1
|
Zang S, Paul S, Leung CW, Chen MS, Hueckel T, Hocky GM, Sacanna S. Direct observation and control of non-classical crystallization pathways in binary colloidal systems. Nat Commun 2025; 16:3645. [PMID: 40240410 DOI: 10.1038/s41467-025-58959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Crystallization stands as a prime example of self-assembly. Elementary building blocks converge, seemingly adhering to an intricate blueprint, orchestrating order from chaos. While classical theories describe crystallization as a monomer-by-monomer addition, non-classical pathways introduce complexity. Using microscopic charged particles as monomers, we uncover the mechanisms governing the formation of ionic colloidal crystals. Our findings reveal a two-step process, wherein metastable amorphous blobs condense from the gas phase, before evolving into small binary crystals. These small crystals then grow into large faceted structures via three simultaneous processes: addition of free monomers from bulk, capture and absorption of surrounding blobs, and oriented attachment of other crystals. These complex crystallization pathways occur both in bulk and on surfaces across a range of particle sizes and interaction strengths, resulting in a diverse array of crystal types and morphologies. Harnessing our ability to tune the interaction potential through small changes in salt concentration, we developed a continuous dialysis approach that allows fine control over the interaction strength in both time and space. This method enables us to discover and characterize various crystal structures in a single experiment, including a previously unreported low-density hollow structure and the heteroepitaxial formation of composite crystal structures.
Collapse
Affiliation(s)
- Shihao Zang
- Department of Chemistry, New York University, New York, NY, USA
| | - Sanjib Paul
- Department of Chemistry, New York University, New York, NY, USA
| | - Cheuk W Leung
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael S Chen
- Department of Chemistry, New York University, New York, NY, USA
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - Theodore Hueckel
- Department of Chemistry, New York University, New York, NY, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, USA.
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Deng M, Zhang Z, Liu L, Yang H, Li C, Fan Z. Ligand-Solvent Library Design for Tailoring Interparticle Interactions in Colloidal Nanocrystals. ACS NANO 2025; 19:14299-14308. [PMID: 40064551 DOI: 10.1021/acsnano.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study explores the critical role of nonpolar ligand-solvent systems in modulating interparticle interactions in colloidal nanocrystals, profoundly affecting colloidal stability and enabling precision self-assembly. A library of 28 ligands with diverse molecular fragments─double bonds, branched chains, benzene rings, and naphthalene rings─and four solvents was developed to investigate how fragment types and positions affect ligand ordering and interparticle attraction. Explicit solvent simulations with enhanced sampling techniques reveal that fragments near the headgroup or midsection disrupt ligand ordering and weaken interparticle attraction, whereas terminal placement fosters ordered ligand packing and enhances attraction. Simulation predictions on the relationship between ligand structures and interparticle interactions were validated through self-assembly experiments using colloidal nanocrystals passivated by six representative ligands. Furthermore, the potential to control ligand ordering and interparticle interactions was demonstrated by tuning fragment types, positions, combinations, and solvent sizes. This work deepens the understanding of ligand-solvent dynamics and provides a theoretical framework for the molecular-level design of nanocrystal self-assembly.
Collapse
Affiliation(s)
- Meng Deng
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ziyan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongchao Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Chuncheng Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhaochuan Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Zhang Z, Li C, Xu H, Yang H, Dai P, Zhang Y, Jiang J, Fan F, Fan Z, Zhao Y, Wang Q. Dipole-Dipole Interaction-Induced Direct Self-Assembly of Ag 2S Quantum Dots into Supercrystals in Solution. NANO LETTERS 2025. [PMID: 40228077 DOI: 10.1021/acs.nanolett.5c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Long-range ordered supercrystals (SCs) built up by colloidal nanocrystals (NCs) represent a class of novel metamaterials with unique collective properties. While great attention has been paid to the ligand-controlled assembly of NCs, the contribution of the inorganic core is considered limited because of the weak core-core interactions. Here, we report the spontaneous assembly of Ag2S quantum dots (QDs) into three-dimensional SCs in solution, driven by pronounced dipole-dipole interactions. Dielectric spectroscopy shows a large permanent dipole moment of 516.7 D in 4.2 nm Ag2S QDs, and multiscale molecular simulation proves the dipole-dipole interaction-driven crystallization of Ag2S QDs. Moreover, we demonstrate that tuning the dipole-dipole interactions facilitates the formation of diverse nanostructures, including SCs, nanochains, and monodisperse nanoparticles. These findings offer a straightforward strategy for SC synthesis and establish the dipole-dipole interactions as a key driving force of NC self-assembly with broad implications for colloidal nanomaterials and their emergent functionalities.
Collapse
Affiliation(s)
- Ziyan Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chuncheng Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Huaiyu Xu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Peng Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhaochuan Fan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yuliang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhang B, Xiao J, Xie Z, Jiang M, Song H, Toso S, Zang S, Manna L, Lu S. CsPbBr 3 Superstructures with Circularly Polarized Photolumines-Cence Obtained by the Self-Assembly and Annealing of Nanoclusters. Angew Chem Int Ed Engl 2025; 64:e202423272. [PMID: 39776230 DOI: 10.1002/anie.202423272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
We report a two-step approach to fabricate CsPbBr3 superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the μm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the μm-scale wires bundles and the chiral properties of the sample (glum=0.1). The successful chirality transfer from the initial nanoclusters assemblies to these final CsPbBr3 superstructures provides a convenient way to obtain circularly polarized emitters.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Jian Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengkun Xie
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Maowei Jiang
- Key Laboratory for Special Functional Materials, Ministry of Education of China), School of Nanoscience and Material Engineering, Henan Univeristy, Kaifeng, 475004, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Stefano Toso
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Shuangquan Zang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
5
|
Luo D, Shi M, Guo S, Lin W, Wei J, Ni Y. On-Demand Assembly of Nanocrystals into a Superstructure Library in Co(OH) 2 Single-Walled Nanotubes. NANO LETTERS 2025; 25:4137-4142. [PMID: 37967165 DOI: 10.1021/acs.nanolett.3c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The hierarchical self-assembly of colloidal particles facilitates the bottom-up manufacturing of metamaterials with synergistically integrated functionalities. Here, we define a modular assembly methodology that enables multinary co-assembly of nanoparticles in one-dimensional confined space. A series of isotropic and anisotropic nanocrystals such as plasmonic, metallic, visible, and near-infrared responsive nanoparticles as well as transition-metal phosphides can be selectively assembled within the single-walled Co(OH)2 nanotubes to achieve various increasingly sophisticated assembly systems, including unary, binary, ternary, and quaternary superstructures. Moreover, the selective assembly of distinct functional nanoparticles produces different integrated functional superstructures. This generalizable methodology provides predictable pathways to complex architectures with structural programming and customization that are otherwise inaccessible.
Collapse
Affiliation(s)
- Dian Luo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Manman Shi
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Saiya Guo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Wentao Lin
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Jieding Wei
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Key Laboratory of Functional Molecular Solids, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| |
Collapse
|
6
|
Chellam NS, Calcaterra HA, Xiong Q, Schatz GC, Mirkin CA. Organic Modulators Enable Morphological Diversity in Colloidal Crystals Engineered with DNA. ACS NANO 2025; 19:6520-6528. [PMID: 39902589 DOI: 10.1021/acsnano.4c17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Colloidal crystal engineering with DNA is a powerful way of generating a wide variety of crystals spanning over 90 different symmetries. However, in many cases, crystals with well-defined habits are difficult, if not impossible, to make, in part due to rapid crystal defect formation and propagation. This is especially true in the case of face-centered cubic (FCC) structures. Herein, we report a strategy that uses formamide as a chemical modulator to slow down colloidal crystal growth, which decreases defect formation and yields higher-quality crystals. Formamide forms hydrogen bonds with DNA bases and destabilizes the DNA duplex; in the context of colloidal crystallization, formamide leads to the disassembly of undercoordinated particles (defect architectures) and facilitates their reassembly into structures with the maximum number of nearest-neighbor contacts and DNA bonds. When targeting an FCC lattice comprised of DNA-modified spherical 20 nm particles, formamide promotes the formation of its Wulff polyhedron (a truncated octahedron), never observed before in colloidal crystal engineering with DNA. Importantly, kinetic habits, including tetrahedra, octahedra, icosahedra, and decahedra, are also observed depending on formamide concentration.
Collapse
Affiliation(s)
- Nikhil S Chellam
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Heather A Calcaterra
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Qinsi Xiong
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Guzelturk B, Portner J, Ondry J, Ghanbarzadeh S, Tarantola M, Jeong A, Field T, Chandler AM, Wieman E, Hopper TR, Watkins NE, Yu J, Cheng X, Lin M, Luo D, Kramer PL, Shen X, Reid AH, Borkiewicz O, Ruett U, Zhang X, Lindenberg AM, Ma J, Schaller RD, Talapin DV, Cotts BL. Ultrafast Symmetry Control in Photoexcited Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414196. [PMID: 39584653 PMCID: PMC11775883 DOI: 10.1002/adma.202414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales. Using a combination of ultrafast electron diffraction and total X-ray scattering, in conjunction with atomic-scale structural modeling and first-principles calculations, it is revealed that symmetry-broken lead sulfide quantum dots restore to a centrosymmetric phase upon photoexcitation. The symmetry restoration is driven by photoexcited electronic carriers, which suppress lead off-centering for about 100 ps. Furthermore, the change in symmetry is closely correlated with the electronic properties, and the bandgap transiently red-shifts in the symmetry-restored quantum dots. Overall, this study elucidates reversible symmetry changes in colloidal quantum dots, and more broadly defines a new methodology to optically control symmetry in nanoscale systems on ultrafast timescales.
Collapse
Affiliation(s)
- Burak Guzelturk
- X‐ray Science DivisionArgonne National LaboratoryLemontIL60527USA
| | - Joshua Portner
- Department of ChemistryJames Franck Instituteand Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Justin Ondry
- Department of ChemistryJames Franck Instituteand Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Samira Ghanbarzadeh
- Department of Mechanical EngineeringUniversity of VermontBurlingtonVT05405USA
| | - Mia Tarantola
- Department of Chemistry and BiochemistryMiddlebury CollegeMiddleburyVT05753USA
| | - Ahhyun Jeong
- Department of ChemistryJames Franck Instituteand Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Thomas Field
- Department of Mechanical EngineeringUniversity of VermontBurlingtonVT05405USA
| | | | - Eliza Wieman
- Department of Chemistry and BiochemistryMiddlebury CollegeMiddleburyVT05753USA
| | - Thomas R. Hopper
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- SLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | | | - Jin Yu
- X‐ray Science DivisionArgonne National LaboratoryLemontIL60527USA
| | - Xinxin Cheng
- SLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Ming‐Fu Lin
- SLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Duan Luo
- SLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | | | - Xiaozhe Shen
- SLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | | | - Olaf Borkiewicz
- X‐ray Science DivisionArgonne National LaboratoryLemontIL60527USA
| | - Uta Ruett
- X‐ray Science DivisionArgonne National LaboratoryLemontIL60527USA
| | - Xiaoyi Zhang
- X‐ray Science DivisionArgonne National LaboratoryLemontIL60527USA
| | - Aaron M. Lindenberg
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Stanford PULSE InstituteSLAC National Accelerator LaboratoryMenlo ParkCalifornia94025USA
| | - Jihong Ma
- Department of Mechanical EngineeringUniversity of VermontBurlingtonVT05405USA
| | - Richard D. Schaller
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
- Center for Nanoscale MaterialsArgonne National LaboratoryLemontIL60527USA
| | - Dmitri V. Talapin
- Department of ChemistryJames Franck Instituteand Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
- Center for Nanoscale MaterialsArgonne National LaboratoryLemontIL60527USA
| | - Benjamin L. Cotts
- Department of Chemistry and BiochemistryMiddlebury CollegeMiddleburyVT05753USA
| |
Collapse
|
8
|
Gu Y, Lu Y, Dai P, Cao X, Zhou Y, Tang Y, Fang Z, Wu P. Self-assembled high-entropy Prussian blue analogue nanosheets enabling efficient sodium storage. J Colloid Interface Sci 2025; 677:307-313. [PMID: 39094491 DOI: 10.1016/j.jcis.2024.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
High entropy material (HEM) has emerged as an appealing material platform for various applications, and specifically, the electrochemical performances of HEM could be further improved through self-assembled structure design. However, it remains a big challenge to construct such high-entropy self-assemblies primarily due to the compositional complexity. Herein, we propose a bottom-up directional freezing route to self-assemble high-entropy hydrosols into porous nanosheets. Taking Prussian blue analogue (PBA) as an example, the simultaneous coordination-substitution reactions yield stable high-entropy PBA hydrosols. During subsequent directional freezing process, the anisotropic growth of ice crystals could guide the two-dimensional confined assembly of colloidal nanoparticles, resulting in high-entropy PBA nanosheets (HE-PBA NSs). Thanks to the high-entropy and self-assembled structure design, the HE-PBA NSs manifests markedly enhanced sodium storage kinetics and performances in comparison with medium/low entropy nanosheets and high entropy nanoparticles.
Collapse
Affiliation(s)
- Yunjiang Gu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yonglin Lu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Dai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin Cao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yiming Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhiwei Fang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States.
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Feldman M, Vernier C, Nag R, Barrios-Capuchino JJ, Royer S, Cruguel H, Lacaze E, Lhuillier E, Fournier D, Schulz F, Hamon C, Portalès H, Utterback JK. Anisotropic Thermal Transport in Tunable Self-Assembled Nanocrystal Supercrystals. ACS NANO 2024; 18:34341-34352. [PMID: 39641986 DOI: 10.1021/acsnano.4c12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Realizing tunable functional materials with built-in nanoscale heat flow directionality represents a significant challenge that could advance thermal management strategies. Here we use spatiotemporally resolved thermoreflectance to visualize lateral thermal transport anisotropy in self-assembled supercrystals of anisotropic Au nanocrystals. Correlative electron and thermoreflectance microscopy reveal that nano- to mesoscale heat predominantly flows along the long-axis of the anisotropic nanocrystals, and does so across grain boundaries and curved assemblies while voids disrupt heat flow. We finely control the anisotropy via the aspect ratio of constituent nanorods, and it exceeds the aspect ratio for nanobipyramid supercrystals and certain nanorod arrangements. Finite element simulations and effective medium modeling rationalize the emergent anisotropic behavior in terms of a simple series resistance model, further providing a framework for estimating thermal anisotropy as a function of material and structural parameters. Self-assembly of colloidal nanocrystals promises an interesting route to direct heat flow in a wide range of applications that utilize this important class of materials.
Collapse
Affiliation(s)
- Matias Feldman
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| | | | - Rahul Nag
- Laboratoire de Physique des Solides, CNRS and Université Paris-Saclay, 91400 Orsay, France
| | - Juan J Barrios-Capuchino
- Institute for Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sébastien Royer
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| | - Hervé Cruguel
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| | - Emmanuelle Lacaze
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| | - Danièle Fournier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| | - Florian Schulz
- Institute for Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Cyrille Hamon
- Laboratoire de Physique des Solides, CNRS and Université Paris-Saclay, 91400 Orsay, France
| | | | - James K Utterback
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, France
| |
Collapse
|
10
|
Jeong A, Portner J, Tanner CPN, Ondry JC, Zhou C, Mi Z, Tazoui YA, Lee B, Wall VRK, Ginsberg NS, Talapin DV. Colloidal Dispersions of Sterically and Electrostatically Stabilized PbS Quantum Dots: Structure Factors, Second Virial Coefficients, and Film-Forming Properties. ACS NANO 2024; 18:33864-33874. [PMID: 39630577 DOI: 10.1021/acsnano.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-Sn2S64-) in polar solvents. The study reveals significant deviations from the ideal solution behavior in electrostatically stabilized QD dispersions. Our results demonstrate that PbS-Sn2S64- QDs exhibit long-range interactions within the solvent, in contrast to the short-range steric repulsion characteristic of PbS QDs with oleate ligands (PbS-OA). Introducing highly charged multivalent electrolytes screens electrostatic interactions between charged QDs, reducing the length scale of the repulsive interactions. Furthermore, we calculated the second virial (B2) coefficients from SAXS data, providing insights into how surface chemistry, solvent, and size influence pair potentials. Finally, we explore the influence of long-range interparticle interactions of PbS-Sn2S64- QDs on the morphology of films produced by drying or spin-coating colloidal solutions. The long-range repulsive term of PbS-Sn2S64- QDs promotes the formation of amorphous films, and screening the electrostatic repulsion by the addition of an electrolyte enables the formation of crystalline domains. These findings highlight the critical role of NC-NC interactions in tailoring the properties of functional materials made of colloidal NCs.
Collapse
Affiliation(s)
- Ahhyun Jeong
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Christian P N Tanner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Chenkun Zhou
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Zehan Mi
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Youssef A Tazoui
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Vivian R K Wall
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division and Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
11
|
Lizano-Villalobos A, Namikas B, Tang X. Siamese neural network improves the performance of a convolutional neural network in colloidal self-assembly state classification. J Chem Phys 2024; 161:204905. [PMID: 39588832 DOI: 10.1063/5.0244337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Identifying the state of the colloidal self-assembly process is critical to monitoring and controlling the system into desired configurations. Recent application of convolutional neural networks with unsupervised clustering has shown a comparable performance to conventional approaches, in representing and classifying the states of a simulated 2D colloidal batch assembly system. Despite the early success, capturing the subtle differences among similar configurations still presents a challenge. To address this issue, we leverage a Siamese neural network to improve the accuracy of the state classification. Results from a Brownian dynamics-simulated electric field-mediated colloidal self-assembly system and a magnetic field-mediated colloidal self-assembly system demonstrate significant improvement from the original convolutional neural network-based approach. We anticipate the proposed improvement to further pave the way for automated monitoring and control of colloidal self-assembly processes in real time and real space.
Collapse
Affiliation(s)
- Andres Lizano-Villalobos
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Benjamin Namikas
- Baton Rouge Magnet High School, Baton Rouge, Louisiana, 70806, USA
| | - Xun Tang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
12
|
Chen H, Xiao T, Xia Y, Song H, Xi X, Huang X, Yang D, Li T, Sun Z, Dong A. Quantifying Interface-Performance Relationships in Electrochemical CO 2 Reduction through Mixed-Dimensional Assembly of Nanocrystal-on-Nanowire Superstructures. Angew Chem Int Ed Engl 2024; 63:e202410039. [PMID: 39205394 DOI: 10.1002/anie.202410039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fine-tuning the interfacial sites within heterogeneous catalysts is pivotal for unravelling the intricate structure-property relationship and optimizing their catalytic performance. Herein, a simple and versatile mixed-dimensional assembly approach is proposed to create nanocrystal-on-nanowire superstructures with precisely adjustable numbers of biphasic interfaces. This method leverages an efficient self-assembly process in which colloidal nanocrystals spontaneously organize onto Ag nanowires, driven by the solvophobic effect. Importantly, varying the ratio of the two components during assembly allows for accurate control over both the quantity and contact perimeter of biphasic interfaces. As a proof-of-concept demonstration, a series of Au-on-Ag superstructures with varying numbers of Au/Ag interfaces are constructed and employed as electrocatalysts for electrochemical CO2-to-CO conversion. Experimental results reveal a logarithmic linear relationship between catalytic activity and the number of Au/Ag interfaces per unit mass of Au-on-Ag superstructures. This work presents a straightforward approach for precise interface engineering, paving the way for systematic exploration of interface-dependent catalytic behaviors in heterogeneous catalysts.
Collapse
Affiliation(s)
- Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| | - Taishi Xiao
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hengyao Song
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xianwu Huang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| | - Zhengzong Sun
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Chen C, Wang Q, Wang P, Dai M, Jiang X, Zhou J, Qi L. Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403970. [PMID: 38984738 DOI: 10.1002/smll.202403970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.e., tP, oI, tI, and oF) and six types of crystallographic space groups (i.e., Pmmm, I222, Pnnm, Ibam, I4/mmm, and Fmmm), which have not been documented in the mesoscale self-assembled systems. It has been revealed that the relative yield of different supercrystal structures is mainly determined by the packing density and deformability of the supercrystals, which are closely related to the tailored concavity of the nanoparticles and is affected by the particle concentration, thus allowing for programmable self-assembly into specific supercrystals through particle shape modulation. The concavity-enabled supercrystal engineering may open a new avenue toward unconventional nanoparticle superstructures with expanded complexity, tunability, and functionality.
Collapse
Affiliation(s)
- Cheng Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peijian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengqi Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Xu W, Chen Y, Shi L, Wang L, Peng DL. Bi-magnetic Mn 3O 4@Ni core-shell binary superparticles: Self-assembly preparation and magnetic behaviors. J Colloid Interface Sci 2024; 673:517-526. [PMID: 38879993 DOI: 10.1016/j.jcis.2024.06.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Binary superparticles formed by self-assembling two different types of nanoparticles may utilize the synergistic interactions and create advanced multifunctional materials. Bi-magnetic superparticles with a core-shell structure have unique properties due to their specific spatial configurations. Herein, we built Mn3O4@Ni core-shell binary superparticles via an emulsion self-assembly technique. The superparticles are generated with a spherical morphology, and have a typical average size of about 240 nm. By altering the ratio of the two magnetic nanoparticles, the thickness of Ni shells can be adjusted. Oleic acid ligands are crucial for the formation of core-shell structure. Magnetic analysis suggests that core-shell superparticles display dual-phase magnetic interactions, contrasting with the single-phase magnetic behaviors of commonly core-shell magnetic nanoparticles. The calculation on the effective magnetic anisotropy constants indicates that the presence of Ni shell layers reduces the dipole interactions among the Mn3O4 core particles. Due to the presence of Ni nanoparticle shells, the blocking temperature of Mn3O4 is reduced, while the Curie temperature of Mn3O4 is independent on Ni content. Tunable magnetic properties can be achieved by modulating the Ni nanoparticle shell thickness. This study offers insights for the development of core-shell superparticles with varied magnetic characteristics.
Collapse
Affiliation(s)
- Wanjie Xu
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuanzhi Chen
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Liubin Shi
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Laisen Wang
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
15
|
Pan S, Yang L, Zhou Y, Cao H, Hu W, Zhang W, Lu Z. Active Assembly of CsPbBr 3 Nanorods into Microcolumns by Electric Field in Nonpolar Solvent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403919. [PMID: 38845067 DOI: 10.1002/smll.202403919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/19/2024]
Abstract
High-precision, controllable, mass-producible assembly of nanoparticles into complex structures or devices holds immense importance in the application across various fields but it remains challenging. Here a highly controllable and reversible active assembly of colloidal CsPbBr3 nanorods, driven by an external electric field is achieved. This approach enables the nanorods dynamically orient themselves, assemble into chains, aggregate into columns, and eventually form an ordered column array, with the electric field intensity varying from 0 to 50 V µm-1 at 100 kHz. The nanorods inside the columns align parallel to the electric field, leading to a well-ordered structure. With the analysis of the interactions among the nanorods, a quantitative interpretation of the assembly is proposed. Monte Carlo calculation is also introduced to simulate the assembly process and the results prove to be in great agreement with the experimental observations. This electric field-driven assembly presents an exciting opportunity to pave the way for next-generation sensors and photonic devices based on well-developed colloidal nanoparticles.
Collapse
Affiliation(s)
- Shuhan Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Lijie Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Huimin Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
16
|
Huang Y, Wang N, Wang J, Ji X, Li A, Zhao H, Song W, Huang X, Wang T, Hao H. Unveiling the Factors Influencing Different Nucleation Pathways and Liquid-Liquid Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17786-17795. [PMID: 39120944 DOI: 10.1021/acs.langmuir.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Exploring nucleation pathways has been a research hot spot in the fields of crystal engineering. In this work, vanillin as a model compound was utilized to explore the factors influencing different nucleation pathways with or without liquid-liquid phase separation (LLPS). A thermodynamic phase diagram of vanillin in the mixed solvent system of water and acetone from 10 to 55 °C was determined. It was found that the occurrence of LLPS might be related to different nucleation pathways. Under the guidance of a thermodynamic phase diagram, Raman spectroscopy and molecular simulation were applied to investigate the influencing factors of different nucleation paths. It was found that the degree of solvation is a key factor determining the nucleation path, and strong solvation could lead to LLPS. Additionally, the molecular self-assembly evolution during the crystallization process was further investigated by using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The findings indicate that larger clusters with a diffuse transition layer may lead to LLPS during the nucleation process.
Collapse
Affiliation(s)
- Yunhai Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ao Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenxi Song
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
17
|
Derelli D, Frank K, Grote L, Mancini F, Dippel AC, Gutowski O, Nickel B, Koziej D. Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X-Ray Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311714. [PMID: 38501853 DOI: 10.1002/smll.202311714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.
Collapse
Affiliation(s)
- Davide Derelli
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Kilian Frank
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lukas Grote
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Federica Mancini
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- Current affiliation: National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, CNR - ISSMC (former ISTEC), 64 I-48018, Via Granarolo, FAENZA (RA), Italy
| | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Dorota Koziej
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| |
Collapse
|
18
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
19
|
Chang L, Liu C, Jin Z, Li K, Ling X. Inhomogeneous Au 2S for Photoacoustic Imaging and Photodynamic Tumor Therapy Based on Different Forms of Energy Dissipation. ACS NANO 2024; 18:14925-14937. [PMID: 38808608 DOI: 10.1021/acsnano.3c13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nanomaterials with unique structures and components play a crucial role in nanomedicine. In this study, we discovered that the inhomogeneous Au2S constructed by cation exchange and acid etching could dissipate energy in different forms after absorbing multichromatic light, which could be used to achieve the integrated diagnosis and treatment of tumors, respectively. Folic acid modified Au2S ringed nanoparticles (FA-Au2S RNs) with an assembly-like structure were demonstrated to result in better PA imaging performance and generate more reactive oxygen species (O2·-, ·OH, and 1O2) than folic acid modified Au2S triangular nanoparticles (FA-Au2S TNs). Finite element analyses determined the reason for the high absorbance properties and synergistic enhancement of plasma resonance in the assembly-like structure of Au2S RNs. Both FA-Au2S nanostructures were modified with folic acid and injected into 4T1 tumor-bearing mice via the tail vein. The best PA imaging contrast was obtained under 700 nm laser illumination, and the most effective PDT antitumor activity was achieved under 1064 nm laser illumination. The PA average of the tumor in the FA-Au2S RN group was approximately 2 times higher than that of the FA-Au2S TN group at 24 h of injection. The PA imaging results of intratumorally injected FA-Au2S RNs proved that they were still able to show better PA signal enhancement at 24 h postinjection. Our study demonstrates that FA-Au2S nanomaterials with unique structures and special properties can be reliably produced using strictly controlled chemical synthesis. It further provides a strategy for the construction of highly sensitive PA imaging platforms and efficient PDT antitumor agents that exploit wavelength-dependent energy dissipation mechanisms.
Collapse
Affiliation(s)
- Ling Chang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
20
|
Cowie B, Mears KL, S’ari M, Lee JK, Briceno de Gutierrez M, Kalha C, Regoutz A, Shaffer MSP, Williams CK. Exploiting Organometallic Chemistry to Functionalize Small Cuprous Oxide Colloidal Nanocrystals. J Am Chem Soc 2024; 146:3816-3824. [PMID: 38301241 PMCID: PMC10870705 DOI: 10.1021/jacs.3c10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
The ligand chemistry of colloidal semiconductor nanocrystals mediates their solubility, band gap, and surface facets. Here, selective organometallic chemistry is used to prepare small, colloidal cuprous oxide nanocrystals and to control their surface chemistry by decorating them with metal complexes. The strategy is demonstrated using small (3-6 nm) cuprous oxide (Cu2O) colloidal nanocrystals (NC), soluble in organic solvents. Organometallic complexes are coordinated by reacting the surface Cu-OH bonds with organometallic reagents, M(C6F5)2, M = Zn(II) and Co(II), at room temperature. These reactions do not disrupt the Cu2O crystallinity or nanoparticle size; rather, they allow for the selective coordination of a specific metal complex at the surface. Subsequently, the surface-coordinated organometallic complex is reacted with three different carboxylic acids to deliver Cu-O-Zn(O2CR') complexes. Selective nanocrystal surface functionalization is established using spectroscopy (IR, 19F NMR), thermal gravimetric analyses (TGA), transmission electron microscopy (TEM, EELS), and X-ray photoelectron spectroscopy (XPS). Photoluminescence efficiency increases dramatically upon organometallic surface functionalization relative to that of the parent Cu2O NC, with the effect being most pronounced for Zn(II) decoration. The nanocrystal surfaces are selectively functionalized by both organic ligands and well-defined organometallic complexes; this synthetic strategy may be applicable to many other metal oxides, hydroxides, and semiconductors. In the future, it should allow NC properties to be designed for applications including catalysis, sensing, electronics, and quantum technologies.
Collapse
Affiliation(s)
- Bradley
E. Cowie
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kristian L. Mears
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Mark S’ari
- Johnson
Matthey, Johnson Matthey, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.
| | - Ja Kyung Lee
- Johnson
Matthey, Johnson Matthey, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.
| | | | - Curran Kalha
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Anna Regoutz
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Milo S. P. Shaffer
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K.
| | - Charlotte K. Williams
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
21
|
Tanner CPN, Utterback JK, Portner J, Coropceanu I, Das A, Tassone CJ, Teitelbaum SW, Limmer DT, Talapin DV, Ginsberg NS. In Situ X-ray Scattering Reveals Coarsening Rates of Superlattices Self-Assembled from Electrostatically Stabilized Metal Nanocrystals Depend Nonmonotonically on Driving Force. ACS NANO 2024. [PMID: 38318795 PMCID: PMC10883038 DOI: 10.1021/acsnano.3c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures.
Collapse
Affiliation(s)
- Christian P N Tanner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - James K Utterback
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Igor Coropceanu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Avishek Das
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Samuel W Teitelbaum
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60517, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Mao R, Minevich B, McKeen D, Chen Q, Lu F, Gang O, Mittal J. Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions. Proc Natl Acad Sci U S A 2023; 120:e2302037120. [PMID: 38109548 PMCID: PMC10756293 DOI: 10.1073/pnas.2302037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Self-assembly of isotropically interacting particles into desired crystal structures could allow for creating designed functional materials via simple synthetic means. However, the ability to use isotropic particles to assemble different crystal types remains challenging, especially for generating low-coordinated crystal structures. Here, we demonstrate that isotropic pairwise interparticle interactions can be rationally tuned through the design of DNA shells in a range that allows transition from common, high-coordinated FCC-CuAu and BCC-CsCl lattices, to more exotic symmetries for spherical particles such as the SC-NaCl lattice and to low-coordinated crystal structures (i.e., cubic diamond, open honeycomb). The combination of computational and experimental approaches reveals such a design strategy using DNA-functionalized nanoparticles and successfully demonstrates the realization of BCC-CsCl, SC-NaCl, and a weakly ordered cubic diamond phase. The study reveals the phase behavior of isotropic nanoparticles for DNA-shell tunable interaction, which, due to the ease of synthesis is promising for the practical realization of non-close-packed lattices.
Collapse
Affiliation(s)
- Runfang Mao
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN55455
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, NY10027
| | - Daniel McKeen
- Department of Chemical Engineering, Columbia University, New York, NY10027
| | - Qizan Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Fang Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, NY10027
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY10027
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Chemistry, Texas A&M University, College Station, TX77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX77843
| |
Collapse
|
23
|
Ye M, Song L, Ye Y, Deng Z. Assembly and Healing: Capacitive and Conductive Plasmonic Interfacing via a Unified and Clean Wet Chemistry Route. J Am Chem Soc 2023; 145:25653-25663. [PMID: 37963330 DOI: 10.1021/jacs.3c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Solution-based nanoparticle assembly represents a highly promising way to build functional metastructures based on a wealth of synthetic nanomaterial building blocks with well-controlled morphology and crystallinity. In particular, the involvement of DNA molecular programming in these bottom-up processes gradually helps the ambitious goal of customizable chemical nanofabrication. However, a fundamental challenge is to realize strong interunit coupling in an assembly toward emerging functions and applications. Herein, we present a unified and clean strategy to address this critical issue based on a H2O2-redox-driven "assembly and healing" process. This facile solution route is able to realize both capacitively coupled and conductively bridged colloidal boundaries, simply switchable by the reaction temperature, toward bottom-up nanoplasmonic engineering. In particular, such a "green" process does not cause surface contamination of nanoparticles by exogenous active metal ions or strongly passivating ligands, which, if it occurs, could obscure the intrinsic properties of as-formed structures. Accordingly, previously raised questions regarding the activities of strongly coupled plasmonic structures are clarified. The reported process is adaptable to DNA nanotechnology, offering molecular programmability of interparticle charge conductance. This work represents a new generation of methods to make strongly coupled nanoassemblies, offering great opportunities for functional colloidal technology and even metal self-healing.
Collapse
Affiliation(s)
- Meiyun Ye
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yichen Ye
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Fan Y, Walls M, Salzemann C, Noël JM, Kanoufi F, Courty A, Lemineur JF. Metal Core-Shell Nanoparticle Supercrystals: From Photoactivation of Hydrogen Evolution to Photocorrosion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305402. [PMID: 37492940 DOI: 10.1002/adma.202305402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Gas nanobubbles are directly linked to many important chemical reactions. While they can be detrimental to operational devices, they also reflect the local activity at the nanoscale. Here, supercrystals made of highly monodisperse Ag@Pt core-shell nanoparticles are first grown onto a solid support and fully characterized by electron microscopies and X-ray scattering. Supercrystals are then used as a plasmonic photocatalytic platform for triggering the hydrogen evolution reaction. The catalytic activity is measured operando at the single supercrystal level by high-resolution optical microscopy, which allows gas nanobubble nucleation to be probed at the early stage with high temporal resolution and the amount of gas molecules trapped inside them to be quantified. Finally, a correlative microscopy approach and high-resolution electron energy loss spectroscopy help to decipher the mechanisms at the origin of the local degradation of the supercrystals during catalysis, namely nanoscale erosion and corrosion.
Collapse
Affiliation(s)
- Yinan Fan
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | - Michael Walls
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay, 91405, France
| | - Caroline Salzemann
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | - Jean-Marc Noël
- ITODYS, Université Paris Cité, CNRS, Paris, F-75013, France
| | | | - Alexa Courty
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | | |
Collapse
|
25
|
Das A, Limmer DT. Nonequilibrium design strategies for functional colloidal assemblies. Proc Natl Acad Sci U S A 2023; 120:e2217242120. [PMID: 37748070 PMCID: PMC10556551 DOI: 10.1073/pnas.2217242120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 08/17/2023] [Indexed: 09/27/2023] Open
Abstract
We use a nonequilibrium variational principle to optimize the steady-state, shear-induced interconversion of self-assembled nanoclusters of DNA-coated colloids. Employing this principle within a stochastic optimization algorithm allows us to identify design strategies for functional materials. We find that far-from-equilibrium shear flow can significantly enhance the flux between specific colloidal states by decoupling trade-offs between stability and reactivity required by systems in equilibrium. For isolated nanoclusters, we find nonequilibrium strategies for amplifying transition rates by coupling a given reaction coordinate to the background shear flow. We also find that shear flow can be made to selectively break detailed balance and maximize probability currents by coupling orientational degrees of freedom to conformational transitions. For a microphase consisting of many nanoclusters, we study the flux of colloids hopping between clusters. We find that a shear flow can amplify the flux without a proportional compromise on the microphase structure. This approach provides a general means of uncovering design principles for nanoscale, autonomous, functional materials driven far from equilibrium.
Collapse
Affiliation(s)
- Avishek Das
- Department of Chemistry, University of California, Berkeley, CA94720
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, CA94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Kavli Energy NanoSciences Institute, University of California, Berkeley, CA94720
| |
Collapse
|
26
|
Adhikari S, Minevich B, Redeker D, Michelson AN, Emamy H, Shen E, Gang O, Kumar SK. Controlling the Self-Assembly of DNA Origami Octahedra via Manipulation of Inter-Vertex Interactions. J Am Chem Soc 2023; 145:19578-19587. [PMID: 37651692 DOI: 10.1021/jacs.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Recent studies have demonstrated novel strategies for the organization of nanomaterials into three-dimensional (3D) ordered arrays with prescribed lattice symmetries using DNA-based self-assembly strategies. In one approach, the nanomaterial is sequestered into DNA origami frames or "material voxels" and then coordinated into ordered arrays based on the voxel geometry and the corresponding directional interactions based on its valency. While the lattice symmetry is defined by the valency of the bonds, a larger-scale morphological development is affected by assembly processes and differences in energies of anisotropic bonds. To facilely model this assembly process, we investigate the self-assembly behavior of hard particles with six interacting vertices via theory and Monte Carlo simulations and exploration of corresponding experimental systems. We demonstrate that assemblies with different 3D crystalline morphologies but the same lattice symmetry can be formed depending on the relative strength of vertex-to-vertex interactions in orthogonal directions. We observed three distinct assembly morphologies for such systems: cube-like, sheet-like, and cylinder-like. A simple analytical theory inspired by well-established ideas in the areas of protein crystallization, based on calculating the second virial coefficient of patchy hard spheres, captures the simulation results and thus represents a straightforward means of modeling this self-assembly process. To complement the theory and simulations, experimental studies were performed to investigate the assembly of octahedral DNA origami frames with varying binding energies at their vertices. X-ray scattering confirms the robustness of the formed nanoscale lattices for different binding energies, while both optical and electron microscopy imaging validated the theoretical predictions on the dependence of the distinct morphologies of assembled state on the interaction strengths in the three orthogonal directions.
Collapse
Affiliation(s)
- Sabin Adhikari
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Daniel Redeker
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Aaron Noam Michelson
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hamed Emamy
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Eric Shen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
27
|
Marino E, Jiang Z, Kodger TE, Murray CB, Schall P. Controlled Assembly of CdSe Nanoplatelet Thin Films and Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12533-12540. [PMID: 37561597 PMCID: PMC10501200 DOI: 10.1021/acs.langmuir.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Indexed: 08/12/2023]
Abstract
We assemble semiconductor CdSe nanoplatelets (NPs) at the air/liquid interface into 2D monolayers several micrometers wide, distinctly displaying nematic order. We show that this configuration is the most favorable energetically and that the edge-to-edge distance between neighboring NPs can be tuned by ligand exchange without disrupting film topology and nanoparticle orientation. We explore the rich assembly phase space by using depletion interactions to direct the formation of 1D nanowires from stacks of NPs. The improved control and understanding of the assembly of semiconductor NPs offers opportunities for the development of cheaper optoelectronic devices that rely on 1D or 2D charge delocalization throughout the assembled monolayers and nanowires.
Collapse
Affiliation(s)
- Emanuele Marino
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Dipartimento
di Fisica e Chimica, Università degli
Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Zhiqiao Jiang
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, 19104 Philadelphia (Pennsylvania), United States
| | - Thomas E. Kodger
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Christopher B. Murray
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, 19104 Philadelphia (Pennsylvania), United States
| | - Peter Schall
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
28
|
Lu B, Vegso K, Micky S, Ritz C, Bodik M, Fedoryshyn YM, Siffalovic P, Stemmer A. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement. ACS NANO 2023. [PMID: 37354449 DOI: 10.1021/acsnano.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Nanoparticle superlattices produced with controllable interparticle gap distances down to the subnanometer range are of superior significance for applications in electronic and plasmonic devices as well as in optical metasurfaces. In this work, a method to fabricate large-area (∼1 cm2) gold nanoparticle (GNP) superlattices with a typical size of single domains at several micrometers and high-density nanogaps of tunable distances (from 2.3 to 0.1 nm) as well as variable constituents (from organothiols to inorganic S2-) is demonstrated. Our approach is based on the combination of interfacial nanoparticle self-assembly, subphase exchange, and free-floating ligand exchange. Electrical transport measurements on our GNP superlattices reveal variations in the nanogap conductance of more than 6 orders of magnitude. Meanwhile, nanoscopic modifications in the surface potential landscape of active GNP devices have been observed following engineered nanogaps. In situ optical reflectance measurements during free-floating ligand exchange show a gradual enhancement of plasmonic capacitive coupling with a diminishing average interparticle gap distance down to 0.1 nm, as continuously red-shifted localized surface plasmon resonances with increasing intensity have been observed. Optical metasurfaces consisting of such GNP superlattices exhibit tunable effective refractive index over a broad wavelength range. Maximal real part of the effective refractive index, nmax, reaching 5.4 is obtained as a result of the extreme field confinement in the high-density subnanometer plasmonic gaps.
Collapse
Affiliation(s)
- Bin Lu
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| | - Karol Vegso
- Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
| | - Simon Micky
- Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
| | - Christian Ritz
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| | - Michal Bodik
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| | | | - Peter Siffalovic
- Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
| | - Andreas Stemmer
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
29
|
Rao A, Roy S, Jain V, Pillai PP. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25248-25274. [PMID: 35715224 DOI: 10.1021/acsami.2c05378] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
Collapse
Affiliation(s)
- Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
30
|
Hu H, Han X, Wu G, Ma Z, Wu B, Yan M, Lin X, Zheng X, Hong X. Spiral Square Nanosheets Assembled from Ru Clusters. J Am Chem Soc 2023. [PMID: 37224478 DOI: 10.1021/jacs.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Spiral two-dimensional (2D) nanosheets exhibit unique physical and chemical phenomena due to their twisted structures. While self-assembly of clusters is an ideal strategy to form hierarchical 2D structures, it is challenging to form spiral nanosheets. Herein, we first report a screw dislocation involved assembled method to obtain 2D spiral cluster assembled nanosheets (CANs) with uniform square morphology. The 2D spiral Ru CANs with a length of approximately 4 μm and thickness of 20.7 ± 3.0 nm per layer were prepared via the assembly of 1-2 nm Ru clusters in the presence of molten block copolymer Pluronic F127. Cryo-electron microscopy (cryo-EM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) demonstrate the existence of screw dislocation in the spiral assembled structure. The X-ray absorption fine structure spectrum indicates that Ru clusters are Ru3+ species, and Ru atoms are mainly coordinated with Cl with a coordination number of 6.5. Fourier-transform infrared (FT-IR) spectra and solid-state nuclear magnetic resonance hydrogen spectra (1H NMR) indicate that the assembly process of Ru clusters is formed by noncovalent interactions, including hydrogen bonding and hydrophilic interactions. Additionally, the Ru-F127 CANs exhibit excellent photothermal conversion performance in the near-infrared (NIR) region.
Collapse
Affiliation(s)
- Haohui Hu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Bei Wu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muyu Yan
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xingen Lin
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
31
|
Guan H, Harris C, Sun S. Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions. Acc Chem Res 2023. [PMID: 37205747 DOI: 10.1021/acs.accounts.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ConspectusFunctional nanoparticles (NPs) have been studied extensively in the past decades for their unique nanoscale properties and their promising applications in advanced nanosciences and nanotechnologies. One critical component of studying these NPs is to prepare monodisperse NPs so that their physical and chemical properties can be tuned and optimized. Solution phase reactions have provided the most reliable processes for fabricating such monodisperse NPs in which metal-ligand interactions play essential roles in the synthetic controls. These interactions are also key to stabilizing the preformed NPs for them to show the desired electronic, magnetic, photonic, and catalytic properties. In this Account, we summarize some representative organic bipolar ligands that have recently been explored to control NP formation and NP functions. These include aliphatic acids, alkylphosphonic acids, alkylamines, alkylphosphines, and alkylthiols. This ligand group covers metal-ligand interactions via covalent, coordination, and electrostatic bonds that are most commonly employed to control NP sizes, compositions, shapes, and properties. The metal-ligand bonding effects on NP nucleation rate and growth can now be more thoroughly investigated by in situ spectroscopic and theoretical studies. In general, to obtain the desired NP size and monodispersity requires rational control of the metal/ligand ratios, concentrations, and reaction temperatures in the synthetic solutions. In addition, for multicomponent NPs, the binding strength of ligands to various metal surfaces needs to be considered in order to prepare these NPs with predesigned compositions. The selective ligand binding onto certain facets of NPs is also key to anisotropic growth of NPs, as demonstrated in the synthesis of one-dimensional nanorods and nanowires. The effects of metal-ligand interactions on NP functions are discussed in two aspects, electrochemical catalysis for CO2 reduction and electronic transport across NP assemblies. We first highlight recent advances in using surface ligands to promote the electrochemical reduction of CO2. Several mechanisms are discussed, including the modification of the catalyst surface environment, electron transfer through the metal-organic interface, and stabilization of the CO2 reduction intermediates, all of which facilitate selective CO2 reduction. These strategies lead to better understanding of molecular level control of catalysis for further catalyst optimization. Metal-ligand interaction in magnetic NPs can also be used to control tunneling magnetoresistance properties across NPs in NP assemblies by tuning NP interparticle spacing and surface spin polarization. In all, metal-ligand interactions have yielded particularly promising directions for tuning CO2 reduction selectivity and for optimizing nanoelectronics, and the concepts can certainly be extended to rationalize NP engineering at atomic/molecular precision for the fabrication of sensitive functional devices that will be critical for many nanotechnological applications.
Collapse
Affiliation(s)
- Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
32
|
Marino E, Rosen DJ, Yang S, Tsai EHR, Murray CB. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering. NANO LETTERS 2023; 23:4250-4257. [PMID: 37184728 DOI: 10.1021/acs.nanolett.3c00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For decades, the spontaneous organization of nanocrystals into superlattices has captivated the scientific community. However, achieving direct control over the formation of the superlattice and its phase transformations has proven to be a grand challenge, often resulting in the generation of multiple symmetries under the same experimental conditions. Here, we achieve direct control over the formation of the superlattice and its phase transformations by modulating the thermal energy of a nanocrystal dispersion without relying on solvent evaporation. We follow the temperature-dependent dynamics of the self-assembly process using synchrotron-based small-angle X-ray scattering. When cooled below -24.5 °C, lead sulfide nanocrystals form micrometer-sized three-dimensional phase-pure body-centered cubic superlattices. When cooled below -35.1 °C, these superlattices undergo a collective diffusionless phase transformation that yields denser body-centered tetragonal phases. These structural changes can be reversed by increasing the temperature of the dispersion and may lead to the direct modulation of the optical properties of these artificial solids.
Collapse
Affiliation(s)
- Emanuele Marino
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennslvania 19104 United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104 United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennslvania 19104 United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Building 735, Upton, New York 11973-5000, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennslvania 19104 United States
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104 United States
| |
Collapse
|
33
|
Mireles Villegas N, Hernandez JC, John JC, Sheldon M. Promoting solution-phase superlattices of CsPbBr 3 nanocrystals. NANOSCALE 2023. [PMID: 37171143 DOI: 10.1039/d3nr00693j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a size-selective method for purifying and isolating perovskite CsPbBr3 nanocrystals (NCs) that preserves their as-synthesized surface chemistry and extremely high photoluminescence quantum yields (PLQYs). The isolation procedure is based on the stepwise evaporation of nonpolar co-solvents with high vapor pressure to promote precipitation of a size-selected product. As the sample fractions become more uniform in size, we observe that the NCs self-assemble into colloidally stable, solution-phase superlattices (SLs). Small angle X-ray scattering (SAXS) and dynamic light scattering (DLS) studies show that the solution-phase SLs contain 1000s of NCs per supercrystal in a simple cubic, face-to-face packing arrangement. The SLs also display systematically faster radiative decay dynamics and improved PLQYs, as well as unique spectral absorption features likely resulting from inter-particle electronic coupling effects. This study is the first demonstration of solution-phase CsPbBr3 SLs and highlights their potential for achieving collective optoelectronic phenomena previously observed from solid-state assemblies.
Collapse
Affiliation(s)
| | - Josue C Hernandez
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
| | - Joshua C John
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Matthew Sheldon
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
34
|
Baranov M, Duan Y, Leffler N, Avineri S, Ezersky V, Weinstock IA. Entrapment of metastable nanocrystals by polyoxometalates. Chem Commun (Camb) 2023; 59:4364-4367. [PMID: 36946248 DOI: 10.1039/d3cc00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Entirely inorganic polyoxometalate cluster-anion ligands are herein used to entrap and impart heat resistance to metastable metal-oxide based NCs. This is demonstrated by trapping 6-line ferrihydrite NCs that form as intermediates in the spontaneous conversion of β-FeOOH to hematite (α-Fe2O3). The results suggest that polyoxometalate ligation may prove to be a general method for stabilizing metastable phases as the cores of entirely inorganic macro-anion like complexes.
Collapse
Affiliation(s)
- Mark Baranov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yan Duan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| | - Nitai Leffler
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shani Avineri
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Vladimir Ezersky
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ira A Weinstock
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
35
|
Chang YC, Jin Z, Li K, Zhou J, Yim W, Yeung J, Cheng Y, Retout M, Creyer MN, Fajtová P, He T, Chen X, O'Donoghue AJ, Jokerst JV. Peptide valence-induced breaks in plasmonic coupling. Chem Sci 2023; 14:2659-2668. [PMID: 36908948 PMCID: PMC9993903 DOI: 10.1039/d2sc05837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Electrostatic interactions are a key driving force that mediates colloidal assembly. The Schulze-Hardy rule states that nanoparticles have a higher tendency to coagulate in the presence of counterions with high charge valence. However, it is unclear how the Schulze-Hardy rule works when the simple electrolytes are replaced with more sophisticated charge carriers. Here, we designed cationic peptides of varying valencies and demonstrate that their charge screening behaviors on anionic gold nanoparticles (AuNPs) follow the six-power relationship in the Schulze-Hardy rule. This finding further inspires a simple yet effective strategy for measuring SARS-CoV-2 main protease (Mpro) via naked eyes. This work provides a unique avenue for fundamental NP disassembly based on the Schulze-Hardy rule and can help design versatile substrates for colorimetric sensing of other proteases.
Collapse
Affiliation(s)
- Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego La Jolla California 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California San Diego La Jolla California 92093 USA
| | - Ke Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research Singapore 138634 Singapore
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego La Jolla California 92093 USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego La Jolla California 92093 USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego La Jolla California 92093 USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego La Jolla California 92093 USA
| | - Maurice Retout
- Department of NanoEngineering, University of California San Diego La Jolla California 92093 USA
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego La Jolla California 92093 USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego La Jolla California 92093 USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego La Jolla California 92093 USA
| | - Xi Chen
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego La Jolla California 92093 USA
| | - Jesse V Jokerst
- Materials Science and Engineering Program, University of California San Diego La Jolla California 92093 USA
- Department of NanoEngineering, University of California San Diego La Jolla California 92093 USA
- Department of Radiology, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
36
|
Wang S, Lu S, Tian X, Liu W, Si Y, Yang Y, Qiu H, Zhang H, Li J. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands. ACS NANO 2023; 17:2792-2801. [PMID: 36651568 DOI: 10.1021/acsnano.2c11077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Self-assembled inorganic nanocrystal (NC) superlattices are powerful material platforms with diverse structures and emergent functionalities. However, their applications suffer from the low structural stability against solvents and other stimuli, due to the weak interparticle interactions. Existing strategies to stabilize NC superlattices typically require the design and incorporation of special ligands prior to self-assembly and are only applicable to superlattices of certain NCs, ligands, and structures. Here we report a general method to stabilize superlattices of various NC compositions and structures via strong, covalently bonded ligands. The core is the use of light-triggered, nitrene-based cross-linkers that do not interfere the self-assembly process while nonspecifically and effectively bonding the native ligands of NCs. The stabilized 2D and 3D superlattices of metal, semiconductor, and magnetic NCs retain their structures when being exposed to solvents of different polarities (from toluene to water) and show high thermal stability and mechanical rigidity. This can further stabilize binary NC superlattices, beyond those achievable in previous methods. Stabilized superlattices show robust and reproducible functionalities, for instance, when serving as reusable substrates for surface enhanced Raman spectroscopy. These results create more possibilities in exploiting the impressive library of NC superlattices in a broad scope of applications.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yilong Si
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuchen Yang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Liu W, Li Q, Wu J, Wang W, Jiang R, Zhou C, Wang S, Zhang X, Sun T, Xu Z, Wang D. Self-assembly of Au nanocrystals into large-area 3-D ordered flexible superlattice nanostructures arrays for ultrasensitive trace multi-hazard detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130124. [PMID: 36308928 DOI: 10.1016/j.jhazmat.2022.130124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles that self-assemble into highly ordered superlattice nanostructures hold substantial promise for facilitating ultra-trace surface-enhanced Raman scattering (SERS) detection. Herein, we propose a boiling-point evaporation method to synthesize ordered monocrystal-like superlattice Au nanostructures (OML-Au NTs) with a polyhedral morphology. Combined with thermal nanoimprint technology, OML-Au NTs were directly transferred to impact-resistant polystyrene (IPS) flexible SERS substrates, the obtained flexible substrates (donated as OML-Au NTs/IPS) detection limit for R6G molecules as low as 10-13 M. These results were confirmed by simulating the electromagnetic field distribution of ordered/unordered two-dimensional single-layer and three-dimensional aggregated gold nanostructures. The OML-Au NTs/IPS substrates were successfully used to detect and quantify three commonly-used agricultural pesticides, achieving detection limits as low as 10-11 M and 10-12 M, and in situ real-time detection limit reached 0.24 pg/cm2 for thiram on apple peels, which was 3 orders of magnitude lower than the current detection limit. In addition, the Raman intensity from multiple locations showed a relative standard deviation lower than 7 %, exhibiting the reliability necessary for practical applications. As a result, this research demonstrates a highly reproducible method to enable the development of plasmonic nanomaterials with flexible superstructures.
Collapse
Affiliation(s)
- Wei Liu
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qian Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
| | - Jiabin Wu
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Weizhe Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Rui Jiang
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Chunli Zhou
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuangbao Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xueming Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Tangyou Sun
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Zhimou Xu
- School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Hao Q, Lv H, Ma H, Tang X, Chen M. Development of Self-Assembly Methods on Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1317. [PMID: 36770326 PMCID: PMC9919123 DOI: 10.3390/ma16031317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Quantum dot materials, with their unique photophysical properties, are promising zero-dimensional materials for encryption, display, solar cells, and biomedical applications. However, due to the large surface to volume ratio, they face the challenge of chemical instability and low carrier transport efficiency, which have greatly limited their reliability and utility. In light of the current development bottleneck of quantum dot materials, the chemical stability and physical properties can be effectively improved by the self-assembly method. This review will discuss the research progress of the self-assembly methods of quantum dots and analyze the advantages and disadvantages of those self-assembly methods. Furthermore, the scientific challenges and improvement in the self-assembly method of quantum dots are prospected.
Collapse
Affiliation(s)
- Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyu Lv
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Haifei Ma
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
39
|
Gao J, Sun D, Li Z, Zhang Z, Qu Z, Yun Y, Min F, Lv W, Guo M, Ye Y, Yang Z, Qiao Y, Song Y. Orientation-Controlled Ultralong Assembly of Janus Particles Induced by Bubble-Driven Instant Quasi-1D Interfaces. J Am Chem Soc 2023; 145:2404-2413. [PMID: 36656650 DOI: 10.1021/jacs.2c11429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Constructing precisely oriented assemblies and exploring their orientation-dependent properties remain a challenge for Janus nanoparticles (JNPs) due to their asymmetric characteristics. Herein, we propose a bubble-driven instant quasi-1D interfacial strategy for the oriented assembly of JNP chains in a highly controllable manner. It is found that the rapid formation of templated bubbles can promote the interfacial orientation of JNPs kinetically, while the confined quasi-1D interface in the curved liquid bridge can constrain the disordered rotation of the particles, yielding well-oriented JNP chains in a long range. During the evaporation process, the interfacial orientation of the JNPs can be transferred to the assembled chains. By regulating the amphiphilicity of the JNPs, both heteraxial and coaxial JNP assemblies are obtained, which show different polarization dependences on light scattering, and the related colorimetric logic behaviors are demonstrated. This work demonstrates the great potential of patterned interfacial assembly with a manageable orientation and shows the broad prospect of asymmetric JNP assembly in constructing novel optoelectronic devices.
Collapse
Affiliation(s)
- Jie Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Dayin Sun
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Zheng Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China
| | - Zeying Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Zhiyuan Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yang Yun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Fanyi Min
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Wenkun Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Mengmeng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yilan Ye
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
40
|
Jansen M, Tisdale WA, Wood V. Nanocrystal phononics. NATURE MATERIALS 2023; 22:161-169. [PMID: 36702886 DOI: 10.1038/s41563-022-01438-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Lionello C, Perego C, Gardin A, Klajn R, Pavan GM. Supramolecular Semiconductivity through Emerging Ionic Gates in Ion-Nanoparticle Superlattices. ACS NANO 2023; 17:275-287. [PMID: 36548051 PMCID: PMC9835987 DOI: 10.1021/acsnano.2c07558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals via mediation by citrate counterions. In silico ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the "band gap" requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice's cavities.
Collapse
Affiliation(s)
- Chiara Lionello
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Claudio Perego
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Andrea Gardin
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Giovanni M. Pavan
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
| |
Collapse
|
42
|
Gao X, Jiang G, Gao C, Prudnikau A, Hübner R, Zhan J, Zou G, Eychmüller A, Cai B. Interparticle Charge-Transport-Enhanced Electrochemiluminescence of Quantum-Dot Aerogels. Angew Chem Int Ed Engl 2023; 62:e202214487. [PMID: 36347831 DOI: 10.1002/anie.202214487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.
Collapse
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Guocan Jiang
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Anatol Prudnikau
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | | | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| |
Collapse
|
43
|
Wang Y, Song Z, Wan J, Betzler S, Xie Y, Ophus C, Bustillo KC, Ercius P, Wang LW, Zheng H. Strong Structural and Electronic Coupling in Metavalent PbS Moiré Superlattices. J Am Chem Soc 2022; 144:23474-23482. [PMID: 36512727 DOI: 10.1021/jacs.2c09947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moiré superlattices are twisted bilayer materials in which the tunable interlayer quantum confinement offers access to new physics and novel device functionalities. Previously, moiré superlattices were built exclusively using materials with weak van der Waals interactions, and synthesizing moiré superlattices with strong interlayer chemical bonding was considered to be impractical. Here, using lead sulfide (PbS) as an example, we report a strategy for synthesizing moiré superlattices coupled by strong chemical bonding. We use water-soluble ligands as a removable template to obtain free-standing ultrathin PbS nanosheets and assemble them into direct-contact bilayers with various twist angles. Atomic-resolution imaging shows the moiré periodic structural reconstruction at the superlattice interface due to the strong metavalent coupling. Electron energy loss spectroscopy and theoretical calculations collectively reveal the twist-angle-dependent electronic structure, especially the emergent separation of flat bands at small twist angles. The localized states of flat bands are similar to well-arranged quantum dots, promising an application in devices. This study opens a new door to the exploration of deep energy modulations within moiré superlattices alternative to van der Waals twistronics.
Collapse
Affiliation(s)
- Yu Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.,Center for Electron Microscopy and South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou510640, China
| | - Zhigang Song
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts02138, United States
| | - Jiawei Wan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California94720, United States
| | - Sophia Betzler
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Yujun Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Colin Ophus
- National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Peter Ercius
- National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California94720, United States
| |
Collapse
|
44
|
Gentili D, Ori G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. NANOSCALE 2022; 14:14385-14432. [PMID: 36169572 DOI: 10.1039/d2nr02640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.
Collapse
Affiliation(s)
- Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Guido Ori
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Rue du Loess 23, F-67034 Strasbourg, France.
| |
Collapse
|
45
|
Fiedler C, Kleinhanns T, Garcia M, Lee S, Calcabrini M, Ibáñez M. Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8471-8489. [PMID: 36248227 PMCID: PMC9558429 DOI: 10.1021/acs.chemmater.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Indexed: 05/25/2023]
Abstract
Thermoelectric technology requires synthesizing complex materials where not only the crystal structure but also other structural features such as defects, grain size and orientation, and interfaces must be controlled. To date, conventional solid-state techniques are unable to provide this level of control. Herein, we present a synthetic approach in which dense inorganic thermoelectric materials are produced by the consolidation of well-defined nanoparticle powders. The idea is that controlling the characteristics of the powder allows the chemical transformations that take place during consolidation to be guided, ultimately yielding inorganic solids with targeted features. Different from conventional methods, syntheses in solution can produce particles with unprecedented control over their size, shape, crystal structure, composition, and surface chemistry. However, to date, most works have focused only on the low-cost benefits of this strategy. In this perspective, we first cover the opportunities that solution processing of the powder offers, emphasizing the potential structural features that can be controlled by precisely engineering the inorganic core of the particle, the surface, and the organization of the particles before consolidation. We then discuss the challenges of this synthetic approach and more practical matters related to solution processing. Finally, we suggest some good practices for adequate knowledge transfer and improving reproducibility among different laboratories.
Collapse
Affiliation(s)
- Christine Fiedler
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tobias Kleinhanns
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Garcia
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Seungho Lee
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mariano Calcabrini
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Ibáñez
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
46
|
Kirscher Q, Hajjar-Garreau S, Grasset F, Berling D, Soppera O. Deep-UV laser direct writing of photoluminescent ZnO submicron patterns: an example of nanoarchitectonics concept. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:535-546. [PMID: 36238440 PMCID: PMC9553187 DOI: 10.1080/14686996.2022.2116294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanopatterning of metal oxide materials is an important process to develop electronic or optoelectronic devices. ZnO is a material of choice for its semiconducting and photoluminescence properties. In the frame of the nanoarchitectonics concept, we have developed and investigated a new process that relies on direct writing laser patterning in the Deep-UV (DUV) range to prepare photoluminescent microstructures of ZnO at room temperature, under air. This process is based on a synthesis of colloidal ZnO nanocrystals (NCs) with a careful choice of the ligands on the surface to obtain an optimal (i) stability of the colloids, (ii) redissolution of the non-insolated parts and (iii) cross-linking of the DUV-insolated parts. The mechanisms of photocrosslinking are studied by different spectroscopic methods. This room temperature process preserves the photoluminescence properties of the NCs and the wavelength used in DUV allows to reach a sub-micrometer resolution, which opens new perspectives for the integration of microstructures on flexible substrates for optoelectronic applications.
Collapse
Affiliation(s)
- Quentin Kirscher
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361 CNRS-UHA, Université de Haute Alsace, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Samar Hajjar-Garreau
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361 CNRS-UHA, Université de Haute Alsace, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Dominique Berling
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361 CNRS-UHA, Université de Haute Alsace, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Olivier Soppera
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361 CNRS-UHA, Université de Haute Alsace, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
47
|
Yang Z, Wei Y, Wei J, Yang Z. Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding. Nat Commun 2022; 13:5844. [PMID: 36195762 PMCID: PMC9532428 DOI: 10.1038/s41467-022-33638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
The development of mechanochemistry substantially expands the traditional synthetic realm at the molecular level. Here, we extend the concept of mechanochemistry from atomic/molecular solids to the nanoparticle solids, and show how the macroscopic grinding is being capable of generating chirality in self-assembled nanorod (NR) assemblies. Specifically, the weak van der Waals interaction is dominated in self-assembled NR assemblies when their surface is coated with aliphatic chains, which can be overwhelmed by a press-and-rotate mechanic force macroscopically. The chiral sign of the NR assemblies can be well-controlled by the rotating directions, where the clockwise and counter-clockwise rotation leads to the positive and negative Cotton effect in circular dichroism and circularly polarized luminescence spectra, respectively. Importantly, we show that the present approach can be applied to NRs of diverse inorganic materials, including CdSe, CdSe/CdS, and TiO2. Equally important, the as-prepared chiral NR assemblies could be served as porous yet robust chiral substrates, which enable to host other molecular materials and induce the chirality transfer from substrate to the molecular system.
Collapse
Affiliation(s)
- Zhiwei Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yanze Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
48
|
Zhu H, Fan Z, Song S, Eggert D, Liu Y, Shi W, Yuan Y, Kim KS, Grünwald M, Chen O. Dual Atomic Coherence in the Self-Assembly of Patchy Heterostructural Nanocrystals. ACS NANO 2022; 16:15053-15062. [PMID: 36048768 DOI: 10.1021/acsnano.2c06167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advances in the synthesis and self-assembly of nanocrystals have enabled researchers to create a plethora of different nanoparticle superlattices. But while many superlattices with complex types of translational order have been realized, rotational order of nanoparticle building blocks within the lattice is more difficult to achieve. Self-assembled superstructures with atomically coherent nanocrystal lattices, which are desirable due to their exceptional electronic and optical properties, have been fabricated only for a few selected systems. Here, we combine experiments with molecular dynamics (MD) simulations to study the self-assembly of heterostructural nanocrystals (HNCs), consisting of a near-spherical quantum dot (QD) host decorated with a small number of epitaxially grown gold nanocrystal (Au NC) "patches". Self-assembly of these HNCs results in face-centered-cubic (fcc) superlattices with well-defined orientational relationships between the atomic lattices of both QD hosts and Au patches. MD simulations indicate that the observed dual atomic coherence is linked to the number, size, and relative positions of gold patches. This study provides a strategy for the design and fabrication of NC superlattices with large structural complexity and delicate orientational order.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhaochuan Fan
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Siyuan Song
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dennis Eggert
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wenwu Shi
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yucheng Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kyung-Suk Kim
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Michael Grünwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
49
|
Cheng Z, Jones MR. Assembly of planar chiral superlattices from achiral building blocks. Nat Commun 2022; 13:4207. [PMID: 35864092 PMCID: PMC9304327 DOI: 10.1038/s41467-022-31868-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The spontaneous assembly of chiral structures from building blocks that lack chirality is fundamentally important for colloidal chemistry and has implications for the formation of advanced optical materials. Here, we find that purified achiral gold tetrahedron-shaped nanoparticles assemble into two-dimensional superlattices that exhibit planar chirality under a balance of repulsive electrostatic and attractive van der Waals and depletion forces. A model accounting for these interactions shows that the growth of planar structures is kinetically preferred over similar three-dimensional products, explaining their selective formation. Exploration and mapping of different packing symmetries demonstrates that the hexagonal chiral phase forms exclusively because of geometric constraints imposed by the presence of constituent tetrahedra with sharp tips. A formation mechanism is proposed in which the chiral phase nucleates from within a related 2D achiral phase by clockwise or counterclockwise rotation of tetrahedra about their central axis. These results lay the scientific foundation for the high-throughput assembly of planar chiral metamaterials. The formation of nanostructures with chiral symmetry often requires chiral directing agents at a smaller length scale. Here, the authors report the self-assembly of 2D chiral superlattices from achiral tetrahedron-shaped building blocks.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Rice University, Houston, TX, US
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, TX, US. .,Department of Materials Science & Nanoengineering, Rice University, Houston, TX, US.
| |
Collapse
|
50
|
Staller CM, Gibbs SL, Gan XY, Bender JT, Jarvis K, Ong GK, Milliron DJ. Contact Conductance Governs Metallicity in Conducting Metal Oxide Nanocrystal Films. NANO LETTERS 2022; 22:5009-5014. [PMID: 35640240 DOI: 10.1021/acs.nanolett.2c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although colloidal nanoparticles hold promise for fabricating electronic components, the properties of nanoparticle-derived materials can be unpredictable. Materials made from metallic nanocrystals exhibit a variety of transport behavior ranging from insulators, with internanocrystal contacts acting as electron transport bottlenecks, to conventional metals, where phonon scattering limits electron mobility. The insulator-metal transition (IMT) in nanocrystal films is thought to be determined by contact conductance. Meanwhile, criteria are lacking to predict the characteristic transport behavior of metallic nanocrystal films beyond this threshold. Using a library of transparent conducting tin-doped indium oxide nanocrystal films with varied electron concentration, size, and contact area, we assess the IMT as it depends on contact conductance and show how contact conductance is also key to predicting the temperature-dependence of conductivity in metallic films. The results establish a phase diagram for electron transport behavior that can guide the creation of metallic conducting materials from nanocrystal building blocks.
Collapse
Affiliation(s)
- Corey M Staller
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephen L Gibbs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xing Yee Gan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jay T Bender
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Karalee Jarvis
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Gary K Ong
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|