1
|
Steele SC, Fu RR, Mittelholz A, Ermakov AI, Citron RI, Lillis RJ. Weak magnetism of Martian impact basins may reflect cooling in a reversing dynamo. Nat Commun 2024; 15:6831. [PMID: 39122701 PMCID: PMC11316139 DOI: 10.1038/s41467-024-51092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the longevity of Mars's dynamo is key to interpreting the planet's atmospheric loss history and the properties of its deep interior. Satellite data showing magnetic lows above many large impact basins formed 4.1-3.7 billion years ago (Ga) have been interpreted as evidence that Mars's dynamo terminated before 4.1 Ga-at least 0.4 Gy before intense late Noachian/early Hesperian hydrological activity. However, evidence for a longer-lived, reversing dynamo from young volcanics and the Martian meteorite ALH 84001 supports an alternative interpretation of Mars's apparently demagnetized basins. To understand how a reversing dynamo would affect basin fields, here we model the cooling and magnetization of 200-2200 km diameter impact basins under a range of Earth-like reversal frequencies. We find that magnetic reversals efficiently reduce field strengths above large basins. In particular, if the magnetic properties of the Martian mantle are similar to most Martian meteorites and late remagnetization of the near surface is widespread, >90% of large ( > 800 km diameter) basins would appear demagnetized at spacecraft altitudes. This ultimately implies that Mars's apparently demagnetized basins do not require an early dynamo cessation. A long-lived and reversing dynamo, unlike alternative scenarios, satisfies all available constraints on Mars's magnetic history.
Collapse
Affiliation(s)
- S C Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
| | - R R Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - A Mittelholz
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - A I Ermakov
- Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
| | | | - R J Lillis
- Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Zhang B, Chabot NL, Rubin AE. Compositions of iron-meteorite parent bodies constrain the structure of the protoplanetary disk. Proc Natl Acad Sci U S A 2024; 121:e2306995121. [PMID: 38805273 PMCID: PMC11161762 DOI: 10.1073/pnas.2306995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Magmatic iron-meteorite parent bodies are the earliest planetesimals in the Solar System, and they preserve information about conditions and planet-forming processes in the solar nebula. In this study, we include comprehensive elemental compositions and fractional-crystallization modeling for iron meteorites from the cores of five differentiated asteroids from the inner Solar System. Together with previous results of metallic cores from the outer Solar System, we conclude that asteroidal cores from the outer Solar System have smaller sizes, elevated siderophile-element abundances, and simpler crystallization processes than those from the inner Solar System. These differences are related to the formation locations of the parent asteroids because the solar protoplanetary disk varied in redox conditions, elemental distributions, and dynamics at different heliocentric distances. Using highly siderophile-element data from iron meteorites, we reconstruct the distribution of calcium-aluminum-rich inclusions (CAIs) across the protoplanetary disk within the first million years of Solar-System history. CAIs, the first solids to condense in the Solar System, formed close to the Sun. They were, however, concentrated within the outer disk and depleted within the inner disk. Future models of the structure and evolution of the protoplanetary disk should account for this distribution pattern of CAIs.
Collapse
Affiliation(s)
- Bidong Zhang
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA90095-1567
| | - Nancy L. Chabot
- Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD20723
| | - Alan E. Rubin
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA90095-1567
- Maine Mineral and Gem Museum, Bethel, ME04217
| |
Collapse
|
3
|
Hsieh WP, Deschamps F, Tsao YC, Yoshino T, Lin JF. A thermally conductive Martian core and implications for its dynamo cessation. SCIENCE ADVANCES 2024; 10:eadk1087. [PMID: 38507495 PMCID: PMC10954222 DOI: 10.1126/sciadv.adk1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Mars experienced a dynamo process that generated a global magnetic field ~4.3 (or earlier) to 3.6 billion years ago (Ga). The cessation of this dynamo strongly affected Mars' history and is expected to be linked to thermochemical evolution of Mars' iron-rich liquid core, which is strongly influenced by its thermal conductivity. Here, we directly measured thermal conductivities of solid iron-sulfur alloys to pressures relevant to the Martian core and temperatures to 1023 Kelvin. Our results show that a Martian core with 16 weight % sulfur has a thermal conductivity of ~19 to 32 Watt meter-1 Kelvin-1 from its top to the center, much higher than previously inferred from electrical resistivity measurements. Our modeled thermal conductivity profile throughout the Martian deep-mantle and core indicates a ~4- to 6-fold discontinuity across the core-mantle boundary. The core's efficient cooling resulting from the depth-dependent, high conductivity diminishes thermal convection and forms thermal stratification, substantially contributing to cessation of Martian dynamo.
Collapse
Affiliation(s)
- Wen-Pin Hsieh
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | | | - Yi-Chi Tsao
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Takashi Yoshino
- Institute for Planetary Materials, Okayama University, Misasa 682-0193, Japan
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712-0254, USA
| |
Collapse
|
4
|
Witze A. Mars has a surprise layer of molten rock inside. Nature 2023; 623:20. [PMID: 37880531 DOI: 10.1038/d41586-023-03271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
|
5
|
Khan A, Huang D, Durán C, Sossi PA, Giardini D, Murakami M. Evidence for a liquid silicate layer atop the Martian core. Nature 2023; 622:718-723. [PMID: 37880439 PMCID: PMC10600012 DOI: 10.1038/s41586-023-06586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
Seismic recordings made during the InSight mission1 suggested that Mars's liquid core would need to be approximately 27% lighter than pure liquid iron2,3, implying a considerable complement of light elements. Core compositions based on seismic and bulk geophysical constraints, however, require larger quantities of the volatile elements hydrogen, carbon and sulfur than those that were cosmochemically available in the likely building blocks of Mars4. Here we show that multiply diffracted P waves along a stratified core-mantle boundary region of Mars in combination with first-principles computations of the thermoelastic properties of liquid iron-rich alloys3 require the presence of a fully molten silicate layer overlying a smaller, denser liquid core. Inverting differential body wave travel time data with particular sensitivity to the core-mantle boundary region suggests a decreased core radius of 1,675 ± 30 km associated with an increased density of 6.65 ± 0.1 g cm-3, relative to previous models2,4-8, while the thickness and density of the molten silicate layer are 150 ± 15 km and 4.05 ± 0.05 g cm-3, respectively. The core properties inferred here reconcile bulk geophysical and cosmochemical requirements, consistent with a core containing 85-91 wt% iron-nickel and 9-15 wt% light elements, chiefly sulfur, carbon, oxygen and hydrogen. The chemical characteristics of a molten silicate layer above the core may be revealed by products of Martian magmatism.
Collapse
Affiliation(s)
- A Khan
- Institute of Geochemistry and Petrology, ETH Zürich, Zurich, Switzerland.
- Institute of Geophysics, ETH Zürich, Zurich, Switzerland.
| | - D Huang
- Institute of Geochemistry and Petrology, ETH Zürich, Zurich, Switzerland.
| | - C Durán
- Institute of Geophysics, ETH Zürich, Zurich, Switzerland
| | - P A Sossi
- Institute of Geochemistry and Petrology, ETH Zürich, Zurich, Switzerland
| | - D Giardini
- Institute of Geophysics, ETH Zürich, Zurich, Switzerland
| | - M Murakami
- Institute of Geochemistry and Petrology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
6
|
van der Lee S. Deep Mars is surprisingly soft. Nature 2023; 622:699-700. [PMID: 37880433 DOI: 10.1038/d41586-023-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
|
7
|
Samuel H, Drilleau M, Rivoldini A, Xu Z, Huang Q, Garcia RF, Lekić V, Irving JCE, Badro J, Lognonné PH, Connolly JAD, Kawamura T, Gudkova T, Banerdt WB. Geophysical evidence for an enriched molten silicate layer above Mars's core. Nature 2023; 622:712-717. [PMID: 37880437 PMCID: PMC10600000 DOI: 10.1038/s41586-023-06601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref. 1), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core-mantle boundary2. An alternative hypothesis is that Mars's mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer3. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars's dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm-3, 5-8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars's crust.
Collapse
Affiliation(s)
- Henri Samuel
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France.
| | - Mélanie Drilleau
- Institut Supérieur de l'Aéronautique et de l'Espace ISAE-SUPAERO, Toulouse, France
| | | | - Zongbo Xu
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Quancheng Huang
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
- University of Maryland, College Park, MD, USA
| | - Raphaël F Garcia
- Institut Supérieur de l'Aéronautique et de l'Espace ISAE-SUPAERO, Toulouse, France
| | | | | | - James Badro
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Philippe H Lognonné
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | | | - Taichi Kawamura
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Tamara Gudkova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - William B Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
8
|
Ohta K, Suehiro S, Kawaguchi SI, Okuda Y, Wakamatsu T, Hirose K, Ohishi Y, Kodama M, Hirai S, Azuma S. Measuring the Electrical Resistivity of Liquid Iron to 1.4 Mbar. PHYSICAL REVIEW LETTERS 2023; 130:266301. [PMID: 37450814 DOI: 10.1103/physrevlett.130.266301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/04/2023] [Indexed: 07/18/2023]
Abstract
We determined the electrical resistivity of liquid Fe to 135 GPa and 6680 K using a four-probe method in a diamond-anvil cell combined with two novel techniques: (i) enclosing a molten Fe in a sapphire capsule, and (ii) millisecond time-resolved simultaneous measurements of the resistance, x-ray diffraction, and temperature of instantaneously melted Fe. Our results show the minimal temperature dependence of the resistivity of liquid Fe and its anomalous resistivity decrease around 50 GPa, likely associated with a gradual magnetic transition, both in agreement with previous ab initio calculations.
Collapse
Affiliation(s)
- Kenji Ohta
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Sho Suehiro
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Saori I Kawaguchi
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198, Japan
| | - Yoshiyuki Okuda
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuya Wakamatsu
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Kei Hirose
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yasuo Ohishi
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198, Japan
| | - Manabu Kodama
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Shuichiro Hirai
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Shintaro Azuma
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Le Maistre S, Rivoldini A, Caldiero A, Yseboodt M, Baland RM, Beuthe M, Van Hoolst T, Dehant V, Folkner WM, Buccino D, Kahan D, Marty JC, Antonangeli D, Badro J, Drilleau M, Konopliv A, Péters MJ, Plesa AC, Samuel H, Tosi N, Wieczorek M, Lognonné P, Panning M, Smrekar S, Banerdt WB. Spin state and deep interior structure of Mars from InSight radio tracking. Nature 2023:10.1038/s41586-023-06150-0. [PMID: 37316663 DOI: 10.1038/s41586-023-06150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/27/2023] [Indexed: 06/16/2023]
Abstract
Knowledge of the interior structure and atmosphere of Mars is essential to understanding how the planet has formed and evolved. A major obstacle to investigations of planetary interiors, however, is that they are not directly accessible. Most of the geophysical data provide global information that cannot be separated into contributions from the core, the mantle and the crust. The NASA InSight mission changed this situation by providing high-quality seismic and lander radio science data1,2. Here we use the InSight's radio science data to determine fundamental properties of the core, mantle and atmosphere of Mars. By precisely measuring the rotation of the planet, we detected a resonance with a normal mode that allowed us to characterize the core and mantle separately. For an entirely solid mantle, we found that the liquid core has a radius of 1,835 ± 55 km and a mean density of 5,955-6,290 kg m-3, and that the increase in density at the core-mantle boundary is 1,690-2,110 kg m-3. Our analysis of InSight's radio tracking data argues against the existence of a solid inner core and reveals the shape of the core, indicating that there are internal mass anomalies deep within the mantle. We also find evidence of a slow acceleration in the Martian rotation rate, which could be the result of a long-term trend either in the internal dynamics of Mars or in its atmosphere and ice caps.
Collapse
Affiliation(s)
- Sébastien Le Maistre
- Royal Observatory of Belgium, Brussels, Belgium.
- UC Louvain, Louvain-la-Neuve, Belgium.
| | | | - Alfonso Caldiero
- Royal Observatory of Belgium, Brussels, Belgium
- UC Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | - Tim Van Hoolst
- Royal Observatory of Belgium, Brussels, Belgium
- Institute of Astronomy, KU Leuven, Leuven, Belgium
| | - Véronique Dehant
- Royal Observatory of Belgium, Brussels, Belgium
- UC Louvain, Louvain-la-Neuve, Belgium
| | - William M Folkner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| | - Dustin Buccino
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| | - Daniel Kahan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| | | | | | - James Badro
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Mélanie Drilleau
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Alex Konopliv
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| | | | | | - Henri Samuel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Nicola Tosi
- DLR Institute of Planetary Research, Berlin, Germany
| | - Mark Wieczorek
- Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
| | - Philippe Lognonné
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Mark Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| | - Suzanne Smrekar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| | - W Bruce Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
| |
Collapse
|
10
|
Steele SC, Fu RR, Volk MW, North TL, Brenner AR, Muxworthy AR, Collins GS, Davison TM. Paleomagnetic evidence for a long-lived, potentially reversing martian dynamo at ~3.9 Ga. SCIENCE ADVANCES 2023; 9:eade9071. [PMID: 37224261 PMCID: PMC10957104 DOI: 10.1126/sciadv.ade9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-μm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.
Collapse
Affiliation(s)
- Sarah C. Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Roger R. Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael W. R. Volk
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Thomas L. North
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alec R. Brenner
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adrian R. Muxworthy
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Gareth S. Collins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thomas M. Davison
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Briaud A, Ganino C, Fienga A, Mémin A, Rambaux N. The lunar solid inner core and the mantle overturn. Nature 2023; 617:743-746. [PMID: 37138080 DOI: 10.1038/s41586-023-05935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/08/2023] [Indexed: 05/05/2023]
Abstract
Seismological models from Apollo missions provided the first records of the Moon inner structure with a decrease in seismic wave velocities at the core-mantle boundary1-3. The resolution of these records prevents a strict detection of a putative lunar solid inner core and the impact of the lunar mantle overturn in the lowest part of the Moon is still discussed4-7. Here we combine geophysical and geodesic constraints from Monte Carlo exploration and thermodynamical simulations for different Moon internal structures to show that only models with a low viscosity zone enriched in ilmenite and an inner core present densities deduced from thermodynamic constraints compatible with densities deduced from tidal deformations. We thus obtain strong indications in favour of the lunar mantle overturn scenario and, in this context, demonstrate the existence of the lunar inner core with a radius of 258 ± 40 km and density 7,822 ± 1,615 kg m-3. Our results question the evolution of the Moon magnetic field thanks to its demonstration of the existence of the inner core and support a global mantle overturn scenario that brings substantial insights on the timeline of the lunar bombardment in the first billion years of the Solar System8.
Collapse
Affiliation(s)
- Arthur Briaud
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Géoazur, Valbonne, France.
| | - Clément Ganino
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Géoazur, Valbonne, France
| | - Agnès Fienga
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Géoazur, Valbonne, France.
- IMCCE, Observatoire de Paris, Sorbonne Université, PSL University, CNRS, Paris, France.
| | - Anthony Mémin
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Géoazur, Valbonne, France
| | - Nicolas Rambaux
- IMCCE, Observatoire de Paris, Sorbonne Université, PSL University, CNRS, Paris, France
| |
Collapse
|
12
|
Young ED, Shahar A, Schlichting HE. Earth shaped by primordial H 2 atmospheres. Nature 2023; 616:306-311. [PMID: 37045923 DOI: 10.1038/s41586-023-05823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 04/14/2023]
Abstract
Earth's water, intrinsic oxidation state and metal core density are fundamental chemical features of our planet. Studies of exoplanets provide a useful context for elucidating the source of these chemical traits. Planet formation and evolution models demonstrate that rocky exoplanets commonly formed with hydrogen-rich envelopes that were lost over time1. These findings suggest that Earth may also have formed from bodies with hydrogen-rich primary atmospheres. Here we use a self-consistent thermodynamic model to show that Earth's water, core density and overall oxidation state can all be sourced to equilibrium between hydrogen-rich primary atmospheres and underlying magma oceans in its progenitor planetary embryos. Water is produced from dry starting materials resembling enstatite chondrites as oxygen from magma oceans reacts with hydrogen. Hydrogen derived from the atmosphere enters the magma ocean and eventually the metal core at equilibrium, causing metal density deficits matching that of Earth. Oxidation of the silicate rocks from solar-like to Earth-like oxygen fugacities also ensues as silicon, along with hydrogen and oxygen, alloys with iron in the cores. Reaction with hydrogen atmospheres and metal-silicate equilibrium thus provides a simple explanation for fundamental features of Earth's geochemistry that is consistent with rocky planet formation across the Galaxy.
Collapse
Affiliation(s)
- Edward D Young
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Anat Shahar
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC, USA
| | - Hilke E Schlichting
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Way MJ, Ostberg C, Foley BJ, Gillmann C, Höning D, Lammer H, O’Rourke J, Persson M, Plesa AC, Salvador A, Scherf M, Weller M. Synergies Between Venus & Exoplanetary Observations: Venus and Its Extrasolar Siblings. SPACE SCIENCE REVIEWS 2023; 219:13. [PMID: 36785654 PMCID: PMC9911515 DOI: 10.1007/s11214-023-00953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.
Collapse
Affiliation(s)
- M. J. Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA
- Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Colby Ostberg
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521 USA
| | - Bradford J. Foley
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Cedric Gillmann
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005 USA
| | - Dennis Höning
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Joseph O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Moa Persson
- Institut de Recherche en Astrophysique et Planétologie, Centre National de la Recherche Scientifique, Université Paul Sabatier – Toulouse III, Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Arnaud Salvador
- Department of Astronomy and Planetary Science, Northern Arizona University, Box 6010, Flagstaff, AZ 86011 USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, AZ USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
- Institute for Geodesy, Technical University, Graz, Austria
| | - Matthew Weller
- Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058 USA
| |
Collapse
|
14
|
Sun W, Wei Y. China’s deep space exploration into Martian and lunar deep interior. CHINESE SCIENCE BULLETIN-CHINESE 2023. [DOI: 10.1360/tb-2022-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Li J, Beghein C, McLennan SM, Horleston AC, Charalambous C, Huang Q, Zenhäusern G, Bozdağ E, Pike WT, Golombek M, Lekić V, Lognonné P, Bruce Banerdt W. Constraints on the martian crust away from the InSight landing site. Nat Commun 2022; 13:7950. [PMID: 36572693 PMCID: PMC9792460 DOI: 10.1038/s41467-022-35662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022] Open
Abstract
The most distant marsquake recorded so far by the InSight seismometer occurred at an epicentral distance of 146.3 ± 6.9o, close to the western end of Valles Marineris. On the seismogram of this event, we have identified seismic wave precursors, i.e., underside reflections off a subsurface discontinuity halfway between the marsquake and the instrument, which directly constrain the crustal structure away (about 4100-4500 km) from the InSight landing site. Here we show that the Martian crust at the bounce point between the lander and the marsquake is characterized by a discontinuity at about 20 km depth, similar to the second (deeper) intra-crustal interface seen beneath the InSight landing site. We propose that this 20-km interface, first discovered beneath the lander, is not a local geological structure but likely a regional or global feature, and is consistent with a transition from porous to non-porous Martian crustal materials.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Caroline Beghein
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, 11794-2100, USA
| | | | | | - Quancheng Huang
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | | | - Ebru Bozdağ
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - W T Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Matthew Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Vedran Lekić
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Philippe Lognonné
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, F-75005, France
| | - W Bruce Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
16
|
Spohn T, Hudson TL, Marteau E, Golombek M, Grott M, Wippermann T, Ali KS, Schmelzbach C, Kedar S, Hurst K, Trebi-Ollennu A, Ansan V, Garvin J, Knollenberg J, Müller N, Piqueux S, Lichtenheldt R, Krause C, Fantinati C, Brinkman N, Sollberger D, Delage P, Vrettos C, Reershemius S, Wisniewski L, Grygorczuk J, Robertsson J, Edme P, Andersson F, Krömer O, Lognonné P, Giardini D, Smrekar SE, Banerdt WB. The InSight HP 3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities. SPACE SCIENCE REVIEWS 2022; 218:72. [PMID: 36514324 PMCID: PMC9734249 DOI: 10.1007/s11214-022-00941-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The NASA InSight Lander on Mars includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow of the planet. The package uses temperature sensors that would have been brought to the target depth of 3-5 m by a small penetrator, nicknamed the mole. The mole requiring friction on its hull to balance remaining recoil from its hammer mechanism did not penetrate to the targeted depth. Instead, by precessing about a point midway along its hull, it carved a 7 cm deep and 5-6 cm wide pit and reached a depth of initially 31 cm. The root cause of the failure - as was determined through an extensive, almost two years long campaign - was a lack of friction in an unexpectedly thick cohesive duricrust. During the campaign - described in detail in this paper - the mole penetrated further aided by friction applied using the scoop at the end of the robotic Instrument Deployment Arm and by direct support by the latter. The mole tip finally reached a depth of about 37 cm, bringing the mole back-end 1-2 cm below the surface. It reversed its downward motion twice during attempts to provide friction through pressure on the regolith instead of directly with the scoop to the mole hull. The penetration record of the mole was used to infer mechanical soil parameters such as the penetration resistance of the duricrust of 0.3-0.7 MPa and a penetration resistance of a deeper layer ( > 30 cm depth) of 4.9 ± 0.4 MPa . Using the mole's thermal sensors, thermal conductivity and diffusivity were measured. Applying cone penetration theory, the resistance of the duricrust was used to estimate a cohesion of the latter of 2-15 kPa depending on the internal friction angle of the duricrust. Pushing the scoop with its blade into the surface and chopping off a piece of duricrust provided another estimate of the cohesion of 5.8 kPa. The hammerings of the mole were recorded by the seismometer SEIS and the signals were used to derive P-wave and S-wave velocities representative of the topmost tens of cm of the regolith. Together with the density provided by a thermal conductivity and diffusivity measurement using the mole's thermal sensors, the elastic moduli were calculated from the seismic velocities. Using empirical correlations from terrestrial soil studies between the shear modulus and cohesion, the previous cohesion estimates were found to be consistent with the elastic moduli. The combined data were used to derive a model of the regolith that has an about 20 cm thick duricrust underneath a 1 cm thick unconsolidated layer of sand mixed with dust and above another 10 cm of unconsolidated sand. Underneath the latter, a layer more resistant to penetration and possibly containing debris from a small impact crater is inferred. The thermal conductivity increases from 14 mW/m K to 34 mW/m K through the 1 cm sand/dust layer, keeps the latter value in the duricrust and the sand layer underneath and then increases to 64 mW/m K in the sand/gravel layer below. Supplementary Information The online version contains supplementary material available at 10.1007/s11214-022-00941-z.
Collapse
Affiliation(s)
- T. Spohn
- International Space Science Institute, Hallerstrasse 6, 3012 Bern, Switzerland
- DLR Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany
| | - T. L. Hudson
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - E. Marteau
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - M. Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - M. Grott
- DLR Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany
| | - T. Wippermann
- DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen, Germany
| | - K. S. Ali
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - C. Schmelzbach
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | - S. Kedar
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - K. Hurst
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - A. Trebi-Ollennu
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - V. Ansan
- Laboratoire de Planétologie et Géodynamique de Nantes, Université de Nantes, 44322 Nantes, France
| | - J. Garvin
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 USA
| | - J. Knollenberg
- DLR Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany
| | - N. Müller
- DLR Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany
| | - S. Piqueux
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - R. Lichtenheldt
- DLR Institute of System Dynamics and Control, Münchener Strasse 20, 82234 Wessling, Germany
| | - C. Krause
- DLR MUSC Space Operations and Astronaut Training, Linder Höhe, 51147 Köln, Germany
| | - C. Fantinati
- DLR MUSC Space Operations and Astronaut Training, Linder Höhe, 51147 Köln, Germany
| | - N. Brinkman
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | - D. Sollberger
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | - P. Delage
- École nationale des ponts et chaussées, Laboratoire Navier, Paris, France
| | - C. Vrettos
- Department of Civil Engineering, University of Kaiserslautern, Kaiserslautern, Germany
| | - S. Reershemius
- DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen, Germany
| | - L. Wisniewski
- Astronika Sp. z o.o., ul. Bartycka 18, 00-716 Warszawa, Poland
| | - J. Grygorczuk
- Astronika Sp. z o.o., ul. Bartycka 18, 00-716 Warszawa, Poland
| | - J. Robertsson
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | - P. Edme
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | - F. Andersson
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | | | - P. Lognonné
- Institut du Physique du Globe Paris, CNRS, Université Paris Cité, Paris, France
| | - D. Giardini
- Department of Earth Sciences, ETH Zürich, Institute of Geophysics, CH-8092 Zürich, Switzerland
| | - S. E. Smrekar
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| | - W. B. Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109 USA
| |
Collapse
|
17
|
Bonnet Gibet V, Michaut C, Wieczorek M, Lognonné P. A Positive Feedback Between Crustal Thickness and Melt Extraction for the Origin of the Martian Dichotomy. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007472. [PMID: 37033153 PMCID: PMC10078261 DOI: 10.1029/2022je007472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 06/19/2023]
Abstract
A North/South difference in crustal thickness is likely at the origin of the Martian dichotomy in topography. Recent crustal thickness maps were obtained by inversion of topography and gravity data seismically anchored at the InSight station. On average, the Martian crust is 51-71 km thick with a southern crust thicker by 18-28 km than the northern one. The origin of this crustal dichotomy is still debated although the hypothesis of a large impact is at present very popular. Here, we propose a new mechanism for the formation of this dichotomy that involves a positive feedback between crustal growth and mantle melting. As the crust is enriched in heat-producing elements, the lid of a one-plate planet is hotter and thinner where the crust is thicker, inducing a larger amount of partial melt below the lid and hence a larger rate of melt extraction and crustal growth. We first demonstrate analytically that larger wavelength perturbations, that is, hemispherical perturbations, grow faster because smaller wavelengths are more attenuated by thermal diffusion. We then use a parameterized thermal evolution model with a well-mixed mantle topped by two different lids characterized by their thermal structures and thicknesses to study the growth of the crust in the two hemispheres. Our results demonstrate that this positive feedback can generate a significant crustal dichotomy.
Collapse
Affiliation(s)
- Valentin Bonnet Gibet
- Laboratoire de Géologie de LyonTerre, Planètes, EnvironnementEcole Normale Supérieure de LyonCNRSUniversité de LyonUniversité Claude Bernard Lyon 1Université Jean MonetLyonFrance
| | - Chloé Michaut
- Laboratoire de Géologie de LyonTerre, Planètes, EnvironnementEcole Normale Supérieure de LyonCNRSUniversité de LyonUniversité Claude Bernard Lyon 1Université Jean MonetLyonFrance
- Institut Universitaire de FranceParisFrance
| | - Mark Wieczorek
- Laboratoire LagrangeObservatoire de la Côte d’AzurCNRSUniversité Côte d’AzurNiceFrance
| | - Philippe Lognonné
- CNRSInstitut de physique du globe de ParisUniversité de ParisParisFrance
| |
Collapse
|
18
|
Morard G, Antonangeli D, Bouchet J, Rivoldini A, Boccato S, Miozzi F, Boulard E, Bureau H, Mezouar M, Prescher C, Chariton S, Greenberg E. Structural and Electronic Transitions in Liquid FeO Under High Pressure. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2022; 127:e2022JB025117. [PMID: 36590903 PMCID: PMC9788056 DOI: 10.1029/2022jb025117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
FeO represents an important end-member for planetary interiors mineralogy. However, its properties in the liquid state under high pressure are poorly constrained. Here, in situ high-pressure and high-temperature X-ray diffraction experiments, ab initio simulations, and thermodynamic calculations are combined to study the local structure and density evolution of liquid FeO under extreme conditions. Our results highlight a strong shortening of the Fe-Fe distance, particularly pronounced between ambient pressure and ∼40 GPa, possibly related with the insulator to metal transition occurring in solid FeO over a similar pressure range. Liquid density is smoothly evolving between 60 and 150 GPa from values calculated for magnetic liquid to those calculated for non-magnetic liquid, compatibly with a continuous spin crossover in liquid FeO. The present findings support the potential decorrelation between insulator/metal transition and the high-spin to low-spin continuous transition, and relate the changes in the microscopic structure with macroscopic properties, such as the closure of the Fe-FeO miscibility gap. Finally, these results are used to construct a parameterized thermal equation of state for liquid FeO providing densities up to pressure and temperature conditions expected at the Earth's core-mantle boundary.
Collapse
Affiliation(s)
- Guillaume Morard
- CNRSIRDIFSTTARISTerreUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de CosmochimieIMPMCSorbonne UniversitéParisFrance
| | - Daniele Antonangeli
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de CosmochimieIMPMCSorbonne UniversitéParisFrance
| | - Johann Bouchet
- CEADAMDIFBruyères Le ChatelFrance
- CEADESIRESNEDECCadaracheSaint‐Paul‐Lez‐DuranceFrance
| | | | - Silvia Boccato
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de CosmochimieIMPMCSorbonne UniversitéParisFrance
| | - Francesca Miozzi
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de CosmochimieIMPMCSorbonne UniversitéParisFrance
- Now at Earth and Planets LaboratoryCarnegie Institution for ScienceDCWashingtonUSA
| | - Eglantine Boulard
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de CosmochimieIMPMCSorbonne UniversitéParisFrance
| | - Hélène Bureau
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de CosmochimieIMPMCSorbonne UniversitéParisFrance
| | | | - Clemens Prescher
- DESYHamburgGermany
- Institute of Earth and Environmental ScienceUniversity of FreiburgFreiburgGermany
| | | | - Eran Greenberg
- GSECARSThe University of ChicagoILChicagoUSA
- Now at Applied Physics DivisionSoreq NRCYavneIsrael
| |
Collapse
|
19
|
Kim D, Banerdt WB, Ceylan S, Giardini D, Lekić V, Lognonné P, Beghein C, Beucler É, Carrasco S, Charalambous C, Clinton J, Drilleau M, Durán C, Golombek M, Joshi R, Khan A, Knapmeyer-Endrun B, Li J, Maguire R, Pike WT, Samuel H, Schimmel M, Schmerr NC, Stähler SC, Stutzmann E, Wieczorek M, Xu Z, Batov A, Bozdag E, Dahmen N, Davis P, Gudkova T, Horleston A, Huang Q, Kawamura T, King SD, McLennan SM, Nimmo F, Plasman M, Plesa AC, Stepanova IE, Weidner E, Zenhäusern G, Daubar IJ, Fernando B, Garcia RF, Posiolova LV, Panning MP. Surface waves and crustal structure on Mars. Science 2022; 378:417-421. [DOI: 10.1126/science.abq7157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
Collapse
Affiliation(s)
- D. Kim
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
- Department of Geology, University of Maryland, College Park, MD, USA
| | - W. B. Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - S. Ceylan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - D. Giardini
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - V. Lekić
- Department of Geology, University of Maryland, College Park, MD, USA
| | - P. Lognonné
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - C. Beghein
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - É. Beucler
- Nantes Université, Université Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - S. Carrasco
- Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany
| | - C. Charalambous
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - J. Clinton
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | - M. Drilleau
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | - C. Durán
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - M. Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - R. Joshi
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - A. Khan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
- Physik-Institut, University of Zürich, Zürich, Switzerland
| | | | - J. Li
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - R. Maguire
- Department of Geology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - W. T. Pike
- Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany
| | - H. Samuel
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - M. Schimmel
- Geosciences Barcelona, CSIC, Barcelona, Spain
| | - N. C. Schmerr
- Department of Geology, University of Maryland, College Park, MD, USA
| | - S. C. Stähler
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - E. Stutzmann
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - M. Wieczorek
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - Z. Xu
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - A. Batov
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - E. Bozdag
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - N. Dahmen
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - P. Davis
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - T. Gudkova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - A. Horleston
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Q. Huang
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - T. Kawamura
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - S. D. King
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - S. M. McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - F. Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - M. Plasman
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - A. C. Plesa
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - I. E. Stepanova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - E. Weidner
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - G. Zenhäusern
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - I. J. Daubar
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
| | - B. Fernando
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - R. F. Garcia
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | | | - M. P. Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
20
|
Posiolova LV, Lognonné P, Banerdt WB, Clinton J, Collins GS, Kawamura T, Ceylan S, Daubar IJ, Fernando B, Froment M, Giardini D, Malin MC, Miljković K, Stähler SC, Xu Z, Banks ME, Beucler É, Cantor BA, Charalambous C, Dahmen N, Davis P, Drilleau M, Dundas CM, Durán C, Euchner F, Garcia RF, Golombek M, Horleston A, Keegan C, Khan A, Kim D, Larmat C, Lorenz R, Margerin L, Menina S, Panning M, Pardo C, Perrin C, Pike WT, Plasman M, Rajšić A, Rolland L, Rougier E, Speth G, Spiga A, Stott A, Susko D, Teanby NA, Valeh A, Werynski A, Wójcicka N, Zenhäusern G. Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation. Science 2022; 378:412-417. [DOI: 10.1126/science.abq7704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars.
Collapse
Affiliation(s)
| | - P. Lognonné
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - W. B. Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - J. Clinton
- Swiss Seismological Service, ETH Zurich, Zurich, Switzerland
| | - G. S. Collins
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - T. Kawamura
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - S. Ceylan
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - I. J. Daubar
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
| | - B. Fernando
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - M. Froment
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - D. Giardini
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - M. C. Malin
- Malin Space Science Systems, San Diego, CA, USA
| | - K. Miljković
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - S. C. Stähler
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - Z. Xu
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - M. E. Banks
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - É. Beucler
- Nantes Université, Université Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | - C. Charalambous
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - N. Dahmen
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - P. Davis
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
| | - M. Drilleau
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | - C. M. Dundas
- U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ, USA
| | - C. Durán
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - F. Euchner
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - R. F. Garcia
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | - M. Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - A. Horleston
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - C. Keegan
- Malin Space Science Systems, San Diego, CA, USA
| | - A. Khan
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | - D. Kim
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
- Department of Geology, University of Maryland, College Park, MD, USA
| | - C. Larmat
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - R. Lorenz
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - L. Margerin
- Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, CNES, Toulouse, France
| | - S. Menina
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - M. Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - C. Pardo
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - C. Perrin
- Nantes Université, Université Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - W. T. Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - M. Plasman
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - A. Rajšić
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - L. Rolland
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géoazur, Valbonne, France
| | - E. Rougier
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - G. Speth
- Malin Space Science Systems, San Diego, CA, USA
| | - A. Spiga
- Laboratoire de Météorologie Dynamique/IPSL, Sorbonne Université, CNRS, Ecole Normale Supérieure, PSL Research University, Ecole Polytechnique, Paris, France
| | - A. Stott
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | - D. Susko
- Malin Space Science Systems, San Diego, CA, USA
| | - N. A. Teanby
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - A. Valeh
- Malin Space Science Systems, San Diego, CA, USA
| | - A. Werynski
- Malin Space Science Systems, San Diego, CA, USA
| | - N. Wójcicka
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - G. Zenhäusern
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Yang Y, Chen X. A seismic meteor strike on Mars. Science 2022; 378:360-361. [DOI: 10.1126/science.add8574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A meteor impact and its subsequent seismic waves reveal the crustal structure of Mars
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaofei Chen
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Abstract
The depth and sharpness of a midmantle seismic discontinuity, associated with the phase transition from mineral olivine to its higher-pressure polymorphs, provide essential clues to understanding the temperature and composition of Martian mantle. Using data from NASA’s InSight mission, we examined five marsquakes located 3,400 to 4,400 km away from the InSight lander and observed triplications of the P and S waves that resulted from the interaction with a seismic discontinuity produced by the postolivine transition. Our observations indicate that the Martian mantle is more iron rich than Earth,and both planets have a similar potential temperature. Our geodynamic modeling further constrains the mantle composition and surface heat flow and indicates that the mantle was cold in the early Noachian. Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2.
Collapse
|
23
|
Brinkman N, Schmelzbach C, Sollberger D, Pierick JT, Edme P, Haag T, Kedar S, Hudson T, Andersson F, van Driel M, Stähler S, Nicollier T, Robertsson J, Giardini D, Spohn T, Krause C, Grott M, Knollenberg J, Hurst K, Rochas L, Vallade J, Blandin S, Lognonné P, Pike WT, Banerdt WB. In Situ Regolith Seismic Velocity Measurement at the InSight Landing Site on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007229. [PMID: 36582924 PMCID: PMC9787532 DOI: 10.1029/2022je007229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Interior exploration using Seismic Investigations, Geodesy and Heat Transport's (InSight) seismometer package Seismic Experiment for Interior Structure (SEIS) was placed on the surface of Mars at about 1.2 m distance from the thermal properties instrument Heat flow and Physical Properties Package (HP3) that includes a self-hammering probe. Recording the hammering noise with SEIS provided a unique opportunity to estimate the seismic wave velocities of the shallow regolith at the landing site. However, the value of studying the seismic signals of the hammering was only realized after critical hardware decisions were already taken. Furthermore, the design and nominal operation of both SEIS and HP3 are nonideal for such high-resolution seismic measurements. Therefore, a series of adaptations had to be implemented to operate the self-hammering probe as a controlled seismic source and SEIS as a high-frequency seismic receiver including the design of a high-precision timing and an innovative high-frequency sampling workflow. By interpreting the first-arriving seismic waves as a P-wave and identifying first-arriving S-waves by polarization analysis, we determined effective P- and S-wave velocities ofv P = 11 9 - 21 + 45 m/s andv S = 6 3 - 7 + 11 m/s, respectively, from around 2,000 hammer stroke recordings. These velocities likely represent bulk estimates for the uppermost several 10s of cm of regolith. An analysis of the P-wave incidence angles provided an independent v P /v S ratio estimate of1.8 4 - 0.35 + 0.89 that compares well with the traveltime based estimate of1.8 6 - 0.25 + 0.42 . The low seismic velocities are consistent with those observed for low-density unconsolidated sands and are in agreement with estimates obtained by other methods.
Collapse
Affiliation(s)
| | | | | | | | - Pascal Edme
- Institute of GeophysicsETH ZürichZürichSwitzerland
| | - Thomas Haag
- Institute of GeophysicsETH ZürichZürichSwitzerland
| | - Sharon Kedar
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Troy Hudson
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | | | | | | | | - Tilman Spohn
- Deutsches Zentrum für Luft‐ und Raumfahrt (DLR)BremenGermany
- International Space Science InstituteBernSwitzerland
| | | | - Matthias Grott
- Deutsches Zentrum für Luft‐ und Raumfahrt (DLR)BremenGermany
| | | | - Ken Hurst
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ludovic Rochas
- Centre National des Études Spatiales (CNES)ToulouseFrance
| | - Julien Vallade
- Centre National des Études Spatiales (CNES)ToulouseFrance
| | - Steve Blandin
- Centre National des Études Spatiales (CNES)ToulouseFrance
| | - Philippe Lognonné
- Université Paris CitéInstitut de physique du globe de ParisCNRSParisFrance
| | | | - W. Bruce Banerdt
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
24
|
Drilleau M, Samuel H, Garcia RF, Rivoldini A, Perrin C, Michaut C, Wieczorek M, Tauzin B, Connolly JAD, Meyer P, Lognonné P, Banerdt WB. Marsquake Locations and 1-D Seismic Models for Mars From InSight Data. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007067. [PMID: 36590820 PMCID: PMC9788261 DOI: 10.1029/2021je007067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/17/2023]
Abstract
We present inversions for the structure of Mars using the first Martian seismic record collected by the InSight lander. We identified and used arrival times of direct, multiples, and depth phases of body waves, for 17 marsquakes to constrain the quake locations and the one-dimensional average interior structure of Mars. We found the marsquake hypocenters to be shallower than 40 km depth, most of them being located in the Cerberus Fossae graben system, which could be a source of marsquakes. Our results show a significant velocity jump between the upper and the lower part of the crust, interpreted as the transition between intrusive and extrusive rocks. The lower crust makes up a significant fraction of the crust, with seismic velocities compatible with those of mafic to ultramafic rocks. Additional constraints on the crustal thickness from previous seismic analyses, combined with modeling relying on gravity and topography measurements, yield constraints on the present-day thermochemical state of Mars and on its long-term history. Our most constrained inversion results indicate a present-day surface heat flux of 22 ± 1 mW/m2, a relatively hot mantle (potential temperature: 1740 ± 90 K) and a thick lithosphere (540 ± 120 km), associated with a lithospheric thermal gradient of 1.9 ± 0.3 K/km. These results are compatible with recent seismic studies using a reduced data set and different inversion approaches, confirming that Mars' potential mantle temperature was initially relatively cold (1780 ± 50 K) compared to that of its present-day state, and that its crust contains 10-12 times more heat-producing elements than the primitive mantle.
Collapse
Affiliation(s)
- Mélanie Drilleau
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE‐SUPAEROToulouseFrance
| | - Henri Samuel
- Institut de Physique du Globe de ParisCNRSUniversité de ParisParisFrance
| | - Raphaël F. Garcia
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE‐SUPAEROToulouseFrance
| | | | - Clément Perrin
- Nantes UniversitéUniversité d’AngersLe Mans UniversitéCNRS UMR 6112Laboratoire de Planétologie et GéosciencesUAR 3281Observatoire des Sciences de l’Univers de Nantes AtlantiqueNantesFrance
| | - Chloé Michaut
- Université de LyonEcole Normale Supérieure de LyonUniversité Claude Bernard Lyon 1CNRSLaboratoire de Géologie de Lyon : TerrePlanètesEnvironnementVilleurbanneFrance
| | - Mark Wieczorek
- Université Côte d’AzurObservatoire de la Côte d’AzurCNRSLaboratoire LagrangeNiceFrance
| | - Benoît Tauzin
- Université de LyonEcole Normale Supérieure de LyonUniversité Claude Bernard Lyon 1CNRSLaboratoire de Géologie de Lyon : TerrePlanètesEnvironnementVilleurbanneFrance
- Research School of Earth SciencesThe Australian National UniversityCanberraACTAustralia
| | | | - Pauline Meyer
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE‐SUPAEROToulouseFrance
- Ecole et Observatoire des Sciences de la TerreUniversité de StrasbourgStrasbourgFrance
| | - Philippe Lognonné
- Institut de Physique du Globe de ParisCNRSUniversité de ParisParisFrance
| | - William B. Banerdt
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
25
|
Thompson S, Sugimura-Komabayashi E, Komabayashi T, McGuire C, Breton H, Suehiro S, Ohishi Y. High-pressure melting experiments of Fe 3S and a thermodynamic model of the Fe-S liquids for the Earth's core. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:394003. [PMID: 35853447 DOI: 10.1088/1361-648x/ac8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Melting experiments on Fe3S were conducted to 75 GPa and 2800 K in laser-heated and internally resistive-heated diamond anvil cells within-situx-ray diffraction and/or post-mortem textural observation. From the constrained melting curve, we assessed the thermal equation of state for Fe3S liquid. Then we constructed a thermodynamic model of melting of the system Fe-Fe3S including the eutectic relation under high pressures based on our new experimental data. The mixing properties of Fe-S liquids under high pressures were evaluated in order to account for existing experimental data on eutectic temperature. The results demonstrate that the mixing of Fe and S liquids are nonideal at any core pressure. The calculated sulphur content in eutectic point decreases with increasing pressure to 120 GPa and is fairly constant of 8 wt% at greater pressures. From the Gibbs free energy, we derived the parameters to calculate the crystallising point of an Fe-S core and its isentrope, and then we calculated the density and the longitudinal seismic wave velocity (Vp) of these liquids along each isentrope. While Fe3S liquid can account for the seismologically constrained density andVpprofiles over the outer core, the density of the precipitating phase is too low for the inner core. On the other hand, a hypothetical Fe-S liquid core with a bulk composition on the Fe-rich side of the eutectic point cannot represent the density andVpprofiles of the Earth's outer core. Therefore, Earth's core cannot be approximated by the system Fe-S and it should include another light element.
Collapse
Affiliation(s)
- Samuel Thompson
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Emiko Sugimura-Komabayashi
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Tetsuya Komabayashi
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Chris McGuire
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Helene Breton
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Sho Suehiro
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yasuo Ohishi
- SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
26
|
Black BA, Manga M, Ojha L, Longpré M, Karunatillake S, Hlinka L. The History of Water in Martian Magmas From Thorium Maps. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098061. [PMID: 35859852 PMCID: PMC9285613 DOI: 10.1029/2022gl098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Water inventories in Martian magmas are poorly constrained. Meteorite-based estimates range widely, from 102 to >104 ppm H2O, and are likely variably influenced by degassing. Orbital measurements of H primarily reflect water cycled and stored in the regolith. Like water, Th behaves incompatibly during mantle melting, but unlike water Th is not prone to degassing and is relatively immobile during aqueous alteration at low temperature. We employ Th as a proxy for original, mantle-derived H2O in Martian magmas. We use regional maps of Th from Mars Odyssey to assess variations in magmatic water across major volcanic provinces and through time. We infer that Hesperian and Amazonian magmas had ∼100-3,000 ppm H2O, in the lower range of previous estimates. The implied cumulative outgassing since the Hesperian, equivalent to a global H2O layer ∼1-40 m deep, agrees with Mars' present-day surface and near-surface water inventory and estimates of sequestration and loss rates.
Collapse
Affiliation(s)
- Benjamin A. Black
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Michael Manga
- Department of Earth and Planetary SciencesUniversity of California, BerkeleyBerkeleyCAUSA
| | - Lujendra Ojha
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Marc‐Antoine Longpré
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| | | | - Lisa Hlinka
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| |
Collapse
|
27
|
Abstract
Marsquakes excite seismic wavefield, allowing the Martian interior structures to be probed. However, the Martian seismic data recorded by InSight have a low signal-to-noise ratio, making the identification of marsquakes challenging. Here we use the Matched Filter technique and Benford’s Law to detect hitherto undetected events. Based on nine marsquake templates, we report 47 newly detected events, >90% of which are associated with the two high-quality events located beneath Cerberus Fossae. They occurred at all times of the Martian day, thus excluding the tidal modulation (e.g., Phobos) as their cause. We attribute the newly discovered, low-frequency, repetitive events to magma movement associated with volcanic activity in the upper mantle beneath Cerberus Fossae. The continuous seismicity suggests that Cerberus Fossae is seismically highly active and that the Martian mantle is mobile. The authors detect 47 hitherto unreported low-frequency marsquakes originating from Cerberus Fossae at all times of the Martian day. The matched filter technique confirms repetitive events implying that the Martian mantle is dynamically active.
Collapse
|
28
|
Abstract
Iron crystallization in super-Earth interiors plays a key role in their habitability.
Collapse
Affiliation(s)
- Youjun Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China.,International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu, China
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Perrin C, Jacob A, Lucas A, Myhill R, Hauber E, Batov A, Gudkova T, Rodriguez S, Lognonné P, Stevanović J, Drilleau M, Fuji N. Geometry and Segmentation of Cerberus Fossae, Mars: Implications for Marsquake Properties. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007118. [PMID: 35847353 PMCID: PMC9285074 DOI: 10.1029/2021je007118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
The NASA InSight mission to Mars successfully landed on 26 November 2018 in Elysium Planitia. It aims to characterize the seismic activity and aid in the understanding of the internal structure of Mars. We focus on the Cerberus Fossae region, a giant fracture network ∼1,200 km long situated east of the InSight landing site where M ∼3 marsquakes were detected during the past 2 years. It is formed of five main fossae located on the southeast of the Elysium Mons volcanic rise. We perform a detailed mapping of the entire system based on high-resolution satellite images and Digital Elevation Models. The refined cartography reveals a range of morphologies associated with dike activity at depth. Width and throw measurements of the fossae are linearly correlated, suggesting a possible tectonic control on the shapes of the fossae. Widths and throws decrease toward the east, indicating the long-term direction of propagation of the dike-induced graben system. They also give insights into the geometry at depth and how the possible faults and fractures are rooted in the crust. The exceptional preservation of the fossae allows us to detect up to four scales of segmentation, each formed by a similar number of 3-4 segments/subsegments. This generic distribution is comparable to continental faults and fractures on Earth. We anticipate higher stress and potential marsquakes within intersegment zones and at graben tips.
Collapse
Affiliation(s)
- C. Perrin
- Université de ParisInstitut de physique du globe de ParisCNRSParisFrance
- Now at Nantes UniversitéUniversité d’AngersLe Mans UniversitéCNRS, UMR 6112, Laboratoire de Planétologie et GéosciencesUAR 3281, Observatoire des Sciences de l’Univers de Nantes AtlantiqueNantesFrance
| | - A. Jacob
- Université de ParisInstitut de physique du globe de ParisCNRSParisFrance
| | - A. Lucas
- Université de ParisInstitut de physique du globe de ParisCNRSParisFrance
| | - R. Myhill
- School of Earth SciencesUniversity of BristolBristolUK
| | - E. Hauber
- DLR Institute of Planetary ResearchBerlinGermany
| | - A. Batov
- Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
- V.A. Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
| | - T. Gudkova
- Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
| | - S. Rodriguez
- Université de ParisInstitut de physique du globe de ParisCNRSParisFrance
| | - P. Lognonné
- Université de ParisInstitut de physique du globe de ParisCNRSParisFrance
| | | | - M. Drilleau
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE‐SUPAEROToulouseFrance
| | - N. Fuji
- Université de ParisInstitut de physique du globe de ParisCNRSParisFrance
| |
Collapse
|
30
|
Brennan MC, Fischer RA, Nimmo F, O’Brien DP. Timing of Martian Core Formation from Models of Hf-W Evolution Coupled with N-body Simulations. GEOCHIMICA ET COSMOCHIMICA ACTA 2022; 316:295-308. [PMID: 34866645 PMCID: PMC8637548 DOI: 10.1016/j.gca.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining how and when Mars formed has been a long-standing challenge for planetary scientists. The size and orbit of Mars are difficult to reproduce in classical simulations of planetary accretion, and this has inspired models of inner solar system evolution that are tuned to produce Mars-like planets. However, such models are not always coupled to geochemical constraints. Analyses of Martian meteorites using the extinct hafnium-tungsten (Hf-W) radioisotopic system, which is sensitive to the timing of core formation, have indicated that the Martian core formed within a few million years of the start of the solar system itself. This has been interpreted to suggest that, unlike Earth's protracted accretion, Mars grew to its modern size very rapidly. These arguments, however, generally rely on simplified growth histories for Mars. Here, we combine likely accretionary histories from a large number of N-body simulations with calculations of metal-silicate partitioning and Hf-W isotopic evolution during core formation to constrain the range of conditions that could have produced Mars. We find that there is no strong correlation between the final masses or orbits of simulated Martian analogs and their 182W anomalies, and that it is readily possible to produce Mars-like Hf-W isotopic compositions for a variety of accretionary conditions. The Hf-W signature of Mars is very sensitive to the oxygen fugacity (fO2) of accreted material because the metal-silicate partitioning behavior of W is strongly dependent on redox conditions. The average fO2 of Martian building blocks must fall in the range of 1.3-1.6 log units below the iron-wüstite buffer to produce a Martian mantle with the observed Hf/W ratio. Other geochemical properties (such as sulfur content) also influence Martian 182W signatures, but the timing of accretion is a more important control. We find that while Mars must have accreted most of its mass within ~5 million years of solar system formation to reproduce the Hf-W isotopic constraints, it may have continued growing afterwards for over 50 million years. There is a high probability of simultaneously matching the orbit, mass, and Hf-W signature of Mars even in cases of prolonged accretion if giant impactor cores were poorly equilibrated and merged directly with the proto-Martian core.
Collapse
Affiliation(s)
- Matthew C. Brennan
- Department of Earth and Planetary Sciences, Harvard University (20 Oxford Street, Cambridge, MA 02138, USA)
| | - Rebecca A. Fischer
- Department of Earth and Planetary Sciences, Harvard University (20 Oxford Street, Cambridge, MA 02138, USA)
| | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz (1156 High Street, Santa Cruz, CA 95064, USA)
| | - David P. O’Brien
- Planetary Science Institute (1700 East Fort Lowell, Tucson, AZ 85719-2395, USA)
| |
Collapse
|
31
|
Li Q, Sun T, Zhang YG, Xian JW, Vočadlo L. Atomic transport properties of liquid iron at conditions of planetary cores. J Chem Phys 2021; 155:194505. [PMID: 34800959 DOI: 10.1063/5.0062081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P-T range associated with the Earth's outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(-0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Sun
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Gang Zhang
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Wei Xian
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Lidunka Vočadlo
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Lagain A, Benedix GK, Servis K, Baratoux D, Doucet LS, Rajšic A, Devillepoix HAR, Bland PA, Towner MC, Sansom EK, Miljković K. The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nat Commun 2021; 12:6352. [PMID: 34732704 PMCID: PMC8566585 DOI: 10.1038/s41467-021-26648-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The only martian rock samples on Earth are meteorites ejected from the surface of Mars by asteroid impacts. The locations and geological contexts of the launch sites are currently unknown. Determining the impact locations is essential to unravel the relations between the evolution of the martian interior and its surface. Here we adapt a Crater Detection Algorithm that compile a database of 90 million impact craters, allowing to determine the potential launch position of these meteorites through the observation of secondary crater fields. We show that Tooting and 09-000015 craters, both located in the Tharsis volcanic province, are the most likely source of the depleted shergottites ejected 1.1 million year ago. This implies that a major thermal anomaly deeply rooted in the mantle under Tharsis was active over most of the geological history of the planet, and has sampled a depleted mantle, that has retained until recently geochemical signatures of Mars' early history.
Collapse
Affiliation(s)
- A. Lagain
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - G. K. Benedix
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia ,grid.452917.c0000 0000 9848 8286Department of Earth and Planetary Sciences, Western Australian Museum, Perth, WA Australia ,grid.423138.f0000 0004 0637 3991Planetary Sciences Institute, Tucson, AZ USA
| | - K. Servis
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia ,CSIRO—Pawsey Supercomputing Centre, Kensington, WA Australia
| | - D. Baratoux
- grid.508721.9Géosciences Environnement Toulouse, University of Toulouse, CNRS & IRD, 14, Avenue Edouard Belin, 31 400 Toulouse, France ,grid.410694.e0000 0001 2176 6353University Félix Houphouët-Boigny, UFR Sciences de la Terre et des Ressources Minières, Abidjan-Cocody, Côte d’Ivoire
| | - L. S. Doucet
- grid.1032.00000 0004 0375 4078Earth Dynamics Research Group, TIGeR, School of Earth and Planetary Sciences, Curtin University, Perth, WA Australia
| | - A. Rajšic
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - H. A. R. Devillepoix
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - P. A. Bland
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - M. C. Towner
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - E. K. Sansom
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - K. Miljković
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| |
Collapse
|
33
|
Kim D, Lekić V, Irving JCE, Schmerr N, Knapmeyer‐Endrun B, Joshi R, Panning MP, Tauzin B, Karakostas F, Maguire R, Huang Q, Ceylan S, Khan A, Giardini D, Wieczorek MA, Lognonné P, Banerdt WB. Improving Constraints on Planetary Interiors With PPs Receiver Functions. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006983. [PMID: 34824966 PMCID: PMC8597591 DOI: 10.1029/2021je006983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free-surface multiple of the P-wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs-RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P-to-S (Ps)- and PPs-RFs with InSight recordings of five marsquakes. Our Ps-RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps-RFs, our PPs-RFs lack an arrival at 7.2 s lag time. Whereas Ps-RFs on Mars could be equally well fit by a two- or three-layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three-layer crust, and is highly sensitive to velocity and thickness of intra-crustal layers. We show that a three-layer crust is also preferred by S-to-P (Sp)-RFs. While the deepest interface of the three-layer crust represents the crust-mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre-existing crustal materials. PPs-RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data-constrained circumstances such as planetary missions.
Collapse
Affiliation(s)
- D. Kim
- Department of GeologyUniversity of MarylandCollege ParkCollege ParkMDUSA
- Institute of GeophysicsETH ZürichZürichSwitzerland
| | - V. Lekić
- Department of GeologyUniversity of MarylandCollege ParkCollege ParkMDUSA
| | | | - N. Schmerr
- Department of GeologyUniversity of MarylandCollege ParkCollege ParkMDUSA
| | | | - R. Joshi
- Max Planck Institute for Solar System ResearchGöttingenGermany
| | - M. P. Panning
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. Tauzin
- Université de LyonUCBLENSLCNRSLGL‐TPEVilleurbanneFrance
- Research School of Earth SciencesAustralian National UniversityActonACTAustralia
| | - F. Karakostas
- Department of GeologyUniversity of MarylandCollege ParkCollege ParkMDUSA
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di BolognaBolognaItaly
| | - R. Maguire
- Department of GeologyUniversity of MarylandCollege ParkCollege ParkMDUSA
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMIUSA
| | - Q. Huang
- Department of GeologyUniversity of MarylandCollege ParkCollege ParkMDUSA
- Department of PhysicsNew Mexico State UniversityLas CrucesNMUSA
| | - S. Ceylan
- Institute of GeophysicsETH ZürichZürichSwitzerland
| | - A. Khan
- Institute of GeophysicsETH ZürichZürichSwitzerland
| | - D. Giardini
- Institute of GeophysicsETH ZürichZürichSwitzerland
| | - M. A. Wieczorek
- Université Côte d'AzurObservatoire de la Côte d'AzurCNRSLaboratoire LagrangeNiceFrance
| | - P. Lognonné
- Université de ParisInstitut de Physique du Globe de ParisCNRSParisFrance
| | - W. B. Banerdt
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
34
|
Kim D, Davis P, Lekić V, Maguire R, Compaire N, Schimmel M, Stutzmann E, Irving J, Lognonné P, Scholz JR, Clinton J, Zenhäusern G, Dahmen N, Deng S, Levander A, Panning MP, Garcia RF, Giardini D, Hurst K, Knapmeyer-Endrun B, Nimmo F, Pike WT, Pou L, Schmerr N, Stähler SC, Tauzin B, Widmer-Schnidrig R, Banerdt WB. Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars InSight Mission. THE BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA : BSSA 2021; 111:2982-3002. [PMID: 35001979 PMCID: PMC8739436 DOI: 10.1785/0120210123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Seismic Experiment for Interior Structure (SEIS) of the InSight mission to Mars, has been providing direct information on Martian interior structure and dynamics of that planet since it landed. Compared to seismic recordings on Earth, ground motion measurements acquired by SEIS on Mars are made under dramatically different ambient noise conditions, but include idiosyncratic signals that arise from coupling between different InSight sensors and spacecraft components. This work is to synthesize what is known about these signal types, illustrate how they can manifest in waveforms and noise correlations, and present pitfalls in structural interpretations based on standard seismic analysis methods. We show that glitches, a type of prominent transient signal, can produce artifacts in ambient noise correlations. Sustained signals that vary in frequency, such as lander modes which are affected by variations in temperature and wind conditions over the course of the Martian Sol, can also contaminate ambient noise results. Therefore, both types of signals have the potential to bias interpretation in terms of subsurface layering. We illustrate that signal processing in the presence of identified nonseismic signals must be informed by an understanding of the underlying physical processes in order for high fidelity waveforms of ground motion to be extracted. While the origins of most idiosyncratic signals are well understood, the 2.4 Hz resonance remains debated and the literature does not contain an explanation of its fine spectral structure. Even though the selection of idiosyncratic signal types discussed in this paper may not be exhaustive, we provide guidance on best practices for enhancing the robustness of structural interpretations.
Collapse
Affiliation(s)
- D. Kim
- Department of Geology, University of Maryland, College Park, MD, USA
| | - P. Davis
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - V. Lekić
- Department of Geology, University of Maryland, College Park, MD, USA
| | - R. Maguire
- Department of Geology, University of Maryland, College Park, MD, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - N. Compaire
- Institut Supérieur de l’Aéronautique et de l’Espace SUPAERO, Toulouse, France
| | - M. Schimmel
- Geosciences Barcelona – CSIC, Barcelona, Spain
| | - E. Stutzmann
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - J.C.E. Irving
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - P. Lognonné
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - J.-R. Scholz
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - J. Clinton
- Swiss Seismological Service (SED), ETH Zürich, Zürich, Switzerland
| | - G. Zenhäusern
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - N. Dahmen
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - S. Deng
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, USA
| | - A. Levander
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, USA
| | - M. P. Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - R. F. Garcia
- Institut Supérieur de l’Aéronautique et de l’Espace SUPAERO, Toulouse, France
| | - D. Giardini
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - K. Hurst
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - F. Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - W. T. Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - L. Pou
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - N. Schmerr
- Department of Geology, University of Maryland, College Park, MD, USA
| | - S. C. Stähler
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - B. Tauzin
- Université de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - R. Widmer-Schnidrig
- Black Forest Observatory, Institute of Geodesy, University of Stuttgart, Stuttgart, Germany
| | - W. B. Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
35
|
Affiliation(s)
- Sanne Cottaar
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Paula Koelemeijer
- Department of Earth Sciences, Royal Holloway, University of London, Egham, UK
| |
Collapse
|
36
|
Khan A, Ceylan S, van Driel M, Giardini D, Lognonné P, Samuel H, Schmerr NC, Stähler SC, Duran AC, Huang Q, Kim D, Broquet A, Charalambous C, Clinton JF, Davis PM, Drilleau M, Karakostas F, Lekic V, McLennan SM, Maguire RR, Michaut C, Panning MP, Pike WT, Pinot B, Plasman M, Scholz JR, Widmer-Schnidrig R, Spohn T, Smrekar SE, Banerdt WB. Upper mantle structure of Mars from InSight seismic data. Science 2021; 373:434-438. [PMID: 34437116 DOI: 10.1126/science.abf2966] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/14/2021] [Indexed: 11/03/2022]
Abstract
For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.
Collapse
Affiliation(s)
- Amir Khan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland. .,Physik-Institut, University of Zürich, Zürich, Switzerland
| | - Savas Ceylan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Martin van Driel
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland.,Mondaic AG, Zypressenstrasse 82, 8004 Zürich, Switzerland
| | | | - Philippe Lognonné
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Henri Samuel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | | | | | - Andrea C Duran
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Quancheng Huang
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Doyeon Kim
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Adrien Broquet
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.,Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | | | - John F Clinton
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | - Paul M Davis
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
| | - Mélanie Drilleau
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Foivos Karakostas
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Vedran Lekic
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Ross R Maguire
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Chloé Michaut
- Institut Universitaire de France, Paris, France.,Laboratoire de Géologie, Terre, Planétes, Environnement, Lyon, France
| | - Mark P Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William T Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Baptiste Pinot
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Matthieu Plasman
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | | | | | - Tilman Spohn
- International Space Science Institute, Bern, Switzerland
| | - Suzanne E Smrekar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William B Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|