1
|
Toss A, Piombino C, Quarello P, Trama A, Mascarin M, Lambertini M, Canesi M, Incorvaia L, Milano GM, Maruzzo M, Perrone F, Peccatori F, Ferrari A. Risk factors behind the increase of early-onset cancer in Italian adolescents and young adults: An investigation from the Italian AYA Working group. Eur J Cancer 2024; 212:115042. [PMID: 39362174 DOI: 10.1016/j.ejca.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
The incidence of early-onset cancers in adolescents and young adults (AYA) has been increasing worldwide since the 1990s. In Italy, a significant increased rate of 1.6 % per year has been reported for early-onset cancers among females between 2008 and 2016. This is mainly attributable to melanoma, thyroid, breast and endometrial cancer. The aim of our work was to describe temporal trends of the main established lifestyle risk factors (tobacco use, alcohol consumption, obesity, physical inactivity, dietary westernization and reproductive factors) over the last 20 years in the Italian AYA population. Available data on behavioural risk factors, individual and household daily life have been obtained and elaborated from PASSI, ISTAT and Eurostat reports. Lowering age of smoking initiation, an increase in alcohol drinkers among young females, and an obesity and overweight epidemic, particularly among children and adolescents as a result of physical inactivity and dietary habits, may be contributing factors behind this cancer epidemic, especially among females. In-depth investigations are needed to understand the exact role of each contributing factor, the effects of exposure to nicotine-containing products and environmental factors such as endocrine disruptors that could play a role in this phenomenon.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy; Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Claudia Piombino
- Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
| | - Paola Quarello
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy.
| | - Annalisa Trama
- Department of Epidemiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Maurizio Mascarin
- AYA Oncology and Paediatric Radiotherapy Unit, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy.
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy.
| | - Marta Canesi
- Department of Paediatrics, University of Milano-Bicocca, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences Section of Medical Oncology University of Palermo, Palermo, Italy.
| | - Giuseppe Maria Milano
- Department of Paediatric Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Rome, Italy.
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy.
| | - Francesco Perrone
- Clinical Trial Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| | - Fedro Peccatori
- Division of Gynaecologic Oncology, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Andrea Ferrari
- Department of Paediatrics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
2
|
Birindwa G, Maeng M, Thrane PG, Gyldenkerne C, Thomsen RW, Olesen KKW. Causes of Excess Mortality in Diabetes Patients Without Coronary Artery Disease: A Cohort Study Revealing Endocrinologic Contributions. Clin Epidemiol 2024; 16:571-585. [PMID: 39247670 PMCID: PMC11380490 DOI: 10.2147/clep.s463363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Background Diabetes mellitus (DM) patients without coronary artery disease (CAD) have a higher all-cause mortality rate than patients with neither DM nor CAD. We examined cause-specific death of DM patients with and without CAD. Methods We conducted a cohort study of all patients who underwent CAG in Western Denmark between 2003 and 2016. Using Danish health registries, patients were followed for a maximum of 10 years and stratified according to their DM and CAD status. Outcomes included all-cause-, cancer-, circulatory-, and endocrinologic death. Ten-year cumulative risks were computed as well as adjusted and unadjusted hazard ratios (aHR and HR). Results A total of 132,432 patients (28,524 deaths, median follow-up of 6.2 years) were included. Compared to patients with neither DM nor CAD, DM patients without CAD had a higher 10-year risk of all-cause death (27.9% versus 19.7%, aHR 1.43 [95% CI 1.35-1.52]), cancer death (7.2% versus 5.4%, aHR 1.29 [95% CI 1.15-1.46]), circulatory death (9.1% versus 6.9%, aHR 1.35 [95% CI 1.22-1.49]), and endocrinologic death (3.9% versus 0.3%, aHR 14.02 [95% CI 10.95-17.95]). Among endocrinologic deaths, 87% were due to classical complications of DM, such as diabetic nephropathy and ketoacidosis, in DM patients without CAD. Conclusion Diabetes patients without CAD exhibit a higher risk of all-cause mortality, driven primarily by elevated rates of cancer, circulatory, and endocrinologic deaths, particularly related to diabetic microvascular complications.
Collapse
Affiliation(s)
- Guilian Birindwa
- Department of Cardiology Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Michael Maeng
- Department of Cardiology Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Department of Cardiology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | | | - Christine Gyldenkerne
- Department of Cardiology Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Reimar Wernich Thomsen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
3
|
Liu J, Zhang X, Zhang Y, Zhao B, Liu Z, Dong X, Feng S, Du Y. Mn-based Prussian blue analogues: Multifunctional nanozymes for hydrogen peroxide detection and photothermal therapy of tumors. Talanta 2024; 277:126320. [PMID: 38824861 DOI: 10.1016/j.talanta.2024.126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Nanozymes have the advantages of simple synthesis, high stability, low cost and easy recycling, and can be applied in many fields including molecular detection, disease diagnosis and cancer therapy. However, most of the current nanozymes suffer from the defects of low catalytic activity and single function, which limits their sensing sensitivity and multifunctional applications. The development of highly active and multifunctional nanozymes is an important way to realize multidisciplinary applications. In this work, Mn-based Prussian blue analogues (Mn-PBA) and their derived double-shelled nanoboxes (DSNBs) are synthesized by co-precipitation method. The nanobox structure of DSNBs formed by etching Mn-PBA with tannic acid endows Mn-PBA DSNBs with better peroxidase-like activity than Mn-PBA. A colorimetric method for the rapid and sensitive determination of H2O2 is developed using Mn-PBA DSNBs-1.5 as a sensor with a detection limit as low as 0.62 μM. Moreover, Mn-PBA DSNBs-2 has excellent photothermal conversion ability, which can be applied to the photothermal therapy of tumors to inhibit the proliferation of tumor cells without damaging other tissues and organs. This study provides a new idea for the rational design of nanozymes and the expansion of their multi-functional applications in various fields.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
4
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
5
|
Li F, Yang Y, Zhang X, Yu J, Yu Y. A novel prognostic model of breast cancer based on cuproptosis-related lncRNAs. Discov Oncol 2024; 15:35. [PMID: 38353835 PMCID: PMC10866837 DOI: 10.1007/s12672-024-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Breast cancer (BC) is a deadly form of malignancy responsible for the death of a large number of women every year. Cuproptosis is a newly discovered form of cell death that may have implications for the prognosis of BC. Long non-coding RNAs (lncRNAs) have been shown to be involved in the progression and development of BC. Here within, a novel model capable of predicting the prognosis of patients with BC was established based on cuproptosis-related lncRNAs. METHODS Data of breast cancer patients was downloaded, including clinical information from The Cancer Genome Atlas (TCGA) database and lncRNAs related to cuproptosis were isolated. In total, nine lncRNAs related to copper death were obtained by Cox regression model based on Least Absolute Shrinkage and Selector Operation (LASSO) algorithm for model construction. The model was verified by overall survival (OS), progression-free survival (PFS) and receiver operating characteristic (ROC) curve. The differences in immune function, tumor mutation burden (TMB) and tumor immune dysfunction and exclusion (TIDE) between patients with different risk scores were analyzed. RESULTS Based on cuproptosis-related lncRNAs, a prognostic model for predicting BC was constructed. Each patient was assigned a risk score based on our model formula. We found that patients with higher risk scores had significantly lower OS and PFS, increased TMB, and higher sensitivity to immunotherapy. CONCLUSIONS The model established in this study based on cuproptosis-related lncRNAs may be capable of improving the OS of patients with BC.
Collapse
Affiliation(s)
- Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jiafeng Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Research Institute of Anesthesiology, Tianjin, China.
| |
Collapse
|
6
|
He TC, Li JA, Xu ZH, Chen QD, Yin HL, Pu N, Wang WQ, Liu L. Biological and clinical implications of early-onset cancers: A unique subtype. Crit Rev Oncol Hematol 2023; 190:104120. [PMID: 37660930 DOI: 10.1016/j.critrevonc.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, the incidence of cancers is continuously increasing in young adults. Early-onset cancer (EOC) is usually defined as patients with cancers under the age of 50, and may represent a unique subgroup due to its special disease features. Overall, EOCs often initiate at a young age, present as a better physical performance but high degree of malignancy. EOCs also share common epidemiological and hereditary risk factors. In this review, we discuss several representative EOCs which were well studied previously. By revealing their clinical and molecular similarities and differences, we consider the group of EOCs as a unique subtype compared to ordinary cancers. In consideration of EOC as a rising threat to human health, more researches on molecular mechanisms, and large-scale, prospective clinical trials should be carried out to further translate into improved outcomes.
Collapse
Affiliation(s)
- Tao-Chen He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang-Da Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han-Lin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
9
|
Ha L, Tran A, Bui L, Giovannucci E, Mucci L, Song M, Le PD, Hoang M, Tran H, Kim G, Pham T. Proportion and number of cancer cases and deaths attributable to behavioral risk factors in Vietnam. Int J Cancer 2023. [PMID: 37129148 DOI: 10.1002/ijc.34549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Identifying modifiable risk factors that contribute to cancer is essential in setting up preventive strategies. Therefore, this study aimed to estimate the number and proportion of cancer cases and deaths attributable to five behavior-related risk factors-tobacco smoking, second-hand smoking, alcohol consumption, high body mass index and insufficient physical activity in Vietnam in 2020. Population attributable fractions were calculated for relationships of risk factors and cancer types based on sufficient evidence according to IARC or strong evidence according to WCRF/AICR. Relative risks were retrieved from meta-analyses where possible. Prevalence of risk factors was obtained from the most current available nationally representative population surveys in Vietnam. Cancer cases and deaths were obtained from GLOBOCAN 2020. An estimated 40.5% of all cancer cases in men (39 924 cases) and 7.8% in women (6542 cases) were attributable to these risk factors. The proportions of cancer deaths attributable to these risk factors were 44.0% in men (32 807 cases) and 8.9% in women (4235 cases). Tobacco smoking was the leading cause of cancer cases and deaths in men, followed by alcohol consumption and high BMI. In women, high BMI accounted for the highest proportion of cancer cases and second-hand smoking accounted for the highest proportion of cancer deaths. Lung and upper aerodigestive tract cancer cases and deaths could have been reduced at least by half if these risk factors had been eliminated. To reduce cancer incidence and mortality, preventive actions focusing on tobacco control are likely to have the most significant impact, especially in men.
Collapse
Affiliation(s)
- Linh Ha
- Doctor of Preventive Medicine Program, Hanoi Medical University, Hanoi, Vietnam
| | - An Tran
- Doctor of General Medicine Program, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Bui
- Research Advancement Consortium in Health, Hanoi, Vietnam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lorelei Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - PhuongThao D Le
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, New York, New York, USA
| | - Minh Hoang
- Department of Health Economics, Hanoi University of Public Health, Hanoi, Vietnam
| | - Huong Tran
- Vietnam National Cancer Institute, National Cancer Hospital, Hanoi, Vietnam
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Giang Kim
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Tung Pham
- Research Advancement Consortium in Health, Hanoi, Vietnam
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Physiology, Hanoi Medical University, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
10
|
Chen J, Jin Z, Zhang S, Zhang X, Li P, Yang H, Ma Y. Arsenic trioxide elicits prophylactic and therapeutic immune responses against solid tumors by inducing necroptosis and ferroptosis. Cell Mol Immunol 2023; 20:51-64. [PMID: 36447031 PMCID: PMC9794749 DOI: 10.1038/s41423-022-00956-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Boosting tumor immunosurveillance with vaccines has been proven to be a feasible and cost-effective strategy to fight cancer. Although major breakthroughs have been achieved in preventative tumor vaccines targeting oncogenic viruses, limited advances have been made in curative vaccines for virus-irrelevant malignancies. Accumulating evidence suggests that preconditioning tumor cells with certain cytotoxic drugs can generate whole-cell tumor vaccines with strong prophylactic activities. However, the immunogenicity of these vaccines is not sufficient to restrain the outgrowth of existing tumors. In this study, we identified arsenic trioxide (ATO) as a wide-spectrum cytotoxic and highly immunogenic drug through multiparameter screening. ATO preconditioning could generate whole-cell tumor vaccines with potent antineoplastic effects in both prophylactic and therapeutic settings. The tumor-preventive or tumor-suppressive benefits of these vaccines relied on CD8+ T cells and type I and II interferon signaling and could be linked to the release of immunostimulatory danger molecules. Unexpectedly, following ATO-induced oxidative stress, multiple cell death pathways were activated, including autophagy, apoptosis, necroptosis, and ferroptosis. CRISPR‒Cas9-mediated knockout of cell death executors revealed that the absence of Rip3, Mlkl, or Acsl4 largely abolished the efficacy of ATO-based prophylactic and therapeutic cancer vaccines. This therapeutic failure could be rescued by coadministration of danger molecule analogs. In addition, PD-1 blockade synergistically improved the therapeutic efficacy of ATO-based cancer vaccines by augmenting local IFN-γ production.
Collapse
Affiliation(s)
- Jinfeng Chen
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Ziqi Jin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Shuqing Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Xiao Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Peipei Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
- National Key Laboratory of Medical Immunology, Shanghai, 200433, China
| | - Yuting Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 10005, China.
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China.
- National Key Laboratory of Medical Immunology, Shanghai, 200433, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Huang X, Chen Z, Xiang X, Liu Y, Long X, Li K, Qin M, Long C, Mo X, Tang W, Liu J. Comprehensive multi-omics analysis of the m7G in pan-cancer from the perspective of predictive, preventive, and personalized medicine. EPMA J 2022; 13:671-697. [PMID: 36505892 PMCID: PMC9727047 DOI: 10.1007/s13167-022-00305-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
Background The N7-methylguanosine modification (m7G) of the 5' cap structure in the mRNA plays a crucial role in gene expression. However, the relation between m7G and tumor immune remains unclear. Hence, we intended to perform a pan-cancer analysis of m7G which can help explore the underlying mechanism and contribute to predictive, preventive, and personalized medicine (PPPM / 3PM). Methods The gene expression, genetic variation, clinical information, methylation, and digital pathological section from 33 cancer types were downloaded from the TCGA database. Immunohistochemistry (IHC) was used to validate the expression of the m7G regulator genes (m7RGs) hub-gene. The m7G score was calculated by single-sample gene-set enrichment analysis. The association of m7RGs with copy number variation, clinical features, immune-related genes, TMB, MSI, and tumor immune dysfunction and exclusion (TIDE) was comprehensively assessed. CellProfiler was used to extract pathological section characteristics. XGBoost and random forest were used to construct the m7G score prediction model. Single-cell transcriptome sequencing (scRNA-seq) was used to assess the activation state of the m7G in the tumor microenvironment. Results The m7RGs were highly expressed in tumors and most of the m7RGs are risk factors for prognosis. Moreover, the cellular pathway enrichment analysis suggested that m7G score was closely associated with invasion, cell cycle, DNA damage, and repair. In several cancers, m7G score was significantly negatively correlated with MSI and TMB and positively correlated with TIDE, suggesting an ICB marker potential. XGBoost-based pathomics model accurately predicts m7G scores with an area under the ROC curve (AUC) of 0.97. Analysis of scRNA-seq suggests that m7G differs significantly among cells of the tumor microenvironment. IHC confirmed high expression of EIF4E in breast cancer. The m7G prognostic model can accurately assess the prognosis of tumor patients with an AUC of 0.81, which was publicly hosted at https://pan-cancer-m7g.shinyapps.io/Panca-m7g/. Conclusion The current study explored for the first time the m7G in pan-cancer and identified m7G as an innovative marker in predicting clinical outcomes and immunotherapeutic efficacy, with the potential for deeper integration with PPPM. Combining m7G within the framework of PPPM will provide a unique opportunity for clinical intelligence and new approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00305-1.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Zuyuan Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Xiaoyun Xiang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Yanling Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Xingqing Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Kezhen Li
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People’s Republic of China
| |
Collapse
|
12
|
Evaluating cancer etiology and risk with a mathematical model of tumor evolution. Nat Commun 2022; 13:7224. [PMID: 36433937 PMCID: PMC9700699 DOI: 10.1038/s41467-022-34760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Recent evidence arising from DNA sequencing of healthy human tissues has clearly indicated that our organs accumulate a relevant number of somatic mutations due to normal endogenous mutational processes, in addition to those caused by environmental factors. A deeper understanding of the evolution of this endogenous mutational load is critical for understanding what causes cancer. Here we present a mathematical model of tumor evolution that is able to predict the expected number of endogenous somatic mutations present in various tissue types of a patient at a given age. These predictions are then compared to those observed in patients. We also obtain an improved fitting of the variation in cancer incidence across cancer types, showing that the endogenous mutational processes can explain 4/5 of the variation in cancer risk. Overall, these results offer key insights into cancer etiology, by providing further evidence for the major role these endogenous processes play in cancer.
Collapse
|
13
|
Wang L, Knudsen MD, Lo CH, Wang K, He M, Polychronidis G, Hang D, He X, Zhong R, Wu K, Chan AT, Ogino S, Giovannucci EL, Song M. Adherence to a healthy lifestyle in relation to colorectal cancer incidence and all-cause mortality after endoscopic polypectomy: A prospective study in three U.S. cohorts. Int J Cancer 2022; 151:1523-1534. [PMID: 35716133 PMCID: PMC9474593 DOI: 10.1002/ijc.34176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022]
Abstract
It remains unknown whether maintenance of a healthy lifestyle after endoscopic polypectomy could still confer benefit for colorectal cancer (CRC) incidence and mortality. In this study, we defined a healthy lifestyle score based on body mass index, smoking, physical activity, alcohol consumption and diet (range, 0-5). We used Cox proportional hazards regression to estimate the hazard ratios (HRs) for the associations of healthy lifestyle score and individual lifestyle factors with CRC incidence and all-cause mortality. During a median of 10 years of follow-up of 24 668 participants who underwent endoscopic polypectomy, we documented 161 CRC cases and 4857 all-cause deaths. A higher healthy lifestyle score after endoscopic polypectomy was associated with lower risk of CRC and all-cause mortality. Compared with individuals with 0 to 1 healthy lifestyle factors, those with 2, 3 and 4 to 5 healthy lifestyle factors had a HR for CRC risk of 0.86 (95% confidence interval [CI], 0.60-1.24), 0.73 (95% CI, 0.47-1.14) and 0.52 (95% CI, 0.27-1.01), respectively (Ptrend = .03). The corresponding HR (95% CI) for all-cause mortality was 0.83 (95% CI, 0.76-0.90), 0.63 (95% CI, 0.56-0.70) and 0.56 (95% CI, 0.48-0.65), respectively (Ptrend < .0001). In the joint analysis of pre- and postpolypectomy periods, patients with a healthy postpolypectomy lifestyle had a lower incidence of CRC regardless of their prepolypectomy exposure, whereas those with a healthy lifestyle in both periods had a lower mortality than those with an unhealthy lifestyle in either period. In conclusion, adherence to a healthy lifestyle after polypectomy may confer significant benefit for CRC prevention and reduction in all-cause mortality.
Collapse
Affiliation(s)
- Liang Wang
- Center of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Digestive Disease Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Markus D Knudsen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Section for colorectal cancer screening, Cancer Registry of Norway, Oslo, Norway
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingming He
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Georgios Polychronidis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Study Centre of the German Surgical Society, University of Heidelberg, Heidelberg, Germany
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaosheng He
- Department of Colorectal Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rong Zhong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, Kawachi I, Campbell PT, Giovannucci EL, Weiderpass E, Rebbeck TR, Ogino S. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 2022; 19:656-673. [PMID: 36068272 PMCID: PMC9509459 DOI: 10.1038/s41571-022-00672-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset cancers, often defined as cancers diagnosed in adults <50 years of age, in the breast, colorectum, endometrium, oesophagus, extrahepatic bile duct, gallbladder, head and neck, kidney, liver, bone marrow, pancreas, prostate, stomach and thyroid has increased in multiple countries. Increased use of screening programmes has contributed to this phenomenon to a certain extent, although a genuine increase in the incidence of early-onset forms of several cancer types also seems to have emerged. Evidence suggests an aetiological role of risk factor exposures in early life and young adulthood. Since the mid-20th century, substantial multigenerational changes in the exposome have occurred (including changes in diet, lifestyle, obesity, environment and the microbiome, all of which might interact with genomic and/or genetic susceptibilities). However, the effects of individual exposures remain largely unknown. To study early-life exposures and their implications for multiple cancer types will require prospective cohort studies with dedicated biobanking and data collection technologies. Raising awareness among both the public and health-care professionals will also be critical. In this Review, we describe changes in the incidence of early-onset cancers globally and suggest measures that are likely to reduce the burden of cancers and other chronic non-communicable diseases.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Hwa-Young Lee
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Convergence Science, Convergence Science Academy, Yonsei University, Seoul, Republic of Korea
| | - Mariko Ando
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Ichiro Kawachi
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Zhu Family Center for Global Cancer Prevention, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
15
|
Lohiya A, Daniel RA, Smith RD, Nagar M, Shankar A, Lahariya C. Cancer prevention and control in India can get a boost through primary health care-based approach: A review. J Family Med Prim Care 2022; 11:4286-4292. [PMID: 36352969 PMCID: PMC9638636 DOI: 10.4103/jfmpc.jfmpc_2378_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 12/26/2022] Open
Abstract
India has a rising burden of cancer with an estimated 70% of the cancers caused by modifiable and preventable risk factors. This review was conducted to document the status, analyse the situation and propose the way forward for cancer prevention in India. A desk review of the online databases and reports from the government websites was conducted. The ongoing initiatives including cancer registries, medical and health education and training, and community-based programmes were analysed. This review was done from July 2019 to February 2021. Cancers of the breast, cervix, and lip and oral cavity are the three most common malignancies, with distinct regional variations in India and account for 34% of the 1.15 million cancer cases diagnosed annually. The major initiatives were focused initially on cancer treatment and prevention was added nearly a decade ago. Even with those, the scope and coverage of cancer prevention and treatment services has remained in hospitals and urban settings. India needs to build upon the ongoing approach which seems to be focused on "tracking the cancer, teaching the future and helping the masses" by implementing non-vertical primary healthcare cancer prevention and control approach. Cancer prevention should be made an integral part of the health interventions, rapidly extended to primary healthcare services and facilities, linked with specialised treatment facilities, as India aims for universal health coverage. The opportunity provided by the Ayushman Bharat Programme launched in 2018 should be leveraged for rapid expansion and effective coverage of cancer prevention and treatment interventions in India.
Collapse
Affiliation(s)
- Ayush Lohiya
- Kalyan Singh Super Specialty Cancer Institute, Lucknow, Uttar Pradesh, India
| | - Roy A. Daniel
- All India Institute of Medical Sciences, New Delhi, India
| | - Robert D. Smith
- Graduate Institute of International and Development Studies, Geneva, Switzerland
| | - Mukesh Nagar
- Department of Medical Oncology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, Lady Hardinge Medical College, New Delhi, India
| | - Chandrakant Lahariya
- Department of Health Systems, World Health Organisation India, New Delhi, India,Address for correspondence: Dr. Chandrakant Lahariya, B-2/173, First Floor, Safdarjung Enclave Main, New Delhi - 110 029, India. E-mail:
| |
Collapse
|
16
|
Giovannucci E. Molecular Biologic and Epidemiologic Insights for Preventability of Colorectal Cancer. J Natl Cancer Inst 2022; 114:645-650. [PMID: 34978574 PMCID: PMC9086743 DOI: 10.1093/jnci/djab229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
The etiology of colorectal cancer (CRC) has been informed from both a molecular biology perspective, which concerns the study of the nature, timing, and consequences of mutations in driver genes, and epidemiology, which focuses on identifying risk factors for cancer. For the most part, these fields have developed independently, and it is thus important to consider them in a more integrated manner. The molecular mutational perspective has stressed the importance of mutations due to replication of adult stem cells, and the molecular fingerprint of most CRCs does not suggest the importance of direct carcinogens. Epidemiology has identified numerous modifiable risk factors that account for most CRCs, most of which are not direct mutagens. The distribution of CRCs across the large bowel is not uniform, which is possibly caused by regional differences in the microbiota. Some risk factors are likely to act through or interact with the microbiota. The mutational perspective informs when risk factors may begin to operate in life and when they may cease to operate. Evidence from the mutational model and epidemiology supports that CRC risk factors begin early in life and may contribute to the risk of early-onset CRC. Later in carcinogenesis, there may be a "point of no return" when sufficient mutations have accumulated, and some risk factors do not affect cancer risk. This period may be at least 5-15 years for some risk factors. A more precise knowledge of timing of risk factor to cancer is required to inform preventive efforts.
Collapse
Affiliation(s)
- Edward Giovannucci
- Correspondence to: Edward Giovannucci, ScD, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA (e-mail: )
| |
Collapse
|
17
|
Nuotio J, Laitinen TT, Sinaiko AR, Woo JG, Urbina EM, Jacobs DR, Steinberger J, Prineas RJ, Sabin MA, Burgner DP, Minn H, Burns TL, Bazzano LA, Venn AJ, Viikari JSA, Hutri-Kähönen N, Daniels SR, Raitakari OT, Magnussen CG, Juonala M, Dwyer T. Obesity during childhood is associated with higher cancer mortality rate during adulthood: the i3C Consortium. Int J Obes (Lond) 2022; 46:393-399. [PMID: 34728776 PMCID: PMC8794778 DOI: 10.1038/s41366-021-01000-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND In high-income countries, cancer is the leading cause of death among middle-aged adults. Prospective data on the effects of childhood risk exposures on subsequent cancer mortality are scarce. METHODS We examined whether childhood body mass index (BMI), blood pressure, glucose and lipid levels were associated with adult cancer mortality, using data from 21,012 children enrolled aged 3-19 years in seven prospective cohort studies from the U.S., Australia, and Finland that have followed participants from childhood into adulthood. Cancer mortality (cancer as a primary or secondary cause of death) was captured using registries. RESULTS 354 cancer deaths occurred over the follow-up. In age-, sex, and cohort-adjusted analyses, childhood BMI (Hazard ratio [HR], 1.13; 95% confidence interval [CI] 1.03-1.24 per 1-SD increase) and childhood glucose (HR 1.22; 95%CI 1.01-1.47 per 1-SD increase), were associated with subsequent cancer mortality. In a multivariable analysis adjusted for age, sex, cohort, and childhood measures of fasting glucose, total cholesterol, triglycerides, and systolic blood pressure, childhood BMI remained as an independent predictor of subsequent cancer mortality (HR, 1.24; 95%CI, 1.03-1.49). The association of childhood BMI and subsequent cancer mortality persisted after adjustment for adulthood BMI (HR for childhood BMI, 1.35; 95%CI 1.12-1.63). CONCLUSIONS Higher childhood BMI was independently associated with increased overall cancer mortality.
Collapse
Affiliation(s)
- Joel Nuotio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Tomi T Laitinen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Alan R Sinaiko
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elaine M Urbina
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julia Steinberger
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Ronald J Prineas
- Division of Public Health Science, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew A Sabin
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Endocrinology and Diabetes, The Royal Children's Hospital, Parkville, VIC, Australia
| | - David P Burgner
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Heikki Minn
- Department of Oncology, Turku University Hospital, Turku, Finland
| | - Trudy L Burns
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Alison J Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jorma S A Viikari
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Stephen R Daniels
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Costan G Magnussen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Markus Juonala
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | | |
Collapse
|
18
|
Koelwyn GJ, Aboumsallem JP, Moore KJ, de Boer RA. Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. J Mol Cell Cardiol 2022; 163:1-8. [PMID: 34582824 PMCID: PMC8816816 DOI: 10.1016/j.yjmcc.2021.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 02/09/2023]
Abstract
The field of cardio-oncology has emerged in response to the increased risk of cardiovascular disease (CVD) in patients with cancer. However, recent studies suggest a more complicated CVD-cancer relationship, wherein development of CVD, either prior to or following a cancer diagnosis, can also lead to increased risk of cancer and worse outcomes for patients. In this review, we describe the current evidence base, across epidemiological as well as preclinical studies, which supports the emerging concept of 'reverse-cardio oncology', or CVD-induced acceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Graeme J. Koelwyn
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada,Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver Canada
| | - Joseph Pierre Aboumsallem
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Kathryn J. Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands.,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| |
Collapse
|
19
|
Zhang ZM, Cao HB, Li ZH, Zhuo R, Tao YF, Li XL, Li G, Liao XM, Fang F, Xie Y, Wu D, Wang HR, Wang JW, Chen YL, Yu JJ, Jia SQ, Yang RD, Guo XY, Yang Y, Feng CX, Xu YY, Qian GH, Pan J. SAPCD2 promotes neuroblastoma progression by altering the subcellular distribution of E2F7. Cell Death Dis 2022; 13:174. [PMID: 35197448 PMCID: PMC8866461 DOI: 10.1038/s41419-022-04624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Recent studies uncovered the emerging roles of SAPCD2 (suppressor anaphase-promoting complex domain containing 2) in several types of human cancer. However, the functions and underlying mechanisms of SAPCD2 in the progression of neuroblastoma (NB) remain elusive. Herein, through integrative analysis of public datasets and regulatory network of GSK-J4, a small-molecule drug with anti-NB activity, we identified SAPCD2 as an appealing target with a high connection to poor prognosis in NB. SAPCD2 promoted NB progression in vitro and in vivo. Mechanistically, SAPCD2 could directly bind to cytoplasmic E2F7 but not E2F1, alter the subcellular distribution of E2F7 and regulate E2F activity. Among the E2F family members, the roles of E2F7 in NB are poorly understood. We found that an increasing level of nuclear E2F7 was induced by SAPCD2 knockdown, thereby affecting the expression of genes involved in the cell cycle and chromosome instability. In addition, Selinexor (KTP-330), a clinically available inhibitor of exportin 1 (XPO1), could induce nuclear accumulation of E2F7 and suppress the growth of NB. Overall, our studies suggested a previously unrecognized role of SAPCD2 in the E2F signaling pathway and a potential therapeutic approach for NB, as well as clues for understanding the differences in subcellular distribution of E2F1 and E2F7 during their nucleocytoplasmic shuttling.
Collapse
|
20
|
Alkhathami AG, Hadi A, Alfaifi M, Alshahrani MY, Verma AK, Beg MMA. Serum-Based lncRNA ANRIL, TUG1, UCA1, and HIT Expressions in Breast Cancer Patients. DISEASE MARKERS 2022; 2022:9997212. [PMID: 35132340 PMCID: PMC8817891 DOI: 10.1155/2022/9997212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/25/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is a heterogeneous disease and is the most common and prevalent form of malignancy diagnosed in women. lncRNAs are found to be frequently dysregulated in cancer, and its expression plays a critical role in tumorigenesis. The study included 100 histopathologically confirmed, newly diagnosed untreated patients of invasive ductal carcinoma (IDC) of breast cancer patients and 100 healthy subjects. After blood collection, the serum was separated and total RNA was extracted, cDNA was synthesized using 100 ng of total RNA, and lncRNA (ANRIL, TUG1, UCA1, and HIT) expression was analyzed. Increased ANRIL (3.83-fold), TUG1 (7.64-fold), UCA1 (7.82-fold), and HIT (3.31-fold) expressions were observed in breast cancer patients compared to healthy controls. Relative expression of lncRNAs UCA-1 (p = 0.010) and HIT-1 (p < 0.0001) was significantly elevated in patients with advanced breast cancer stage compared to those with early-stage disease. While lncRNA TUG-1 expression was found to be higher in patients with early-stage tumors than those with advanced-stage tumors (p = 0.06), lncRNA ANRIL showed increased expression in patients with PR positive status (p = 0.04). However, we found a significant difference in lncRNA HIT expression in HER-2 positive breast cancer patients compared to HER-2 negative breast cancer patients (p = 0.005). An increase in the expression of serum lncRNAs ANRIL (p < 0.0001), UCA-1 (p = 0.004), and HIT (p < 0.0001) was observed in the distant organ metastatic breast cancer patients. In the ROC curve concerning lymph node involvement, the sensitivity and specificity of lncRNA HIT were 68% and 58%, respectively (p value = 0.007). In the ROC curve w.r.t. stages of disease, the sensitivity and specificity of lncRNA HIT were 80% and 50%, respectively (p value < 0.0001). Better sensitivity and specificity were observed for lncRNA HIT (sensitivity 91% and specificity 78%; p value < 0.0001) and ANRIL (sensitivity 70% and specificity 60%; p value < 0.0001) w.r.t distant organ metastases.
Collapse
Affiliation(s)
- Ali G. Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Abdul Hadi
- Department of Medicine, Xi'an Jiaotong University, China
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Mohammad Yahya Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Amit Kumar Verma
- Department of Zoology and Environmental Sciences, GKV, Haridwar, India
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
- Centre for Promotion of Medical Research, Alatoo International University, Bishkek, Kyrgyzstan
| |
Collapse
|
21
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
22
|
Treatment during a developmental window prevents NF1-associated optic pathway gliomas by targeting Erk-dependent migrating glial progenitors. Dev Cell 2021; 56:2871-2885.e6. [PMID: 34428430 DOI: 10.1016/j.devcel.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
The mechanism of vulnerability to pediatric low-grade gliomas (pLGGs)-the most common brain tumor in children-during development remains largely unknown. Using mouse models of neurofibromatosis type 1 (NF1)-associated pLGGs in the optic pathway (NF1-OPG), we demonstrate that NF1-OPG arose from the vulnerability to the dependency of Mek-Erk/MAPK signaling during gliogenesis of one of the two developmentally transient precursor populations in the optic nerve, brain-derived migrating glial progenitors (GPs), but not local progenitors. Hyperactive Erk/MAPK signaling by Nf1 loss overproduced GPs by disrupting the balance between stem-cell maintenance and gliogenesis of hypothalamic ventricular zone radial glia (RG). Persistence of RG-like GPs initiated NF1-OPG, causing Bax-dependent apoptosis in retinal ganglion cells. Removal of three Mek1/Mek2 alleles or transient post-natal treatment with a low-dose MEK inhibitor normalized differentiation of Nf1-/- RG-like GPs, preventing NF1-OPG formation and neuronal degeneration. We provide the proof-of-concept evidence for preventing pLGGs before tumor-associated neurological damage enters an irreversible phase.
Collapse
|
23
|
Gurjao C, Zhong R, Haruki K, Li YY, Spurr LF, Lee-Six H, Reardon B, Ugai T, Zhang X, Cherniack AD, Song M, Van Allen EM, Meyerhardt JA, Nowak JA, Giovannucci EL, Fuchs CS, Wu K, Ogino S, Giannakis M. Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discov 2021; 11:2446-2455. [PMID: 34140290 PMCID: PMC8487940 DOI: 10.1158/2159-8290.cd-20-1656] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Several risk factors have been established for colorectal cancer, yet their direct mutagenic effects in patients' tumors remain to be elucidated. Here, we leveraged whole-exome sequencing data from 900 colorectal cancer cases that had occurred in three U.S.-wide prospective studies with extensive dietary and lifestyle information. We found an alkylating signature that was previously undescribed in colorectal cancer and then showed the existence of a similar mutational process in normal colonic crypts. This alkylating signature is associated with high intakes of processed and unprocessed red meat prior to diagnosis. In addition, this signature was more abundant in the distal colorectum, predicted to target cancer driver mutations KRAS p.G12D, KRAS p.G13D, and PIK3CA p.E545K, and associated with poor survival. Together, these results link for the first time a colorectal mutational signature to a component of diet and further implicate the role of red meat in colorectal cancer initiation and progression. SIGNIFICANCE: Colorectal cancer has several lifestyle risk factors, but the underlying mutations for most have not been observed directly in tumors. Analysis of 900 colorectal cancers with whole-exome sequencing and epidemiologic annotations revealed an alkylating mutational signature that was associated with red meat consumption and distal tumor location, as well as predicted to target KRAS p.G12D/p.G13D.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Liam F Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Pritzker School of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | | | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, Yale School of Medicine, Smilow Cancer Hospital, New Haven, Connecticut
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
24
|
Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, Dong X. Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005155. [PMID: 33684242 DOI: 10.1002/adma.202005155] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Anti-angiogenic therapy, targeting vascular endothelial cells (ECs) to prevent tumor growth, has been attracting increasing attention in recent years, beginning with bevacizumab (Avastin) through its Phase II/III clinical trials on solid tumors. However, these trials showed only modest clinical efficiency; moreover, anti-angiogenic therapy may induce acquired resistance to the drugs employed. Combining advanced drug delivery techniques (e.g., nanotechnology) or other therapeutic strategies (e.g., chemotherapy, radiotherapy, phototherapy, and immunotherapy) with anti-angiogenic therapy results in significantly synergistic effects and has opened a new horizon in fighting cancer. Herein, clinical difficulties in using traditional anti-angiogenic therapy are discussed. Then, several promising applications of anti-angiogenic nanoagents in monotherapies and combination therapies are highlighted. Finally, the challenges and perspectives of anti-angiogenic cancer therapy are summarized. A useful introduction to anti-angiogenic strategies, which may significantly improve therapeutic outcomes, is thus provided.
Collapse
Affiliation(s)
- Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
25
|
Song M. Cancer overtakes vascular disease as leading cause of excess death associated with diabetes. Lancet Diabetes Endocrinol 2021; 9:131-133. [PMID: 33549160 DOI: 10.1016/s2213-8587(21)00016-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard TH Chan School of Public Health, Boston 02115, MA, USA; Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Afsari B, Kuo A, Zhang Y, Li L, Lahouel K, Danilova L, Favorov A, Rosenquist TA, Grollman AP, Kinzler KW, Cope L, Vogelstein B, Tomasetti C. Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer. eLife 2021; 10:61082. [PMID: 33491650 PMCID: PMC7872524 DOI: 10.7554/elife.61082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Determining the etiologic basis of the mutations that are responsible for cancer is one of the fundamental challenges in modern cancer research. Different mutational processes induce different types of DNA mutations, providing 'mutational signatures' that have led to key insights into cancer etiology. The most widely used signatures for assessing genomic data are based on unsupervised patterns that are then retrospectively correlated with certain features of cancer. We show here that supervised machine-learning techniques can identify signatures, called SuperSigs, that are more predictive than those currently available. Surprisingly, we found that aging yields different SuperSigs in different tissues, and the same is true for environmental exposures. We were able to discover SuperSigs associated with obesity, the most important lifestyle factor contributing to cancer in Western populations.
Collapse
Affiliation(s)
- Bahman Afsari
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Albert Kuo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - YiFan Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Lu Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Kamel Lahouel
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ludmila Danilova
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russian Federation
| | - Alexander Favorov
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russian Federation
| | | | - Arthur P Grollman
- State University of New York at Stony Brook, Stony Brook, United States
| | - Ken W Kinzler
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, United States
| | - Leslie Cope
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Bert Vogelstein
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, United States
| | - Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| |
Collapse
|
27
|
Avanzini S, Kurtz DM, Chabon JJ, Moding EJ, Hori SS, Gambhir SS, Alizadeh AA, Diehn M, Reiter JG. A mathematical model of ctDNA shedding predicts tumor detection size. SCIENCE ADVANCES 2020; 6:eabc4308. [PMID: 33310847 PMCID: PMC7732186 DOI: 10.1126/sciadv.abc4308] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/29/2020] [Indexed: 05/12/2023]
Abstract
Early cancer detection aims to find tumors before they progress to an incurable stage. To determine the potential of circulating tumor DNA (ctDNA) for cancer detection, we developed a mathematical model of tumor evolution and ctDNA shedding to predict the size at which tumors become detectable. From 176 patients with stage I to III lung cancer, we inferred that, on average, 0.014% of a tumor cell's DNA is shed into the bloodstream per cell death. For annual screening, the model predicts median detection sizes of 2.0 to 2.3 cm representing a ~40% decrease from the current median detection size of 3.5 cm. For informed monthly cancer relapse testing, the model predicts a median detection size of 0.83 cm and suggests that treatment failure can be detected 140 days earlier than with imaging-based approaches. This mechanistic framework can help accelerate clinical trials by precomputing the most promising cancer early detection strategies.
Collapse
Affiliation(s)
- Stefano Avanzini
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David M Kurtz
- Division of Oncology, Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob J Chabon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Everett J Moding
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sharon Seiko Hori
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv Sam Gambhir
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Bio-X Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering and Department of Materials Science and Engineering, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ash A Alizadeh
- Division of Oncology, Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maximilian Diehn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes G Reiter
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Bio-X Program, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Biophysics Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Abstract
BACKGROUND Cancer prevention and screening is a significant part of the cancer care continuum. Nurses are trusted professionals who can bring stakeholders together and serve diverse groups. OBJECTIVES This article describes how nurses can advance cancer prevention and screening initiatives in industry, education, legislative advocacy, research, survivorship, and program development and support. METHODS An online search and collaborative knowledge revealed examples of nurses leading the way in cancer prevention and screening efforts. FINDINGS Nurse-driven cancer prevention and screening collaborations advance care farther and faster. By creating maximum impact and mobilizing individual passion for a project, any nurse can find collaborative niche opportunities in clinical practice.
Collapse
|
29
|
Koelwyn GJ, Zhuang X, Tammela T, Schietinger A, Jones LW. Exercise and immunometabolic regulation in cancer. Nat Metab 2020; 2:849-857. [PMID: 32929232 PMCID: PMC9128397 DOI: 10.1038/s42255-020-00277-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Unhealthful lifestyle factors, such as obesity, disrupt organismal homeostasis and accelerate cancer pathogenesis, partly through metabolic and immunological dysregulation. Exercise is a prototypical strategy that maintains and restores homeostasis at the organismal, tissue, cellular and molecular levels and can prevent or inhibit numerous disease conditions, including cancer. Here, we review unhealthful lifestyle factors that contribute to metabolic and immunological dysregulation and drive tumourigenesis, focusing on patient physiology (host)-tissue-tumour microenvironment interactions. We also discuss how exercise may influence distant tissue microenvironments, thereby improving tissue function through both metabolic and immunospecific pathways. Finally, we consider future directions that merit consideration in basic and clinical translational exercise studies.
Collapse
Affiliation(s)
| | - Xueqian Zhuang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology, Weill-Cornell Medical College, New York, NY, USA
| | - Andrea Schietinger
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, USA
| | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
30
|
Pasic MD. The current status and future prospects of precision medicine. Clin Chem Lab Med 2020; 58:1423-1425. [PMID: 31940283 DOI: 10.1515/cclm-2019-0772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Over the last 5 years I have been coordinating a graduate course on genomic technologies and their applications in medicine. The course is offered to graduate students in the Department of Laboratory Medicine and Pathobiology at the University of Toronto. In attending the diverse lectures, I came to better understand the burgeoning field of "personalized" or "precision" medicine (PM) and its current status and future prospects. Below, I provide my personal views on this topic.
Collapse
Affiliation(s)
- Maria D Pasic
- Department of Laboratory Medicine, St. Joseph's Health Centre, Unity Health Toronto, 30 The Queensway, Toronto, ON M6R 1B5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Electrochemical anticancer drug sensor for determination of raloxifene in the presence of tamoxifen using graphene-CuO-polypyrrole nanocomposite structure modified pencil graphite electrode: Theoretical and experimental investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Rezende LFM, Murata E, Giannichi B, Tomita LY, Wagner GA, Sanchez ZM, Celis-Morales C, Ferrari G. Cancer cases and deaths attributable to lifestyle risk factors in Chile. BMC Cancer 2020; 20:693. [PMID: 32711508 PMCID: PMC7382839 DOI: 10.1186/s12885-020-07187-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023] Open
Abstract
Background To identify modifiable risk factors that contribute to cancer holds important public health relevance for setting up prevention strategies. Therefore, the aim of this study was to estimate the proportion of cancer cases and deaths attributable to alcohol consumption, high body mass index (BMI), low fruits and vegetables consumption, lack of physical activity, tobacco smoking, and passive smoking in Chile in 2018. Methods We retrieved data from a national representative survey to describe the distribution of six lifestyle risk factors. Relative risks of each risk factor-cancer pair were obtained from published meta-analysis and pooled cohort studies. Cancer cases and deaths were obtained from the GLOBOCAN 2018. Results Nearly 30% of all cancer cases (15,097 out of 50,320 cases) and 36% of all cancer deaths (10,155 out of 28,010 deaths) in Chile in 2018 were attributable to lifestyle risk factors. Smoking and high BMI accounted for most of the cancer cases (9232 and 4394, respectively) and deaths (6868 and 2572). The cancer burden of other lifestyle risk factors varied by sex. In men, the proportion of all cancer cases attributed to alcohol were 3.7% compare to 2.0% for women. Cancers cases and deaths of the larynx, lung, oral/cavity, esophagus and bladder could be at least halved if lifestyle risk factors were eliminated. Conclusion Smoking and high BMI were the leading causes of preventable cancer cases and deaths within the six lifestyles factors considered. Cancer prevention strategies should consider evidence-based interventions and public policies to encourage the adoption of a healthier lifestyle.
Collapse
Affiliation(s)
- Leandro F M Rezende
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventive, Sao Paulo, SP, Brazil
| | - Eliana Murata
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventive, Sao Paulo, SP, Brazil
| | - Beatriz Giannichi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventive, Sao Paulo, SP, Brazil
| | - Luciana Yuki Tomita
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventive, Sao Paulo, SP, Brazil
| | - Gabriela Arantes Wagner
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventive, Sao Paulo, SP, Brazil
| | - Zila M Sanchez
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventive, Sao Paulo, SP, Brazil
| | - Carlos Celis-Morales
- Centro de Investigación en Fisiología del Ejercicio - CIFE, Universidad Mayor, Santiago, Chile.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| | - Gerson Ferrari
- Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile - USACH, Estación Central, 7500618, Santiago, Chile.
| |
Collapse
|
33
|
Shan Q, Qu F, Yang W, Chen N. Effect of LINC00657 on Apoptosis of Breast Cancer Cells by Regulating miR-590-3p. Cancer Manag Res 2020; 12:4561-4571. [PMID: 32606949 PMCID: PMC7305342 DOI: 10.2147/cmar.s249576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the effect of LINC00657 on breast carcinoma by regulating miR-590-3p. Methods Ninety-seven cases with breast carcinoma who were admitted to Qingdao Chengyang People’s Hospital were collected. The breast carcinoma (n=97) and tumor-adjacent tissues (n=97) of patients were collected during the operation with the permission of the patients. The expressions of LINC00657 and miR-590-3p were detected in breast carcinoma cells and tissues. The breast carcinoma cells were transfected and their proliferation, migration, invasion and apoptosis were detected. Results LINC00657 was highly expressed in breast carcinoma tissues, while miR-590-3p was reduced (P<0.05). The proliferation, invasion and migration of cells transfected with si-LINC00657 or miR-590-3p-mimics were significantly inhibited, and the apoptosis rate increased, resulting in the up-regulation of the expressions of apoptosis-related proteins Bax and Caspase-3 and the reduction of Bcl-2 (P<0.05). After si-LINC00657 or miR-590-3p-mimics, the level of GOLPH3 decreased. Through double luciferase report and RIP experiment, it was confirmed that LINC00657 could act as a sponge of miR-590-3p to negatively regulate its expression. After correlation analysis, it was concluded that there was a negative correlation between LINC00657 and miR-590-3p. Rescue experiments concluded that co-transfection of si-LINC00657+miR-590-3P-inhibitor could reverse the inhibitory action of si-LINC00657 on breast carcinoma cells. Conclusion LINC00657 can participate in the biological behavior process of breast carcinoma by regulating miR-590-3p/GOLPH3 signal.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Weiping Yang
- Department of Thyroid Breast Surgery, Qingdao Chengyang People's Hospital, Qingdao, People's Republic of China
| | - Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
34
|
Hammarlund EU, Amend SR, Pienta KJ. The issues with tissues: the wide range of cell fate separation enables the evolution of multicellularity and cancer. Med Oncol 2020; 37:62. [PMID: 32535731 PMCID: PMC7293661 DOI: 10.1007/s12032-020-01387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
Our understanding of the rises of animal and cancer multicellularity face the same conceptual hurdles: what makes the clade originate and what makes it diversify. Between the events of origination and diversification lies complex tissue organization that gave rise to novel functionality for organisms and, unfortunately, for malignant transformation in cells. Tissue specialization with distinctly separated cell fates allowed novel functionality at organism level, such as for vertebrate animals, but also involved trade-offs at the cellular level that are potentially disruptive. These trade-offs are under-appreciated and here we discuss how the wide separation of cell phenotypes may contribute to cancer evolution by (a) how factors can reverse differentiated cells into a window of phenotypic plasticity, (b) the reversal to phenotypic plasticity coupled with asexual reproduction occurs in a way that the host cannot adapt, and (c) the power of the transformation factor correlates to the power needed to reverse tissue specialization. The role of reversed cell fate separation for cancer evolution is strengthened by how some tissues and organisms maintain high cell proliferation and plasticity without developing tumours at a corresponding rate. This demonstrates a potential proliferation paradox that requires further explanation. These insights from the cancer field, which observes tissue evolution in real time and closer than any other field, allow inferences to be made on evolutionary events in animal history. If a sweet spot of phenotypic and reproductive versatility is key to transformation, factors stimulating cell fate separation may have promoted also animal diversification on Earth.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, DK, Denmark.
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
35
|
Ulz P, Perakis S, Zhou Q, Moser T, Belic J, Lazzeri I, Wölfler A, Zebisch A, Gerger A, Pristauz G, Petru E, White B, Roberts CES, John JS, Schimek MG, Geigl JB, Bauernhofer T, Sill H, Bock C, Heitzer E, Speicher MR. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat Commun 2019; 10:4666. [PMID: 31604930 PMCID: PMC6789008 DOI: 10.1038/s41467-019-12714-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Deregulation of transcription factors (TFs) is an important driver of tumorigenesis, but non-invasive assays for assessing transcription factor activity are lacking. Here we develop and validate a minimally invasive method for assessing TF activity based on cell-free DNA sequencing and nucleosome footprint analysis. We analyze whole genome sequencing data for >1,000 cell-free DNA samples from cancer patients and healthy controls using a bioinformatics pipeline developed by us that infers accessibility of TF binding sites from cell-free DNA fragmentation patterns. We observe patient-specific as well as tumor-specific patterns, including accurate prediction of tumor subtypes in prostate cancer, with important clinical implications for the management of patients. Furthermore, we show that cell-free DNA TF profiling is capable of detection of early-stage colorectal carcinomas. Our approach for mapping tumor-specific transcription factor binding in vivo based on blood samples makes a key part of the noncoding genome amenable to clinical analysis.
Collapse
Affiliation(s)
- Peter Ulz
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Samantha Perakis
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Qing Zhou
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Tina Moser
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Gerger
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Gunda Pristauz
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Edgar Petru
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | | | | | - Michael G Schimek
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Jochen B Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Thomas Bauernhofer
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Graz, Austria.
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
36
|
Lippman SM, Abate-Shen C, Colbert Maresso KL, Colditz GA, Dannenberg AJ, Davidson NE, Disis ML, DuBois RN, Szabo E, Giuliano AR, Hait WN, Lee JJ, Kensler TW, Kramer BS, Limburg P, Maitra A, Martinez ME, Rebbeck TR, Schmitz KH, Vilar E, Hawk ET. AACR White Paper: Shaping the Future of Cancer Prevention - A Roadmap for Advancing Science and Public Health. Cancer Prev Res (Phila) 2019; 11:735-778. [PMID: 30530635 DOI: 10.1158/1940-6207.capr-18-0421] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/09/2022]
Abstract
The recent pace, extent, and impact of paradigm-changing cancer prevention science has been remarkable. The American Association for Cancer Research (AACR) convened a 3-day summit, aligned with five research priorities: (i) Precancer Atlas (PCA). (ii) Cancer interception. (iii) Obesity-cancer linkage, a global epidemic of chronic low-grade inflammation. (iv) Implementation science. (v) Cancer disparities. Aligned with these priorities, AACR co-led the Lancet Commission to formally endorse and accelerate the NCI Cancer Moonshot program, facilitating new global collaborative efforts in cancer control. The expanding scope of creative impact is perhaps most startling-from NCI-funded built environments to AACR Team Science Awarded studies of Asian cancer genomes informing global primary prevention policies; cell-free epigenetic marks identifying incipient neoplastic site; practice-changing genomic subclasses in myeloproliferative neoplasia (including germline variant tightly linked to JAK2 V617F haplotype); universal germline genetic testing for pancreatic cancer; and repurposing drugs targeting immune- and stem-cell signals (e.g., IL-1β, PD-1, RANK-L) to cancer interception. Microbiota-driven IL-17 can induce stemness and transformation in pancreatic precursors (identifying another repurposing opportunity). Notable progress also includes hosting an obesity special conference (connecting epidemiologic and molecular perspectives to inform cancer research and prevention strategies), co-leading concerted national implementation efforts in HPV vaccination, and charting the future elimination of cancer disparities by integrating new science tools, discoveries and perspectives into community-engaged research, including targeted counter attacks on e-cigarette ad exploitation of children, Hispanics and Blacks. Following this summit, two unprecedented funding initiatives were catalyzed to drive cancer prevention research: the NCI Cancer Moonshot (e.g., PCA and disparities); and the AACR-Stand Up To Cancer bold "Cancer Interception" initiative.
Collapse
Affiliation(s)
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology & Cell Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Karen L Colbert Maresso
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Nancy E Davidson
- Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anna R Giuliano
- Center for Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - William N Hait
- Janssen Research and Development LLC., Raritan, New Jersey
| | - J Jack Lee
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul Limburg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Elena Martinez
- Department of Family Medicine and Public Health, UC San Diego, LaJolla, California
| | - Timothy R Rebbeck
- Cancer Epidemiology & Cancer Risk and Disparity, Dana-Farber Cancer Institute, Boston, MA
| | | | - Eduardo Vilar
- Departments of Clinical Cancer Prevention and GI Medical Oncology, UT MD Anderson Cancer Center, Houston, TX
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
37
|
Comparative anticancer activity analysis of saffron extracts and a principle component, crocetin for prevention and treatment of human malignancies. Journal of Food Science and Technology 2019; 56:5435-5443. [PMID: 31749491 DOI: 10.1007/s13197-019-04014-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
Abstract Saffron, obtained from dry stigmas of the flowers of Crocus sativus L. (fam. Iridaceae), is an ancient spice and a natural food colorant that has been used to treat various diseases in the long human history. Crocetin is of the main secondary metabolites of saffron and its curative properties for many ailments have been revealed in the previous scientific reports. The aim of this study was to evaluate the anticancer potentials of saffron extracts and its pure crocetin compounds against human cancer cells. The cytotoxic and antiproliferative activities along with lactate dehydrogenase activities of extracts and crocetin, a carotenoid derived from saffron, were assessed using A549, MCF-7 and HeLa human cancer cells, and compared to the non-malignant HUVECs. Additionally, apoptotic activity in the cells treated and untreated with the extracts and pure crocetin were determined in terms of DNA fragmentation. The results showed the extracts and crocetin from saffron induced cytotoxicity, enhanced cancer cell death as well as inhibited cancer cell growth in a concentration and time dependent manner. In addition, the results revealed that the tested compounds at different concentration had no cytotoxic effects on the non-malignant cells, whereas, it could significantly decrease the cell viability and proliferation in the malignant cells. As compared to anticancer potentials of the analyzed extracts and its pure crocetin compounds, crocetin was found as the more potent one. Overall, this research suggests that crocetin is a potential anticancer agent that can be used for cancer prevention and treatment. Graphic abstract
Collapse
|
38
|
Song M, Giovannucci E. Preventable incidence of carcinoma associated with adiposity, alcohol and physical inactivity according to smoking status in the United States. Int J Cancer 2019; 146:2960-2967. [PMID: 31369145 DOI: 10.1002/ijc.32602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023]
Abstract
The changing profile of lifestyles and their intricate relationships with smoking indicate the importance of accounting for smoking status when assessing cancer preventability. We assessed the association of body mass index, weight change, alcohol intake and physical activity with risk of total carcinoma among 53,195 smokers and 62,842 nonsmokers in two prospective cohorts. Then, leveraging the national prevalence estimates, we calculated the population attributable risk (PAR) for healthy lifestyle defined as body mass index ≥18.5 and <27.5 kg/m2 , mid-life weight change of ≤20 pounds, no or moderate alcohol drinking (≤1 and 2 drinks/day for women and men, respectively) and weekly moderate or vigorous physical activity of at least 150 min. The PAR (95% CI) for healthy lifestyle was 18% (14-22%) in nonsmokers and 14% (10-19%) in smokers among women, and 20% (12-27%) in nonsmokers and 11% (5-17%) in smokers among men. While adiposity accounted for a substantially higher proportion of carcinoma cases in nonsmokers than smokers (16% vs. 2% in women, 15% vs. 2% in men), alcohol contributed more in smokers than nonsmokers (7% vs. 3% in women, 8% vs. 1% in men). When more strict criteria were used to define healthy lifestyle, the PAR estimates further increased (for women: 37% in smokers and 32% in nonsmokers; for men: 15% and 24%, respectively). In conclusion, lifestyle modification has great potential to reduce cancer risk in both smokers and nonsmokers. Weight control and reducing alcohol consumption should be prioritized for cancer prevention in nonsmokers and smokers, respectively.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Edward Giovannucci
- Department of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Tan A, Huang H, Zhang P, Li S. Network-based cancer precision medicine: A new emerging paradigm. Cancer Lett 2019; 458:39-45. [DOI: 10.1016/j.canlet.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
40
|
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J 2019; 38:e100852. [PMID: 31267556 PMCID: PMC6627238 DOI: 10.15252/embj.2018100852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.
Collapse
Affiliation(s)
| | - Mathepan Mahendralingam
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Hal K Berman
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Rama Khokha
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| |
Collapse
|
41
|
Mentis AFA, Boziki M, Grigoriadis N, Papavassiliou AG. Helicobacter pylori infection and gastric cancer biology: tempering a double-edged sword. Cell Mol Life Sci 2019; 76:2477-2486. [PMID: 30783683 PMCID: PMC11105440 DOI: 10.1007/s00018-019-03044-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (H. pylori) infection affects an estimated 4.4 billion people globally. Moreover, H. pylori presents the most significant risk factor for gastric cancer and low-grade mucosa-associated lymphoid tissue (MALT) lymphoma, and it is the first example of bacterial infection linked to carcinogenesis. Here, we contend that H. pylori research, which focuses on a cancer-causing pathogen resident in a relatively accessible organ, the stomach, could constitute an exemplar for microbial-related carcinogenesis in less tractable organs, such as the pancreas and lung. In this context, molecular biological approaches that could reap rewards are reviewed, including: (1) gastric cancer dynamics, particularly the role of stem cells and the heterogeneity of neoplastic cells, which are currently being investigated at the single-cell sequencing level; (2) mechanobiology, and the role of three-dimensional organoids and matrix metalloproteases; and (3) the connection between H. pylori and host pathophysiology and the gut microbiome. In the context of H. pylori's contribution to gastric cancer, several important conundrums remain to be fully elucidated. From among them, this article discusses (1) why H. pylori infection, which causes both gastric and duodenal inflammation, is only linked to gastric cancer; (2) whether a "precision oncomicrobiology" approach could enable a fine-tuning of the expression of only cancer-implicated H. pylori genes while maintaining beneficial H. pylori-mediated factors in extra-gastric tissues; and (3) the feasibility of using antibiotics targeting the microbial DNA damage system, which shares commonalities with mechanisms for human cell replication, as chemopreventives. Additional therapeutic perspectives are also discussed.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Department of Medical Microbiology, Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Marina Boziki
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.
| |
Collapse
|
42
|
Goldstein BD, Patel V. Controversy about the "Bad Luck" Cancer Hypothesis Could Lead to a Useful Tool for Planning Primary Prevention Cancer Research. Chem Res Toxicol 2019; 32:949-951. [PMID: 30995013 DOI: 10.1021/acs.chemrestox.8b00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A controversial study has claimed that most cancer is due to random processes unrelated to external causes, i.e., bad luck. The controversy has obscured the study's importance toward spurring scientific understanding of how best to prevent cancer.
Collapse
Affiliation(s)
- Bernard D Goldstein
- Department of Environmental and Occupational Health Graduate School of Public Health , University of Pittsburgh , 130 DeSoto Street , Pittsburgh , Pennsylvania 15213 , United States
| | - Varun Patel
- Department of Environmental and Occupational Health Graduate School of Public Health , University of Pittsburgh , 130 DeSoto Street , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
43
|
|
44
|
White MC, Holman DM, Goodman RA, Richardson LC. Cancer Risk Among Older Adults: Time for Cancer Prevention to Go Silver. THE GERONTOLOGIST 2019; 59:S1-S6. [PMID: 31511747 DOI: 10.1093/geront/gnz038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over two-thirds of all new cancers are diagnosed among adults aged ≥60 years. As the number of adults living to older ages continues to increase, so too will the number of new cancer cases. Can we do more as a society to reduce cancer risk and preserve health as adults enter their 60s, 70s, and beyond? Cancer development is a multi-step process involving a combination of factors. Each cancer risk factor represents a component of cancer causation, and opportunities to prevent cancer may exist at any time up to the final component, even years after the first. The characteristics of the community in which one lives often shape cancer risk-related behaviors and exposures over time, making communities an ideal setting for efforts to reduce cancer risk at a population level. A comprehensive approach to cancer prevention at older ages would lower exposures to known causes of cancer, promote healthy social and physical environments, expand the appropriate use of clinical preventive services, and engage older adults in these efforts. The collection of articles in this supplement provide innovative insights for exciting new directions in research and practice to expand cancer prevention efforts for older adults. This brief commentary sets the stage for the papers that follow.
Collapse
Affiliation(s)
- Mary C White
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Dawn M Holman
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Richard A Goodman
- Department of Family and Preventive Medicine, Emory University, Atlanta, Georgia
| | - Lisa C Richardson
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
45
|
Gezici S, Şekeroğlu N. Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents. Anticancer Agents Med Chem 2019; 19:101-111. [DOI: 10.2174/1871520619666181224121004] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Background:
Cancer is a disease characterized by uncontrolled cell growth and proliferation. It
has become a major health problem in the past decades and is now the second leading cause of death globally.
Although, there are different types of treatment such as chemotherapy, immune therapy, radiation, hormone
therapy and targeted therapy used against cancer, they have possible side effects and significant deficiencies.
Methods:
This review aims to outline the benefits of medicinal plants and plant-derived products and highlight
why they should be used as novel anti-cancer therapeutics. Electronic databases, including PubMed, Scopus,
ScienceDirect, Cochrane library, and MedlinePlus were searched to summarize in vitro, in vivo and clinical
studies on anticancer effects of medicinal plants and their bioactive compounds up-to-date.
Results:
In recent years, a number of medicinal plants have been administered to cancer patients in order to
prevent and treat cancer as an alternative therapy. These plants were used because of their rich anticarcinogenic
and chemoprotective potentials. In addition to these remarkable properties, these plants have less toxic anticancer,
anti-tumor and anti-proliferation agents than traditional therapeutics. Nevertheless, only a small number
of natural anti-tumor products including vinblastine, vincristine, podophyllotoxin, paclitaxel (Taxol) and camptothecin
have been tested clinically, while vinflunine ditartrate, anhydrovinblastine, NK-611, tafluposide, paclitaxel
poliglumex, combretastatins, salvicine, curcumin, indirubin, triptolide, homoharringtonine are still on trial.
Conclusion:
Consequently, more effective anticancer compounds are identified during the clinical trials; these
natural products could be a key source of antitumor agents in modern anticancer therapy. It is expected that
novel anticancer phytopharmaceuticals produced from medicinal plants could be effectively used in prevention
and therapy for the cancers.
Collapse
Affiliation(s)
- Sevgi Gezici
- Department of Molecular Biology and Genetics, Faculty of Science and Literature; Advanced Technology Application and Research Center, Kilis 7 Aralik University, 79000 Kilis, Turkey
| | - Nazım Şekeroğlu
- Department of Food Engineering, Faculty of Engineering and Architecture; Advanced Technology Application and Research Center, Kilis 7 Aralik University, 79000 Kilis, Turkey
| |
Collapse
|
46
|
Ivancic MM, Anson LW, Pickhardt PJ, Megna B, Pooler BD, Clipson L, Reichelderfer M, Sussman MR, Dove WF. Conserved serum protein biomarkers associated with growing early colorectal adenomas. Proc Natl Acad Sci U S A 2019; 116:8471-8480. [PMID: 30971492 PMCID: PMC6486772 DOI: 10.1073/pnas.1813212116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major challenge for the reduction of colon cancer is to detect patients carrying high-risk premalignant adenomas with minimally invasive testing. As one step, we have addressed the feasibility of detecting protein signals in the serum of patients carrying an adenoma as small as 6-9 mm in maximum linear dimension. Serum protein biomarkers, discovered in two animal models of early colonic adenomagenesis, were studied in patients using quantitative mass-spectrometric assays. One cohort included patients bearing adenomas known to be growing on the basis of longitudinal computed tomographic colonography. The other cohort, screened by optical colonoscopy, included both patients free of adenomas and patients bearing adenomas whose risk status was judged by histopathology. The markers F5, ITIH4, LRG1, and VTN were each elevated both in this patient study and in the studies of the Pirc rat model. The quantitative study in the Pirc rat model had demonstrated that the elevated level of each of these markers is correlated with the number of colonic adenomas. However, the levels of these markers in patients were not significantly correlated with the total adenoma volume. Postpolypectomy blood samples demonstrated that the elevated levels of these four conserved markers persisted after polypectomy. Two additional serum markers rapidly renormalized after polypectomy: growth-associated CRP levels were enhanced only with high-risk adenomas, while PI16 levels, not associated with growth, were reduced regardless of risk status. We discuss biological hypotheses to account for these observations, and ways for these signals to contribute to the prevention of colon cancer.
Collapse
Affiliation(s)
- Melanie M Ivancic
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Leigh W Anson
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Bryant Megna
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Bryan D Pooler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mark Reichelderfer
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
47
|
Berns A. Quality-assured research environments for translational cancer research. Mol Oncol 2019; 13:543-548. [PMID: 30628170 PMCID: PMC6396364 DOI: 10.1002/1878-0261.12441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
In order to secure high-quality cancer care for increasing numbers of cancer patients in the upcoming decades, the complete continuum of cancer research and cancer care needs a thorough overhaul, with more emphasis on prevention and early detection, and a greater focus on the development of innovative treatments that are also scrutinised for effectiveness and quality-of-life aspects. Therefore, under-resourced research areas, such as primary prevention, early diagnosis/secondary prevention (Song et al., ; Wild et al., ) and outcomes research (Cavers et al., ), should be given more emphasis, whereas basic, preclinical and clinical cancer research requires more innovation and effective collaboration to develop more effective treatments at an affordable cost. Innovative collaborative research in this translational trajectory requires the participation of well-resourced and well-organised institutions that are committed to high scientific and ethical standards. Offering focused funding to distinct segments of this research continuum concomitant with incentives to aspire to high-quality standards is the most effective route to achieve these goals. Therefore, a rigorous quality assessment system for institutions operating in this research continuum is a high priority.
Collapse
Affiliation(s)
- Anton Berns
- Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
48
|
Pang B, Sui S, Wang Q, Wu J, Yin Y, Xu S. Upregulation of DLEU1 expression by epigenetic modification promotes tumorigenesis in human cancer. J Cell Physiol 2019; 234:17420-17432. [PMID: 30793303 DOI: 10.1002/jcp.28364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
The function of DLEU1 in human cancer is largely unknown. The Cancer Genome Atlas data were applied to identify the landscape of differential genes between tumor tissues and normal tissues, which was further validated by our cohort data and pan-cancer data including 33 cancer types with 11,060 patients. Next, DLEU1 was selected to validate the novel finding and result showed that it promoted tumorigenesis in vitro and in vivo. Mechanistically, DLEU1 promotes SRP4 expression via increasing H3K27ac enrichment to SRP4 locus epigenetically. Moreover, epigenetic modification leads to upregulation of DLEU1 expression via decreased DNA methylation and increased H3K27ac and H3K4me3 histone modification in its locus. Finally, high expression of DLEU1 correlates with worse prognosis not only in specific cancer type patients but also in patients in the pan-cancer cohort. In summary, the work broadens the function landscape of known long noncoding RNAs in human cancer and provides novel insights into their roles in tumorigenesis.
Collapse
Affiliation(s)
- Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junqiang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
49
|
Wu RC, Wang P, Lin SF, Zhang M, Song Q, Chu T, Wang BG, Kurman RJ, Vang R, Kinzler K, Tomasetti C, Jiao Y, Shih IM, Wang TL. Genomic landscape and evolutionary trajectories of ovarian cancer precursor lesions. J Pathol 2019; 248:41-50. [PMID: 30560554 PMCID: PMC6618168 DOI: 10.1002/path.5219] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
The clonal relationship between ovarian high-grade serous carcinoma (HGSC) and its presumed precursor lesion, serous tubal intraepithelial carcinoma (STIC), has been reported. However, when analyzing patients with concurrent ovarian carcinoma and tubal lesion, the extensive carcinoma tissues present at diagnosis may have effaced the natural habitat of precursor clone(s), obscuring tumor clonal evolutionary history, or may have disseminated to anatomically adjacent fimbriae ends, masquerading as precursor lesions. To circumvent these limitations, we analyzed the genomic landscape of incidental tubal precursor lesions including p53 signature, dormant STIC or serous tubal intraepithelial lesion (STIL) and proliferative STIC in women without ovarian carcinoma or any cancer diagnosis using whole-exome sequencing and amplicon sequencing. In three of the four cancer-free women with multiple discrete tubal lesions we observed non-identical TP53 mutations between precursor lesions from the same individual. In one of the four women with co-existing ovarian HGSC and tubal precursor lesion we found non-identical TP53 mutations and a lack of common mutations shared between her precursor lesion and carcinoma. Analyzing the evolutionary history of multiple tubal lesions in the same four patients with concurrent ovarian carcinoma indicated distinct evolution trajectories. Collectively, the results support diverse clonal origins of tubal precursor lesions at the very early stages of tumorigenesis. Mathematical modeling based on lesion-specific proliferation rates indicated that p53 signature and dormant STIC may take a prolonged time (two decades or more) to develop into STIC, whereas STIC may progress to carcinoma in a much shorter time (6 years). The above findings may have implications for future research aimed at prevention and early detection of ovarian cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Pei Wang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shiou-Fu Lin
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Qianqian Song
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Tiffany Chu
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Robert J Kurman
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Russell Vang
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kenneth Kinzler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Cristian Tomasetti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ie-Ming Shih
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tian-Li Wang
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
50
|
Pang B, Wang Q, Ning S, Wu J, Zhang X, Chen Y, Xu S. Landscape of tumor suppressor long noncoding RNAs in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:79. [PMID: 30764831 PMCID: PMC6376750 DOI: 10.1186/s13046-019-1096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The landscape and biological functions of tumor suppressor long noncoding RNAs in breast cancer are still unknown. METHODS Data from whole transcriptome sequencing of 33 breast specimens in the Harbin Medical University Cancer Center cohort and The Cancer Genome Atlas was applied to identify and validate the landscape of tumor suppressor long noncoding RNAs, which was further validated by The Cancer Genome Atlas pancancer data including 33 cancer types and 12,839 patients. Next, the expression model, prognostic roles, potential biological functions and epigenetic regulation of tumor suppressor long noncoding RNAs were investigated and validated in the breast cancer and pancancer cohorts. Finally, EPB41L4A-AS2 was selected to validate our novel finding, and the tumor suppressive roles of EPB41L4A-AS2 in breast cancer were examined. RESULTS We identified and validated the landscape of tumor suppressor long noncoding RNAs in breast cancer. The expression of the identified long noncoding RNAs was downregulated in cancer tissue samples compared with normal tissue samples, and these long noncoding RNAs correlated with a favorable prognosis in breast cancer patients and the patients in the pancancer cohort. Multiple carcinogenesis-associated biological functions were predicted to be regulated negatively by these long noncoding RNAs. Moreover, these long noncoding RNAs were transcriptionally regulated by epigenetic modification, including DNA methylation and histone methylation modification. Finally, EPB41L4A-AS2 inhibited breast cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Mechanistically, EPB41L4A-AS2, acting at least in part as a tumor suppressor, upregulated tumor suppressor gene expression. Moreover, ZNF217 recruited EZH2 to the EPB41L4A-AS2 locus and suppressed the expression of EPB41L4A-AS2 by epigenetically increasing H3K27me3 enrichment. CONCLUSIONS This work enlarges the functional landscape of known long noncoding RNAs in human cancer and provides novel insights into the suppressive roles of these long noncoding RNAs.
Collapse
Affiliation(s)
- Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Junqiang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yanbo Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| |
Collapse
|