring-function-based to AI-based models. However, many AI models for protein design are constrained by assuming complete unfamiliarity with the amino acid sequence of the input protein, a feature most suited for de novo design but posing challenges in designing protein-protein interactions when the receptor sequence is known. To bridge this gap in computational protein design, we introduce ProBID-Net. Trained using natural protein-protein complex structures and protein domain-domain interface structures, ProBID-Net can discern features from known target protein structures to design specific binding proteins based on their binding sites. In independent tests, ProBID-Net achieved interface sequence recovery rates of 52.7%, 43.9%, and 37.6%, surpassing or being on par with ProteinMPNN in binding protein design. Validated using AlphaFold-Multimer, the sequences designed by ProBID-Net demonstrated a close correspondence between the design target and the predicted structure. Moreover, the model's output can predict changes in binding affinity upon mutations in protein complexes, even in scenarios where no data on such mutations were provided during training (zero-shot prediction). In summary, the ProBID-Net model is poised to significantly advance the design of protein-protein interactions.
Collapse
Affiliation(s)
- Zhihang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Menglin Ji
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Jie Qian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Zhe Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Xiangying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Haotian Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Yifei Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| |
Collapse
|
4
|
Li L, Ye L, Shi Y, Yin L, Chen G. Liquid Phase Exfoliation of Protein Parent Crystals into Nanosheets and Fibrils Based on Orthogonal Supramolecular Interactions. J Am Chem Soc 2024; 146:31992-32002. [PMID: 39530760 DOI: 10.1021/jacs.4c11921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins are attractive building blocks for fabricating diverse and precise nanomaterials. However, the facile fabrication of multidimensional artificial assemblies is highly challenging. Here, inspired by the large-scale production technique of inorganic nanomaterials, we demonstrate the application of liquid phase exfoliation (LPE) on native protein ConA by the design of synthetic ligands. These ligands provide distinct in-plane and out-of-plane supramolecular interactions, allowing the generation of multidimensional architectures based on the same protein by dissociating a single interaction in solution, including 3D porous protein crystals, 2D sizable nanosheets, and 1D fibrils. Importantly, the exfoliated 2D sheets were dozens of times larger than the self-assembled nanosheets, resulting in a dramatic enhancement of the intrinsic bioactivity of the building blocks by receptor clustering and less endocytosis. These findings enable the successful application of LPE on biomacromolecules and open up an alternative avenue to generate advanced multidimensional nanomaterials, without the need for complex protein design and careful adjustment of self-assembly conditions.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Linfei Ye
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yiwei Shi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lin Yin
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Shen H, Lynch EM, Watson JL, Wu K, Bai H, Sheffler W, Derivery E, Kollman J, Baker D. Nucleation limited assembly and polarized growth of a de novo-designed allosterically modulatable protein filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613980. [PMID: 39345553 PMCID: PMC11429946 DOI: 10.1101/2024.09.20.613980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The design of inducibly assembling protein nanomaterials is an outstanding challenge. Here, we describe the computational design of a protein filament formed from a monomeric subunit which binds a peptide ligand. The cryoEM structure of the micron scale fibers is very close to the computational design model. The ligand acts as a tunable allosteric modulator: while not part of the fiber subunit-subunit interfaces, the assembly of the filament is dependent on ligand addition, with longer peptides having more extensive interaction surfaces with the monomer promoting more rapid growth. Seeded growth and capping experiments reveal that the filaments grow primarily from one end. Oligomers containing 12 copies of the peptide ligand nucleate fiber assembly from monomeric subunit and peptide mixtures at concentrations where assembly occurs very slowly, likely by generating critical local concentrations of monomer in the assembly competent conformation. Following filament assembly, the peptide ligand can be exchanged with free peptide in solution, and it can be readily fused to any functional protein of interest, opening the door to a wide variety of tunable engineered materials.
Collapse
Affiliation(s)
- Hao Shen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Eric M. Lynch
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joseph L. Watson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kejia Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hua Bai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Justin Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Satalkar V, Degaga GD, Li W, Pang YT, McShan AC, Gumbart JC, Mitchell JC, Torres MP. Generative β-hairpin design using a residue-based physicochemical property landscape. Biophys J 2024; 123:2790-2806. [PMID: 38297834 PMCID: PMC11393682 DOI: 10.1016/j.bpj.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.
Collapse
Affiliation(s)
- Vardhan Satalkar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Gemechis D Degaga
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
7
|
Pillai A, Idris A, Philomin A, Weidle C, Skotheim R, Leung PJY, Broerman A, Demakis C, Borst AJ, Praetorius F, Baker D. De novo design of allosterically switchable protein assemblies. Nature 2024; 632:911-920. [PMID: 39143214 PMCID: PMC11338832 DOI: 10.1038/s41586-024-07813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Allosteric modulation of protein function, wherein the binding of an effector to a protein triggers conformational changes at distant functional sites, plays a central part in the control of metabolism and cell signalling1-3. There has been considerable interest in designing allosteric systems, both to gain insight into the mechanisms underlying such 'action at a distance' modulation and to create synthetic proteins whose functions can be regulated by effectors4-7. However, emulating the subtle conformational changes distributed across many residues, characteristic of natural allosteric proteins, is a significant challenge8,9. Here, inspired by the classic Monod-Wyman-Changeux model of cooperativity10, we investigate the de novo design of allostery through rigid-body coupling of peptide-switchable hinge modules11 to protein interfaces12 that direct the formation of alternative oligomeric states. We find that this approach can be used to generate a wide variety of allosterically switchable systems, including cyclic rings that incorporate or eject subunits in response to peptide binding and dihedral cages that undergo effector-induced disassembly. Size-exclusion chromatography, mass photometry13 and electron microscopy reveal that these designed allosteric protein assemblies closely resemble the design models in both the presence and absence of peptide effectors and can have ligand-binding cooperativity comparable to classic natural systems such as haemoglobin14. Our results indicate that allostery can arise from global coupling of the energetics of protein substructures without optimized side-chain-side-chain allosteric communication pathways and provide a roadmap for generating allosterically triggerable delivery systems, protein nanomachines and cellular feedback control circuitry.
Collapse
Affiliation(s)
- Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Abbas Idris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cullen Demakis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Hayakawa D, Videbæk TE, Grason GM, Rogers WB. Symmetry-Guided Inverse Design of Self-Assembling Multiscale DNA Origami Tilings. ACS NANO 2024; 18:19169-19178. [PMID: 38981100 PMCID: PMC11271658 DOI: 10.1021/acsnano.4c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Recent advances enable the creation of nanoscale building blocks with complex geometries and interaction specificities for self-assembly. This nearly boundless design space necessitates design principles for defining the mutual interactions between multiple particle species to target a user-specified complex structure or pattern. In this article, we develop a symmetry-based method to generate the interaction matrices that specify the assembly of two-dimensional tilings, which we illustrate using equilateral triangles. By exploiting the allowed 2D symmetries, we develop an algorithmic approach by which any periodic 2D tiling can be generated from an arbitrarily large number of subunit species, notably addressing an unmet challenge of engineering 2D crystals with periodicities that can be arbitrarily larger than the subunit size. To demonstrate the utility of our design approach, we encode specific interactions between triangular subunits synthesized by DNA origami and show that we can guide their self-assembly into tilings with a wide variety of symmetries, using up to 12 unique species of triangles. By conjugating specific triangles with gold nanoparticles, we fabricate gold-nanoparticle supracrystals whose lattice parameter spans up to 300 nm. Finally, to generate economical design rules, we compare the design economy of various tilings. In particular, we show that (1) higher symmetries allow assembly of larger unit cells with fewer subunits and (2) linear supracrystals can be designed more economically using linear primitive unit cells. This work provides a simple algorithmic approach to designing periodic assemblies, aiding in the multiscale assembly of supracrystals of nanostructured "meta-atoms" with engineered plasmonic functions.
Collapse
Affiliation(s)
- Daichi Hayakawa
- Martin
A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Thomas E. Videbæk
- Martin
A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Gregory M. Grason
- Department
of Polymer Science and Engineering, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - W. Benjamin Rogers
- Martin
A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
10
|
Shen H, Lynch EM, Akkineni S, Watson JL, Decarreau J, Bethel NP, Benna I, Sheffler W, Farrell D, DiMaio F, Derivery E, De Yoreo JJ, Kollman J, Baker D. De novo design of pH-responsive self-assembling helical protein filaments. NATURE NANOTECHNOLOGY 2024; 19:1016-1021. [PMID: 38570702 PMCID: PMC11286511 DOI: 10.1038/s41565-024-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Biological evolution has led to precise and dynamic nanostructures that reconfigure in response to pH and other environmental conditions. However, designing micrometre-scale protein nanostructures that are environmentally responsive remains a challenge. Here we describe the de novo design of pH-responsive protein filaments built from subunits containing six or nine buried histidine residues that assemble into micrometre-scale, well-ordered fibres at neutral pH. The cryogenic electron microscopy structure of an optimized design is nearly identical to the computational design model for both the subunit internal geometry and the subunit packing into the fibre. Electron, fluorescent and atomic force microscopy characterization reveal a sharp and reversible transition from assembled to disassembled fibres over 0.3 pH units, and rapid fibre disassembly in less than 1 s following a drop in pH. The midpoint of the transition can be tuned by modulating buried histidine-containing hydrogen bond networks. Computational protein design thus provides a route to creating unbound nanomaterials that rapidly respond to small pH changes.
Collapse
Affiliation(s)
- Hao Shen
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Susrut Akkineni
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Issa Benna
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Daniel Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Justin Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Shetty S, Alvarado PC, Pettie D, Collier JH. Next-Generation Vaccine Development with Nanomaterials: Recent Advances, Possibilities, and Challenges. Annu Rev Biomed Eng 2024; 26:273-306. [PMID: 38959389 DOI: 10.1146/annurev-bioeng-110122-124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Deleah Pettie
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| |
Collapse
|
12
|
Lu Q, Xu Y, Poppleton E, Zhou K, Sulc P, Stephanopoulos N, Ke Y. DNA-Nanostructure-Guided Assembly of Proteins into Programmable Shapes. NANO LETTERS 2024; 24:1703-1709. [PMID: 38278134 PMCID: PMC10853956 DOI: 10.1021/acs.nanolett.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The development of methods to synthesize artificial protein complexes with precisely controlled configurations will enable diverse biological and medical applications. Using DNA to link proteins provides programmability that can be difficult to achieve with other methods. Here, we use DNA origami as an "assembler" to guide the linking of protein-DNA conjugates using a series of oligonucleotide hybridization and displacement operations. We constructed several isomeric protein nanostructures, including a dimer, two types of trimer structures, and three types of tetramer assemblies, on a DNA origami platform by using a C3-symmetric building block composed of a protein trimer modified with DNA handles. Our approach expands the scope for the precise assembly of protein-based nanostructures and will enable the formulation of functional protein complexes with stoichiometric and geometric control.
Collapse
Affiliation(s)
- Qinyi Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yang Xu
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Erik Poppleton
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Kun Zhou
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Petr Sulc
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Stephanopoulos
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yonggang Ke
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Mout R, Bretherton RC, Decarreau J, Lee S, Gregorio N, Edman NI, Ahlrichs M, Hsia Y, Sahtoe DD, Ueda G, Sharma A, Schulman R, DeForest CA, Baker D. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. Proc Natl Acad Sci U S A 2024; 121:e2309457121. [PMID: 38289949 PMCID: PMC10861882 DOI: 10.1073/pnas.2309457121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
Collapse
Affiliation(s)
- Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Nicole Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Natasha I. Edman
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Medical Scientist Training Program, University of Washington, Seattle, WA98195
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alee Sharma
- College of Professional Studies, Northeastern University, Boston, MA02115
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Computer Science, Johns Hopkins University, Baltimore, MD21218
| | - Cole A. DeForest
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| |
Collapse
|
14
|
Bethel NP, Borst AJ, Parmeggiani F, Bick MJ, Brunette TJ, Nguyen H, Kang A, Bera AK, Carter L, Miranda MC, Kibler RD, Lamb M, Li X, Sankaran B, Baker D. Precisely patterned nanofibres made from extendable protein multiplexes. Nat Chem 2023; 15:1664-1671. [PMID: 37667012 PMCID: PMC10695826 DOI: 10.1038/s41557-023-01314-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Molecular systems with coincident cyclic and superhelical symmetry axes have considerable advantages for materials design as they can be readily lengthened or shortened by changing the length of the constituent monomers. Among proteins, alpha-helical coiled coils have such symmetric, extendable architectures, but are limited by the relatively fixed geometry and flexibility of the helical protomers. Here we describe a systematic approach to generating modular and rigid repeat protein oligomers with coincident C2 to C8 and superhelical symmetry axes that can be readily extended by repeat propagation. From these building blocks, we demonstrate that a wide range of unbounded fibres can be systematically designed by introducing hydrophilic surface patches that force staggering of the monomers; the geometry of such fibres can be precisely tuned by varying the number of repeat units in the monomer and the placement of the hydrophilic patches.
Collapse
Affiliation(s)
- Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Fabio Parmeggiani
- School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Bristol Biodesign Institute, University of Bristol, Bristol, UK
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Wang J, Chen C, Yao G, Ding J, Wang L, Jiang H. Intelligent Protein Design and Molecular Characterization Techniques: A Comprehensive Review. Molecules 2023; 28:7865. [PMID: 38067593 PMCID: PMC10707872 DOI: 10.3390/molecules28237865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the widespread application of artificial intelligence algorithms in protein structure, function prediction, and de novo protein design has significantly accelerated the process of intelligent protein design and led to many noteworthy achievements. This advancement in protein intelligent design holds great potential to accelerate the development of new drugs, enhance the efficiency of biocatalysts, and even create entirely new biomaterials. Protein characterization is the key to the performance of intelligent protein design. However, there is no consensus on the most suitable characterization method for intelligent protein design tasks. This review describes the methods, characteristics, and representative applications of traditional descriptors, sequence-based and structure-based protein characterization. It discusses their advantages, disadvantages, and scope of application. It is hoped that this could help researchers to better understand the limitations and application scenarios of these methods, and provide valuable references for choosing appropriate protein characterization techniques for related research in the field, so as to better carry out protein research.
Collapse
Affiliation(s)
| | | | | | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| |
Collapse
|
16
|
Zhang C, Chen X, Liu B, Zang J, Zhang T, Zhao G. Preparation and Unique Three-Dimensional Self-Assembly Property of Starfish Ferritin. Foods 2023; 12:3903. [PMID: 37959022 PMCID: PMC10647799 DOI: 10.3390/foods12213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The structure and assembly properties of ferritin derived from aquatic products remain to be explored. Constructing diverse three-dimensional (3D) protein architectures with the same building blocks has important implications for nutrient delivery, medicine and materials science. Herein, ferritin from Asterias forbesii (AfFer) was prepared, and its crystal structure was resolved at 1.91 Å for the first time. Notably, different from the crystal structure of other reported ferritin, AfFer exhibited a BCT lattice arrangement in its crystals. Bioinspired by the crystal structure of AfFer, we described an effective approach for manufacturing 3D porous, crystalline nanoarchitectures by redesigning the shared protein interface involved in different 3D protein arrays. Based on this strategy, two 3D superlattices of body-centered tetragonal and simple cubicwere constructed with ferritin molecules as the building blocks. This study provided a potentially generalizable strategy for constructing different 3D protein-based crystalline biomaterials with the same building blocks.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.Z.); (X.C.); (B.L.); (J.Z.); (T.Z.)
| |
Collapse
|
17
|
Han K, Zhang Z, Tezcan FA. Spatially Patterned, Porous Protein Crystals as Multifunctional Materials. J Am Chem Soc 2023; 145:19932-19944. [PMID: 37642457 DOI: 10.1021/jacs.3c06348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
While the primary use of protein crystals has historically been in crystallographic structure determination, they have recently emerged as promising materials with many advantageous properties such as high porosity, biocompatibility, stability, structural and functional versatility, and genetic/chemical tailorability. Here, we report that the utility of protein crystals as functional materials can be further augmented through their spatial patterning and control of their morphologies. To this end, we took advantage of the chemically and kinetically controllable nature of ferritin self-assembly and constructed core-shell crystals with chemically distinct domains, tunable structural patterns, and morphologies. The spatial organization within ferritin crystals enabled the generation of patterned, multi-enzyme frameworks with cooperative catalytic behavior. We further exploited the differential growth kinetics of ferritin crystal facets to assemble Janus-type architectures with an anisotropic arrangement of chemically distinct domains. These examples represent a step toward using protein crystals as reaction vessels for complex multi-step reactions and broadening their utility as functional, solid-state materials. Our results demonstrate that morphology control and spatial patterning, which are key concepts in materials science and nanotechnology, can also be applied for engineering protein crystals.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Li L, Li Z, Wang Z, Chen S, Liu R, Xu X, Zhang Z, Ye L, Ding Y, Luo Q, Cao S, Zhang L, Imberty A, Chen G. Spatiotemporal Landscape for the Sophisticated Transformation of Protein Assemblies Defined by Multiple Supramolecular Interactions. ACS NANO 2023; 17:15001-15011. [PMID: 37459282 DOI: 10.1021/acsnano.3c04029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Precise protein assemblies not only constitute a series of living machineries but also provide an advanced class of biomaterials. Previously, we developed the inducing ligand strategy to generate various fixed protein assemblies, without the formation of noncovalent interactions between proteins. Here, we demonstrated that controlling the symmetry and number of supramolecular interactions introduced on protein surfaces could direct the formation of unspecific interactions between proteins and induce various nanoscale assemblies, including coiling nanowires, nanotubes, and nanosheets, without manipulation of the protein's native surfaces. More importantly, these nanoscale assemblies could spontaneously evolve into more ordered architectures, crystals. We further showed that the transformation from the introduced supramolecular interactions to the interactions formed between proteins was crucial for pathway selection and outcomes of evolution. These findings reveal a transformation mechanism of protein self-assembly that has not been exploited before and may provide an approach to generate complex and transformable biomacromolecular self-assemblies.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhen Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ziying Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhi Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Linfei Ye
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Sheng Cao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
20
|
Mout R, Bretherton RC, Decarreau J, Lee S, Edman NI, Ahlrichs M, Hsia Y, Sahtoe DD, Ueda G, Gregorio N, Sharma A, Schulman R, DeForest CA, Baker D. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543449. [PMID: 37398067 PMCID: PMC10312586 DOI: 10.1101/2023.06.02.543449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
Collapse
Affiliation(s)
- Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Natasha I. Edman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Nicole Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195
| | - Alee Sharma
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218
| | - Cole A. DeForest
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
21
|
Zhang S, Hao A, Xing P. Solvent-resolved self-assemblies of cholesteryl-cyanostilbene conjugates with photo- and thermo-responsiveness. NANOSCALE 2023. [PMID: 37191115 DOI: 10.1039/d3nr01056b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It remains challenging to construct multifunctional chiral stimulus-responsive molecules and to modulate their morphology at the nanoscale. In this paper, we synthesized a novel chiral molecule with both photoactive and potentially bioactive properties and found that the morphological changes of its self-assembly were influenced by solvent polarity and light exposure. This work enabled the synthesized molecule to undergo Z-E isomerization efficiently under light irradiation by introducing highly oriented hydrogen bonds into the cyanostilbene part. The photoisomerization of the cyanostilbene part from Z- to E-type was further exploited, leading to morphological changes from nanohelices to vesicles with chiroptical evolution. The light-modulated supramolecular chirality and nanostructure provide a green and efficient method for the design of responsive chiral materials.
Collapse
Affiliation(s)
- Shuqing Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
22
|
Tan Z, Li J, Hou J, Gonzalez R. Designing artificial pathways for improving chemical production. Biotechnol Adv 2023; 64:108119. [PMID: 36764336 DOI: 10.1016/j.biotechadv.2023.108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
23
|
Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, Zhang R, Zhang C, Park D, Park WM, Ramirez S, Boyden ES. Recording of cellular physiological histories along optically readable self-assembling protein chains. Nat Biotechnol 2023; 41:640-651. [PMID: 36593405 PMCID: PMC10188365 DOI: 10.1038/s41587-022-01586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.
Collapse
Affiliation(s)
- Changyang Linghu
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Cell and Developmental Biology, Program in Single Cell Spatial Analysis, and Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bobae An
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Orhan T Celiker
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Nava Shmoel
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Ruihan Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chi Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Demian Park
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Won Min Park
- Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Edward S Boyden
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Biological Engineering, MIT, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA.
- K Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
24
|
Lin D, Li X, Moult E, Park P, Tang B, Shen H, Grimm JB, Falco N, Jia BZ, Baker D, Lavis LD, Cohen AE. Time-tagged ticker tapes for intracellular recordings. Nat Biotechnol 2023; 41:631-639. [PMID: 36593408 PMCID: PMC10192119 DOI: 10.1038/s41587-022-01524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/22/2022] [Indexed: 01/03/2023]
Abstract
Recording transcriptional histories of a cell would enable deeper understanding of cellular developmental trajectories and responses to external perturbations. Here we describe an engineered protein fiber that incorporates diverse fluorescent marks during its growth to store a ticker tape-like history. An embedded HaloTag reporter incorporates user-supplied dyes, leading to colored stripes that map the growth of each individual fiber to wall clock time. A co-expressed eGFP tag driven by a promoter of interest records a history of transcriptional activation. High-resolution multi-spectral imaging on fixed samples reads the cellular histories, and interpolation of eGFP marks relative to HaloTag timestamps provides accurate absolute timing. We demonstrate recordings of doxycycline-induced transcription in HEK cells and cFos promoter activation in cultured neurons, with a single-cell absolute accuracy of 30-40 minutes over a 12-hour recording. The protein-based ticker tape design we present here could be generalized to achieve massively parallel single-cell recordings of diverse physiological modalities.
Collapse
Affiliation(s)
- Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA.
| | - Xiuyuan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin Tang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hao Shen
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Natalie Falco
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Bill Z Jia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Sheffler W, Yang EC, Dowling Q, Hsia Y, Fries CN, Stanislaw J, Langowski MD, Brandys M, Li Z, Skotheim R, Borst AJ, Khmelinskaia A, King NP, Baker D. Fast and versatile sequence-independent protein docking for nanomaterials design using RPXDock. PLoS Comput Biol 2023; 19:e1010680. [PMID: 37216343 PMCID: PMC10237659 DOI: 10.1371/journal.pcbi.1010680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/02/2023] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Computationally designed multi-subunit assemblies have shown considerable promise for a variety of applications, including a new generation of potent vaccines. One of the major routes to such materials is rigid body sequence-independent docking of cyclic oligomers into architectures with point group or lattice symmetries. Current methods for docking and designing such assemblies are tailored to specific classes of symmetry and are difficult to modify for novel applications. Here we describe RPXDock, a fast, flexible, and modular software package for sequence-independent rigid-body protein docking across a wide range of symmetric architectures that is easily customizable for further development. RPXDock uses an efficient hierarchical search and a residue-pair transform (RPX) scoring method to rapidly search through multidimensional docking space. We describe the structure of the software, provide practical guidelines for its use, and describe the available functionalities including a variety of score functions and filtering tools that can be used to guide and refine docking results towards desired configurations.
Collapse
Affiliation(s)
- William Sheffler
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Erin C. Yang
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, Washington, United States of America
| | - Quinton Dowling
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Chelsea N. Fries
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Jenna Stanislaw
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Transdisciplinary Research Area “Building Blocks of Matter and Fundamental Interactions (TRA Matter)”, University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Mark D. Langowski
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Marisa Brandys
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Zhe Li
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Rebecca Skotheim
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Andrew J. Borst
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Alena Khmelinskaia
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Transdisciplinary Research Area “Building Blocks of Matter and Fundamental Interactions (TRA Matter)”, University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Hvorecny KL, Kollman JM. Greater than the sum of parts: Mechanisms of metabolic regulation by enzyme filaments. Curr Opin Struct Biol 2023; 79:102530. [PMID: 36709625 PMCID: PMC10023394 DOI: 10.1016/j.sbi.2023.102530] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/28/2023]
Abstract
Recent work in structural biology is shedding light on how many of the enzymes of intermediary metabolism are self- and co-assembling into large, filamentous polymers or agglomerates to organize and regulate the complex and essential biochemical pathways in cells. Filament assembly provides an additional layer of regulation by modulating the intrinsic allostery of the enzyme protomers which tunes activity in response to a variety of environmental cues. Enzyme filaments dynamically assemble and disassemble in response to changes in metabolite levels and environmental cues, shifting metabolic flux on a more rapid timescale than transcriptional or translational reprogramming. Here we present recent examples of high-resolution structures of filaments from proteins in intermediary metabolism and we discuss how filament assembly modulates the activities of these and other proteins.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Moreaud L, Viollet S, Urvoas A, Valerio-Lepiniec M, Mesneau A, Li de la Sierra-Gallay I, Miller J, Ouldali M, Marcelot C, Balor S, Soldan V, Meriadec C, Artzner F, Dujardin E, Minard P. Design, synthesis, and characterization of protein origami based on self-assembly of a brick and staple artificial protein pair. Proc Natl Acad Sci U S A 2023; 120:e2218428120. [PMID: 36893280 PMCID: PMC10089216 DOI: 10.1073/pnas.2218428120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
A versatile strategy to create an inducible protein assembly with predefined geometry is demonstrated. The assembly is triggered by a binding protein that staples two identical protein bricks together in a predictable spatial conformation. The brick and staple proteins are designed for mutual directional affinity and engineered by directed evolution from a synthetic modular repeat protein library. As a proof of concept, this article reports on the spontaneous, extremely fast and quantitative self-assembly of two designed alpha-repeat (αRep) brick and staple proteins into macroscopic tubular superhelices at room temperature. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM with staining agent and cryoTEM) elucidate the resulting superhelical arrangement that precisely matches the a priori intended 3D assembly. The highly ordered, macroscopic biomolecular construction sustains temperatures as high as 75 °C thanks to the robust αRep building blocks. Since the α-helices of the brick and staple proteins are highly programmable, their design allows encoding the geometry and chemical surfaces of the final supramolecular protein architecture. This work opens routes toward the design and fabrication of multiscale protein origami with arbitrarily programmed shapes and chemical functions.
Collapse
Affiliation(s)
- Laureen Moreaud
- Centre d’Elaboration des Matériaux et d’Etudes Structurales, CNRS UPR8011F-31055, Toulouse, France
| | - Sébastien Viollet
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Agathe Urvoas
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Marie Valerio-Lepiniec
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Agnès Mesneau
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Jessalyn Miller
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
- Department of Chemistry, Emory University, Atlanta, GA30322
| | - Malika Ouldali
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Cécile Marcelot
- Centre d’Elaboration des Matériaux et d’Etudes Structurales, CNRS UPR8011F-31055, Toulouse, France
| | - Stéphanie Balor
- Microscopie Electronique Intégrative Toulouse, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Vanessa Soldan
- Microscopie Electronique Intégrative Toulouse, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Cristelle Meriadec
- Institut de Physique de Rennes, CNRS, UMR6251, Université de Rennes 1F-35042, Rennes, France
| | - Franck Artzner
- Institut de Physique de Rennes, CNRS, UMR6251, Université de Rennes 1F-35042, Rennes, France
| | - Erik Dujardin
- Centre d’Elaboration des Matériaux et d’Etudes Structurales, CNRS UPR8011F-31055, Toulouse, France
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR6303, Université de Bourgogne Franche-Comté21000, Dijon, France
| | - Philippe Minard
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| |
Collapse
|
28
|
Mazo N, Rahman IR, Navo CD, Peregrina JM, Busto JH, van der Donk WA, Jiménez-Osés G. Synthesis of Fluorescent Lanthipeptide Cytolysin S Analogues by Late-Stage Sulfamidate Ring Opening. Org Lett 2023; 25:1431-1435. [PMID: 36849130 PMCID: PMC10012263 DOI: 10.1021/acs.orglett.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 03/01/2023]
Abstract
Nucleophilic ring opening of cyclic sulfamidates derived from amino acids is a common strategy for the synthesis of lanthionine derivatives. In this work, we report the regio-, chemo-, and stereoselective intramolecular S-alkylation of a cysteine residue with N-sulfonyl sulfamidates for the synthesis of cyclic lanthionine-containing peptides. The strategy involves the solid-phase synthesis of sulfamidate-containing peptides followed by late-stage intramolecular cyclization. This protocol allowed for the synthesis of four full-length cytolysin S (CylLS″) analogues, two α-peptides and two hybrid α/β-peptides. Their conformational preferences and biological activities were assessed and compared with those of wild-type CylLS″.
Collapse
Affiliation(s)
- Nuria Mazo
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Jesús M. Peregrina
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H. Busto
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- Ikerbaske, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
29
|
Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat Commun 2023; 14:800. [PMID: 36781887 PMCID: PMC9925730 DOI: 10.1038/s41467-023-36469-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Temporal control of delivery and release of drugs in tumors are important in improving therapeutic outcomes to patients. Here, we report a sequential stimuli-triggered in situ self-assembly and disassembly strategy to direct delivery and release of theranostic drugs in vivo. Using cisplatin as a model anticancer drug, we design a stimuli-responsive small-molecule cisplatin prodrug (P-CyPt), which undergoes extracellular alkaline phosphatase-triggered in situ self-assembly and succeeding intracellular glutathione-triggered disassembly process, allowing to enhance accumulation and elicit burst release of cisplatin in tumor cells. Compared with cisplatin, P-CyPt greatly improves antitumor efficacy while mitigates off-target toxicity in mice with subcutaneous HeLa tumors and orthotopic HepG2 liver tumors after systemic administration. Moreover, P-CyPt also produces activated near-infrared fluorescence (at 710 nm) and dual photoacoustic imaging signals (at 700 and 750 nm), permitting high sensitivity and spatial-resolution delineation of tumor foci and real-time monitoring of drug delivery and release in vivo. This strategy leverages the advantages offered by in situ self-assembly with those of intracellular disassembly, which may act as a general platform for the design of prodrugs capable of improving drug delivery for cancer theranostics.
Collapse
|
30
|
Geometrically programmed self-limited assembly of tubules using DNA origami colloids. Proc Natl Acad Sci U S A 2022; 119:e2207902119. [PMID: 36252043 PMCID: PMC9618141 DOI: 10.1073/pnas.2207902119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature is replete with self-assembled materials that have one or more self-limited dimensions, including shells, tubules, and fibers. Despite significant advances in making nanometer- and micrometer-scale subunits, the programmable assembly of similar self-limiting architectures from synthetic components has remained largely out of reach. In this article, we create geometrically programmed subunits using DNA origami and study their assembly into tubules with a self-limited width. We show that the average self-limited dimension can be tuned by changing the local curvature encoded in a single subunit. Exploiting the programmability of our system, we further test the tradeoffs between fidelity and complexity embodied by two paradigms for self-limited assembly: self-closure through programmed curvature and addressable assembly through programmed specific interactions. Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks.
Collapse
|
31
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Abstract
While the application of cryogenic electron microscopy (cryo-EM) to helical polymers in biology has a long history, due to the huge number of helical macromolecular assemblies in viruses, bacteria, archaea, and eukaryotes, the use of cryo-EM to study synthetic soft matter noncovalent polymers has been much more limited. This has mainly been due to the lack of familiarity with cryo-EM in the materials science and chemistry communities, in contrast to the fact that cryo-EM was developed as a biological technique. Nevertheless, the relatively few structures of self-assembled peptide nanotubes and ribbons solved at near-atomic resolution by cryo-EM have demonstrated that cryo-EM should be the method of choice for a structural analysis of synthetic helical filaments. In addition, cryo-EM has also demonstrated that the self-assembly of soft matter polymers has enormous potential for polymorphism, something that may be obscured by techniques such as scattering and spectroscopy. These cryo-EM structures have revealed how far we currently are from being able to predict the structure of these polymers due to their chaotic self-assembly behavior.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Armin Solemanifar
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
33
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
34
|
Lam NT, McCluskey JB, Glover DJ. Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds. ACS APPLIED BIO MATERIALS 2022; 5:4668-4686. [PMID: 35766918 DOI: 10.1021/acsabm.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural ability of many proteins to polymerize into highly structured filaments has been harnessed as scaffolds to align functional molecules in a diverse range of biomaterials. Protein-engineering methodologies also enable the structural and physical properties of filaments to be tailored for specific biomaterial applications through genetic engineering or filaments built from the ground up using advances in the computational prediction of protein folding and assembly. Using these approaches, protein filament-based biomaterials have been engineered to accelerate enzymatic catalysis, provide routes for the biomineralization of inorganic materials, facilitate energy production and transfer, and provide support for mammalian cells for tissue engineering. In this review, we describe how the unique structural and functional diversity in natural and computationally designed protein filaments can be harnessed in biomaterials. In addition, we detail applications of these protein assemblies as material scaffolds with a particular emphasis on applications that exploit unique properties of specific filaments. Through the diversity of protein filaments, the biomaterial engineer's toolbox contains many modular protein filaments that will likely be incorporated as the main structural component of future biomaterials.
Collapse
Affiliation(s)
- Nga T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
35
|
Precision materials: Computational design methods of accurate protein materials. Curr Opin Struct Biol 2022; 74:102367. [DOI: 10.1016/j.sbi.2022.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
|
36
|
Ding W, Nakai K, Gong H. Protein design via deep learning. Brief Bioinform 2022; 23:bbac102. [PMID: 35348602 PMCID: PMC9116377 DOI: 10.1093/bib/bbac102] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges and opportunities are also comprehensively discussed.
Collapse
Affiliation(s)
- Wenze Ding
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Kenta Nakai
- Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Miller JG, Hughes SA, Modlin C, Conticello VP. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Q Rev Biophys 2022; 55:1-103. [PMID: 35307042 DOI: 10.1017/s0033583522000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSynthetic peptide and peptido-mimetic filaments and tubes represent a diverse class of nanomaterials with a broad range of potential applications, such as drug delivery, vaccine development, synthetic catalyst design, encapsulation, and energy transduction. The structures of these filaments comprise supramolecular polymers based on helical arrangements of subunits that can be derived from self-assembly of monomers based on diverse structural motifs. In recent years, structural analyses of these materials at near-atomic resolution (NAR) have yielded critical insights into the relationship between sequence, local conformation, and higher-order structure and morphology. This structural information offers the opportunity for development of new tools to facilitate the predictable and reproduciblede novodesign of synthetic helical filaments. However, these studies have also revealed several significant impediments to the latter process – most notably, the common occurrence of structural polymorphism due to the lability of helical symmetry in structural space. This article summarizes the current state of knowledge on the structures of designed peptide and peptido-mimetic filamentous assemblies, with a focus on structures that have been solved to NAR for which reliable atomic models are available.
Collapse
Affiliation(s)
- Jessalyn G Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Spencer A Hughes
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Charles Modlin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | | |
Collapse
|
38
|
Raven SA, Payne B, Bruce M, Filipovska A, Rackham O. In silico evolution of nucleic acid-binding proteins from a nonfunctional scaffold. Nat Chem Biol 2022; 18:403-411. [PMID: 35210620 DOI: 10.1038/s41589-022-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Directed evolution emulates the process of natural selection to produce proteins with improved or altered functions. These approaches have proven to be very powerful but are technically challenging and particularly time and resource intensive. To bypass these limitations, we constructed a system to perform the entire process of directed evolution in silico. We employed iterative computational cycles of mutation and evaluation to predict mutations that confer high-affinity binding activities for DNA and RNA to an initial de novo designed protein with no inherent function. Beneficial mutations revealed modes of nucleic acid recognition not previously observed in natural proteins, highlighting the ability of computational directed evolution to access new molecular functions. Furthermore, the process by which new functions were obtained closely resembles natural evolution and can provide insights into the contributions of mutation rate, population size and selective pressure on functionalization of macromolecules in nature.
Collapse
Affiliation(s)
- Samuel A Raven
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,University of Western Australia Centre for Medical Research, Nedlands, Western Australia, Australia
| | - Blake Payne
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,University of Western Australia Centre for Medical Research, Nedlands, Western Australia, Australia
| | - Mitchell Bruce
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,University of Western Australia Centre for Medical Research, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia. .,Curtin Medical School, Curtin University, Bentley, Western Australia, Australia. .,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
| |
Collapse
|
39
|
Juritz J, Poulton JM, Ouldridge TE. Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions. J Chem Phys 2022; 156:074103. [DOI: 10.1063/5.0077865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M. Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | - Thomas E. Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
40
|
Kim NH, Choi H, Shahzad ZM, Ki H, Lee J, Chae H, Kim YH. Supramolecular assembly of protein building blocks: from folding to function. NANO CONVERGENCE 2022; 9:4. [PMID: 35024976 PMCID: PMC8755899 DOI: 10.1186/s40580-021-00294-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein-protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.
Collapse
Affiliation(s)
- Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zafar Muhammad Shahzad
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heesoo Ki
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyoung Lee
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
| |
Collapse
|
41
|
Liang S, Li Z, Zhan J, Zhou Y. De novo protein design by an energy function based on series expansion in distance and orientation dependence. Bioinformatics 2021; 38:86-93. [PMID: 34406339 DOI: 10.1093/bioinformatics/btab598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Despite many successes, de novo protein design is not yet a solved problem as its success rate remains low. The low success rate is largely because we do not yet have an accurate energy function for describing the solvent-mediated interaction between amino acid residues in a protein chain. Previous studies showed that an energy function based on series expansions with its parameters optimized for side-chain and loop conformations can lead to one of the most accurate methods for side chain (OSCAR) and loop prediction (LEAP). Following the same strategy, we developed an energy function based on series expansions with the parameters optimized in four separate stages (recovering single-residue types without and with orientation dependence, selecting loop decoys and maintaining the composition of amino acids). We tested the energy function for de novo design by using Monte Carlo simulated annealing. RESULTS The method for protein design (OSCAR-Design) is found to be as accurate as OSCAR and LEAP for side-chain and loop prediction, respectively. In de novo design, it can recover native residue types ranging from 38% to 43% depending on test sets, conserve hydrophobic/hydrophilic residues at ∼75%, and yield the overall similarity in amino acid compositions at more than 90%. These performance measures are all statistically significantly better than several protein design programs compared. Moreover, the largest hydrophobic patch areas in designed proteins are near or smaller than those in native proteins. Thus, an energy function based on series expansion can be made useful for protein design. AVAILABILITY AND IMPLEMENTATION The Linux executable version is freely available for academic users at http://zhouyq-lab.szbl.ac.cn/resources/.
Collapse
Affiliation(s)
- Shide Liang
- Department of R & D, Bio-Thera Solutions, Guangzhou 510530, China
| | - Zhixiu Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Woolloongabba, QLD 3001, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
42
|
Bae J, Kim H, Kim G, Song J, Kim H. Dendrimer-Like Supramolecular Assembly of Proteins with a Tunable Size and Valency Through Stepwise Iterative Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102991. [PMID: 34719882 PMCID: PMC8693032 DOI: 10.1002/advs.202102991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The assembly of proteins in a programmable manner provides insight into the creation of novel functional nanomaterials for practical applications. Despite many advances, however, a rational protein assembly with an easy scalability in terms of size and valency remains a challenge. Here, a simple bottom-up approach to the supramolecular protein assembly with a tunable size and valency in a programmable manner is presented. The dendrimer-like protein assembly, simply called a "protein dendrimer," is constructed through a stepwise and alternate addition of a building block protein. Starting from zeroth-generation protein dendrimer (pG0 ) of 27 kDa, the protein dendrimer is sequentially grown to pG1 , pG2 , pG3 , to pG4 with a molecular mass of 94, 216, 483, and 959 kDa, respectively. The valency of the protein dendrimers at the periphery increases by a factor of two after each generation, allowing a tunable valency and easy functionalization. The protein dendrimers functionalizes with a targeting moiety and a cytotoxic protein cargo shows a typical feature of multi-valency in the avidity and a highly enhanced cellular cytotoxicity, exemplifying their utility as a protein delivery platform. The present approach can be effectively used in the creation of protein architectures with new functions for biotechnological and medical applications.
Collapse
Affiliation(s)
- Jin‐Ho Bae
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
- Present address:
ProEn TherapeuticsSeongnam‐si13105Korea
| | - Hong‐Sik Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Gijeong Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Ji‐Joon Song
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Hak‐Sung Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| |
Collapse
|
43
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
44
|
Guo R, Shi AM, Deng L, Li L, Wang LC, Oteng AB, Wei MP, Zhao ZH, Hooiveld G, Zhang C, Wang Q. Flavonoid-Like Components of Peanut Stem and Leaf Extract Promote Sleep by Decreasing Neuronal Excitability. Mol Nutr Food Res 2021; 66:e2100210. [PMID: 34747100 DOI: 10.1002/mnfr.202100210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/10/2021] [Indexed: 12/16/2022]
Abstract
SCOPE Peanut stem and leaf (PSL), a traditional Chinese medicine, is widely used as a dietary supplement to improve sleep quality; however, the underlying mechanism is unclear. Here, the study aims to determine whether active compounds in PSL extract exert their effects by mediating neuronal excitability. METHODS AND RESULTS Aqueous PSL extract (500 mg kg-1 BW) increases the duration of total sleep (TS), slow wave sleep (SWS) and rapid eye movement sleep (REMS) in BALB/c mice after 7 and 14 continuous days of intragastric administration. Two PSL extract components with flavonoid-like structures: 4',7-di-O-methylnaringenin (DMN, 61 µg kg-1 BW) and 2'-O-methylisoliquiritigenin (MIL, 12 µg kg-1 BW), show similar effects on sleep in BALB/c mice. Moreover, incubation with DMN (50 µM) and MIL (50 µM) acutely reduces voltage-gated sodium and potassium currents and suppresses the firing of evoked action potential in mouse cortical neurons, indicating the inhibition on neuronal excitability. Meanwhile, RNA-seq analysis predicts the potential regulation of voltage-gated channels, which is according with the molecular docking simulation that both MIL and DMN can bind to voltage gated sodium channels 1.2 (Nav 1.2). CONCLUSIONS DMN and MIL are the active ingredients of PSL that improve sleep quality, suggesting that PSL promotes sleep by regulating the excitability of neurons.
Collapse
Affiliation(s)
- Rui Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Ai-Min Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Lei Deng
- Nutrition, Metabolism and Genomics Group, Human Nutrition and Health Division, Wageningen University and Research, Wageningen, WE 6708, The Netherlands
| | - Lei Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Anhui, 230031, China
| | - Lie-Chen Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Anhui, 230031, China
| | | | - Meng-Ping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhi-Hao Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Guido Hooiveld
- Nutrition, Metabolism and Genomics Group, Human Nutrition and Health Division, Wageningen University and Research, Wageningen, WE 6708, The Netherlands
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
45
|
Wang F, Gnewou O, Wang S, Osinski T, Zuo X, Egelman EH, Conticello VP. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. MATTER 2021; 4:3217-3231. [PMID: 34632372 PMCID: PMC8494133 DOI: 10.1016/j.matt.2021.06.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The self-assembly of designed peptides into filaments and other higher-order structures has been the focus of intense interest because of the potential for creating new biomaterials and biomedical devices. These peptide assemblies have also been used as models for understanding biological processes, such as the pathological formation of amyloid. We investigate the assembly of an octapeptide sequence, Ac-FKFEFKFE-NH2, motivated by prior studies that demonstrated that this amphipathic β strand peptide self-assembled into fibrils and biocompatible hydrogels. Using high-resolution cryoelectron microscopy (cryo-EM), we are able to determine the atomic structure for two different coexisting forms of the fibrils, containing four and five β sandwich protofilaments, respectively. Surprisingly, the inner walls in both forms are parallel β sheets, while the outer walls are antiparallel β sheets. Our results demonstrate the chaotic nature of peptide self-assembly and illustrate the importance of cryo-EM structural analysis to understand the complex phase behavior of these materials at near-atomic resolution.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Shengyuan Wang
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: (E.H.E.), (V.P.C.)
| | - Vincent P. Conticello
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA 30322, USA
- Lead contact
- Correspondence: (E.H.E.), (V.P.C.)
| |
Collapse
|
46
|
Encoding hierarchical assembly pathways of proteins with DNA. Proc Natl Acad Sci U S A 2021; 118:2106808118. [PMID: 34593642 DOI: 10.1073/pnas.2106808118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
The structural and functional diversity of materials in nature depends on the controlled assembly of discrete building blocks into complex architectures via specific, multistep, hierarchical assembly pathways. Achieving similar complexity in synthetic materials through hierarchical assembly is challenging due to difficulties with defining multiple recognition areas on synthetic building blocks and controlling the sequence through which those recognition sites direct assembly. Here, we show that we can exploit the chemical anisotropy of proteins and the programmability of DNA ligands to deliberately control the hierarchical assembly of protein-DNA materials. Through DNA sequence design, we introduce orthogonal DNA interactions with disparate interaction strengths ("strong" and "weak") onto specific geometric regions of a model protein, stable protein 1 (Sp1). We show that the spatial encoding of DNA ligands leads to highly directional assembly via strong interactions and that, by design, the first stage of assembly increases the multivalency of weak DNA-DNA interactions that give rise to an emergent second stage of assembly. Furthermore, we demonstrate that judicious DNA design not only directs assembly along a given pathway but can also direct distinct structural outcomes from a single pathway. This combination of protein surface and DNA sequence design allows us to encode the structural and chemical information necessary into building blocks to program their multistep hierarchical assembly. Our findings represent a strategy for controlling the hierarchical assembly of proteins to realize a diverse set of protein-DNA materials by design.
Collapse
|
47
|
Lopez-Silva TL, Schneider JP. From structure to application: Progress and opportunities in peptide materials development. Curr Opin Chem Biol 2021; 64:131-144. [PMID: 34329941 PMCID: PMC8585687 DOI: 10.1016/j.cbpa.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 01/12/2023]
Abstract
For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.
Collapse
Affiliation(s)
- Tania L Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
48
|
Xiong W, Liu B, Shen Y, Jing K, Savage TR. Protein engineering design from directed evolution to de novo synthesis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Guye KN, Shen H, Yaman MY, Liao GY, Baker D, Ginger DS. Importance of Substrate-Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9111-9119. [PMID: 34309385 DOI: 10.1021/acs.langmuir.1c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the protein-directed assembly of colloidal gold nanoparticles on de novo designed protein nanofiber templates. Using sequential assembly on glass substrates, we attach positively charged gold nanoparticles to protein nanofibers engineered to have a high density of negatively charged surface residues. Using a combination of electron and optical microscopy, we measure the density of particle attachment and characterize binding specificity. By varying nanoparticle size and pH of the solution, we explore the importance of charge-dependent particle-fiber and particle-substrate interactions. We find an inverse correlation between particle size and attachment density to protein nanofibers, attributed to the balance between size-dependent electrostatic particle-fiber attraction and particle-substrate repulsion. We show pH-dependent particle attachment density and binding specificity in relation to the protonation fraction of each assembly layer. Finally, we employ hyperspectral scattering microscopy to draw conclusions about particle density and interparticle spacings of optically observable particle assemblies.
Collapse
Affiliation(s)
- Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hao Shen
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gerald Y Liao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
50
|
Yaman MY, Guye KN, Ziatdinov M, Shen H, Baker D, Kalinin SV, Ginger DS. Alignment of Au nanorods along de novo designed protein nanofibers studied with automated image analysis. SOFT MATTER 2021; 17:6109-6115. [PMID: 34128040 DOI: 10.1039/d1sm00645b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we focus on exploring the directional assembly of anisotropic Au nanorods along de novo designed 1D protein nanofiber templates. Using machine learning and automated image processing, we analyze scanning electron microscopy (SEM) images to study how the attachment density and alignment fidelity are influenced by variables such as the aspect ratio of the Au nanorods, and the salt concentration of the solution. We find that the Au nanorods prefer to align parallel to the protein nanofibers. This preference decreases with increasing salt concentration, but is only weakly sensitive to the nanorod aspect ratio. While the overall specific Au nanorod attachment density to the protein fibers increases with increasing solution ionic strength, this increase is dominated primarily by non-specific binding to the substrate background, and we find that greater specific attachment (nanorods attached to the nanofiber template as compared to the substrates) occurs at the lower studied salt concentrations, with the maximum ratio of specific to non-specific binding occurring when the protein fiber solutions are prepared in 75 mM NaCl concentration.
Collapse
Affiliation(s)
- Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hao Shen
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA. and Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|