1
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Zúñiga-Cueto N, Miranda-Benabarre C, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. The impacts of artificial light at night (ALAN) spectral composition on key behavioral traits of a sandy beach isopod. MARINE POLLUTION BULLETIN 2024; 208:116924. [PMID: 39278176 DOI: 10.1016/j.marpolbul.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Artificial light at night (ALAN) is a widespread human-induced disturbance, whose effects have been documented in many ecosystems. However, limited attention has been given to the source of the lights behind ALAN, so this study examined three of them: High-Pressure Sodium (HPS) lamps and warm and cool white Light-Emitting Diodes (LEDs). Laboratory experiments compared the effects of each type of light to natural day/night conditions, upon the activity, feeding behavior and growth of the isopod Tylos spinulosus. Tanks equipped with actographs monitored locomotor activity, while separate tanks were utilized to assess food consumption and growth under natural and ALAN conditions. Our results show that all ALAN sources disrupt and reduce isopods' activity and feeding behavior, with cool and warm LEDs being the most severe and mildest, respectively. Instead, ALAN had only minor effects on isopod growth. Our findings suggest that warm LEDs may be preferable for ALAN mitigation purposes.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicol Zúñiga-Cueto
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda-Benabarre
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
2
|
Wang F, Pan H, Mao W, Wang D. Optimizations of luminescent materials for white light emitting diodes toward healthy lighting. Heliyon 2024; 10:e34795. [PMID: 39149032 PMCID: PMC11325363 DOI: 10.1016/j.heliyon.2024.e34795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
White light emitting diodes (wLEDs) have been widely used as the green lighting sources. The commercial wLEDs devices are mainly achieved through the combination of blue emission chips and yellow phosphors, which offer advantages of high efficiency and long lifetime. However, the color rendering index (CRI) of traditional wLEDs is low due to the lack of red components. In recent years, with the improvement of the quality of life, a lot of efforts have been paid to improve the performance of wLEDs devices related to CRI, correlated color temperature, light uniformity, luminous flux, etc. In this article, we summarize the recent advances on the optimization of wLEDs toward healthy lighting. Brief introductions on the fundamentals of healthy effect of lighting are presented, followed by discussions of current methods to realize wLEDs devices. Special overviews on strategies for luminescent materials of wLEDs in recent years are presented. The opportunities and challenges in the future development of wLEDs lighting devices are also discussed.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Pan
- Shandong Best Integrated Housing Co., Ltd, Weifang, 262600, China
| | - Wei Mao
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou, 324000, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
He Y, Ganguly A, Lindgren S, Quispe L, Suvanto C, Zhao K, Candolin U. Carry-over effect of artificial light at night on daytime mating activity in an ecologically important detritivore, the amphipod Gammarus pulex. J Exp Biol 2024; 227:jeb246682. [PMID: 38516876 DOI: 10.1242/jeb.246682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Artificial light at night (ALAN) is a growing environmental problem influencing the fitness of individuals through effects on their physiology and behaviour. Research on animals has primarily focused on effects on behaviour during the night, whereas less is known about effects transferred to daytime. Here, we investigated in the lab the impact of ALAN on the mating behaviour of an ecologically important freshwater amphipod, Gammarus pulex, during both daytime and nighttime. We manipulated the presence of ALAN and the intensity of male-male competition for access to females, and found the impact of ALAN on mating activity to be stronger during daytime than during nighttime, independent of male-male competition. At night, ALAN only reduced the probability of precopula pair formation, while during the daytime, it both decreased general activity and increased the probability of pair separation after pair formation. Thus, ALAN reduced mating success in G. pulex not only directly, through effects on mating behaviour at night, but also indirectly through a carry-over effect on daytime activity and the ability to remain in precopula. These results emphasise the importance of considering delayed effects of ALAN on organisms, including daytime activities that can be more important fitness determinants than nighttime activities.
Collapse
Affiliation(s)
- Yuhan He
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Anirban Ganguly
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Susan Lindgren
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Laura Quispe
- Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Corinne Suvanto
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
4
|
Botté A, Payton L, Lefeuvre E, Tran D. Is part-night lighting a suitable mitigation strategy to limit Artificial Light at Night effects on the biological rhythm at the behavioral and molecular scales of the oyster Crassostrea gigas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167052. [PMID: 37714354 DOI: 10.1016/j.scitotenv.2023.167052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Artificial Light at Night (ALAN) is a fast-spreading threat to organisms, especially in coastal environments, where night lighting is increasing due to constant anthropization. Considering that ALAN affects a large diversity of coastal organisms, finding efficient solutions to limit these effects is of great importance but poorly investigated. The potential benefit of one strategy, in particular, should be studied since its use is growing: part-night lighting (PNL), which consists in switching off the lights for a few hours during nighttime. The aim of this study is to investigate the positive potential of the PNL strategy on the daily rhythm of the oyster Crassostrea gigas, a key species of coastal areas of ecological and commercial interest. Oysters were exposed to a control condition and three different ALAN modalities. A realistic PNL condition is applied, recreating a strategy of city policy in a coastal city boarding an urbanized bay (Lanton, Arcachon Bay, France). The PNL modality consists in switching off ALAN direct sources (5 lx) for 4 h (23-3 h) during which oysters are in darkness. Then, a PNL + skyglow (PNL + S) modality reproduces the previous one mimicking a skyglow (0.1 lx), an indirect ALAN source, during the direct lighting switch off, to get as close as possible to realistic conditions. Finally, the third ALAN condition mimics full-night direct lighting (FNL). Results revealed that PNL reduces some adverse effects of FNL on the behavioral daily rhythm. But, counterintuitively, PNL + S appears more harmful than FNL for some parameters of the behavioral daily rhythm. PNL + S modality is also the only one that affect oysters' clock and melatonin synthesis gene expression, suggesting physiological consequences. Thus, in realistic conditions, the PNL mitigation strategy might not be beneficial in the presence of skyglow, seeing worse for a coastal organism such as the oysters.
Collapse
Affiliation(s)
- Audrey Botté
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Elisa Lefeuvre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France.
| |
Collapse
|
5
|
Heinen R, Sanchez-Mahecha O, Martijn Bezemer T, Dominoni DM, Knappe C, Kollmann J, Kopatsch A, Pfeiffer ZA, Schloter M, Sturm S, Schnitzler JP, Corina Vlot A, Weisser WW. Part-night exposure to artificial light at night has more detrimental effects on aphid colonies than fully lit nights. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220357. [PMID: 37899021 PMCID: PMC10613545 DOI: 10.1098/rstb.2022.0357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant-insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to 'full' or 'part' nights of 15-20 lux ALAN, or no ALAN 'control' nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Robin Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - Oriana Sanchez-Mahecha
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - T. Martijn Bezemer
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2333 BE Leiden, The Netherlands
| | - Davide M. Dominoni
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, Scotland
| | - Claudia Knappe
- Institute of Biochemical Plant Pathology, Institute of Biochemical Plant Pathology, D-85764, Neuherberg, Germany
| | - Johannes Kollmann
- Chair of Restoration Ecology, Department for Life Science Systems, Technical University of Munich, 8534 Freising, Germany
| | - Anton Kopatsch
- Research Unit Environmental Simulation, Helmhotz, Munich, D-85764, Neuherberg, Germany
| | - Zoë A. Pfeiffer
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - Michael Schloter
- Chair of Soil Science, Department for Life Science Systems, Technical University of Munich, 85354 Freising, Germany
- Research Unit Comparative Microbiome Analysis, Helmhotz, Munich, D-85764, Neuherberg, Germany
| | - Sarah Sturm
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmhotz, Munich, D-85764, Neuherberg, Germany
| | - A. Corina Vlot
- Institute of Biochemical Plant Pathology, Institute of Biochemical Plant Pathology, D-85764, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, D-95447, Kulmbach, Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| |
Collapse
|
6
|
Botte A, Payton L, Tran D. The effects of artificial light at night on behavioral rhythm and related gene expression are wavelength dependent in the oyster Crassostrea gigas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120375-120386. [PMID: 37938485 DOI: 10.1007/s11356-023-30793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
Artificial light at night (ALAN) constitutes a growing threat to coastal ecosystems by altering natural light cycles, which could impair organisms' biological rhythms, with resulting physiological and ecological consequences. Coastal ecosystems are strongly exposed to ALAN, but its effects on coastal organisms are poorly studied. Besides ALAN's intensity, ALAN's quality exposure may change the impacts on organisms. This study aims to characterize the effects of different ALAN's spectral compositions (monochromatic wavelength lights in red (peak at 626 nm), green (peak at 515 nm), blue (peak at 467 nm), and white (410-680 nm) light) at low and realistic intensity (1 lx) on the oyster Crassostrea gigas daily rhythm. Results reveal that all ALAN's treatments affect the oysters' daily valve activity rhythm in different manners and the overall expression of the 13 studied genes. Eight of these genes are involved in the oyster's circadian clock, 2 are clock-associated genes, and 3 are light perception genes. The blue light has the most important effects on oysters' valve behavior and clock and clock-associated gene expression. Interestingly, red and green lights also show significant impacts on the daily rhythm, while the lowest impacts are shown with the green light. Finally, ALAN white light shows the same impact as the blue one in terms of loss of rhythmic oysters' percentage, but the chronobiological parameters of the remaining rhythmic oysters are less disrupted than when exposed to each of the monochromatic light's treatments alone. We conclude that ALAN's spectral composition does influence its effect on oysters' daily rhythm, which could give clues to limit physiological and ecological impacts on coastal environments.
Collapse
Affiliation(s)
- Audrey Botte
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33120, Arcachon, France
| | - Laura Payton
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33120, Arcachon, France
| | - Damien Tran
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33120, Arcachon, France.
| |
Collapse
|
7
|
Kocifaj M, Wallner S, Barentine JC. Measuring and monitoring light pollution: Current approaches and challenges. Science 2023; 380:1121-1124. [PMID: 37319204 DOI: 10.1126/science.adg0473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023]
Abstract
Understanding the causes and potential mitigations of light pollution requires measuring and monitoring artificial light at night (ALAN). We review how ALAN is measured, both from the ground and through remote sensing by satellites in Earth orbit. A variety of techniques are described, including single-channel photometers, all-sky cameras, and drones. Spectroscopic differences between light sources can be used to determine which are most responsible for light pollution, but they complicate the interpretation of photometric data. The variability of Earth's atmosphere leads to difficulty in comparisons between datasets. Theoretical models provide complementary information to calibrate experiments and interpret their results. Here, we identify several shortcomings and challenges in current approaches to measuring light pollution and suggest ways forward.
Collapse
Affiliation(s)
- Miroslav Kocifaj
- Department of Optics, Institute of Construction and Architecture, Slovak Academy of Sciences, 845 03 Bratislava, Slovakia
- Department of Experimental Physics, Faculty of Mathematics Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Stefan Wallner
- Department of Optics, Institute of Construction and Architecture, Slovak Academy of Sciences, 845 03 Bratislava, Slovakia
- Department of Astrophysics, University of Vienna, 1180 Wien, Austria
| | | |
Collapse
|
8
|
Wallner S, Kocifaj M. Aerosol impact on light pollution in cities and their environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117534. [PMID: 36812684 DOI: 10.1016/j.jenvman.2023.117534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Measurements of artificial light at night represent an incredible challenge as the optical state of the atmosphere is highly unstable thus making both long-term trend analyses and inter-comparison of multiple observations difficult. Variations of atmospheric parameters, caused by either natural or anthropogenic processes, can massively influence the level of resulting night sky brightness caused by light pollution. Focusing on six parameters, either from aerosol optics or emission properties of light sources, this work literarily and numerically examines defined variations in aerosol optical depth, asymmetry parameter, single scattering albedo, ground surface reflectance, direct uplight ratio, and aerosol scale height. For each individual element the effect size and angular reliance is investigated, with results indicating that besides the aerosol scale height all play non-negligible roles in forming skyglow and environmental impact. Especially variations in aerosol optical depth and city emission function displayed severe discrepancies in consequential light pollution level. Hence, future improvement on atmospheric condition, i.e., air quality, focusing particularly on discussed elements indicates to positively influence the level of environmental impact caused by artificial light at night. We underline the need of inclusion of our outcomes to urban development and civil engineering processes in order to create or protect habitable areas for humans, wildlife and nature.
Collapse
Affiliation(s)
- Stefan Wallner
- ICA, Slovak Academy of Sciences, Dubravska Cesta 9, 84503, Bratislava, Slovakia; Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180, Wien, Austria.
| | - Miroslav Kocifaj
- ICA, Slovak Academy of Sciences, Dubravska Cesta 9, 84503, Bratislava, Slovakia; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska é Dolina, 84248, Bratislava, Slovakia
| |
Collapse
|
9
|
Botté A, Payton L, Tran D. Artificial light at night at environmental intensities disrupts daily rhythm of the oyster Crassostrea gigas. MARINE POLLUTION BULLETIN 2023; 191:114850. [PMID: 37019034 DOI: 10.1016/j.marpolbul.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/13/2023]
Abstract
Artificial Light At Night (ALAN) masks the natural light cycles and thus can disturb the synchronization of organisms' biological rhythms with their environment. Although coastlines are highly exposed to this growing threat, studies concerning the impacts of ALAN on coastal organisms remain scarce. In this study, we investigated the ALAN exposure effects at environmentally realistic intensities (0.1, 1, 10, 25 lx) on the oyster Crassostrea gigas, a sessile bivalve subject to light pollution on shores. We focused on the effects on oyster's daily rhythm at behavioral and molecular levels. Our results showed that ALAN disrupts the oyster's daily rhythm by increasing valve activity and annihilating day / night differences of expression of circadian clock and clock-associated genes. ALAN effects occur starting from 0.1 lx, in the range of artificial skyglow illuminances. We concluded that realistic ALAN exposure affects oysters' biological rhythm, which could lead to severe physiological and ecological consequences.
Collapse
Affiliation(s)
- Audrey Botté
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France.
| |
Collapse
|
10
|
Duarte C, Quintanilla-Ahumada D, Anguita C, Silva-Rodriguez EA, Manríquez PH, Widdicombe S, Pulgar J, Miranda C, Jahnsen-Guzmán N, Quijón PA. Field experimental evidence of sandy beach community changes in response to artificial light at night (ALAN). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162086. [PMID: 36764536 DOI: 10.1016/j.scitotenv.2023.162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.
Collapse
Affiliation(s)
- Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Cristóbal Anguita
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Eduardo A Silva-Rodriguez
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
11
|
The effects of light pollution on migratory animal behavior. Trends Ecol Evol 2023; 38:355-368. [PMID: 36610920 DOI: 10.1016/j.tree.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
Light pollution is a global threat to biodiversity, especially migratory organisms, some of which traverse hemispheric scales. Research on light pollution has grown significantly over the past decades, but our review of migratory organisms demonstrates gaps in our understanding, particularly beyond migratory birds. Research across spatial scales reveals the multifaceted effects of artificial light on migratory species, ranging from local and regional to macroscale impacts. These threats extend beyond species that are active at night - broadening the scope of this threat. Emerging tools for measuring light pollution and its impacts, as well as ecological forecasting techniques, present new pathways for conservation, including transdisciplinary approaches.
Collapse
|
12
|
Denlinger DL. Exploiting tools for manipulating insect diapause. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:715-723. [PMID: 36200451 DOI: 10.1017/s000748532100016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tools that could be used to subvert the insect diapause response offer potential for insect pest management as well as for the experimental manipulation of insects and the facilitation of mass rearing procedures. In some cases, it is desirable to break diapause on demand and in other cases, it may be attractive to exploit diapause for long-term storage of biocontrol agents or valuable experimental lines. This review highlights some of the diapause disruptors reported in the literature, as well as chemical and physical manipulations that can be used to extend diapause or even induce diapause in an insect not programmed for diapause. The insect hormones are quite effective agents for breaking diapause and in some cases for extending the duration of diapause, but a collection of other chemical agents can also act as potent diapause disruptors, e.g. organic solvents, weak acids and bases, carbon dioxide, imidazole compounds, LSD, deuterium oxide, DMSO, ouabain, cholera toxin, cyclic GMP, heavy metals, and hydrogen peroxide. Physical manipulations such as artificial light at night, anoxia, shaking and heat shock are also known diapause disruptors. Some of these documented manipulations prevent diapause, others terminate diapause immediately, others alter the duration of diapause, and a few compounds can induce a diapause-like state in insects that are not programmed for diapause. The diversity of tools noted in the literature offers promise for the development of new tools or manipulations that possibly could be used to disrupt diapause or manage diapause in controlled laboratory experiments and in mass-rearing facilities.
Collapse
Affiliation(s)
- David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, 300 Aronoff, 318 West 12th Avenue, Columbus, OH, 43210-1242, USA
| |
Collapse
|
13
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
14
|
Zhang W, Wang J, Xu Y, Wang C, Streets DG. Analyzing the spatio-temporal variation of the CO 2 emissions from district heating systems with "Coal-to-Gas" transition: Evidence from GTWR model and satellite data in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150083. [PMID: 34525679 DOI: 10.1016/j.scitotenv.2021.150083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Understanding the spatio-temporal heterogeneous effects of socioeconomic and meteorological factors on CO2 emissions from combinations of different district heating systems with "Coal-to-Gas" transition can contribute to the development of future low-carbon energy systems that are efficient and effective. This work downscales city-level CO2 emissions to a 3 × 3 km2 gridded level in northern China during 2012 to 2018. By employing the Geographically and Temporally Weighted Regression (GTWR) model, nighttime light (NTL) data are adopted as a proxy of the level of urbanization, and the Temperature-Humidity-Wind (THW) Index is used as a proxy of meteorological factors in the downscaling model. The results show that, for more than 85% of the cities, urbanization significantly enhances the CO2 emissions of district heating systems, while the THW Index shows negative impacts on CO2 emissions. Significant spatial and temporal heterogeneity exists. The grids with the highest CO2 emissions from coal-fired boilers (grids with annual variation >0.59 Gg CO2/year) are mainly located in nonurban areas of the two megacities Beijing and Tianjin and also in the capital cities of each province. Urbanization has larger effects on the CO2 emissions of natural gas-fired boilers than of coal-fired boilers and combined heat and power (CHP). The average growth rate of CO2 emissions of gas-fired boilers in the urban areas of the study regions was approximately 4.7 times that of nonurban areas. The spatio-temporal heterogeneous impacts of urbanization on CO2 emissions should therefore be considered in future discussions of clean heating policies and climate response strategies.
Collapse
Affiliation(s)
- Weishi Zhang
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jionghua Wang
- Department of Geography and Resource Management, the Chinese University of Hong Kong, Hong Kong.
| | - Ying Xu
- Department of Geography and Resource Management, the Chinese University of Hong Kong, Hong Kong.
| | - Can Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| | - David G Streets
- Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, United States
| |
Collapse
|
15
|
Kosicki JZ. The impact of artificial light at night on taxonomic, functional and phylogenetic bird species communities in a large geographical range: A modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146434. [PMID: 33774297 DOI: 10.1016/j.scitotenv.2021.146434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is currently recognised as an important environmental disturbance that influences habitats, fitness and behaviour of numerous organisms. However, its effect on bird community distribution on a large spatial scale still remains unclear. Therefore, I decided to use a predictive approach to test an assumption that artificial nightlight, as one of 73 predictors, determines taxonomic, functional and phylogenetic levels of an avian community. In order to safeguard inference from any inconsistency, I used not one but four indices describing functional diversity, two measures showing phylogenetic species richness, and one reflecting taxonomic diversity. For all these measures of species communities I developed two sets of Random Forest models: one set included ALAN as an additional predictor, while the other did not. Following cross validation tests as well as an independent evaluation of models, I demonstrated that artificial night light improved the performance of predictive models. Taxonomic species richness decreased linearly along with increasing artificial luminescence. Moreover, functional diversity showed a unimodal relation to ALAN, which meant that most niches were occupied on a moderate level of artificial lighting. Finally, phylogenetic diversity was under the highest pressure of ALAN, because even a minimal amount of artificial night lighting radically reduced this measure of biodiversity. On the basis of predictive maps, I also found that models which did not include urbanisation processes showed high values of avian biodiversity in regions where in fact they were low. Thus, I conclude that ALAN as a human footprint can play a key role when analysing the distribution of bird communities on large spatial scales.
Collapse
Affiliation(s)
- Jakub Z Kosicki
- Department of Avian Biology & Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61 - 614 Poznań, Poland.
| |
Collapse
|
16
|
Estela FA, Sánchez–Sarria CE, Arbeláez–Cortés E, Ocampo D, García–Arroyo M, Perlaza–Gamboa A, Wagner–Wagner CM, MacGregor–Fors I. Changes in the nocturnal activity of birds during the COVID–19 pandemic lockdown in a neotropical city. ANIMAL BIODIVERSITY AND CONSERVATION 2021. [DOI: 10.32800/abc.2021.44.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The COVID–19 lockdown provided the opportunity to measure species biodiversity in urban environments under conditions divergent from regular urban rhythms. For 90 days, including weeks of strict lockdown and the subsequent relaxation of restrictions, we measured the presence and abundance of birds that were active at night at two sites in the city of Cali, Colombia. Our results show that species richness of nocturnal birds decreased 40 % to 58 % during the weeks with more human activity, adding further evidence to the biodiversity responses of the ‘anthropause’ on urban environments.
Collapse
Affiliation(s)
| | | | | | - D. Ocampo
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia
| | | | | | | | | |
Collapse
|
17
|
Gaston KJ, Ackermann S, Bennie J, Cox DTC, Phillips BB, de Miguel AS, Sanders D. Pervasiveness of biological impacts of artificial light at night. Integr Comp Biol 2021; 61:1098-1110. [PMID: 34169964 PMCID: PMC8490694 DOI: 10.1093/icb/icab145] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Artificial light at night (ALAN) and its associated biological impacts have regularly been characterized as predominantly urban issues. Although far from trivial, this would imply that these impacts only affect ecosystems that are already heavily modified by humans and are relatively limited in their spatial extent, at least as compared with some key anthropogenic pressures on the environment that attract much more scientific and public attention, such as climate change or plastic pollution. However, there are a number of reasons to believe that ALAN and its impacts are more pervasive, and therefore need to be viewed from a broader geographic perspective rather than an essentially urban one. Here we address, in turn, 11 key issues when considering the degree of spatial pervasiveness of the biological impacts of ALAN. First, the global extent of ALAN is likely itself commonly underestimated, as a consequence of limitations of available remote sensing data sources and how these are processed. Second and third, more isolated (rural) and mobile (e.g., vehicle headlight) sources of ALAN may have both very widespread and important biological influences. Fourth and fifth, the occurrence and impacts of ALAN in marine systems and other remote settings, need much greater consideration. Sixth, seventh, and eighth, there is growing evidence for important biological impacts of ALAN at low light levels, from skyglow, and over long distances (because of the altitudes from which it may be viewed by some organisms), all of which would increase the areas over which impacts are occurring. Ninth and tenth, ALAN may exert indirect biological effects that may further expand these areas, because it has a landscape ecology (modifying movement and dispersal and so hence with effects beyond the direct extent of ALAN), and because ALAN interacts with other anthropogenic pressures on the environment. Finally, ALAN is not stable, but increasing rapidly in global extent, and shifting toward wavelengths of light that often have greater biological impacts.
Collapse
Affiliation(s)
- Kevin J Gaston
- Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| | - Simone Ackermann
- Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| | - Jonathan Bennie
- Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| | - Daniel T C Cox
- Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| | - Benjamin B Phillips
- Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| | | | - Dirk Sanders
- Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| |
Collapse
|
18
|
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021; 12:636330. [PMID: 33841306 PMCID: PMC8027232 DOI: 10.3389/fneur.2021.636330] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.
Collapse
Affiliation(s)
- Ludovic S Mure
- Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
19
|
Artificial Light at Night Advances Spring Phenology in the United States. REMOTE SENSING 2021. [DOI: 10.3390/rs13030399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant phenology is closely related to light availability as diurnal and seasonal cycles are essential environmental cues for organizing bio-ecological processes. The natural cycles of light, however, have been dramatically disrupted by artificial light at night (ALAN) due to recent urbanization. The influence on plant phenology of ALAN and its spatial variation remain largely unknown. By analyzing satellite data on ALAN intensity across the United States, here, we showed that ALAN tended to advance the start date of the growing season (SOS), although the overall response of SOS to ALAN was relatively weak compared with other potential factors (e.g., preseason temperature). The phenological impact of ALAN showed a spatially divergent pattern, whereby ALAN mainly advanced SOS at climatically moderate regions within the United States (e.g., Virginia), while its effect was insignificant or even reversed at very cold (e.g., Minnesota) and hot regions (e.g., Florida). Such a divergent pattern was mainly attributable to its high sensitivity to chilling insufficiency, where the advancing effect on SOS was only triggered on the premise that chilling days exceeded a certain threshold. Other mechanisms may also play a part, such as the interplay among chilling, forcing and photoperiod and the difference in species life strategies. Besides, urban areas and natural ecosystems were found to suffer from similar magnitudes of influence from ALAN, albeit with a much higher baseline ALAN intensity in urban areas. Our findings shed new light on the phenological impact of ALAN and its relation to space and other environmental cues, which is beneficial to a better understanding and projection of phenology changes under a warming and urbanizing future.
Collapse
|
20
|
Ditmer MA, Iannarilli F, Tri AN, Garshelis DL, Carter NH. Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population. J Anim Ecol 2020; 90:330-342. [DOI: 10.1111/1365-2656.13338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Mark A. Ditmer
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| | - Fabiola Iannarilli
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Saint Paul MN USA
| | - Andrew N. Tri
- Minnesota Department of Natural Resources Grand Rapids MN USA
| | | | - Neil H. Carter
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| |
Collapse
|
21
|
Elgert C, Hopkins J, Kaitala A, Candolin U. Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm. Proc Biol Sci 2020; 287:20200806. [PMID: 32673556 PMCID: PMC7423653 DOI: 10.1098/rspb.2020.0806] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The amount of artificial light at night is growing worldwide, impacting the behaviour of nocturnal organisms. Yet, we know little about the consequences of these behavioural responses for individual fitness and population viability. We investigated if females of the common glow-worm Lampyris noctiluca—which glow in the night to attract males—mitigate negative effects of artificial light on mate attraction by adjusting the timing and location of glowing to spatial variation in light conditions. We found females do not move away from light when exposed to a gradient of artificial light, but delay or even refrain from glowing. Further, we demonstrate that this response is maladaptive, as our field study showed that staying still when exposed to artificial light from a simulated streetlight decreases mate attraction success, while moving only a short distance from the light source can markedly improve mate attraction. These results indicate that glow-worms are unable to respond to spatial variation in artificial light, which may be a factor in their global decline. Consequently, our results support the hypothesis that animals often lack adaptive behavioural responses to anthropogenic environmental changes and underlines the importance of considering behavioural responses when investigating the effects of human activities on wildlife.
Collapse
Affiliation(s)
- Christina Elgert
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Juhani Hopkins
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Arja Kaitala
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| |
Collapse
|
22
|
Le Roy A, Seebacher F. Mismatched light and temperature cues disrupt locomotion and energetics via thyroid-dependent mechanisms. CONSERVATION PHYSIOLOGY 2020; 8:coaa051. [PMID: 32547766 PMCID: PMC7287392 DOI: 10.1093/conphys/coaa051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Animals integrate information from different environmental cues to maintain performance across environmental gradients. Increasing average temperature and variability induced by climate change can lead to mismatches between seasonal cues. We used mosquitofish (Gambusia holbrooki) to test the hypotheses that mismatches between seasonal temperature and light regimes (short days and warm temperature and vice versa) decrease swimming performance, metabolic rates and mitochondrial efficiency and that the responses to light and temperature are mediated by thyroid hormone. We show that day length influenced thermal acclimation of swimming performance through thyroid-dependent mechanisms. Oxygen consumption rates were influenced by acclimation temperature and thyroid hormone. Mitochondrial substrate oxidation rates (state three rates) were modified by the interaction between temperature and day length, and mitochondrial efficiency (P/O ratios) increased with warm acclimation. Using P/O ratios to calibrate metabolic (oxygen consumption) scope showed that oxygen consumption did not predict adenosine triphosphate (ATP) production. Unlike oxygen consumption, ATP production was influenced by day length in a thyroid-dependent manner. Our data indicate that oxygen consumption alone should not be used as a predictor of ATP production. Overall, the effects of thyroid hormone on locomotion and energetics were reversed by mismatches such as warm temperatures on short days. We predict that mid to high latitudes in North America and Asia will be particularly affected by mismatches as a result of high seasonality and predicted warming over the next 50 years.
Collapse
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006
| |
Collapse
|
23
|
Kosicki JZ. Anthropogenic activity expressed as ‘artificial light at night’ improves predictive density distribution in bird populations. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2019.100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Cooke SJ, Madliger CL, Cramp RL, Beardall J, Burness G, Chown SL, Clark TD, Dantzer B, de la Barrera E, Fangue NA, Franklin CE, Fuller A, Hawkes LA, Hultine KR, Hunt KE, Love OP, MacMillan HA, Mandelman JW, Mark FC, Martin LB, Newman AEM, Nicotra AB, Robinson SA, Ropert-Coudert Y, Rummer JL, Seebacher F, Todgham AE. Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. CONSERVATION PHYSIOLOGY 2020; 8:coaa016. [PMID: 32274063 PMCID: PMC7125050 DOI: 10.1093/conphys/coaa016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada.
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 14 3216, Australia
| | - Ben Dantzer
- Department of Psychology, Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, 58190, Mexico
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Rd, Parktown, 2193, South Africa
| | - Lucy A Hawkes
- College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27574 Bremerhaven, Germany
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences (SEALS) and Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 5811, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Ave. Davis, CA, 95616, USA
| |
Collapse
|
25
|
Maggi E, Bongiorni L, Fontanini D, Capocchi A, Dal Bello M, Giacomelli A, Benedetti‐Cecchi L. Artificial light at night erases positive interactions across trophic levels. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Elena Maggi
- Dip. di Biologia, CoNISMa Università di Pisa Pisa Italy
| | | | | | | | - Martina Dal Bello
- Physics of Living Systems Group Department of Physics Massachusetts Institute of Technology Cambridge MA USA
| | | | | |
Collapse
|
26
|
Suter PM. [Thoughts about Light and Sleep]. PRAXIS 2019; 108:139-143. [PMID: 30722742 DOI: 10.1024/1661-8157/a003175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thoughts about Light and Sleep Abstract. Many aspects of health and disease are mainly determined by the constant change between light and darkness during a solar day. The resulting physiological rhythms correspond to the circadian rhythm, which was one of the most central drivers in the evolution of humans. However, over the last 20-30 years, these natural rhythms of the change of light and darkness are being increasingly ignored by modern societies. It is well known that these rhythms are modulators of many physiological pathways and any desynchronization or misalignment will activate different pathophysiological pathways, which contribute to the risk of chronic diseases. Light pollution by widespread illumination of our environment and the night sky and uncontrolled man-made use of any light source plays a key role in the pathogenesis of sleep disturbances. Blue light exposure in the evening from any artificial light source (especially from electronic device screens) is of special relevance in this context. In this article a few key facts concerning light, sleep and diseases are presented. We should by all means account for the effects of light and darkness and stop any further light pollution.
Collapse
Affiliation(s)
- Paolo M Suter
- 1 Medizinische Poliklinik, Klinik und Poliklinik für Innere Medizin, Universitätsspital Zürich
| |
Collapse
|