1
|
Edri R, Williams LD, Frenkel-Pinter M. From Catalysis of Evolution to Evolution of Catalysis. Acc Chem Res 2024; 57:3081-3092. [PMID: 39373892 PMCID: PMC11542150 DOI: 10.1021/acs.accounts.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
ConspectusThe mystery of the origins of life is one of the most difficult yet intriguing challenges to which humanity has grappled. How did biopolymers emerge in the absence of enzymes (evolved biocatalysts), and how did long-lasting chemical evolution find a path to the highly selective complex biology that we observe today? In this paper, we discuss a chemical framework that explores the very roots of catalysis, demonstrating how standard catalytic activity based on chemical and physical principles can evolve into complex machineries. We provide several examples of how prebiotic catalysis by small molecules can be exploited to facilitate polymerization, which in biology has transformed the nature of catalysis. Thus, catalysis evolved, and evolution was catalyzed, during the transformation of prebiotic chemistry to biochemistry. Traditionally, a catalyst is defined as a substance that (i) speeds up a chemical reaction by lowering activation energy through different chemical mechanisms and (ii) is not consumed during the course of the reaction. However, considering prebiotic chemistry, which involved a highly diverse chemical space (i.e., high number of potential reactants and products) and constantly changing environment that lacked highly sophisticated catalytic machinery, we stress here that a more primitive, broader definition should be considered. Here, we consider a catalyst as any chemical species that lowers activation energy. We further discuss various demonstrations of how simple prebiotic molecules such as hydroxy acids and mercaptoacids promote the formation of peptide bonds via energetically favored exchange reactions. Even though the small molecules are partially regenerated and partially retained within the resulting oligomers, these prebiotic catalysts fulfill their primary role. Catalysis by metal ions and in complex chemical mixtures is also highlighted. We underline how chemical evolution is primarily dictated by kinetics rather than thermodynamics and demonstrate a novel concept to support this notion. Moreover, we propose a new perspective on the role of water in prebiotic catalysis. The role of water as simply a "medium" obscures its importance as an active participant in the chemistry of life, specifically as a very efficient catalyst and as a participant in many chemical transformations. Here we highlight the unusual contribution of water to increasing complexification over the course of chemical evolution. We discuss possible pathways by which prebiotic catalysis promoted chemical selection and complexification. Taken together, this Account draws a connection line between prebiotic catalysis and contemporary biocatalysis and demonstrates that the fundamental elements of chemical catalysis are embedded within today's biocatalysts. This Account illustrates how the evolution of catalysis was intertwined with chemical evolution from the very beginning.
Collapse
Affiliation(s)
- Rotem Edri
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Loren Dean Williams
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Center
for the Origins of Life, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Moran Frenkel-Pinter
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Kurpik G, Walczak A, Dydio P, Stefankiewicz AR. Multi-Stimuli-Responsive Network of Multicatalytic Reactions using a Single Palladium/Platinum Catalyst. Angew Chem Int Ed Engl 2024; 63:e202404684. [PMID: 38877818 DOI: 10.1002/anie.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials. Specifically, the network is built of four classes of distinct catalytic reactions-cross-couplings, substitutions, additions, and reductions, involving three organic starting materials-terminal alkyne, aryl iodide, and hydrosilane. All starting materials are either introduced sequentially or added to the system at the same time, with no continuous influx of reagents or efflux of products. All processes in the system are catalysed by a multifunctional heteronuclear PdII/PtII complex, whose performance can be controlled by specific additives and external stimuli. The reaction network exhibits a substantial degree of orthogonality between different pathways, enabling the controllable synthesis of ten distinct products with high efficiency and selectivity through simultaneous triggering and suppression mechanisms.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Paweł Dydio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Wang Y, Wang H, Wang S, Fang Y. Carbon- and Nitrogen-Based Complexes as Photocatalysts for Prebiotic and Oxygen Chemistry during Earth Evolution. Angew Chem Int Ed Engl 2024:e202413768. [PMID: 39238431 DOI: 10.1002/anie.202413768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Sunlight has long served as primary energy source on our planet, shaping the behavior of living organisms. Extensive research has been dedicated to unraveling the evolutionary pathways involved. When the formation of Earth atmosphere, it primarily consisted of small gas molecules, which are considered crucial for the emergence of life. Recent demonstrations have shown that these molecules can also be transformed into semiconductors, with the potential to harness solar energy and catalyze chemical reactions as photocatalysts. Building upon this research, this minireview focuses on the potential revolutionary impact of photocatalysis on Earth. Initially, it examines key reactions, such as the formation of prebiotic molecules and the oxygen evolution reaction via water oxidation. Additionally, various C-N complexes in photocatalysts are explored, showcasing their roles in catalyzing chemical reactions. The conclusion and outlook provide a potential pathway for the evolution of Earth, shedding light on the significance of metal-free photocatalysts in development of Earth.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Huan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
4
|
Gonçalves D. Rethinking life and predicting its origin. Theory Biosci 2024; 143:205-215. [PMID: 38922566 DOI: 10.1007/s12064-024-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/24/2024] [Indexed: 06/27/2024]
Abstract
The definition, origin and recreation of life remain elusive. As others have suggested, only once we put life into reductionist physical terms will we be able to solve those questions. To that end, this work proposes the phenomenon of life to be the product of two dissipative mechanisms. From them, one characterises extant biological life and deduces a testable scenario for its origin. The proposed theory of life allows its replication, reinterprets ecological evolution and creates new constraints on the search for life.
Collapse
Affiliation(s)
- Diogo Gonçalves
- Centro de Química Estrutural and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001, Lisbon, Portugal.
| |
Collapse
|
5
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
6
|
Baltussen MG, de Jong TJ, Duez Q, Robinson WE, Huck WTS. Chemical reservoir computation in a self-organizing reaction network. Nature 2024; 631:549-555. [PMID: 38926572 PMCID: PMC11254755 DOI: 10.1038/s41586-024-07567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Chemical reaction networks, such as those found in metabolism and signalling pathways, enable cells to process information from their environment1,2. Current approaches to molecular information processing and computation typically pursue digital computation models and require extensive molecular-level engineering3. Despite considerable advances, these approaches have not reached the level of information processing capabilities seen in living systems. Here we report on the discovery and implementation of a chemical reservoir computer based on the formose reaction4. We demonstrate how this complex, self-organizing chemical reaction network can perform several nonlinear classification tasks in parallel, predict the dynamics of other complex systems and achieve time-series forecasting. This in chemico information processing system provides proof of principle for the emergent computational capabilities of complex chemical reaction networks, paving the way for a new class of biomimetic information processing systems.
Collapse
Affiliation(s)
- Mathieu G Baltussen
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thijs J de Jong
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Quentin Duez
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - William E Robinson
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Moreno A, Bonduelle C. New Insights on the Chemical Origin of Life: The Role of Aqueous Polymerization of N-carboxyanhydrides (NCA). Chempluschem 2024; 89:e202300492. [PMID: 38264807 DOI: 10.1002/cplu.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 01/25/2024]
Abstract
At the origin, the emergence of proteins was based on crucial prebiotic stages in which simple amino acids-based building blocks spontaneously evolved from the prebiotic soup into random proto-polymers called protoproteins. Despite advances in modern peptide synthesis, these prebiotic chemical routes to protoproteins remain puzzling. We discuss in this perspective how polymer science and systems chemistry are reaching a point of convergence in which simple monomers called N-carboxyanhydrides would be able to form such protoproteins via the emergence of a protometabolic cycle involving aqueous polymerization and featuring macromolecular Darwinism behavior.
Collapse
Affiliation(s)
- Abel Moreno
- Instituto de Quimica, UNAM, Ciudad Universitaria, Coyoacan, 04510, Mexico DF
| | - Colin Bonduelle
- CNRS, Bordeaux INP, LCPO UMR5629, Univ. Bordeaux, 33600, Pessac, France
| |
Collapse
|
8
|
Guo J, Yu C, Li K, Zhang Y, Wang G, Li S, Dong H. Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning. J Chem Theory Comput 2024; 20:4921-4938. [PMID: 38747149 DOI: 10.1021/acs.jctc.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design.
Collapse
Affiliation(s)
- Jiasheng Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Chenning Yu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Kenan Li
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Yijian Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Guoqiang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Li S, Wang F, Xing X, Yue X, Sun S, Lin H, Xu C. Activation-Induced Senescent Cell Death based on Chiral CoHAu Nanoassemblies with Enantioselective Cascade-Catalytic Ability. Adv Healthc Mater 2024; 13:e2303476. [PMID: 38161211 DOI: 10.1002/adhm.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Chirality is common in nature, which determines the high enantioselectivity of living systems. Selecting suitable chiral configurations is of great meaning for nanostructures to function better in biological systems. In this study, chiral Co3O4-H2TPPS-Au (CoHAu) nanoassemblies are constructed to accelerate the production ∙OH by consuming D-glucose (D-Glu, widely spread in nature) based on their outstanding enantioselective cascade-catalytic abilities. In particular, D-CoHAu nanoassemblies are more effective in the catalytic conversion of D-Glu than L-CoHAu nanoassemblies. This phenomenon is due to the stronger binding affinity of D-CoHAu nanoassemblies indicated by the lower Km value. Moreover, D-CoHAu nanoassemblies display excellent consumption-ability of D-Glu and production of ∙OH in living cells, which can eliminate senescent cells effectively based on their intracellular enantioselective cascade-catalysis. This research establishes the foundation for bio-mimicking nanostructures with unique functionalities to regulate abnormal biological activities better.
Collapse
Affiliation(s)
- Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaoyong Yue
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
10
|
Borówko M. Special Issue "Third Edition: Advances in Molecular Simulation". Int J Mol Sci 2024; 25:2709. [PMID: 38473956 DOI: 10.3390/ijms25052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Molecular simulation is one of the fastest growing fields in science [...].
Collapse
Affiliation(s)
- Małgorzata Borówko
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
11
|
Schoenmakers LLJ, Reydon TAC, Kirschning A. Evolution at the Origins of Life? Life (Basel) 2024; 14:175. [PMID: 38398684 PMCID: PMC10890241 DOI: 10.3390/life14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.
Collapse
Affiliation(s)
- Ludo L. J. Schoenmakers
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI), 3400 Klosterneuburg, Austria
| | - Thomas A. C. Reydon
- Institute of Philosophy, Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, 30159 Hannover, Germany;
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
12
|
Tozzi A, Mazzeo M. The First Nucleic Acid Strands May Have Grown on Peptides via Primeval Reverse Translation. Acta Biotheor 2023; 71:23. [PMID: 37947915 DOI: 10.1007/s10441-023-09474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The central dogma of molecular biology dictates that, with only a few exceptions, information proceeds from DNA to protein through an RNA intermediate. Examining the enigmatic steps from prebiotic to biological chemistry, we take another road suggesting that primordial peptides acted as template for the self-assembly of the first nucleic acids polymers. Arguing in favour of a sort of archaic "reverse translation" from proteins to RNA, our basic premise is a Hadean Earth where key biomolecules such as amino acids, polypeptides, purines, pyrimidines, nucleosides and nucleotides were available under different prebiotically plausible conditions, including meteorites delivery, shallow ponds and hydrothermal vents scenarios. Supporting a protein-first scenario alternative to the RNA world hypothesis, we propose the primeval occurrence of short two-dimensional peptides termed "selective amino acid- and nucleotide-matching oligopeptides" (henceforward SANMAOs) that noncovalently bind at the same time the polymerized amino acids and the single nucleotides dispersed in the prebiotic milieu. In this theoretical paper, we describe the chemical features of this hypothetical oligopeptide, its biological plausibility and its virtues from an evolutionary perspective. We provide a theoretical example of SANMAO's selective pairing between amino acids and nucleosides, simulating a poly-Glycine peptide that acts as a template to build a purinic chain corresponding to the glycine's extant triplet codon GGG. Further, we discuss how SANMAO might have endorsed the formation of low-fidelity RNA's polymerized strains, well before the appearance of the accurate genetic material's transmission ensured by the current translation apparatus.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | - Marco Mazzeo
- Erredibi Srl, Via Pazzigno 117, 80146, Naples, Italy
| |
Collapse
|
13
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
14
|
Chen X, Wei C, Xie M, Hu Y. Single-Photon Ionization Induced New Covalent Bond Formation in Acrylonitrile(AN)-Pyrrole(Py) Clusters. J Phys Chem A 2023; 127:8272-8279. [PMID: 37769120 DOI: 10.1021/acs.jpca.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The formation of nitrogen-containing organic compounds is crucial for understanding chemical evolution and the origin of life in the interstellar medium (ISM). In this study, we explore whether acrylonitrile (AN) and pyrrole (Py) can form new nitrogen-containing compounds after single-photon ionization in their gaseous clusters by vacuum ultraviolet (VUV)-infrared (IR) spectroscopy and theoretical calculations. The results show that a strong linear H-bond is formed in neutral AN-Py, while cyclic or bicyclic H-bonded networks are formed in the neutral AN-Py2 cluster. It is found that the structure containing a new C-C covalent bond between two moieties in (AN-Py)+ is formed besides the formation of H-bonded structures after AN-Py is ionized by VUV light. In (AN-Py2)+ cluster cations, new C-C or C-N covalent bonds tend to be formed between two Py, with (Py)2+ as the core in the cluster. The results reveal that new covalent bonds are more likely to be formed between two Py species when AN and Py are present in the cationic clusters. These results provide spectroscopic evidence of the formation of new nitrogen-containing organic compounds from AN and Py induced by VUV, which are helpful for our understanding of the formation of diverse prebiotic molecules in interstellar space.
Collapse
Affiliation(s)
- Xujian Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chengcheng Wei
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
15
|
Peters S, Semenov DA, Hochleitner R, Trapp O. Synthesis of prebiotic organics from CO 2 by catalysis with meteoritic and volcanic particles. Sci Rep 2023; 13:6843. [PMID: 37231067 DOI: 10.1038/s41598-023-33741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The emergence of prebiotic organics was a mandatory step toward the origin of life. The significance of the exogenous delivery versus the in-situ synthesis from atmospheric gases is still under debate. We experimentally demonstrate that iron-rich meteoritic and volcanic particles activate and catalyse the fixation of CO2, yielding the key precursors of life-building blocks. This catalysis is robust and produces selectively aldehydes, alcohols, and hydrocarbons, independent of the redox state of the environment. It is facilitated by common minerals and tolerates a broad range of the early planetary conditions (150-300 °C, ≲ 10-50 bar, wet or dry climate). We find that up to 6 × 108 kg/year of prebiotic organics could have been synthesized by this planetary-scale process from the atmospheric CO2 on Hadean Earth.
Collapse
Affiliation(s)
- Sophia Peters
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Rupert Hochleitner
- Mineralogische Staatssammlung München, Theresienstr. 41, 80333, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany.
| |
Collapse
|
16
|
Ameta S, Kumar M, Chakraborty N, Matsubara YJ, S P, Gandavadi D, Thutupalli S. Multispecies autocatalytic RNA reaction networks in coacervates. Commun Chem 2023; 6:91. [PMID: 37156998 PMCID: PMC10167250 DOI: 10.1038/s42004-023-00887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Robust localization of self-reproducing autocatalytic chemistries is a key step in the realization of heritable and evolvable chemical systems. While autocatalytic chemical reaction networks already possess attributes such as heritable self-reproduction and evolvability, localizing functional multispecies networks within complex primitive phases, such as coacervates, has remained unexplored. Here, we show the self-reproduction of the Azoarcus ribozyme system within charge-rich coacervates where catalytic ribozymes are produced by the autocatalytic assembly of constituent smaller RNA fragments. We systematically demonstrate the catalytic assembly of active ribozymes within phase-separated coacervates-both in micron-sized droplets as well as in a coalesced macrophase, underscoring the facility of the complex, charge-rich phase to support these reactions in multiple configurations. By constructing multispecies reaction networks, we show that these newly assembled molecules are active, participating both in self- and cross-catalysis within the coacervates. Finally, due to differential molecular transport, these phase-separated compartments endow robustness to the composition of the collectively autocatalytic networks against external perturbations. Altogether, our results establish the formation of multispecies self-reproducing reaction networks in phase-separated compartments which in turn render transient robustness to the network composition.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
- Trivedi School of Biosciences, Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O. Rai, Sonepat, Haryana, 131029, India.
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Yoshiya J Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Prashanth S
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Dhanush Gandavadi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
| |
Collapse
|
17
|
Pasquini M, Stenta M. LinChemIn: SynGraph-a data model and a toolkit to analyze and compare synthetic routes. J Cheminform 2023; 15:41. [PMID: 37005691 PMCID: PMC10067316 DOI: 10.1186/s13321-023-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The increasing amount of chemical reaction data makes traditional ways to navigate its corpus less effective, while the demand for novel approaches and instruments is rising. Recent data science and machine learning techniques support the development of new ways to extract value from the available reaction data. On the one side, Computer-Aided Synthesis Planning tools can predict synthetic routes in a model-driven approach; on the other side, experimental routes can be extracted from the Network of Organic Chemistry, in which reaction data are linked in a network. In this context, the need to combine, compare and analyze synthetic routes generated by different sources arises naturally. RESULTS Here we present LinChemIn, a python toolkit that allows chemoinformatics operations on synthetic routes and reaction networks. Wrapping some third-party packages for handling graph arithmetic and chemoinformatics and implementing new data models and functionalities, LinChemIn allows the interconversion between data formats and data models and enables route-level analysis and operations, including route comparison and descriptors calculation. Object-Oriented Design principles inspire the software architecture, and the modules are structured to maximize code reusability and support code testing and refactoring. The code structure should facilitate external contributions, thus encouraging open and collaborative software development. CONCLUSIONS The current version of LinChemIn allows users to combine synthetic routes generated from various tools and analyze them, and constitutes an open and extensible framework capable of incorporating contributions from the community and fostering scientific discussion. Our roadmap envisages the development of sophisticated metrics for routes evaluation, a multi-parameter scoring system, and the implementation of an entire "ecosystem" of functionalities operating on synthetic routes. LinChemIn is freely available at https://github.com/syngenta/linchemin.
Collapse
Affiliation(s)
- Marta Pasquini
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332, Stein, AG, Switzerland.
| | - Marco Stenta
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332, Stein, AG, Switzerland
| |
Collapse
|
18
|
van Duppen P, Daines E, Robinson WE, Huck WTS. Dynamic Environmental Conditions Affect the Composition of a Model Prebiotic Reaction Network. J Am Chem Soc 2023; 145:7559-7568. [PMID: 36961990 PMCID: PMC10080678 DOI: 10.1021/jacs.3c00908] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Prebiotic environments are dynamic, containing a range of periodic and aperiodic variations in reaction conditions. However, the impact of the temporal dynamics of environmental conditions upon prebiotic chemical reaction networks has not been investigated. Here, we demonstrate how the magnitude and rate of temporal fluctuations of the catalysts Ca2+ and hydroxide control the product distributions of the formose reaction. Surprisingly, the product compositions of the formose reaction under dynamic conditions deviate significantly from those under steady state conditions. We attribute these compositional changes to the non-uniform propagation of fluctuations through the network, thereby shaping reaction outcomes. An examination of temporal concentration patterns showed that collections of compounds responded collectively to perturbations, indicating that key gating reactions branching from the Breslow cycle may be important responsive features of the formose reaction. Our findings show how the compositions of prebiotic reaction networks were shaped by sequential environmental events, illustrating the necessity for considering the temporal traits of prebiotic environments that supported the origin of life.
Collapse
Affiliation(s)
- Peer van Duppen
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elena Daines
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - William E Robinson
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
19
|
Zhao Q, Garimella SS, Savoie BM. Thermally Accessible Prebiotic Pathways for Forming Ribonucleic Acid and Protein Precursors from Aqueous Hydrogen Cyanide. J Am Chem Soc 2023; 145:6135-6143. [PMID: 36883252 DOI: 10.1021/jacs.2c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The search for prebiotic chemical pathways to biologically relevant molecules is a long-standing puzzle that has generated a menagerie of competing hypotheses with limited experimental prospects for falsification. However, the advent of computational network exploration methodologies has created the opportunity to compare the kinetic plausibility of various channels and even propose new pathways. Here, the space of organic molecules that can be formed within four polar or pericyclic reactions from water and hydrogen cyanide (HCN), two established prebiotic candidates for generating biological precursors, was comprehensively explored with a state-of-the-art exploration algorithm. A surprisingly diverse reactivity landscape was revealed within just a few steps of these simple molecules. Reaction pathways to several biologically relevant molecules were discovered involving lower activation energies and fewer reaction steps compared with recently proposed alternatives. Accounting for water-catalyzed reactions qualitatively affects the interpretation of the network kinetics. The case-study also highlights omissions of simpler and lower barrier reaction pathways to certain products by other algorithms that qualitatively affect the interpretation of HCN reactivity.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Sanjay S Garimella
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
20
|
Wen M, Spotte-Smith EWC, Blau SM, McDermott MJ, Krishnapriyan AS, Persson KA. Chemical reaction networks and opportunities for machine learning. NATURE COMPUTATIONAL SCIENCE 2023; 3:12-24. [PMID: 38177958 DOI: 10.1038/s43588-022-00369-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2024]
Abstract
Chemical reaction networks (CRNs), defined by sets of species and possible reactions between them, are widely used to interrogate chemical systems. To capture increasingly complex phenomena, CRNs can be leveraged alongside data-driven methods and machine learning (ML). In this Perspective, we assess the diverse strategies available for CRN construction and analysis in pursuit of a wide range of scientific goals, discuss ML techniques currently being applied to CRNs and outline future CRN-ML approaches, presenting scientific and technical challenges to overcome.
Collapse
Affiliation(s)
- Mingjian Wen
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Evan Walter Clark Spotte-Smith
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Samuel M Blau
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew J McDermott
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aditi S Krishnapriyan
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
| | - Kristin A Persson
- Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
21
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
22
|
Le Pogam P, Papon N, Beniddir MA, Courdavault V. Computer-Assisted Design of Sustainable Syntheses of Pharmaceuticals and Agrochemicals from Industrial Wastes. CHEMSUSCHEM 2022; 15:e202201125. [PMID: 35894947 DOI: 10.1002/cssc.202201125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Computer-based strategies vastly enhanced the field of analytical chemistry. The impact of data-driven technologies in shaping organic chemistry strategies long remained comparatively elusive but various tools recently emerged to computationally plan multistep organic syntheses. A recent study elegantly takes benefit of an in-house library of chemical reactions enriched with various metadata to provide numerous, reliable and realistic organic chemistry workflows to structurally-varied drugs of interest, from locally available industrial by-products. The retrieval of the different synthetic pathways and a scoring based on different features, especially comprising sustainability considerations, are also proposed.
Collapse
Affiliation(s)
- Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 92290, Châtenay-Malabry, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 92290, Châtenay-Malabry, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
23
|
Ruf A, Danger G. Network Analysis Reveals Spatial Clustering and Annotation of Complex Chemical Spaces: Application to Astrochemistry. Anal Chem 2022; 94:14135-14142. [PMID: 36209417 PMCID: PMC9583070 DOI: 10.1021/acs.analchem.2c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
How are molecules
linked to each other in complex systems?
In a
proof-of-concept study, we have developed the method mol2net (https://zenodo.org/record/7025094) to generate and analyze the molecular network of complex astrochemical
data (from high-resolution Orbitrap MS1 analysis of H2O:CH3OH:NH3 interstellar ice analogs)
in a data-driven and unsupervised manner, without any prior knowledge
about chemical reactions. The molecular network is clustered according
to the initial NH3 content and unlocked HCN, NH3, and H2O as spatially resolved key transformations. In
comparison with the PubChem database, four subsets were annotated:
(i) saturated C-backbone molecules without N, (ii) saturated N-backbone
molecules, (iii) unsaturated C-backbone molecules without N, and (iv)
unsaturated N-backbone molecules. These findings were validated with
previous results (e.g., identifying the two major graph components
as previously described N-poor and N-rich molecular groups) but with
additional information about subclustering, key transformations, and
molecular structures, and thus, the structural characterization of
large complex organic molecules in interstellar ice analogs has been
significantly refined.
Collapse
Affiliation(s)
- Alexander Ruf
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, CNRS, 13013 Marseille, France
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University, 81377 Munich, Germany
- Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748 Garching, Germany
| | - Grégoire Danger
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, CNRS, 13013 Marseille, France
- Aix-Marseille Université, CNRS, CNES, LAM, 13013 Marseille, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
24
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
25
|
Origins of Life Research: The Conundrum between Laboratory and Field Simulations of Messy Environments. Life (Basel) 2022; 12:life12091429. [PMID: 36143465 PMCID: PMC9504664 DOI: 10.3390/life12091429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Most experimental results that guide research related to the origin of life are from laboratory simulations of the early Earth conditions. In the laboratory, emphasis is placed on the purity of reagents and carefully controlled conditions, so there is a natural tendency to reject impurities and lack of control. However, life did not originate in laboratory conditions; therefore, we should take into consideration multiple factors that are likely to have contributed to the environmental complexity of the early Earth. This essay describes eight physical and biophysical factors that spontaneously resolve aqueous dispersions of ionic and organic solutes mixed with mineral particles and thereby promote specific chemical reactions required for life to begin.
Collapse
|
26
|
Seifrid M, Pollice R, Aguilar-Granda A, Morgan Chan Z, Hotta K, Ser CT, Vestfrid J, Wu TC, Aspuru-Guzik A. Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Acc Chem Res 2022; 55:2454-2466. [PMID: 35948428 PMCID: PMC9454899 DOI: 10.1021/acs.accounts.2c00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/19/2023]
Abstract
We must accelerate the pace at which we make technological advancements to address climate change and disease risks worldwide. This swifter pace of discovery requires faster research and development cycles enabled by better integration between hypothesis generation, design, experimentation, and data analysis. Typical research cycles take months to years. However, data-driven automated laboratories, or self-driving laboratories, can significantly accelerate molecular and materials discovery. Recently, substantial advancements have been made in the areas of machine learning and optimization algorithms that have allowed researchers to extract valuable knowledge from multidimensional data sets. Machine learning models can be trained on large data sets from the literature or databases, but their performance can often be hampered by a lack of negative results or metadata. In contrast, data generated by self-driving laboratories can be information-rich, containing precise details of the experimental conditions and metadata. Consequently, much larger amounts of high-quality data are gathered in self-driving laboratories. When placed in open repositories, this data can be used by the research community to reproduce experiments, for more in-depth analysis, or as the basis for further investigation. Accordingly, high-quality open data sets will increase the accessibility and reproducibility of science, which is sorely needed.In this Account, we describe our efforts to build a self-driving lab for the development of a new class of materials: organic semiconductor lasers (OSLs). Since they have only recently been demonstrated, little is known about the molecular and material design rules for thin-film, electrically-pumped OSL devices as compared to other technologies such as organic light-emitting diodes or organic photovoltaics. To realize high-performing OSL materials, we are developing a flexible system for automated synthesis via iterative Suzuki-Miyaura cross-coupling reactions. This automated synthesis platform is directly coupled to the analysis and purification capabilities. Subsequently, the molecules of interest can be transferred to an optical characterization setup. We are currently limited to optical measurements of the OSL molecules in solution. However, material properties are ultimately most important in the solid state (e.g., as a thin-film device). To that end and for a different scientific goal, we are developing a self-driving lab for inorganic thin-film materials focused on the oxygen evolution reaction.While the future of self-driving laboratories is very promising, numerous challenges still need to be overcome. These challenges can be split into cognition and motor function. Generally, the cognitive challenges are related to optimization with constraints or unexpected outcomes for which general algorithmic solutions have yet to be developed. A more practical challenge that could be resolved in the near future is that of software control and integration because few instrument manufacturers design their products with self-driving laboratories in mind. Challenges in motor function are largely related to handling heterogeneous systems, such as dispensing solids or performing extractions. As a result, it is critical to understand that adapting experimental procedures that were designed for human experimenters is not as simple as transferring those same actions to an automated system, and there may be more efficient ways to achieve the same goal in an automated fashion. Accordingly, for self-driving laboratories, we need to carefully rethink the translation of manual experimental protocols.
Collapse
Affiliation(s)
- Martin Seifrid
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Robert Pollice
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Zamyla Morgan Chan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Acceleration
Consortium, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kazuhiro Hotta
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshidacho, Aoba, Yokohama, Kanagawa 227-8502, Japan
| | - Cher Tian Ser
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jenya Vestfrid
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony C. Wu
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alán Aspuru-Guzik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department
of Materials Science, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Vector
Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada
- Lebovic
Fellow, Canadian Institute for Advanced
Research, Toronto, Ontario M5S 1M1, Canada
| |
Collapse
|
27
|
Xie M, Sun X, Li W, Guan J, Liang Z, Hu Y. A Facile Route for the Formation of Complex Nitrogen-Containing Prebiotic Molecules in the Interstellar Medium. J Phys Chem Lett 2022; 13:8207-8213. [PMID: 36006401 DOI: 10.1021/acs.jpclett.2c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prebiotic molecules have often been identified in the interstellar medium and meteorite samples. However, we still have only a fragmentary knowledge of the mechanism of the evolutionary process of these prebiotic molecules. With the aid of state-of-the-art vacuum ultraviolet (VUV)-infrared (IR) spectroscopy and ab initio calculations, we reveal a new pathway leading to the formation of the biorelevant molecules carrying amine groups or peptide bonds via the single-photon ionization induced Michael/cyclization reaction of acrylonitrile (AN)-alcohol heterodimer complexes in the gas phase. In the reactions, not only N-H nitrilium cations with H+-N≡C-R Lewis structure but also cyclic amine cations with a peptide bond can be formed when the AN reacts with alcohols of increasing molecular size (such as ethanol, propanol, or butanol). This study suggests the possibility of unsaturated nitriles being reduced by ionized alcohols in space, which can further drive sequential Michael addition/cyclization reactions to form more complex biorelevant molecules.
Collapse
Affiliation(s)
- Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Weixing Li
- Department of Chemistry, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Jiwen Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
28
|
Peng Z, Linderoth J, Baum DA. The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life. PLoS Comput Biol 2022; 18:e1010498. [PMID: 36084149 PMCID: PMC9491600 DOI: 10.1371/journal.pcbi.1010498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/21/2022] [Accepted: 08/18/2022] [Indexed: 12/16/2022] Open
Abstract
Prior work on abiogenesis, the emergence of life from non-life, suggests that it requires chemical reaction networks that contain self-amplifying motifs, namely, autocatalytic cores. However, little is known about how the presence of multiple autocatalytic cores might allow for the gradual accretion of complexity on the path to life. To explore this problem, we develop the concept of a seed-dependent autocatalytic system (SDAS), which is a subnetwork that can autocatalytically self-maintain given a flux of food, but cannot be initiated by food alone. Rather, initiation of SDASs requires the transient introduction of chemical "seeds." We show that, depending on the topological relationship of SDASs in a chemical reaction network, a food-driven system can accrete complexity in a historically contingent manner, governed by rare seeding events. We develop new algorithms for detecting and analyzing SDASs in chemical reaction databases and describe parallels between multi-SDAS networks and biological ecosystems. Applying our algorithms to both an abiotic reaction network and a biochemical one, each driven by a set of simple food chemicals, we detect SDASs that are organized as trophic tiers, of which the higher tier can be seeded by relatively simple chemicals if the lower tier is already activated. This indicates that sequential activation of trophically organized SDASs by seed chemicals that are not much more complex than what already exist could be a mechanism of gradual complexification from relatively simple abiotic reactions to more complex life-like systems. Interestingly, in both reaction networks, higher-tier SDASs include chemicals that might alter emergent features of chemical systems and could serve as early targets of selection. Our analysis provides computational tools for analyzing very large chemical/biochemical reaction networks and suggests new approaches to studying abiogenesis in the lab.
Collapse
Affiliation(s)
- Zhen Peng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeff Linderoth
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison Wisconsin, United States of America
| | - David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
29
|
Afrin R, Chen C, Sarpa D, Sithamparam M, Yi R, Giri C, Mamajanov I, James Cleaves H, Chandru K, Jia TZ. The Effects of Dehydration Temperature and Monomer Chirality on Primitive Polyester Synthesis and Microdroplet Assembly. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rehana Afrin
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Chen Chen
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Davide Sarpa
- The University of Southampton University Rd, Highfield Southampton SO17 1BJ UK
| | - Mahendran Sithamparam
- Space Science Centre (ANGKASA) Institute of Climate Change National University of Malaysia UKM Bangi Selangor Darul Ehsan 43650 Malaysia
| | - Ruiqin Yi
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Chaitanya Giri
- Research and Information System for Developing Countries (RIS) Core IV‐B, Fourth Floor, India Habitat Centre, Lodhi Road New Delhi 110 003 India
| | - Irena Mamajanov
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - H. James Cleaves
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Blue Marble Space Institute of Science 600 1st Ave, Floor 1 Seattle WA 98104 USA
- Earth and Planets Laboratory Carnegie Institution of Washington 5241 Broad Branch Rd. Washington DC 20015 USA
| | - Kuhan Chandru
- Space Science Centre (ANGKASA) Institute of Climate Change National University of Malaysia UKM Bangi Selangor Darul Ehsan 43650 Malaysia
| | - Tony Z. Jia
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Blue Marble Space Institute of Science 600 1st Ave, Floor 1 Seattle WA 98104 USA
| |
Collapse
|
30
|
Petrus E, Segado-Centellas M, Bo C. Computational Prediction of Speciation Diagrams and Nucleation Mechanisms: Molecular Vanadium, Niobium, and Tantalum Oxide Nanoclusters in Solution. Inorg Chem 2022; 61:13708-13718. [PMID: 35998382 DOI: 10.1021/acs.inorgchem.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the aqueous speciation of molecular metal-oxo-clusters plays a key role in different fields such as catalysis, electrochemistry, nuclear waste recycling, and biochemistry. To describe the speciation accurately, it is essential to elucidate the underlying self-assembly processes. Herein, we apply a computational method to predict the speciation and formation mechanisms of polyoxovanadates, -niobates, and -tantalates. While polyoxovanadates have been widely studied, polyoxoniobates and -tantalates lack the same level of understanding. First, we propose a pentavanadate cluster ([V5O14]3-) as a key intermediate for the formation of the decavanadate. Our computed phase speciation diagram is in particularly good agreement with the experiments. Second, we report the formation constants of the heptaniobate, [Nb7O22]9-, decaniobate, [Nb10O28]6-, and tetracosaniobate [H9Nb24O72]15-. Additionally, we compute the speciation and phase diagram of niobium, which so far was restricted to Lindqvist derivates. Finally, we predict the formation constant of the decatantalate ([Ta10O26]6-) in water, even though it had only been synthesized in toluene. Furthermore, we also calculate the corresponding speciation and phase diagrams for polyoxotantalates. Overall, we show that our method can be successfully applied to different families of molecular metal oxides without any need for readjustments; therefore, it can be regarded as a trustworthy tool for exploring polyoxometalates' chemistry.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
31
|
Chatterjee A, Ghosh S, Ghosh C, Das D. Fluorescent Microswimmers Based on Cross-β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022; 61:e202201547. [PMID: 35578748 DOI: 10.1002/anie.202201547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Shaped through millions of years of evolution, the spatial localization of multiple enzymes in living cells employs extensive cascade reactions to enable highly coordinated multimodal functions. Herein, by utilizing a complex divergent cascade, we exploit the catalytic potential as well as templating abilities of streamlined cross-β amyloid nanotubes to yield two orthogonal roles simultaneously. The short peptide based paracrystalline nanotube surfaces demonstrated the generation of fluorescence signals within entangled networks loaded with alcohol dehydrogenase (ADH). The nanotubular morphologies were further used to generate cascade-driven microscopic motility through surface entrapment of sarcosine oxidase (SOX) and catalase (Cat). Moreover, a divergent cascade network was initiated by upstream catalysis of the substrate molecules through the surface mutation of catalytic moieties. Notably, the resultant downstream products led to the generation of motile fluorescent microswimmers by utilizing the two sets of orthogonal properties and, thus, mimicked the complex cascade-mediated functionalities of extant biology.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
32
|
Artime O, De Domenico M. From the origin of life to pandemics: emergent phenomena in complex systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200410. [PMID: 35599559 PMCID: PMC9125231 DOI: 10.1098/rsta.2020.0410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
When a large number of similar entities interact among each other and with their environment at a low scale, unexpected outcomes at higher spatio-temporal scales might spontaneously arise. This non-trivial phenomenon, known as emergence, characterizes a broad range of distinct complex systems-from physical to biological and social-and is often related to collective behaviour. It is ubiquitous, from non-living entities such as oscillators that under specific conditions synchronize, to living ones, such as birds flocking or fish schooling. Despite the ample phenomenological evidence of the existence of systems' emergent properties, central theoretical questions to the study of emergence remain unanswered, such as the lack of a widely accepted, rigorous definition of the phenomenon or the identification of the essential physical conditions that favour emergence. We offer here a general overview of the phenomenon of emergence and sketch current and future challenges on the topic. Our short review also serves as an introduction to the theme issue Emergent phenomena in complex physical and socio-technical systems: from cells to societies, where we provide a synthesis of the contents tackled in the issue and outline how they relate to these challenges, spanning from current advances in our understanding on the origin of life to the large-scale propagation of infectious diseases. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Oriol Artime
- Fondazione Bruno Kessler, Via Sommarive 18, Povo, TN 38123, Italy
| | - Manlio De Domenico
- Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Padova, Veneto, Italy
| |
Collapse
|
33
|
Xavier JC, Kauffman S. Small-molecule autocatalytic networks are universal metabolic fossils. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210244. [PMID: 35599556 DOI: 10.1098/rsta.2021.0244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Life and the genetic code are self-referential and so are autocatalytic networks made of simpler, small molecules. Several origins of life theories postulate autocatalytic chemical networks preceding the primordial genetic code, yet demonstration with biochemical systems is lacking. Here, small-molecule reflexively autocatalytic food-generated networks (RAFs) ranging in size from 3 to 619 reactions were found in all of 6683 prokaryotic metabolic networks searched. The average maximum RAF size is 275 reactions for a rich organic medium and 93 for a medium with a single organic cofactor, NAD. In the rich medium, all universally essential metabolites are produced with the exception of glycerol-1-p (archaeal lipid precursor), phenylalanine, histidine and arginine. The 300 most common reactions, present in at least 2732 RAFs, are mostly involved in amino acid biosynthesis and the metabolism of carbon, 2-oxocarboxylic acid and purines. ATP and NAD are central in generating network complexity, and because ATP is also one of the monomers of RNA, autocatalytic networks producing redox and energy currencies are a strong candidate niche of the origin of a primordial information-processing system. The wide distribution of small-molecule autocatalytic networks indicates that molecular reproduction may be much more prevalent in the Universe than hitherto predicted. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Joana C Xavier
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
34
|
Robinson WE, Daines E, van Duppen P, de Jong T, Huck WTS. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nat Chem 2022; 14:623-631. [PMID: 35668214 DOI: 10.1038/s41557-022-00956-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The evolution of life from the prebiotic environment required a gradual process of chemical evolution towards greater molecular complexity. Elaborate prebiotically relevant synthetic routes to the building blocks of life have been established. However, it is still unclear how functional chemical systems evolved with direction using only the interaction between inherent molecular chemical reactivity and the abiotic environment. Here we demonstrate how complex systems of chemical reactions exhibit well-defined self-organization in response to varying environmental conditions. This self-organization allows the compositional complexity of the reaction products to be controlled as a function of factors such as feedstock and catalyst availability. We observe how Breslow's cycle contributes to the reaction composition by feeding C2 building blocks into the network, alongside reaction pathways dominated by formaldehyde-driven chain growth. The emergence of organized systems of chemical reactions in response to changes in the environment offers a potential mechanism for a chemical evolution process that bridges the gap between prebiotic chemical building blocks and the origin of life.
Collapse
Affiliation(s)
- William E Robinson
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Elena Daines
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Peer van Duppen
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Thijs de Jong
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
35
|
Fluorescent Microswimmers Based on Cross‐β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Arya A, Ray J, Sharma S, Cruz Simbron R, Lozano A, Smith HB, Andersen JL, Chen H, Meringer M, Cleaves HJ. An open source computational workflow for the discovery of autocatalytic networks in abiotic reactions. Chem Sci 2022; 13:4838-4853. [PMID: 35655880 PMCID: PMC9067619 DOI: 10.1039/d2sc00256f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
A central question in origins of life research is how non-entailed chemical processes, which simply dissipate chemical energy because they can do so due to immediate reaction kinetics and thermodynamics, enabled the origin of highly-entailed ones, in which concatenated kinetically and thermodynamically favorable processes enhanced some processes over others. Some degree of molecular complexity likely had to be supplied by environmental processes to produce entailed self-replicating processes. The origin of entailment, therefore, must connect to fundamental chemistry that builds molecular complexity. We present here an open-source chemoinformatic workflow to model abiological chemistry to discover such entailment. This pipeline automates generation of chemical reaction networks and their analysis to discover novel compounds and autocatalytic processes. We demonstrate this pipeline's capabilities against a well-studied model system by vetting it against experimental data. This workflow can enable rapid identification of products of complex chemistries and their underlying synthetic relationships to help identify autocatalysis, and potentially self-organization, in such systems. The algorithms used in this study are open-source and reconfigurable by other user-developed workflows.
Collapse
Affiliation(s)
- Aayush Arya
- Department of Physics, Lovely Professional University Jalandhar Delhi-GT Road Phagwara Punjab 144411 India
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
| | - Jessica Ray
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Department of Biochemistry, Deshbandhu College, University of Delhi New Delhi 110019 India
| | - Romulo Cruz Simbron
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Laboratorio de Investigación Fisicoquímica (LABINFIS), Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Lima Peru
- Centro de Tecnologías de la Información y Comunicaciones (CTIC UNI), Universidad Nacional de Ingenieria Av. Túpac Amaru 210 Lima Peru
| | - Alejandro Lozano
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Unidad Profesional Interdisciplinaria de Biotecnología - Instituto Politécnico Nacional 550 Av. Acueducto 07340 Mexico City Mexico
| | - Harrison B Smith
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo Japan
| | - Jakob Lykke Andersen
- Department of Mathematics and Computer Science, University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Huan Chen
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Markus Meringer
- German Aerospace Center (DLR) 82234 Oberpfaffenhofen Wessling Germany
| | - Henderson James Cleaves
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
37
|
Computer-designed repurposing of chemical wastes into drugs. Nature 2022; 604:668-676. [PMID: 35478240 DOI: 10.1038/s41586-022-04503-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/03/2022] [Indexed: 01/30/2023]
Abstract
As the chemical industry continues to produce considerable quantities of waste chemicals1,2, it is essential to devise 'circular chemistry'3-8 schemes to productively back-convert at least a portion of these unwanted materials into useful products. Despite substantial progress in the degradation of some classes of harmful chemicals9, work on 'closing the circle'-transforming waste substrates into valuable products-remains fragmented and focused on well known areas10-15. Comprehensive analyses of which valuable products are synthesizable from diverse chemical wastes are difficult because even small sets of waste substrates can, within few steps, generate millions of putative products, each synthesizable by multiple routes forming densely connected networks. Tracing all such syntheses and selecting those that also meet criteria of process and 'green' chemistries is, arguably, beyond the cognition of human chemists. Here we show how computers equipped with broad synthetic knowledge can help address this challenge. Using the forward-synthesis Allchemy platform16, we generate giant synthetic networks emanating from approximately 200 waste chemicals recycled on commercial scales, retrieve from these networks tens of thousands of routes leading to approximately 300 important drugs and agrochemicals, and algorithmically rank these syntheses according to the accepted metrics of sustainable chemistry17-19. Several of these routes we validate by experiment, including an industrially realistic demonstration on a 'pharmacy on demand' flow-chemistry platform20. Wide adoption of computerized waste-to-valuable algorithms can accelerate productive reuse of chemicals that would otherwise incur storage or disposal costs, or even pose environmental hazards.
Collapse
|
38
|
Fried SD, Fujishima K, Makarov M, Cherepashuk I, Hlouchova K. Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids. J R Soc Interface 2022; 19:20210641. [PMID: 35135297 PMCID: PMC8833103 DOI: 10.1098/rsif.2021.0641] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Recent developments in Origins of Life research have focused on substantiating the narrative of an abiotic emergence of nucleic acids from organic molecules of low molecular weight, a paradigm that typically sidelines the roles of peptides. Nevertheless, the simple synthesis of amino acids, the facile nature of their activation and condensation, their ability to recognize metals and cofactors and their remarkable capacity to self-assemble make peptides (and their analogues) favourable candidates for one of the earliest functional polymers. In this mini-review, we explore the ramifications of this hypothesis. Diverse lines of research in molecular biology, bioinformatics, geochemistry, biophysics and astrobiology provide clues about the progression and early evolution of proteins, and lend credence to the idea that early peptides served many central prebiotic roles before they were encodable by a polynucleotide template, in a putative 'peptide-polynucleotide stage'. For example, early peptides and mini-proteins could have served as catalysts, compartments and structural hubs. In sum, we shed light on the role of early peptides and small proteins before and during the nucleotide world, in which nascent life fully grasped the potential of primordial proteins, and which has left an imprint on the idiosyncratic properties of extant proteins.
Collapse
Affiliation(s)
- Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21212, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 1528550, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa 2520882, Japan
| | - Mikhail Makarov
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague 12800, Czech Republic
| | - Ivan Cherepashuk
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague 12800, Czech Republic
| | - Klara Hlouchova
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague 12800, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| |
Collapse
|
39
|
Closs AC, Bechtel M, Trapp O. Dynamic Exchange of Substituents in a Prebiotic Organocatalyst: Initial Steps towards an Evolutionary System. Angew Chem Int Ed Engl 2022; 61:e202112563. [PMID: 34705315 PMCID: PMC9298921 DOI: 10.1002/anie.202112563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/07/2022]
Abstract
All evolutionary biological processes lead to a change in heritable traits over successive generations. The responsible genetic information encoded in DNA is altered, selected, and inherited by mutation of the base sequence. While this is well known at the biological level, an evolutionary change at the molecular level of small organic molecules is unknown but represents an important prerequisite for the emergence of life. Here, we present a class of prebiotic imidazolidine-4-thione organocatalysts able to dynamically change their constitution and potentially capable to form an evolutionary system. These catalysts functionalize their building blocks and dynamically adapt to their (self-modified) environment by mutation of their own structure. Depending on the surrounding conditions, they show pronounced and opposing selectivity in their formation. Remarkably, the preferentially formed species can be associated with different catalytic properties, which enable multiple pathways for the transition from abiotic matter to functional biomolecules.
Collapse
Affiliation(s)
- Anna C. Closs
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Maximilian Bechtel
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MunichGermany
| | - Oliver Trapp
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| |
Collapse
|
40
|
Closs AC, Bechtel M, Trapp O. Dynamischer Austausch von Substituenten in einem präbiotischen Organokatalysator: Erste Schritte auf dem Weg zu einem evolutionären System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna C. Closs
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Deutschland
- Max-Planck-Institut für Astronomie Königstuhl 17 69117 Heidelberg Deutschland
| | - Maximilian Bechtel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Oliver Trapp
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Deutschland
- Max-Planck-Institut für Astronomie Königstuhl 17 69117 Heidelberg Deutschland
| |
Collapse
|
41
|
Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Application of computational approach in plastic pyrolysis kinetic modelling: a review. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02093-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractDuring the past decade, pyrolysis routes have been identified as one of the most promising solutions for plastic waste management. However, the industrial adoption of such technologies has been limited and several unresolved blind spots hamper the commercial application of pyrolysis. Despite many years and efforts to explain pyrolysis models based on global kinetic approaches, recent advances in computational modelling such as machine learning and quantum mechanics offer new insights. For example, the kinetic and mechanistic information about plastic pyrolysis reactions necessary for scaling up processes is unravelling. This selective literature review reveals some of the foundational knowledge and accurate views on the reaction pathways, product yields, and other features of pyrolysis created by these new tools. Pyrolysis routes mapped by machine learning and quantum mechanics will gain more relevance in the coming years, especially studies that combine computational models with different time and scale resolutions governed by “first principles.” Existing research suggests that, as machine learning is further coupled to quantum mechanics, scientists and engineers will better predict products, yields, and compositions, as well as more complicated features such as ideal reactor design.
Collapse
|
43
|
Vincent L, Colón-Santos S, Cleaves HJ, Baum DA, Maurer SE. The Prebiotic Kitchen: A Guide to Composing Prebiotic Soup Recipes to Test Origins of Life Hypotheses. Life (Basel) 2021; 11:life11111221. [PMID: 34833097 PMCID: PMC8618940 DOI: 10.3390/life11111221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 01/20/2023] Open
Abstract
“Prebiotic soup” often features in discussions of origins of life research, both as a theoretical concept when discussing abiological pathways to modern biochemical building blocks and, more recently, as a feedstock in prebiotic chemistry experiments focused on discovering emergent, systems-level processes such as polymerization, encapsulation, and evolution. However, until now, little systematic analysis has gone into the design of well-justified prebiotic mixtures, which are needed to facilitate experimental replicability and comparison among researchers. This paper explores principles that should be considered in choosing chemical mixtures for prebiotic chemistry experiments by reviewing the natural environmental conditions that might have created such mixtures and then suggests reasonable guidelines for designing recipes. We discuss both “assembled” mixtures, which are made by mixing reagent grade chemicals, and “synthesized” mixtures, which are generated directly from diversity-generating primary prebiotic syntheses. We discuss different practical concerns including how to navigate the tremendous uncertainty in the chemistry of the early Earth and how to balance the desire for using prebiotically realistic mixtures with experimental tractability and replicability. Examples of two assembled mixtures, one based on materials likely delivered by carbonaceous meteorites and one based on spark discharge synthesis, are presented to illustrate these challenges. We explore alternative procedures for making synthesized mixtures using recursive chemical reaction systems whose outputs attempt to mimic atmospheric and geochemical synthesis. Other experimental conditions such as pH and ionic strength are also considered. We argue that developing a handful of standardized prebiotic recipes may facilitate coordination among researchers and enable the identification of the most promising mechanisms by which complex prebiotic mixtures were “tamed” during the origin of life to give rise to key living processes such as self-propagation, information processing, and adaptive evolution. We end by advocating for the development of a public prebiotic chemistry database containing experimental methods (including soup recipes), results, and analytical pipelines for analyzing complex prebiotic mixtures.
Collapse
Affiliation(s)
- Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (L.V.); (S.C.-S.)
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (L.V.); (S.C.-S.)
| | - H. James Cleaves
- Earth and Planets Laboratory, The Carnegie Institution for Science, Washington, DC 20015, USA;
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute for Science, Seattle, WA 97154, USA
| | - David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (L.V.); (S.C.-S.)
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (D.A.B.); (S.E.M.)
| | - Sarah E. Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT 06050, USA
- Correspondence: (D.A.B.); (S.E.M.)
| |
Collapse
|
44
|
Sharma S, Arya A, Cruz R, Cleaves II HJ. Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life (Basel) 2021; 11:1140. [PMID: 34833016 PMCID: PMC8624352 DOI: 10.3390/life11111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotic chemistry often involves the study of complex systems of chemical reactions that form large networks with a large number of diverse species. Such complex systems may have given rise to emergent phenomena that ultimately led to the origin of life on Earth. The environmental conditions and processes involved in this emergence may not be fully recapitulable, making it difficult for experimentalists to study prebiotic systems in laboratory simulations. Computational chemistry offers efficient ways to study such chemical systems and identify the ones most likely to display complex properties associated with life. Here, we review tools and techniques for modelling prebiotic chemical reaction networks and outline possible ways to identify self-replicating features that are central to many origin-of-life models.
Collapse
Affiliation(s)
- Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Biochemistry, Deshbandhu College, University of Delhi, New Delhi 110019, India
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Aayush Arya
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Physics, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144001, India
| | - Romulo Cruz
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Big Data Laboratory, Information and Communications Technology Center (CTIC), National University of Engineering, Amaru 210, Lima 15333, Peru
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
45
|
Kahana A, Lancet D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem 2021; 5:870-878. [PMID: 37117387 DOI: 10.1038/s41570-021-00329-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Protocells at life's origin are often conceived as bilayer-enclosed precursors of life, whose self-reproduction rests on the early advent of replicating catalytic biopolymers. This Perspective describes an alternative scenario, wherein reproducing nanoscopic lipid micelles with catalytic capabilities were forerunners of biopolymer-containing protocells. This postulate gains considerable support from experiments describing micellar catalysis and autocatalytic proliferation, and, more recently, from reports on cross-catalysis in mixed micelles that lead to life-like steady-state dynamics. Such results, along with evidence for micellar prebiotic compatibility, synergize with predictions of our chemically stringent computer-simulated model, illustrating how mutually catalytic lipid networks may enable micellar compositional reproduction that could underlie primal selection and evolution. Finally, we highlight studies on how endogenously catalysed lipid modifications could guide further protocellular complexification, including micelle to vesicle transition and monomer to biopolymer progression. These portrayals substantiate the possibility that protocellular evolution could have been seeded by pre-RNA lipid assemblies.
Collapse
|
46
|
Lauber N, Flamm C, Ruiz-Mirazo K. "Minimal metabolism": A key concept to investigate the origins and nature of biological systems. Bioessays 2021; 43:e2100103. [PMID: 34426986 DOI: 10.1002/bies.202100103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022]
Abstract
The systems view on life and its emergence from complex chemistry has remarkably increased the scientific attention on metabolism in the last two decades. However, during this time there has not been much theoretical discussion on what constitutes a metabolism and what role it actually played in biogenesis. A critical and updated review on the topic is here offered, including some references to classical models from last century, but focusing more on current and future research. Metabolism is considered as intrinsically related to the living but not necessarily equivalent to it. More precisely, the idea of "minimal metabolism", in contrast to previous, top-down conceptions, is formulated as a heuristic construct, halfway between chemistry and biology. Thus, rather than providing a complete or final characterization of metabolism, our aim is to encourage further investigations on it, particularly in the context of life's origin, for which some concrete methodological suggestions are provided. Also see the video abstract here: https://youtu.be/DP7VMKk2qpA.
Collapse
Affiliation(s)
- Nino Lauber
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.,Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Christoph Flamm
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.,Department of Philosophy, University of the Basque Country, Leioa, Spain
| |
Collapse
|
47
|
Ma JT, Wang LS, Chai Z, Chen XF, Tang BC, Chen XL, He C, Wu YD, Wu AX. Access to 2-arylquinazolines via catabolism/reconstruction of amino acids with the insertion of dimethyl sulfoxide. Chem Commun (Camb) 2021; 57:5414-5417. [PMID: 33949486 DOI: 10.1039/d1cc00623a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinazoline skeletons are synthesized by amino acid catabolism/reconstruction combined with the insertion/cyclization of dimethyl sulfoxide for the first time. The amino acid acts as a carbon and nitrogen source through HI-mediated catabolism and is then reconstructed using aromatic amines and dimethyl sulfoxide (DMSO) as a one-carbon synthon. This protocol is of great significance for the further study of the conversion of amino acids.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Zhi Chai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xin-Feng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Cai He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
48
|
Abstract
In the current literature, the definitions of aging range from relying on certain sets of distinctive features at the molecular, organismal, populational and/or even evolutional levels/scales to declaring it a treatable disease and, moreover, to treating aging as a mental construct rather than a natural phenomenon. One reason of such a mess may be that it is common in the natural sciences to disregard philosophy of science where several categories of definitions are recognized, among which the nominal are less, and the so-called real ones are more appropriate in scientific contexts. E.g., water is, by its nominal definition, a liquid having certain observable features and, by its real definition, a specific combination (or a product of interaction) of hydrogen and oxygen atoms. Noteworthy, the real definition is senseless for people ignorant of atoms. Likewise, the nominal definition of aging as a set of observable features should be supplemented, if not replaced, with its real definition. The latter is suggested here to imply that aging is the product of chemical interactions between the rapidly turning-over free metabolites and the slowly turning-over metabolites incorporated in macromolecules involved in metabolic control. The phenomenon defined in this way emerged concomitantly with metabolic pathways controlled by enzymes coded for by information-storing macromolecules and is inevitable wherever such conditions coincide. Aging research, thus, is concerned with the elucidation of the pathways and mechanisms that link aging defined as above to its hallmarks and manifestations, including those comprised by its nominal definitions. Esoteric as it may seem, defining aging is important for deciding whether aging is what should be declared as the target of interventions aimed at increasing human life and health spans.
Collapse
Affiliation(s)
- Aleksei G Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia.
| |
Collapse
|
49
|
Petrus E, Bo C. Unlocking Phase Diagrams for Molybdenum and Tungsten Nanoclusters and Prediction of their Formation Constants. J Phys Chem A 2021; 125:5212-5219. [PMID: 34086467 DOI: 10.1021/acs.jpca.1c03292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Understanding and controlling aqueous speciation of metal oxides are key for the discovery and development of novel materials, and challenge both experimental and computational approaches. Here we present a computational method, called POMSimulator, which is able to predict speciation phase diagrams (Conc. vs pH) for multispecies chemical equilibria in solution, and which we apply to molybdenum and tungsten isopolyoxoanions (IPAs). Starting from the MO4 monomers, and considering dimers, trimers, and larger species, the chemical reaction networks involved in the formation of [H32Mo36O128]8- and [W12O42]12- are sampled in an automatic manner. This information is used for setting up ∼105 speciation models, and from there, we generate the speciation phase diagrams, which show an insightful picture of the behavior of IPAs in aqueous solution. Furthermore, we predict the values of 107 formation constants for a diversity of molybdenum and tungsten molecular oxides. Among these species, we could include several pentagonal-shaped species and very reactive tungsten intermediates as well. Last but not least, the calibration employed for correcting the density functional theory (DFT) Gibbs energies is remarkably similar for both metals, which suggests that a general rule might exist for correcting computed free energies for other metals.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
50
|
Smith HH, Hyde AS, Simkus DN, Libby E, Maurer SE, Graham HV, Kempes CP, Sherwood Lollar B, Chou L, Ellington AD, Fricke GM, Girguis PR, Grefenstette NM, Pozarycki CI, House CH, Johnson SS. The Grayness of the Origin of Life. Life (Basel) 2021; 11:498. [PMID: 34072344 PMCID: PMC8226951 DOI: 10.3390/life11060498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/05/2022] Open
Abstract
In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.
Collapse
Affiliation(s)
- Hillary H. Smith
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew S. Hyde
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Danielle N. Simkus
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; (D.N.S.); (H.V.G.); (L.C.); (C.I.P.)
- NASA Postdoctoral Program, USRA, Columbia, MD 20146, USA
- Department of Physics, Catholic University of America, Washington, DC 20064, USA
| | - Eric Libby
- Santa Fe Institute, Santa Fe, NM 87501, USA; (E.L.); (C.P.K.); (N.M.G.)
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden
- Icelab, Umeå University, 90187 Umeå, Sweden
| | - Sarah E. Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT 06050, USA;
| | - Heather V. Graham
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; (D.N.S.); (H.V.G.); (L.C.); (C.I.P.)
- Department of Physics, Catholic University of America, Washington, DC 20064, USA
| | | | | | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; (D.N.S.); (H.V.G.); (L.C.); (C.I.P.)
- NASA Postdoctoral Program, USRA, Columbia, MD 20146, USA
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - G. Matthew Fricke
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87108, USA;
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| | - Natalie M. Grefenstette
- Santa Fe Institute, Santa Fe, NM 87501, USA; (E.L.); (C.P.K.); (N.M.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Chad I. Pozarycki
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; (D.N.S.); (H.V.G.); (L.C.); (C.I.P.)
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Christopher H. House
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah Stewart Johnson
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Science, Technology and International Affairs Program, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|