1
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024; 53:10800-10826. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Lu D, Bobrin VA. Scalable Macroscopic Engineering from Polymer-Based Nanoscale Building Blocks: Existing Challenges and Emerging Opportunities. Biomacromolecules 2024; 25:7058-7077. [PMID: 39470717 DOI: 10.1021/acs.biomac.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms. Polymers and polymer-hybrid nanoparticles, with their tunable composition and structural versatility, are promising candidates for creating hierarchically organized materials. This review highlights advances in scalable techniques for nanoscale organization of polymer-based building blocks within macroscopic structures, including block copolymer self-assembly with additive manufacturing, polymer brush nanoparticles capable of self-assembling into larger, ordered structures, and direct-write colloidal assembly. These techniques offer promising pathways toward the scalable fabrication of materials with emergent properties suited for advanced applications such as bioelectronic interfaces, artificial muscles, and other biomaterials.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Pan S, Yang L, Zhou Y, Cao H, Hu W, Zhang W, Lu Z. Active Assembly of CsPbBr 3 Nanorods into Microcolumns by Electric Field in Nonpolar Solvent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403919. [PMID: 38845067 DOI: 10.1002/smll.202403919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/19/2024]
Abstract
High-precision, controllable, mass-producible assembly of nanoparticles into complex structures or devices holds immense importance in the application across various fields but it remains challenging. Here a highly controllable and reversible active assembly of colloidal CsPbBr3 nanorods, driven by an external electric field is achieved. This approach enables the nanorods dynamically orient themselves, assemble into chains, aggregate into columns, and eventually form an ordered column array, with the electric field intensity varying from 0 to 50 V µm-1 at 100 kHz. The nanorods inside the columns align parallel to the electric field, leading to a well-ordered structure. With the analysis of the interactions among the nanorods, a quantitative interpretation of the assembly is proposed. Monte Carlo calculation is also introduced to simulate the assembly process and the results prove to be in great agreement with the experimental observations. This electric field-driven assembly presents an exciting opportunity to pave the way for next-generation sensors and photonic devices based on well-developed colloidal nanoparticles.
Collapse
Affiliation(s)
- Shuhan Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Lijie Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Huimin Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Cui Y, Xing Y, Hou J, Zhang H, Qiu H. Co-Assembly of Soft and Hard Nanoparticles into Macroscopic Colloidal Composites with Tailored Mechanical Property and Processability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401432. [PMID: 38818686 DOI: 10.1002/smll.202401432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Colloidal composites, translating the great potential of nanoscale building bricks into macroscopic dimensions, have emerged as an appealing candidate for new materials with applications in optics, energy storage, and biomedicines. However, it remains a key challenge to bridge the size regimes from nanoscopic colloidal particles to macroscale composites possessing mechanical robustness. Herein, a bottom-up approach is demonstrated to manufacture colloidal composites with customized macroscopic forms by virtue of the co-assembly of nanosized soft polymeric micelles and hard inorganic nanoparticles. Upon association, the hairy micellar corona can bind with the hard nanoparticles, linking individual hard constituents together in a soft-hard alternating manner to form a collective entity. This permits the integration of block copolymer micelles with controlled amounts of hard nanoparticles into macroscopic colloidal composites featuring diverse internal microstructures. The resultant composites showed tunable microscale mechanical strength in a range of 90-270 MPa and macroscale mechanical strength in a range of 7-42 MPa for compression and 2-24 MPa for bending. Notably, the incorporation of soft polymeric micelles also imparts time- and temperature-dependent dynamic deformability and versatile capacity to the resulting composites, allowing their application in the low-temperature plastic processing for functional fused silica glass.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yurui Xing
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongti Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Su L, Fang C, Luo H. Functionalized montmorillonite/epoxy resin nanocomposites with enhanced thermal and mechanical properties. RSC Adv 2024; 14:31251-31258. [PMID: 39355330 PMCID: PMC11443195 DOI: 10.1039/d4ra03125c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The poor interaction between the hydrophilic montmorillonite and hydrophobic epoxy resins leads to agglomeration of montmorillonite within epoxy resins, which finally results in poor macro properties of the epoxy resin nanocomposites. Although silane modification can improve the hydrophobicity of montmorillonite surface, the hydrolysis and condensation of silane lead to locking effect in the interlayer structure of functionalized montmorillonite. The effect of the functionalized montmorillonite on the properties of the epoxy resin remains unclear. Herein, we present multi technique approach to thoroughly evaluate the macro properties of the montmorillonite/epoxy resin nanocomposites, including dynamic mechanical thermal, thermo-mechanical, dielectric, water absorption and subsequently evaluate the molecular factors governing these characteristics. Importantly, the storage modulus has been enhanced by 44%, from 2416 MPa for pure epoxy resin to 2416 MPa for nanocomposites with 5.0 wt% functionalized montmorillonite. Our analysis reveals the increase of thermal stability and glass-transition temperature, as well as a reduction of the coefficient of thermal expansion with the addition of functionalized montmorillonite. Additionally, functionalized montmorillonite leads to decreased water absorption. This research aims to offer guidance for the development of high-performance montmorillonite/polymer nanocomposites, potentially opening up new applications for montmorillonite in polymer nanocomposites.
Collapse
Affiliation(s)
- Linna Su
- Shenzhen Polytechnic University Shenzhen 518055 China
| | - Changfa Fang
- Shenzhen Polytechnic University Shenzhen 518055 China
| | - Huanzhong Luo
- Shenzhen Polytechnic University Shenzhen 518055 China
| |
Collapse
|
6
|
Liang S, Yuan C, Nie C, Liu Y, Zhang D, Xu WC, Liu C, Xu G, Wu S. Photocontrolled Reversible Solid-Fluid Transitions of Azopolymer Nanocomposites for Intelligent Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408159. [PMID: 39082060 DOI: 10.1002/adma.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions.
Collapse
Affiliation(s)
- Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenrui Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yazhi Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengwei Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guofeng Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Wang M, Jiang J, Liang S, Sui C, Wu S. Functional Semi-Interpenetrating Polymer Networks. Macromol Rapid Commun 2024:e2400539. [PMID: 39212315 DOI: 10.1002/marc.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Semi-interpenetrating polymer networks (SIPNs) have garnered significant interest due to their potential applications in self-healing materials, drug delivery systems, electrolytes, functional membranes, smart gels and, toughing. SIPNs combine the characteristics of physical cross-linking with advantageous chemical properties, offering broad application prospects in materials science and engineering. This perspective introduces the history of semi-interpenetrating polymer networks and their diverse applications. Additionally, the ongoing challenges associated with traditional semi-interpenetrating polymer materials are discussed and provide an outlook on future advancements in novel functional SIPNs.
Collapse
Affiliation(s)
- Minghao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawei Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Sui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Derelli D, Frank K, Grote L, Mancini F, Dippel AC, Gutowski O, Nickel B, Koziej D. Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X-Ray Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311714. [PMID: 38501853 DOI: 10.1002/smll.202311714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.
Collapse
Affiliation(s)
- Davide Derelli
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Kilian Frank
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lukas Grote
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Federica Mancini
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- Current affiliation: National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, CNR - ISSMC (former ISTEC), 64 I-48018, Via Granarolo, FAENZA (RA), Italy
| | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Dorota Koziej
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| |
Collapse
|
9
|
van Campenhout CT, Bistervels MH, Rietveld J, Schoenmaker H, Kamp M, Noorduin WL. Designing Complex Tapestries with Photography-Inspired Manipulation of Self-Organized Thin-Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401625. [PMID: 38582518 PMCID: PMC11220642 DOI: 10.1002/advs.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Thin-films patterned with complex motifs are of fundamental interest because of their advanced optical, mechanical and electronic properties, but fabrication of these materials remains challenging. Self-organization strategies, such as immersion controlled reaction-diffusion patterning, have shown great potential for production of patterned thin-films. However, the autonomous nature of such processes limits controllable pattern customizability and complexity. Here, it is demonstrated that photography inspired manipulation processes can overcome this limitation to create highly-complex tapestries of micropatterned films (MPF's). Inspired by classical photographic processes, MPF's are developed, bleached, exposed, fixed, and contoured into user-defined shapes and photographic toning reactions are used to convert the chemical composition MPF's, while preserving the original stripe patterns. By applying principles of composite photography, highly complex tapestries composed of multiple MPF layers are designed, where each layer can be individually manipulated into a specific shape and composition. By overcoming fundamental limitations, this synergistic approach broadens the design possibilities of reaction-diffusion processes, furthering the potential of self-organization strategies for the development of complex materials.
Collapse
Affiliation(s)
| | | | - J. Rietveld
- AMOLFScience Park 104Amsterdam1098XGThe Netherlands
| | | | - M. Kamp
- AMOLFScience Park 104Amsterdam1098XGThe Netherlands
| | - W. L. Noorduin
- AMOLFScience Park 104Amsterdam1098XGThe Netherlands
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1090 GDThe Netherlands
| |
Collapse
|
10
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
11
|
Liao Q, Cheng H, Qu L. Droplet-Pen Writing of Ultra-Uniform Graphene Pattern for Multi-Spectral Applications. SMALL METHODS 2024:e2400384. [PMID: 38708684 DOI: 10.1002/smtd.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Artificial optical patterns bring wide benefits in applications like structural color display, photonic camouflage, and electromagnetic cloak. Their scalable coating on large-scale objects will greatly enrich the multimodal-interactive society. Here, a droplet-pen writing (DPW) method to directly write multi-spectral patterns of thin-film graphene is reported. By amphiphilicity regulations of 2D graphene nanosheets, ultra-uniform and ultrathin films can spontaneously form on droplet caps and pave to the substrate, thus inducing optical interference. This allows the on-surface patterning by pen writing of droplets. Specifically, drop-on-demand thin films are achieved with millimeter lateral size and uniformity up to 97% in subwavelength thickness (<100 nm), corresponding to an aspect ratio of over 30 000. The pixelated thin-film patterns of disks and lines in an 8-inch wafer scale are demonstrated, which enable low-emittance structural color paintings. Furthermore, the applications of these patterns for dual-band camouflage and infrared-to-visible encryption are investigated. This study highlights the potential of 2D material self-assembly in the large-scale preparation and multi-spectral application of thin film-based optical patterns.
Collapse
Affiliation(s)
- Qihua Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
He YF, Yang SY, Lv WL, Qian C, Wu G, Zhao X, Liu XW. Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification. ACS NANO 2024; 18:9704-9712. [PMID: 38512797 DOI: 10.1021/acsnano.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Yi-Fan He
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Yu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Li Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaona Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Paul J, Jacob J, Mahmud M, Vaka M, Krishnan SG, Arifutzzaman A, Thesiya D, Xiong T, Kadirgama K, Selvaraj J. A data mining approach to analyze the role of biomacromolecules-based nanocomposites in sustainable packaging. Int J Biol Macromol 2024; 265:130850. [PMID: 38492706 DOI: 10.1016/j.ijbiomac.2024.130850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Recent decades have witnessed a surge in research interest in bio-nanocomposite-based packaging materials, but still, a lack of systematic analysis exists in this domain. Bio-based packaging materials pose a sustainable alternative to petroleum-based packaging materials. The current work employs bibliometric analysis to deliver a comprehensive outline on the role of bio nanocomposites in packaging. India, Iran, and China were revealed to be the top three nations actively engaged in this domain in total publications. Islamic Azad University in Iran and Universiti Putra Malaysia in Malaysia are among the world's best institutions in active research and publications in this field. The extensive collaboration between nations and institutions highlights the significance of a holistic approach towards bio-nanocomposite. The National Natural Science Foundation of China is the leading funding body in this field of research. Among authors, Jong whan Rhim secured the topmost citations (2234) in this domain (13 publications). Among journals, Carbohydrate Polymers secured the maximum citation count (4629) from 36 articles; the initial one was published in 2011. Bio nanocomposite is the most frequently used keyword. Researchers and policymakers focussing on sustainable packaging solutions will gain crucial insights on the current research status on packaging solutions using bio-nanocomposites from the conclusions.
Collapse
Affiliation(s)
- John Paul
- Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Malaysia.
| | - Jeeja Jacob
- Higher Institution Centre of Excellence, UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, Kuala Lumpur, Malaysia.
| | - Md Mahmud
- Phillip M. Drayer Department of Electrical and Computer Engineering, College of Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Mahesh Vaka
- Thermal Energy Storage department, Iberian Energy Storage Research Center (CIIAE), 10003 Caceres, Spain
| | - Syam G Krishnan
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria 3010, Australia
| | - A Arifutzzaman
- Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | | | - Teng Xiong
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 117566, Singapore
| | - K Kadirgama
- Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Malaysia; Department of Civil Engineering, College of Engineering, Almaaqal University, Iraq.
| | - Jeyraj Selvaraj
- Higher Institution Centre of Excellence, UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Qiu J, Duan Y, Li S, Zhao H, Ma W, Shi W, Lei Y. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. NANO-MICRO LETTERS 2024; 16:130. [PMID: 38393483 PMCID: PMC10891041 DOI: 10.1007/s40820-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Collapse
Affiliation(s)
- Jiajia Qiu
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Yu Duan
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Shaoyuan Li
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Wenhui Ma
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
- School of Science and Technology, Pu'er University, Pu'er, 665000, People's Republic of China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| |
Collapse
|
15
|
Tanner CPN, Utterback JK, Portner J, Coropceanu I, Das A, Tassone CJ, Teitelbaum SW, Limmer DT, Talapin DV, Ginsberg NS. In Situ X-ray Scattering Reveals Coarsening Rates of Superlattices Self-Assembled from Electrostatically Stabilized Metal Nanocrystals Depend Nonmonotonically on Driving Force. ACS NANO 2024. [PMID: 38318795 PMCID: PMC10883038 DOI: 10.1021/acsnano.3c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures.
Collapse
Affiliation(s)
- Christian P N Tanner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - James K Utterback
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Igor Coropceanu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Avishek Das
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Samuel W Teitelbaum
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60517, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Jiao P, Wang ZL, Alavi AH. Maximizing Triboelectric Nanogenerators by Physics-Informed AI Inverse Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308505. [PMID: 38062801 DOI: 10.1002/adma.202308505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Indexed: 02/02/2024]
Abstract
Triboelectric nanogenerators offer an environmentally friendly approach to harvesting energy from mechanical excitations. This capability has made them widely sought-after as an efficient, renewable, and sustainable energy source, with the potential to decrease reliance on traditional fossil fuels. However, developing triboelectric nanogenerators with specific output remains a challenge mainly due to the uncertainties associated with their complex designs for real-life applications. Artificial intelligence-enabled inverse design is a powerful tool to realize performance-oriented triboelectric nanogenerators. This is an emerging scientific direction that can address the concerns about the design and optimization of triboelectric nanogenerators leading to a next generation nanogenerator systems. This perspective paper aims at reviewing the principal analysis of triboelectricity, summarizing the current challenges of designing and optimizing triboelectric nanogenerators, and highlighting the physics-informed inverse design strategies to develop triboelectric nanogenerators. Strategic inverse design is particularly discussed in the contexts of expanding the four-mode analytical models by physics-informed artificial intelligence, discovering new conductive and dielectric materials, and optimizing contact interfaces. Various potential development levels of artificial intelligence-enhanced triboelectric nanogenerators are delineated. Finally, the potential of physics-informed artificial intelligence inverse design to propel triboelectric nanogenerators from prototypes to multifunctional intelligent systems for real-life applications is discussed.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
17
|
Zhou D, Liu H, Zheng Z, Wu D. Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review. Bioact Mater 2024; 31:422-439. [PMID: 37692911 PMCID: PMC10485601 DOI: 10.1016/j.bioactmat.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu in vivo. Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Su D, Wu W, Sun P, Yuan Y, Chen Z, Zhu Y, Bi K, Zhou H, Zhang T. Thermal-Assisted Multiscale Patterning of Nonplanar Colloidal Nanostructures for Multi-Modal Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305469. [PMID: 37867230 PMCID: PMC10767423 DOI: 10.1002/advs.202305469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 10/24/2023]
Abstract
Nanotransfer printing of colloidal nanoparticles is a promising technique for the fabrication of functional materials and devices. However, patterning nonplanar nanostructures pose a challenge due to weak adhesion from the extremely small nanostructure-substrate contact area. Here, the study proposes a thermal-assisted nonplanar nanostructure transfer printing (NP-NTP) strategy for multiscale patterning of polystyrene (PS) nanospheres. The printing efficiency is significantly improved from ≈3.1% at low temperatures to ≈97.2% under the glass transition temperature of PS. Additionally, the arrangement of PS nanospheres transitioned from disorder to long-range order. The mechanism of printing efficiency enhancement is the drastic drop of Young's modulus of nanospheres, giving rise to an increased contact area, self-adhesive effect, and inter-particle necking. To demonstrate the versatility of the NP-NTP strategy, it is combined with the intaglio transfer printing technique, and multiple patterns are created at both micro and macro scales at a 4-inch scale with a resolution of ≈2757 pixels per inch (PPI). Furthermore, a multi-modal anti-counterfeiting concept based on structural patterns at hierarchical length scales is proposed, providing a new paradigm of imparting multiscale nanostructure patterning into macroscale functional devices.
Collapse
Affiliation(s)
- Dan Su
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Micro‐Inertial Instrument and Advanced Navigation TechnologyMinistry of EducationSchool of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
| | - Wei‐Long Wu
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Pan‐Qin Sun
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Yu‐Chen Yuan
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Ze‐Xian Chen
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Yun‐Feng Zhu
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Kai‐Yu Bi
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
- College of Software EngineeringSoutheast UniversityNanjingJiangsu210096China
| | - Huan‐Li Zhou
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Tong Zhang
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Micro‐Inertial Instrument and Advanced Navigation TechnologyMinistry of EducationSchool of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
| |
Collapse
|
19
|
Li M, Guo J, Zhang C, Che Y, Yi Y, Liu B. Uniform Colloidal Polymer Rods by Stabilizer-Assisted Liquid-Crystallization-Driven Self-Assembly. Angew Chem Int Ed Engl 2023; 62:e202309914. [PMID: 37837298 DOI: 10.1002/anie.202309914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The synthesis of anisotropic colloidal building blocks is essential for their self-assembly into hierarchical materials. Here, a highly efficient stabilizer-assisted liquid-crystallization-driven self-assembly (SA-LCDSA) strategy was developed to achieve monodisperse colloidal polymer rods. This strategy does not require the use of block copolymers, but only homopolymers or random copolymers. The resulting rods have tunable size and aspect ratios, as well as well-defined columnar liquid crystal structures. The integrated triphenylene units enable the rods to exhibit unusual photo-induced fluorescence enhancement and accompanying irradiation memory effect, which, as demonstrated, are attractive for information encryption/decryption of paper documents. In particular, unwanted document decryption during delivery can be examined by fluorescence kinetics. This SA-LCDSA-based approach can be extended to synthesize other functional particles with desired π-molecular units.
Collapse
Affiliation(s)
- Minchao Li
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Jin Guo
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanke Che
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
20
|
Herber M, Jiménez Amaya A, Giese N, Bangalore Rajeeva B, Zheng Y, Hill EH. Bubble Printing of Layered Silicates: Surface Chemistry Effects and Picomolar Förster Resonance Energy Transfer Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55022-55029. [PMID: 37967152 DOI: 10.1021/acsami.3c09760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The assembly of nanoparticles on surfaces in defined patterns has long been achieved via template-assisted methods that involve long deposition and drying steps and the need for molds or masks to obtain the desired patterns. Control over deposition of materials on surfaces via laser-directed microbubbles is a nascent technique that holds promise for rapid fabrication of devices down to the micrometer scale. However, the influence of surface chemistry on the resulting assembly using such approaches has so far not been studied. Herein, the printing of layered silicate nanoclays using a laser-directed microbubble was established. Significant differences in the macroscale structure of the printed patterns were observed for hydrophilic, pristine layered silicates compared to hydrophobic, modified layered silicates, which provided the first example of how the surface chemistry of such nanoscale objects results in changes in assembly with this approach. Furthermore, the ability of layered silicates to adsorb molecules at the interface was retained, which allowed the fabrication of proof-of-concept sensors based on Förster resonance energy transfer (FRET) from quantum dots embedded in the assemblies to bound dye molecules. The detection limit for Rhodamine 800 sensing via FRET was found to be on the order of 10-12 M, suggesting signal enhancement due to favorable interactions between the dye and nanoclay. This work sets the stage for future advances in the control of hierarchical assembly of nanoparticles by modification of surface chemistry while also demonstrating a quick and versatile approach to achieve ultrasensitive molecular sensors.
Collapse
Affiliation(s)
- Marcel Herber
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| | - Ana Jiménez Amaya
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Nicklas Giese
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| |
Collapse
|
21
|
Sui B, Zhu Y, Jiang X, Wang Y, Zhang N, Lu Z, Yang B, Li Y. Recastable assemblies of carbon dots into mechanically robust macroscopic materials. Nat Commun 2023; 14:6782. [PMID: 37880261 PMCID: PMC10600192 DOI: 10.1038/s41467-023-42516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Assembly of nanoparticles into macroscopic materials with mechanical robustness, green processability, and recastable ability is an important and challenging task in materials science and nanotechnology. As an emerging nanoparticle with superior properties, macroscopic materials assembled from carbon dots will inherit their properties and further offer collective properties; however, macroscopic materials assembled from carbon dots solely remain unexplored. Here we report macroscopic films assembled from carbon dots modified by ureido pyrimidinone. These films show tunable fluorescence inherited from carbon dots. More importantly, these films exhibit collective properties including self-healing, re-castability, and superior mechanical properties, with Young's modulus over 490 MPa and breaking strength over 30 MPa. The macroscopic films maintain original mechanical properties after several cycles of recasting. Through scratch healing and welding experiments, these films show good self-healing properties under mild conditions. Moreover, the molecular dynamics simulation reveals that the interplay of interparticle and intraparticle hydrogen bonding controls mechanical properties of macroscopic films. Notably, these films are processed into diverse shapes by an eco-friendly hydrosetting method. The methodology and results in this work shed light on the exploration of functional macroscopic materials assembled from nanoparticles and will accelerate innovative developments of nanomaterials in practical applications.
Collapse
Affiliation(s)
- Bowen Sui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuemei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yifan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
22
|
Rubio LD, Collins M, Sen A, Aranson IS. Ultrasound Manipulation and Extrusion of Active Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300028. [PMID: 37246278 DOI: 10.1002/smll.202300028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/20/2023] [Indexed: 05/30/2023]
Abstract
Synthetic self-propelled nano and microparticles have a growing appeal for targeted drug delivery, collective functionality, and manipulation at the nanoscale. However, it is challenging to control their positions and orientations under confinement, e.g., in microchannels, nozzles, and microcapillaries. This study reports on the synergistic effect of acoustic and flow-induced focusing in microfluidic nozzles. In a microchannel with a nozzle, the balance between the acoustophoretic forces and the fluid drag due to streaming flows generated by the acoustic field controls the microparticle's dynamics. This study manipulates the positions and orientations of dispersed particles and dense clusters inside the channel at a fixed frequency by tuning the acoustic intensity. The main findings are: first, this study successfully manipulates the positions and orientations of individual particles and dense clusters inside the channel at a fixed frequency by tuning the acoustic intensity. Second, when an external flow is applied, the acoustic field separates and selectively extrudes shape-anisotropic passive particles and self-propelled active nanorods. Finally, the observed phenomena are explained by multiphysics finite-element modeling. The results shed light on the control and extrusion of active particles in confined geometries and enable applications for acoustic cargo (e.g., drug) delivery, particle injection, and additive manufacturing via printed self-propelled active particles.
Collapse
Affiliation(s)
- Leonardo Dominguez Rubio
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 18602, USA
| | - Matthew Collins
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Igor S Aranson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 18602, USA
| |
Collapse
|
23
|
van Campenhout CT, Schoenmaker H, van Hecke M, Noorduin WL. Patterning Complex Line Motifs in Thin Films Using Immersion-Controlled Reaction-Diffusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305191. [PMID: 37471706 DOI: 10.1002/adma.202305191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The discovery of self-organization principles that enable scalable routes toward complex functional materials has proven to be a persistent challenge. Here, reaction-diffusion driven, immersion-controlled patterning (R-DIP) is introduced, a self-organization strategy using immersion-controlled reaction-diffusion for targeted line patterning in thin films. By modulating immersion speeds, the movement of a reaction-diffusion front over gel films is controlled, which induces precipitation of highly uniform lines at the reaction front. A balance between the immersion speed and diffusion provides both hands-on tunability of the line spacing (d = 10 - 300 μ m $d = 10-300 \; \umu \text{m}$ ) as well as error-correction against defects. This immersion-driven patterning strategy is widely applicable, which is demonstrated by producing line patterns of silver/silver oxide nanoparticles, silver chromate, silver dichromate, and lead carbonate. Through combinatorial stacking of different line patterns, hybrid materials with multi-dimensional patterns such as square-, diamond-, rectangle-, and triangle-shaped motifs are fabricated. The functionality potential and scalability is demonstrated by producing both wafer-scale diffraction gratings with user-defined features as well as an opto-mechanical sensor based on Moiré patterning.
Collapse
Affiliation(s)
| | | | - Martin van Hecke
- AMOLF, Science Park 104, Amsterdam, 1098XG, The Netherlands
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, CA Leiden, 2333, The Netherlands
| | - Willem L Noorduin
- AMOLF, Science Park 104, Amsterdam, 1098XG, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1090 GD, The Netherlands
| |
Collapse
|
24
|
Yang S, Wang Y, Wang Q, Li F, Ling D. DNA-Driven Dynamic Assembly/Disassembly of Inorganic Nanocrystals for Biomedical Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:340-355. [PMID: 37501793 PMCID: PMC10369495 DOI: 10.1021/cbmi.3c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated programming is emerging as an effective technology that enables controlled dynamic assembly/disassembly of inorganic nanocrystals (NC) with precise numbers and spatial locations for biomedical imaging applications. In this review, we will begin with a brief overview of the rules of NC dynamic assembly driven by DNA ligands, and the research progress on the relationship between NC assembly modes and their biomedical imaging performance. Then, we will give examples on how the driven program is designed by different interactions through the configuration switching of DNA-NC conjugates for biomedical applications. Finally, we will conclude with the current challenges and future perspectives of this emerging field. Hopefully, this review will deepen our knowledge on the DNA-guided precise assembly of NCs, which may further inspire the future development of smart chemical imaging devices and high-performance biomedical imaging probes.
Collapse
Affiliation(s)
- Shengfei Yang
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuqi Wang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, National Center for Translational Medicine,
State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
| | - Qiyue Wang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, National Center for Translational Medicine,
State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
| | - Fangyuan Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
- Hangzhou
Institute of Innovative Medicine, Zhejiang
University, Hangzhou 310058, P. R. China
| | - Daishun Ling
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, National Center for Translational Medicine,
State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
- Hangzhou
Institute of Innovative Medicine, Zhejiang
University, Hangzhou 310058, P. R. China
| |
Collapse
|
25
|
Xing X, Zhou Y, Wei Y, Zhang Y, Man Z, Zhang W, Lu Z. Patterning of Molecules/Ions via Reverse Micelle Vessels by Nanoxerography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37296516 DOI: 10.1021/acsami.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise patterning of molecules/ions in the nanometer scale is a crucial but challenging technique for the fabrication of advanced functional nanodevices. We developed a robust method to print molecules/ions into arbitrarily defined patterns with sub-20 nm precision assisted by reverse micelles. The reverse micelle, serving as a nano-sized vessel, can load molecules/ions and then be patterned onto the predefined positions by electrostatic attraction. The number of molecules/ions on each spot, the spot spacing, and pattern shapes can be flexibly adjusted, reaching 10 nm position accuracy, 30 nm spot size, and 100 nm spot spacing (>250,000 DPI). Then, water-soluble dye molecules, protein molecules, and chloroaurate ions were loaded in the micelles and successfully patterned into nanoarrays, which provides an important platform for the convenient, flexible, and robust fabrication of functional molecule/ion-based nanodevices, such as biochips, for high-throughput and ultrasensitive analysis.
Collapse
Affiliation(s)
- Xing Xing
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yao Zhou
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Yelu Wei
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Wang Z, Srinivasan S, Dai R, Rana A, Nian Q, Solanki K, Wang RY. Inorganically Connecting Colloidal Nanocrystals Significantly Improves Mechanical Properties. NANO LETTERS 2023. [PMID: 37257060 DOI: 10.1021/acs.nanolett.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Understanding and characterizing the mechanical behavior of colloidal nanocrystal (NC) assemblies are important for developing nanocrystalline materials with exceptional mechanical properties for robust electronic, thermoelectric, photovoltaic, and optoelectronic devices. However, the limited ranges of Young's modulus, hardness, and fracture toughness (≲1-10 GPa, ≲50-500 MPa, and ≲10-50 kPa m1/2, respectively) in as-synthesized NC assemblies present challenges for their mechanical stability and therefore their practical applications. In this work, we demonstrate using a combination of nanoindentation measurements and coarse-grained modeling that the mechanical response of assemblies of as-synthesized NCs is governed by the van der Waals interactions of the organic surface ligands. More importantly, we report tremendous ∼60× enhancements in Young's modulus and hardness and an ∼80× enhancement in fracture toughness of CdSe NC assemblies through a simple inorganic Sn2S64- ligand exchange process. Moreover, our observation of softening in nanocrystalline materials with decreasing CdSe NC diameter is consistent with atomistic simulations.
Collapse
Affiliation(s)
- Zhongyong Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| | - Soundarya Srinivasan
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| | - Rui Dai
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| | - Ashish Rana
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| | - Qiong Nian
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| | - Kiran Solanki
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| | - Robert Y Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
27
|
Hu H, Han X, Wu G, Ma Z, Wu B, Yan M, Lin X, Zheng X, Hong X. Spiral Square Nanosheets Assembled from Ru Clusters. J Am Chem Soc 2023. [PMID: 37224478 DOI: 10.1021/jacs.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Spiral two-dimensional (2D) nanosheets exhibit unique physical and chemical phenomena due to their twisted structures. While self-assembly of clusters is an ideal strategy to form hierarchical 2D structures, it is challenging to form spiral nanosheets. Herein, we first report a screw dislocation involved assembled method to obtain 2D spiral cluster assembled nanosheets (CANs) with uniform square morphology. The 2D spiral Ru CANs with a length of approximately 4 μm and thickness of 20.7 ± 3.0 nm per layer were prepared via the assembly of 1-2 nm Ru clusters in the presence of molten block copolymer Pluronic F127. Cryo-electron microscopy (cryo-EM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) demonstrate the existence of screw dislocation in the spiral assembled structure. The X-ray absorption fine structure spectrum indicates that Ru clusters are Ru3+ species, and Ru atoms are mainly coordinated with Cl with a coordination number of 6.5. Fourier-transform infrared (FT-IR) spectra and solid-state nuclear magnetic resonance hydrogen spectra (1H NMR) indicate that the assembly process of Ru clusters is formed by noncovalent interactions, including hydrogen bonding and hydrophilic interactions. Additionally, the Ru-F127 CANs exhibit excellent photothermal conversion performance in the near-infrared (NIR) region.
Collapse
Affiliation(s)
- Haohui Hu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Bei Wu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muyu Yan
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xingen Lin
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
28
|
Dhulipala S, Yee DW, Zhou Z, Sun R, Andrade JE, Macfarlane RJ, Portela CM. Tunable Mechanical Response of Self-Assembled Nanoparticle Superlattices. NANO LETTERS 2023. [PMID: 37216440 DOI: 10.1021/acs.nanolett.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Self-assembled nanoparticle superlattices (NPSLs) are an emergent class of self-architected nanocomposite materials that possess promising properties arising from precise nanoparticle ordering. Their multiple coupled properties make them desirable as functional components in devices where mechanical robustness is critical. However, questions remain about NPSL mechanical properties and how shaping them affects their mechanical response. Here, we perform in situ nanomechanical experiments that evidence up to an 11-fold increase in stiffness (∼1.49 to 16.9 GPa) and a 5-fold increase in strength (∼88 to 426 MPa) because of surface stiffening/strengthening from shaping these nanomaterials via focused-ion-beam milling. To predict the mechanical properties of shaped NPSLs, we present discrete element method (DEM) simulations and an analytical core-shell model that capture the FIB-induced stiffening response. This work presents a route for tunable mechanical responses of self-architected NPSLs and provides two frameworks to predict their mechanical response and guide the design of future NPSL-containing devices.
Collapse
Affiliation(s)
- Somayajulu Dhulipala
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daryl W Yee
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ziran Zhou
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Rachel Sun
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - José E Andrade
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert J Macfarlane
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos M Portela
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Zhang H, Zhang T, Zhang X. Perspective and Prospects for Ordered Functional Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300193. [PMID: 36890653 PMCID: PMC10161115 DOI: 10.1002/advs.202300193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 05/06/2023]
Abstract
Many functional materials are approaching their performance limits due to inherent trade-offs between essential physical properties. Such trade-offs can be overcome by engineering a material that has an ordered arrangement of structural units, including constituent components/phases, grains, and domains. By rationally manipulating the ordering with abundant structural units at multiple length scales, the structural ordering opens up unprecedented opportunities to create transformative functional materials, as amplified properties or disruptive functionalities can be realized. In this perspective article, a brief overview of recent advances in the emerging ordered functional materials across catalytic, thermoelectric, and magnetic materials regarding the fabrication, structure, and property is presented. Then the possibility of applying this structural ordering strategy to highly efficient neuromorphic computing devices and durable battery materials is discussed. Finally, remaining scientific challenges are highlighted, and the prospects for ordered functional materials are made. This perspective aims to draw the attention of the scientific community to the emerging ordered functional materials and trigger intense studies on this topic.
Collapse
Affiliation(s)
- Hai‐Tian Zhang
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Tao Zhang
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Xiangyi Zhang
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004China
| |
Collapse
|
30
|
Le TH, Noh S, Lee H, Lee J, Kim M, Kim C, Yoon H. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210749. [PMID: 36739656 DOI: 10.1002/adma.202210749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 05/17/2023]
Abstract
The crystallization of nanocrystal building blocks into artificial superlattices has emerged as an efficient approach for tailoring the nanoscale properties and functionalities of novel devices. To date, ordered arrays of colloidal metal halide nanocrystals have mainly been achieved by using post-synthetic strategies. Here, a rapid and direct liquid-phase synthesis is presented to achieve a highly robust crystallization of luminescent metal halide nanocrystals into perfect face-centered-cubic (FCC) superlattices on the micrometer scale. The continuous growth of individual nanocrystals is observed within the superlattice, followed by the disassembly of the superlattices into individually dispersed nanocrystals owing to the highly repulsive interparticle interactions induced by large nanocrystals. Transmission electron microscopy characterization reveals that owing to an increase in solvent entropy, the structure of the superlattices transforms from FCC to hexagonal close-packed (HCP) and the nanocrystals disassemble. The FCC superlattice exhibits a single and slightly redshifted emission, due to the reabsorption-free property of the building block units. Compared to individual nanocrystals, the superlattices have three times higher quantum yield with improved environmental stability, making them ideal for use as ultrabright blue-light emitters. This study is expected to facilitate the creation of metamaterials with ordered nanocrystal structures and their practical applications.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jisun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Minjin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Changjun Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
31
|
van der Weijden A, Léonard AS, Noorduin WL. Architected Metal Selenides via Sequential Cation and Anion Exchange on Self-Organizing Nanocomposites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2394-2401. [PMID: 37008406 PMCID: PMC10061662 DOI: 10.1021/acs.chemmater.2c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Shape-preserving conversion reactions have the potential to unlock new routes for self-organization of complex three-dimensional (3D) nanomaterials with advanced functionalities. Specifically, developing such conversion routes toward shape-controlled metal selenides is of interest due to their photocatalytic properties and because these metal selenides can undergo further conversion reactions toward a wide range of other functional chemical compositions. Here, we present a strategy toward metal selenides with controllable 3D architectures using a two-step self-organization/conversion approach. First, we steer the coprecipitation of barium carbonate nanocrystals and silica into nanocomposites with controllable 3D shapes. Second, using a sequential exchange of cations and anions, we completely convert the chemical composition of the nanocrystals into cadmium selenide (CdSe) while preserving the initial shape of the nanocomposites. These architected CdSe structures can undergo further conversion reactions toward other metal selenides, which we demonstrate by developing a shape-preserving cation exchange toward silver selenide. Moreover, our conversion strategy can readily be extended to convert calcium carbonate biominerals into metal selenide semiconductors. Hence, the here-presented self-assembly/conversion strategy opens exciting possibilities toward customizable metal selenides with complex user-defined 3D shapes.
Collapse
Affiliation(s)
| | | | - Willem L. Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
| |
Collapse
|
32
|
Wang S, Lu S, Tian X, Liu W, Si Y, Yang Y, Qiu H, Zhang H, Li J. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands. ACS NANO 2023; 17:2792-2801. [PMID: 36651568 DOI: 10.1021/acsnano.2c11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Self-assembled inorganic nanocrystal (NC) superlattices are powerful material platforms with diverse structures and emergent functionalities. However, their applications suffer from the low structural stability against solvents and other stimuli, due to the weak interparticle interactions. Existing strategies to stabilize NC superlattices typically require the design and incorporation of special ligands prior to self-assembly and are only applicable to superlattices of certain NCs, ligands, and structures. Here we report a general method to stabilize superlattices of various NC compositions and structures via strong, covalently bonded ligands. The core is the use of light-triggered, nitrene-based cross-linkers that do not interfere the self-assembly process while nonspecifically and effectively bonding the native ligands of NCs. The stabilized 2D and 3D superlattices of metal, semiconductor, and magnetic NCs retain their structures when being exposed to solvents of different polarities (from toluene to water) and show high thermal stability and mechanical rigidity. This can further stabilize binary NC superlattices, beyond those achievable in previous methods. Stabilized superlattices show robust and reproducible functionalities, for instance, when serving as reusable substrates for surface enhanced Raman spectroscopy. These results create more possibilities in exploiting the impressive library of NC superlattices in a broad scope of applications.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yilong Si
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuchen Yang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Jansen M, Tisdale WA, Wood V. Nanocrystal phononics. NATURE MATERIALS 2023; 22:161-169. [PMID: 36702886 DOI: 10.1038/s41563-022-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Li X, Lou L, Li Y, Zhang G, Hua Y, Li W, Zhang HT, Yue M, Zhang X. Macroscopic Gradient Ordered α-Fe/Pr 2Fe 14B Nanocomposites with Ultrahigh Energy Density. NANO LETTERS 2022; 22:7644-7650. [PMID: 36103637 DOI: 10.1021/acs.nanolett.2c02778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticle self-assembly enables the generation of complex ordered nanostructures with enhanced properties or new functionalities. However, the ordering is often limited to the micrometer scale with chemical strategies due to the relative weak supramolecular interactions that govern the self-assembly process. Here a physical strategy via temperature-gradient-assisted self-assembly is reported to create three-dimensional (3D) macroscopic ordered nanocomposites with different gradient variations in grain size, constituent content, and crystal orientation. The resulting α-Fe/Pr2Fe14B ordered nanostructure with reverse gradients in both the grain size and α-Fe content exhibits a record-high energy density of about 25 MGOe for isotropic α-Fe/Pr2Fe14B systems, approximately 130% higher than that of its disordered counterpart. Both experiments and micromagnetic simulations demonstrate that creating ordered nanostructures is an alternative approach to develop high-performance permanent-magnet materials. Our findings make a significant step toward creating 3D macroscopic ordered nanostructures and will stimulate the development of ordered nanomaterials.
Collapse
Affiliation(s)
- Xiaohong Li
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Li Lou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yuqing Li
- College of Materials Science and Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Guosheng Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yingxin Hua
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Wei Li
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Hai-Tian Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ming Yue
- College of Materials Science and Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xiangyi Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
35
|
Li K, Li H, Guo D, Zhan X, Li A, Cai Z, Li Z, Qu Z, Xue L, Li M, Song Y. 3D Optical Heterostructure Patterning by Spatially Allocating Nanoblocks on a Printed Matrix. ACS NANO 2022; 16:14838-14848. [PMID: 36094880 DOI: 10.1021/acsnano.2c05721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heterostructures have attracted enormous interest due to the properties arising from the coupling and synergizing between multiscale structures and the promising applications in electronics, mechanics, and optics. However, it is challenging for current technologies to precisely integrate cross-scale micro/nanomaterials in three dimensions (3D). Herein, we realize the precise spatial allocation of nanoblocks on micromatrices and programmable 3D optical heterostructure patterning via printing-assisted self-assembly. This bottom-up approach fully exploits the advantages of printing in on-demand patterning, low cost, and mass production, as well as the merits of solution-based colloidal assembly for simple structuring and high-precision regulating, which facilitates the patterned integration of multiscale materials. Importantly, the luminescent nanoparticle assembly can be accurately coupled to the dye-doped polymer matrix by regulating the interface wettability, enabling facile multicolor tuning in a single heterostructure. Thus, the heterostructure can be specially encoded for anticounterfeiting and encryption applications due to the morphology-dependent and interface-coupling-induced luminescence. Moreover, with the capability to achieve single-nanoparticle resolution, these findings have great potential for designing photonic superstructures and advanced optical devices.
Collapse
Affiliation(s)
- Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiuqin Zhan
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
36
|
Plunkett A, Kampferbeck M, Bor B, Sazama U, Krekeler T, Bekaert L, Noei H, Giuntini D, Fröba M, Stierle A, Weller H, Vossmeyer T, Schneider GA, Domènech B. Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity. ACS NANO 2022; 16:11692-11707. [PMID: 35760395 PMCID: PMC9413410 DOI: 10.1021/acsnano.2c01332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
Collapse
Affiliation(s)
- Alexander Plunkett
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Michael Kampferbeck
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Büsra Bor
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Uta Sazama
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Tobias Krekeler
- Electron
Microscopy Unit, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Lieven Bekaert
- Research
Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heshmat Noei
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Diletta Giuntini
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
- Department
of Mechanical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michael Fröba
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Andreas Stierle
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Fachbreich
Physik, University of Hamburg, 20355 Hamburg, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Fraunhofer-CAN, 20146 Hamburg, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Gerold A. Schneider
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Berta Domènech
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| |
Collapse
|
37
|
Hao Y, Zhang T, Tian D, Hao X, Zhang X, Yang H. Tri-templating Synthesis of Multilevel Mesoporous Silica Microspheres with a Complex Interior Structure for Efficient CO 2 Capture and Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9421-9430. [PMID: 35849727 DOI: 10.1021/acs.langmuir.2c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multilevel porous architectures with microscopic shape control and tailor-made complex structures offer great potential for various innovative applications, but their elaborate design and synthesis have remained a scientific and technological challenge. Herein, we report a simple and effective tri-templating method, in which microscale Pickering droplets, nanoscale polystyrene colloids (PS), and molecular cetyltrimethylammonium chloride micelles are synchronously employed, for the fabrication of such micro-nanohierarchical mesoporous silica microspheres. In this protocol, Pickering droplet-directed interfacial sol-gel growth and its spatially confined surfactant assembly-directed sol-gel coating on PS suspensions are coupled together, enabling the successful formation of structured mesoporous silica that consists of numerous nanocompartments enclosed by a permeable shell. By varying the quantity of PS colloidal templates, rational regulation of the complex interior structure is achieved. Also, ascribed to the multilevel arrangement, this peculiar architecture not only shows desirable fast mass transport of external molecules but also possesses easy handling ability. After loading with tetraethylenepentamine or enzyme species, the yielded microspherical CO2 sorbents or immobilized biocatalysts, respectively, exhibit enhanced CO2 capture capacity and enzymatic catalysis efficiency. Notably, taking advantage of their microscopic characteristics, the immobilized biocatalysts could be ideally packed in a fixed-bed reactor for long-term continuous-flow enzymatic reactions. This tri-templating strategy provides a new synthetic route to access other multilevel microscopic materials with fascinating complex structures and paves a way to promote their practical applications.
Collapse
Affiliation(s)
- Yajuan Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tianyu Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoting Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
38
|
Fang X, Wen J, Cheng L, Yu D, Zhang H, Gumbsch P. Programmable gear-based mechanical metamaterials. NATURE MATERIALS 2022; 21:869-876. [PMID: 35681063 PMCID: PMC9345786 DOI: 10.1038/s41563-022-01269-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
Elastic properties of classical bulk materials can hardly be changed or adjusted in operando, while such tunable elasticity is highly desired for robots and smart machinery. Although possible in reconfigurable metamaterials, continuous tunability in existing designs is plagued by issues such as structural instability, weak robustness, plastic failure and slow response. Here we report a metamaterial design paradigm using gears with encoded stiffness gradients as the constituent elements and organizing gear clusters for versatile functionalities. The design enables continuously tunable elastic properties while preserving stability and robust manoeuvrability, even under a heavy load. Such gear-based metamaterials enable excellent properties such as continuous modulation of Young's modulus by two orders of magnitude, shape morphing between ultrasoft and solid states, and fast response. This allows for metamaterial customization and brings fully programmable materials and adaptive robots within reach.
Collapse
Affiliation(s)
- Xin Fang
- Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligent Science and Technology, National University of Defense Technology, Changsha, China.
- Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China.
| | - Jihong Wen
- Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligent Science and Technology, National University of Defense Technology, Changsha, China.
| | - Li Cheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Dianlong Yu
- Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligent Science and Technology, National University of Defense Technology, Changsha, China
| | - Hongjia Zhang
- Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligent Science and Technology, National University of Defense Technology, Changsha, China
| | - Peter Gumbsch
- Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany.
| |
Collapse
|
39
|
Marro N, Suo R, Naden AB, Kay ER. Constitutionally Selective Dynamic Covalent Nanoparticle Assembly. J Am Chem Soc 2022; 144:14310-14321. [PMID: 35901233 PMCID: PMC9376925 DOI: 10.1021/jacs.2c05446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The future of materials chemistry will be defined by
our ability
to precisely arrange components that have considerably larger dimensions
and more complex compositions than conventional molecular or macromolecular
building blocks. However, exerting structural and constitutional control
in the assembly of nanoscale entities presents a considerable challenge.
Dynamic covalent nanoparticles are emerging as an attractive category
of reaction-enabled solution-processable nanosized building block
through which the rational principles of molecular synthetic chemistry
can be extended into the nanoscale. From a mixture of two hydrazone-based
dynamic covalent nanoparticles with complementary reactivity, specific
molecular instructions trigger selective assembly of intimately mixed
heteromaterial (Au–Pd) aggregates or materials highly enriched
in either one of the two core materials. In much the same way as complementary
reactivity is exploited in synthetic molecular chemistry, chemospecific
nanoparticle-bound reactions dictate building block connectivity;
meanwhile, kinetic regioselectivity on the nanoscale regulates the
detailed composition of the materials produced. Selectivity, and hence
aggregate composition, is sensitive to several system parameters.
By characterizing the nanoparticle-bound reactions in isolation, kinetic
models of the multiscale assembly network can be constructed. Despite
ignoring heterogeneous physical processes such as aggregation and
precipitation, these simple kinetic models successfully link the underlying
molecular events with the nanoscale assembly outcome, guiding rational
optimization to maximize selectivity for each of the three assembly
pathways. With such predictive construction strategies, we can anticipate
that reaction-enabled nanoparticles can become fully incorporated
in the lexicon of synthetic chemistry, ultimately establishing a synthetic
science that manipulates molecular and nanoscale components with equal
proficiency.
Collapse
Affiliation(s)
- Nicolas Marro
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Rongtian Suo
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
40
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
41
|
Geng J, Yan W, Shi L, Qiu M. Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. LIGHT, SCIENCE & APPLICATIONS 2022; 11:189. [PMID: 35739105 PMCID: PMC9226179 DOI: 10.1038/s41377-022-00883-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 05/20/2023]
Abstract
It is always a great challenge to bridge the nano- and macro-worlds in nanoscience, for instance, manufacturing uniform nanogratings on a whole wafer in seconds instead of hours even days. Here, we demonstrate a single-step while extremely high-throughput femtosecond laser scanning technique to obtain wafer-scale, highly regular nanogratings on semiconductor-on-metal thin films. Our technique takes advantage of long-range surface plasmons-laser interference, which is regulated by a self-initiated seed. By controlling the scanning speed, two types of nanogratings are readily manufactured, which are produced by either oxidation or ablation. We achieve a record manufacturing speed (>1 cm2 s-1), with tunable periodicity of Λ < 1 µm. The fractional variation of their periodicity is evaluated to be as low as ∆Λ/Λ ≈ 0.5%. Furthermore, by utilizing the semiconductor-on-metal film-endowed interference effects, an extremely high energy efficiency is achieved via suppressing light reflection during femtosecond laser nano-processing. As the fabricated nanogratings exhibit multi-functionality, we exemplify their practical applications in highly sensitive refractive index sensing, vivid structural colors, and durable superhydrophilicity.
Collapse
Affiliation(s)
- Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Liping Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
42
|
Wang Z, Christodoulides AD, Dai L, Zhou Y, Dai R, Xu Y, Nian Q, Wang J, Malen JA, Wang RY. Nanocrystal Ordering Enhances Thermal Transport and Mechanics in Single-Domain Colloidal Nanocrystal Superlattices. NANO LETTERS 2022; 22:4669-4676. [PMID: 35639612 DOI: 10.1021/acs.nanolett.2c00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal nanocrystal (NC) assemblies are promising for optoelectronic, photovoltaic, and thermoelectric applications. However, using these materials can be challenging in actual devices because they have a limited range of thermal conductivity and elastic modulus, which results in heat dissipation and mechanical robustness challenges. Here, we report thermal transport and mechanical measurements on single-domain colloidal PbS nanocrystal superlattices (NCSLs) that have long-range order as well as measurements on nanocrystal films (NCFs) that are comparatively disordered. Over an NC diameter range of 3.0-6.1 nm, we observe that NCSLs have thermal conductivities and Young's moduli that are up to ∼3 times higher than those of the corresponding NCFs. We also find that these properties are more sensitive to NC diameter in NCSLs relative to NCFs. Our measurements and computational modeling indicate that stronger ligand-ligand interactions due to enhanced ligand interdigitation and alignment in NCSLs account for the improved thermal transport and mechanical properties.
Collapse
Affiliation(s)
- Zhongyong Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexander D Christodoulides
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lingyun Dai
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yang Zhou
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Rui Dai
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yifei Xu
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Qiong Nian
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Junlan Wang
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan A Malen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert Y Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
43
|
Bai L, Wang N, Li Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102811. [PMID: 34486181 DOI: 10.1002/adma.202102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Currently, organic semiconductors (OSs) are widely used as active components in practical devices related to energy storage and conversion, optoelectronics, catalysis, and biological sensors, etc. To satisfy the actual requirements of different types of devices, chemical structure design and self-assembly process control have been synergistically performed. The morphology and other basic properties of multiscale OS components are governed on a broad scale from nanometers to macroscopic micrometers. Herein, the up-to-date design strategies for fabricating multiscale OSs are comprehensively reviewed. Related representative works are introduced, applications in practical devices are discussed, and future research directions are presented. Design strategies combining the advances in organic synthetic chemistry and supramolecular assembly technology perform an integral role in the development of a new generation of multiscale OSs.
Collapse
Affiliation(s)
- Ling Bai
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Ning Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, No. 2 # Zhongguancun North First Street, Beijing, 100190, P. R. China
| |
Collapse
|
44
|
Mokkath JH. Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and Ti 3C 2F MXene. Phys Chem Chem Phys 2022; 24:12389-12396. [PMID: 35574826 DOI: 10.1039/d2cp01150f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes are a novel class of two-dimensional materials that exhibit unique light-matter interactions. In this work, using quantum-mechanical simulations based on the time dependent density functional theory, we investigate the electronic and optical properties of a hybrid structure consisting of a mono-layered aluminum (Al) sheet and Ti3C2F MXene. As a key result of this work, we reveal that the coupling of a mono-layered Al sheet on top of Ti3C2F MXene causes interlayer charge transfer accompanied by strong signatures of localized surface plasmon resonances (LSPRs) in the visible region of the electromagnetic spectrum. Our theoretical findings demonstrate a promising strategy to generate LSPRs in MXene-based heterostructures.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait. .,Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
45
|
Han H, Kallakuri S, Yao Y, Williamson CB, Nevers DR, Savitzky BH, Skye RS, Xu M, Voznyy O, Dshemuchadse J, Kourkoutis LF, Weinstein SJ, Hanrath T, Robinson RD. Multiscale hierarchical structures from a nanocluster mesophase. NATURE MATERIALS 2022; 21:518-525. [PMID: 35422509 DOI: 10.1038/s41563-022-01223-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/21/2022] [Indexed: 05/16/2023]
Abstract
Spontaneous hierarchical self-organization of nanometre-scale subunits into higher-level complex structures is ubiquitous in nature. The creation of synthetic nanomaterials that mimic the self-organization of complex superstructures commonly seen in biomolecules has proved challenging due to the lack of biomolecule-like building blocks that feature versatile, programmable interactions to render structural complexity. In this study, highly aligned structures are obtained from an organic-inorganic mesophase composed of monodisperse Cd37S18 magic-size cluster building blocks. Impressively, structural alignment spans over six orders of magnitude in length scale: nanoscale magic-size clusters arrange into a hexagonal geometry organized inside micrometre-sized filaments; self-assembly of these filaments leads to fibres that then organize into uniform arrays of centimetre-scale bands with well-defined surface periodicity. Enhanced patterning can be achieved by controlling processing conditions, resulting in bullseye and 'zigzag' stacking patterns with periodicity in two directions. Overall, we demonstrate that colloidal nanomaterials can exhibit a high level of self-organization behaviour at macroscopic-length scales.
Collapse
Affiliation(s)
- Haixiang Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Shantanu Kallakuri
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Yuan Yao
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Curtis B Williamson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Douglas R Nevers
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Rachael S Skye
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Mengyu Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Julia Dshemuchadse
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Lena F Kourkoutis
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Steven J Weinstein
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Tobias Hanrath
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Richard D Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
46
|
van der Weijden A, van Hecke M, Noorduin WL. Contraction and Expansion of Nanocomposites during Ion Exchange Reactions. CRYSTAL GROWTH & DESIGN 2022; 22:2289-2293. [PMID: 35401052 PMCID: PMC8990519 DOI: 10.1021/acs.cgd.1c01364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/01/2022] [Indexed: 05/04/2023]
Abstract
The next generation of advanced functional materials can greatly benefit from methods for realizing the right chemical composition at the right place. Nanocomposites of amorphous silica and metal carbonate nanocrystals (BaCO3/SiO2) form an attractive starting point as they can straightforwardly be assembled in different controllable three-dimensional (3D) shapes, while the chemical composition of the nanocrystals can be completely converted via ion exchange. Nevertheless, it is still unknown-let alone predictable-how nanoscopic changes in the lattice volume of the nanocrystals translate to changes in the microscopic dimensions of 3D BaCO3/SiO2 structures during ion exchange. Here, we demonstrate that the microscopic shape adapts to contraction and expansion of the atomic spacing of nanocrystals. Starting from BaCO3/SiO2, we systematically decrease and increase lattice volumes by converting the BaCO3 nanocrystals into a range of chalcogenides and perovskites. Based on geometrical analysis, we obtain a precise prediction for how the microscopic nanocomposite volume follows the change in nanoscopic crystal volume. The silica matrix facilitates mechanical flexibility to adapt to nanoscopic volume changes, while preserving the 3D morphology and fine details of the original composite with high fidelity. The versatility and predictability of shape-preserving conversion reactions open up exciting opportunities for using nanocomposites as functional components.
Collapse
Affiliation(s)
| | - Martin van Hecke
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Leiden
Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA, The Netherlands
| | - Willem L. Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
| |
Collapse
|
47
|
Zhuo S, Huang G, Sougrat R, Guo J, Wei N, Shi L, Li R, Liang H, Shi Y, Zhang Q, Wang P, Alshareef HN. Hierarchical Nanocapsules of Cu-Doped MoS 2@H-Substituted Graphdiyne for Magnesium Storage. ACS NANO 2022; 16:3955-3964. [PMID: 35254813 PMCID: PMC8945386 DOI: 10.1021/acsnano.1c09405] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/25/2022] [Indexed: 05/19/2023]
Abstract
Hierarchical nanocomposites, which integrate electroactive materials into carbonaceous species, are significant in addressing the structural stability and electrical conductivity of electrode materials in post-lithium-ion batteries. Herein, a hierarchical nanocapsule that encapsulates Cu-doped MoS2 (Cu-MoS2) nanopetals with inner added skeletons in an organic-carbon-rich nanotube of hydrogen-substituted graphdiyne (HsGDY) has been developed for rechargeable magnesium batteries (RMB). Notably, both the incorporation of Cu in MoS2 and the generation of the inner added nanoboxes are developed from a dual-template of Cu-cysteine@HsGDY hybrid nanowire; the synthesis involves two morphology/composition evolutions by CuS@HsGDY intermediates both taking place sequentially in one continuous process. These Cu-doped MoS2 nanopetals with stress-release skeletons provide abundant active sites for Mg2+ storage. The microporous HsGDY enveloped with an extended π-conjugation system offers more effective electron and ion transfer channels. These advantages work together to make this nanocapsule an effective cathode material for RMB with a large reversible capacity and superior rate and cycling performance.
Collapse
Affiliation(s)
- Sifei Zhuo
- School
of Chemistry and Chemical Engineering, Xi’an Key Laboratory
of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gang Huang
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rachid Sougrat
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jing Guo
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nini Wei
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Le Shi
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Renyuan Li
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hanfeng Liang
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yusuf Shi
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Qiuyu Zhang
- School
of Chemistry and Chemical Engineering, Xi’an Key Laboratory
of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - Peng Wang
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Husam N. Alshareef
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
48
|
Bistervels MH, Kamp M, Schoenmaker H, Brouwer AM, Noorduin WL. Light-Controlled Nucleation and Shaping of Self-Assembling Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107843. [PMID: 34854142 DOI: 10.1002/adma.202107843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Indexed: 05/12/2023]
Abstract
Controlling self-assembly of nanocomposites is a fundamental challenge with exciting implications for next-generation advanced functional materials. Precursors for composites can be generated photochemically, but limited insight in the underlying processes has hindered precise hands-on guidance. In this study, light-controlled nucleation and growth is demonstrated for self-assembling composites according to precise user-defined designs. Carbonate is generated photochemically with UV light to steer the precipitation of nanocomposites of barium carbonate nanocrystals and amorphous silica (BaCO3 /SiO2 ). Using a custom-built optical setup, the self-assembly process is controlled by optimizing the photogeneration, diffusion, reaction, and precipitation of the carbonate species, using the radius and intensity of the UV-light irradiated area and reaction temperature. Exploiting this control, nucleation is induced and the contours and individual features of the growing composite are sculpted according to micrometer-defined light patterns. Moreover, moving light patterns are exploited to create a constant carbonate concentration at the growth front to draw lines of nanocomposites with constant width over millimeters with micrometer precision. Light-directed generation of local gradients opens previously unimaginable opportunities for guiding self-assembly into functional materials.
Collapse
Affiliation(s)
| | - Marko Kamp
- AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands
| | | | - Albert M Brouwer
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1090 GD, The Netherlands
| | - Willem L Noorduin
- AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1090 GD, The Netherlands
| |
Collapse
|
49
|
A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Han JH, Shneidman AV, Kim DY, Nicolas NJ, Hoeven JES, Aizenberg M, Aizenberg J. Highly Ordered Inverse Opal Structures Synthesized from Shape‐Controlled Nanocrystal Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jae Hyo Han
- Department of Chemistry and Chemical Biology & John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Anna V. Shneidman
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Do Yoon Kim
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Natalie J. Nicolas
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Jessi E. S. Hoeven
- Department of Chemistry and Chemical Biology & John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology & John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|