1
|
Brennan IG, Chapple DG, Keogh JS, Donnellan S. Evolutionary bursts drive morphological novelty in the world's largest skinks. Curr Biol 2024; 34:3905-3916.e5. [PMID: 39137786 DOI: 10.1016/j.cub.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Animal phenotypes evolve and diverge as a result of differing selective pressures and drift. These processes leave unique signatures in patterns of trait evolution, impacting the tempo and mode of morphological macroevolution. While there is a broad understanding of the history of some organismal traits (e.g., body size), there is little consensus about the evolutionary mode of most others. This includes the relative contribution of prolonged (Darwinian gradualist) and episodic (Simpsonian jump) changes toward the evolution of novel morphologies. Here, we use new exon-capture and linear morphological datasets to investigate the tempo and mode of morphological evolution in Australo-Melanesian Tiliquini skinks. We generate a well-supported time-calibrated phylogenomic tree from ∼400 nuclear markers for more than 100 specimens, including undescribed diversity, and provide unprecedented resolution of the rapid Miocene diversification of these lizards. By collecting a morphological dataset that encompasses the lizard body plan (19 traits across the head, body, limb, and tail), we are able to identify that most traits evolve conservatively, but infrequent evolutionary bursts result in morphological novelty. These phenotypic discontinuities occur via rapid rate increases along individual branches, inconsistent with both gradualistic and punctuated equilibrial evolutionary modes. Instead, this "punctuated gradualism" has resulted in the rapid evolution of blue-tongued giants and armored dwarves in the ∼20 million years since colonizing Australia. These results outline the evolutionary pathway toward new morphologies and highlight the heterogeneity of evolutionary tempo and mode, even within individual traits.
Collapse
Affiliation(s)
- Ian G Brennan
- Natural History Museum, Cromwell Road, London SW7 5BD, UK; Australian National University, Division of Ecology & Evolution, Linnaeus Way, Canberra, ACT 2600, Australia.
| | - David G Chapple
- Monash University, School of Biological Sciences, Wellington Road, Melbourne, VIC 3800, Australia
| | - J Scott Keogh
- Australian National University, Division of Ecology & Evolution, Linnaeus Way, Canberra, ACT 2600, Australia
| | - Stephen Donnellan
- The University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, SA 5005, Australia; South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; Australian Museum, Australian Museum Research Institute, William Street, Sydney, NSW 2010, Australia
| |
Collapse
|
2
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
3
|
Yu Y, Fan MY, Zhou HX, Song YQ. The global pattern of epiphytic liverwort disparity: insights from Frullania. BMC Ecol Evol 2024; 24:63. [PMID: 38741051 DOI: 10.1186/s12862-024-02254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The geographical and ecological patterns of morphological disparity are crucial to understand how species are assembled within communities in the context of the evolutionary history, morphological evolution and ecological interactions. However, with limited exceptions, rather few studies have been conducted on the global pattern of disparity, particularly in early land plants. Here we explored the spatial accumulation of disparity in a morphologically variable and species rich liverwort genus Frullania in order to test the hypothesis of latitude disparity gradient. We compiled a morphological data set consisting of eight continuous traits for 244 currently accepted species, and scored the species distribution into 19 floristic regions worldwide. By reconstructing the morphospace of all defined regions and comparisons, we identified a general Gondwana-Laurasia pattern of disparity in Frullania. This likely results from an increase of ecological opportunities and / or relaxed constraints towards low latitudes. The lowest disparity occurred in arid tropical regions, largely due to a high extinction rate as a consequence of paleoaridification. There was weak correlation between species diversity and disparity at different spatial scales. Furthermore, long-distance dispersal may have partially shaped the present-day distribution of Frullania disparity, given its frequency and the great contribution of widely distributed species to local morphospace. This study not only highlighted the crucial roles of paleoenvironmental changes, ecological opportunities, and efficient dispersal on the global pattern of plant disparity, but also implied its dependence on the ecological and physiological function of traits.
Collapse
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China.
| | - Mei-Ying Fan
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Hong-Xia Zhou
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Yue-Qin Song
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| |
Collapse
|
4
|
López‐Martínez AM, Magallón S, von Balthazar M, Schönenberger J, Sauquet H, Chartier M. Angiosperm flowers reached their highest morphological diversity early in their evolutionary history. THE NEW PHYTOLOGIST 2024; 241:1348-1360. [PMID: 38029781 PMCID: PMC10952840 DOI: 10.1111/nph.19389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).
Collapse
Affiliation(s)
- Andrea M. López‐Martínez
- Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
| | - Maria von Balthazar
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW)Royal Botanic Gardens and Domain TrustSydneyNSW2000Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences North (D26)SydneyNSW2052Australia
| | - Marion Chartier
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
5
|
Asar Y, Sauquet H, Ho SYW. Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. Syst Biol 2023; 72:1337-1356. [PMID: 37695237 PMCID: PMC10924723 DOI: 10.1093/sysbio/syad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Leslie AB, Mander L. Quantifying the complexity of plant reproductive structures reveals a history of morphological and functional integration. Proc Biol Sci 2023; 290:20231810. [PMID: 37909082 PMCID: PMC10618862 DOI: 10.1098/rspb.2023.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Vascular plant reproductive structures have undoubtedly become more complex through time, evolving highly differentiated parts that interact in specialized ways. But quantifying these patterns at broad scales is challenging because lineages produce disparate reproductive structures that are often difficult to compare and homologize. We develop a novel approach for analysing interactions within reproductive structures using networks, treating component parts as nodes and a suite of physical and functional interactions among parts as edges. We apply this approach to the plant fossil record, showing that interactions have generally increased through time and that the concentration of these interactions has shifted towards differentiated surrounding organs, resulting in more compact, functionally integrated structures. These processes are widespread across plant lineages, but their extent and timing vary with reproductive biology; in particular, seed-producing structures show them more strongly than spore or pollen-producing structures. Our results demonstrate that major reproductive innovations like the origin of seeds and angiospermy were associated with increased integration through greater interactions among parts. But they also reveal that for certain groups, particularly Mesozoic gymnosperms, millions of years elapsed between the origin of reproductive innovations and increased interactions among parts within their reproductive structures.
Collapse
Affiliation(s)
- Andrew B. Leslie
- Department of Geological Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA 94305, USA
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
7
|
Clark JW, Hetherington AJ, Morris JL, Pressel S, Duckett JG, Puttick MN, Schneider H, Kenrick P, Wellman CH, Donoghue PCJ. Evolution of phenotypic disparity in the plant kingdom. NATURE PLANTS 2023; 9:1618-1626. [PMID: 37666963 PMCID: PMC10581900 DOI: 10.1038/s41477-023-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
The plant kingdom exhibits diverse bodyplans, from single-celled algae to complex multicellular land plants, but it is unclear how this phenotypic disparity was achieved. Here we show that the living divisions comprise discrete clusters within morphospace, separated largely by reproductive innovations, the extinction of evolutionary intermediates and lineage-specific evolution. Phenotypic complexity correlates not with disparity but with ploidy history, reflecting the role of genome duplication in plant macroevolution. Overall, the plant kingdom exhibits a pattern of episodically increasing disparity throughout its evolutionary history that mirrors the evolutionary floras and reflects ecological expansion facilitated by reproductive innovations. This pattern also parallels that seen in the animal and fungal kingdoms, suggesting a general pattern for the evolution of multicellular bodyplans.
Collapse
Affiliation(s)
- James W Clark
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| | - Alexander J Hetherington
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Jennifer L Morris
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | | - Mark N Puttick
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Harald Schneider
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- The Natural History Museum, London, UK
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | | | | | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Roddy AB, Guilliams CM, Fine PVA, Mambelli S, Dawson TE, Simonin KA. Flowers are leakier than leaves but cheaper to build. THE NEW PHYTOLOGIST 2023; 239:2076-2082. [PMID: 37366068 DOI: 10.1111/nph.19104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, 33199, FL, USA
| | | | - Paul V A Fine
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Stefania Mambelli
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Kevin A Simonin
- Department of Biology, San Francisco State University, San Francisco, 94132, CA, USA
| |
Collapse
|
9
|
Gnawing pressure led to the expansion of JAZ genes in angiosperms. Int J Biol Macromol 2023; 230:123165. [PMID: 36623623 DOI: 10.1016/j.ijbiomac.2023.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
A long-standing problem in evolutionary biology is why some populations differentiate into many species while the majority do not. Angiosperms is an excellent group for investigating this problem because their diversity is unevenly distributed in space and phylogeny. Plant hormone participates in growth, development and defense. However, jasmonic acid (JA) was the only hormone response to bites. We first searched jasmonate ZIM-domain (JAZ), AUXIN/INDOLE ACETIC ACID (IAA / aux), PYR/PYL/RCAR (PYL), DELLA, and SUPPRESSOR OF MAX2 1-like (SMAX) in 272 plant species. We found the gene number change trends were consistent with origination rates and species numbers of angiosperms. So, 26 representative species were selected as an example for further analysis. The results showed JAZ had experienced two lineage-specific gene expansion events in angiosperms, which coincided with increases in mammalian body size and dental diversity. The proliferation of large herbivores as a results of mammalian prosperity after dinosaur extinction may be related to angiosperm evolution and bursting. The proliferation of large herbivores as the result of mammalian prosperity after the extinction of the dinosaurs was related to angiosperm evolution and bursting. Overall, our study uncovered a previously unknown co-evolution mechanism in terrestrial plants exposed to extreme environmental conditions.
Collapse
|
10
|
Li Y, Brinkworth A, Green E, Oyston J, Wills M, Ruta M. Divergent vertebral formulae shape the evolution of axial complexity in mammals. Nat Ecol Evol 2023; 7:367-381. [PMID: 36878987 PMCID: PMC9998275 DOI: 10.1038/s41559-023-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/03/2023] [Indexed: 03/08/2023]
Abstract
Complexity, defined as the number of parts and their degree of differentiation, is a poorly explored aspect of macroevolutionary dynamics. The maximum anatomical complexity of organisms has undoubtedly increased through evolutionary time. However, it is unclear whether this increase is a purely diffusive process or whether it is at least partly driven, occurring in parallel in most or many lineages and with increases in the minima as well as the means. Highly differentiated and serially repeated structures, such as vertebrae, are useful systems with which to investigate these patterns. We focus on the serial differentiation of the vertebral column in 1,136 extant mammal species, using two indices that quantify complexity as the numerical richness and proportional distribution of vertebrae across presacral regions and a third expressing the ratio between thoracic and lumbar vertebrae. We address three questions. First, we ask whether the distribution of complexity values in major mammal groups is similar or whether clades have specific signatures associated with their ecology. Second, we ask whether changes in complexity throughout the phylogeny are biased towards increases and whether there is evidence of driven trends. Third, we ask whether evolutionary shifts in complexity depart from a uniform Brownian motion model. Vertebral counts, but not complexity indices, differ significantly between major groups and exhibit greater within-group variation than recognized hitherto. We find strong evidence of a trend towards increasing complexity, where higher values propagate further increases in descendant lineages. Several increases are inferred to have coincided with major ecological or environmental shifts. We find support for multiple-rate models of evolution for all complexity metrics, suggesting that increases in complexity occurred in stepwise shifts, with evidence for widespread episodes of recent rapid divergence. Different subclades evolve more complex vertebral columns in different configurations and probably under different selective pressures and constraints, with widespread convergence on the same formulae. Further work should therefore focus on the ecological relevance of differences in complexity and a more detailed understanding of historical patterns.
Collapse
Affiliation(s)
- Yimeng Li
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Andrew Brinkworth
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Emily Green
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK
| | - Jack Oyston
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Matthew Wills
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Marcello Ruta
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK.
| |
Collapse
|
11
|
Ntefidou M, Eklund DM, Le Bail A, Schulmeister S, Scherbel F, Brandl L, Dörfler W, Eichstädt C, Bannmüller A, Ljung K, Kost B. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells. Cell Rep 2023; 42:112130. [PMID: 36790931 DOI: 10.1016/j.celrep.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC). Protonemal P. patens filaments elongate based on regular division and PpROP-dependent tip growth of apical initial cells, which upon stimulation by the hormone auxin differentiate caulonemal characteristics. PpRIC interacts with active PpROP1, co-localizes with this protein at the plasma membrane at the tip of apical initial cells, and accumulates in the nucleus. Remarkably, PpRIC is not required for tip growth but is targeted to the nucleus to block caulonema differentiation downstream of auxin-controlled gene expression. These observations establish functions of PpRIC in mediating crosstalk between ROP and auxin signaling, which contributes to the maintenance of apical initial cell identity.
Collapse
Affiliation(s)
- Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Aude Le Bail
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sylwia Schulmeister
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Franziska Scherbel
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lisa Brandl
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Dörfler
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Chantal Eichstädt
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anna Bannmüller
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
12
|
Vajda V, Cavalcante L, Palmgren K, Krüger A, Ivarsson M. Prototaxites reinterpreted as mega-rhizomorphs, facilitating nutrient transport in early terrestrial ecosystems. Can J Microbiol 2023; 69:17-31. [PMID: 36511419 DOI: 10.1139/cjm-2021-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enigmatic fossil Prototaxites found in successions ranging from the Middle Ordovician to the Upper Devonian was originally described as having conifer affinity. The current debate, however, suggests that they probably represent gigantic algal-fungal symbioses. Our re-investigation of permineralized Prototaxites specimens from two localities, the Heider quarry in Germany and the Bordeaux quarry in Canada, reveals striking anatomical similarities with modern fungal rhizomorphs Armillaria mellea. We analysed extant fungal rhizomorphs and fossil Prototaxites through light microscopy of their anatomy, Fourier transform infrared spectroscopy, X-ray microscopy, and Raman spectroscopy. Based on these comparisons, we interpret the Prototaxites as fungi. The detailed preservation of cell walls and possible organelles seen in transverse sections of Prototaxites reveal that fossilization initiated while the organism was alive, inhibiting the collapse of delicate cellular structures. Prototaxites has been interpreted to grow vertically by many previous workers. Here we propose an alternative view that Prototaxites represents a complex hyphal aggregation (rhizomorph) that may have grown horizontally similar to modern complex aggregated mycelial growth forms, such as cords and rhizomorphs. Their main function was possibly to redistribute water and nutrition from nutrient-rich to nutrient-poor areas facilitating the expansion for early land plant communities.
Collapse
Affiliation(s)
- Vivi Vajda
- Department of Palaeobiology, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
| | - Larissa Cavalcante
- Department of Palaeobiology, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
| | - Kristoffer Palmgren
- Department of Palaeobiology, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
| | - Ashley Krüger
- Department of Palaeobiology, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Palaeobiology, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
| |
Collapse
|
13
|
Asar Y, Ho SYW, Sauquet H. Early diversifications of angiosperms and their insect pollinators: were they unlinked? TRENDS IN PLANT SCIENCE 2022; 27:858-869. [PMID: 35568622 DOI: 10.1016/j.tplants.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The present-day ubiquity of angiosperm-insect pollination has led to the hypothesis that these two groups coevolved early in their evolutionary history. However, recent fossil discoveries and fossil-calibrated molecular dating analyses challenge the notion that early diversifications of angiosperms and insects were inextricably linked. In this article, we examine (i) the discrepancies between dates of emergence for angiosperms and major clades of insects; (ii) the long history of gymnosperm-insect pollination modes, which likely shaped early angiosperm-insect pollination mutualisms; and (iii) how the K-Pg (Cretaceous-Paleogene) mass extinction event was vital in propelling modern angiosperm-insect mutualisms. We posit that the early diversifications of angiosperms and their insect pollinators were largely decoupled until the end of the Cretaceous.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia; Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
15
|
Nascimento LBDS, Tattini M. Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. Int J Mol Sci 2022; 23:5284. [PMID: 35563675 PMCID: PMC9101737 DOI: 10.3390/ijms23095284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Plants evolved an impressive arsenal of multifunctional specialized metabolites to cope with the novel environmental pressures imposed by the terrestrial habitat when moving from water. Here we examine the multifarious roles of flavonoids in plant terrestrialization. We reason on the environmental drivers, other than the increase in UV-B radiation, that were mostly responsible for the rise of flavonoid metabolism and how flavonoids helped plants in land conquest. We are reasonably based on a nutrient-deficiency hypothesis for the replacement of mycosporine-like amino acids, typical of streptophytic algae, with the flavonoid metabolism during the water-to-land transition. We suggest that flavonoids modulated auxin transport and signaling and promoted the symbiosis between plants and fungi (e.g., arbuscular mycorrhizal, AM), a central event for the conquest of land by plants. AM improved the ability of early plants to take up nutrients and water from highly impoverished soils. We offer evidence that flavonoids equipped early land plants with highly versatile "defense compounds", essential for the new set of abiotic and biotic stressors imposed by the terrestrial environment. We conclude that flavonoids have been multifunctional since the appearance of plants on land, not only acting as UV filters but especially improving both nutrient acquisition and biotic stress defense.
Collapse
Affiliation(s)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, 50019 Sesto Fiorentino, Florence, Italy;
| |
Collapse
|
16
|
Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, Chen X, Han F, Yang J, Song Y, Nie Y, Zhou B, Wang P, Zuo Q, Zhang H, Ma J, Wang J, Wang L, Zhu Q, Zhao H, Liu Z, Zhang X, Liu T, Pei S, Li Z, Hu Y, Yang Y, Li W, Zan Y, Zhou L, Lin J, Yuan T, Li W, Li Y, Wei H, Wu HX. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2021; 185:204-217.e14. [PMID: 34965378 DOI: 10.1016/j.cell.2021.12.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.
Collapse
Affiliation(s)
- Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenhao Bo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefania Giacomello
- SciLife Lab, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Stockholm, Sweden
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Fangxu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Junhe Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yitong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yumeng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Biao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Peiyi Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Quan Zuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hui Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jingjing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Lvji Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qianya Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanhuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhanmin Liu
- Qigou State-owned Forest Farm, Pingquan, Hebei Province 067509, P. R. China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Yao Hu
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yehui Yang
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Wenzhao Li
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tongqi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; College of Material Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | - Harry X Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden; CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT 2601, Australia.
| |
Collapse
|