1
|
Niu M, Qin SY, Wang BQ, Chen NK, Li XB. Ultrafast structural transition and electron-phonon/phonon-phonon coupling in antimony revealed by nonadiabatic molecular dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:045401. [PMID: 39401529 DOI: 10.1088/1361-648x/ad8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A1gphonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A1g-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.
Collapse
Affiliation(s)
- Meng Niu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Shun-Yao Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Bai-Qian Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Nian-Ke Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| |
Collapse
|
2
|
Zhu P, Surendra YW, Nekoonam N, Aziz S, Hou P, Bhagwat S, Song Q, Helmer D, Rapp BE. Fabrication of Microstructured Hydrogels via Dehydration for On-Demand Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406092. [PMID: 39439162 DOI: 10.1002/smll.202406092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Microstructured hydrogels show promising applications in various engineering fields from micromolds to anisotropic wetting surfaces and microfluidics. Although methods like molding by, e.g., casting as well as 3D printing are developed to fabricate microstructured hydrogels, developing fabrication methods with high controllability and low-cost is an on-going challenge. Here, a method is presented for creating microstructures through the dehydration of double network hydrogels. This method utilizes common acrylate monomers and a mask-assisted photopolymerization process, requiring no complex equipment or laborious chemical synthesis process. The shape and profile of microstructures can be easily controlled by varying the exposure time and the mask used during photopolymerization. By altering the monomer and the mask used for fabricating the second network hydrogel, both convex and concave microstructures can be produced. To showcase the utility of this method, the patterned hydrogel is utilized as a mold to fabricate a polydimethylsiloxane microlens array via soft lithography for imaging application. In addition, a patterned hydrogel surface exhibiting obvious anisotropic wetting properties and open microfluidic devices which can achieve fast directional superspreading within milliseconds are also fabricated to demonstrate the versatility of the method for different engineering fields.
Collapse
Affiliation(s)
- Pang Zhu
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Yasindu Wickrama Surendra
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Niloofar Nekoonam
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Soroush Aziz
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Peilong Hou
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Sagar Bhagwat
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Qingchuan Song
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
| | - Dorothea Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
- Freiburg Center of Interactive Materials and Bioinspired Technologies (FIT), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
- Glassomer GmbH, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104, Freiburg, Germany
| | - Bastian E Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
- Freiburg Center of Interactive Materials and Bioinspired Technologies (FIT), Albert Ludwig University of Freiburg, 79110, Freiburg, Germany
- Glassomer GmbH, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Xu L, Ding H, Wu S, Xiong N, Hong Y, Zhu W, Chen X, Han X, Tao M, Wang Y, Wang D, Xu M, Huo D, Gu Z, Liu Y. Artificial Meshed Vessel-Induced Dimensional Breaking Growth of Human Brain Organoids and Multiregional Assembloids. ACS NANO 2024; 18. [PMID: 39270300 PMCID: PMC11440649 DOI: 10.1021/acsnano.4c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 μm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.
Collapse
Affiliation(s)
- Lei Xu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haibo Ding
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Shanshan Wu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Nankun Xiong
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuan Hong
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xingyi Chen
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengdan Tao
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuanhao Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, Nanjing 211166, China
| | - Zhongze Gu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yan Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Zhu D, Jiang S, Liao C, Xu L, Wang Y, Liu D, Bao W, Wang F, Huang H, Weng X, Liu L, Qu J, Wang Y. Ultrafast Laser 3D Nanolithography of Fiber-Integrated Silica Microdevices. NANO LETTERS 2024; 24:9734-9742. [PMID: 39047072 DOI: 10.1021/acs.nanolett.4c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.
Collapse
Affiliation(s)
- Dezhi Zhu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shangben Jiang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ying Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Weijia Bao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Famei Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Lyu X, Zheng Z, Shiva A, Han M, Dayan CB, Zhang M, Sitti M. Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication. Nat Commun 2024; 15:6693. [PMID: 39107326 PMCID: PMC11303746 DOI: 10.1038/s41467-024-51086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines.
Collapse
Affiliation(s)
- Xianglong Lyu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anitha Shiva
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Mertcan Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Cem Balda Dayan
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
6
|
Fan X, Wang X, Ye Y, Ye Y, Su Y, Zhang Y, Wang C. Printing 3D Metallic Structures in Porous Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312071. [PMID: 38446075 DOI: 10.1002/smll.202312071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Indexed: 03/07/2024]
Abstract
The fabrication of metallic micro/nanostructures has great potential for advancing optoelectronic microdevices. Over the past decade, femtosecond laser direct writing (FsLDW) technology has played a crucial role in driving progress in this field. In this study, silica gel glass is used as a supporting medium, and FsLDW is employed to reduce gold and palladium ions using 7-Diethylamino-3-thenoylcoumarin (DETC) as a two-photon sensitizer, enabling the printing of conductive multilayered and 3D metallic structures. How the pore size of the silica gel glass affects the electrical conductivity of printed metal wires is systematically examined. This 3D printing method is versatile and offers expanded opportunities for applying metallic micro/nanostructures in optoelectronic devices.
Collapse
Affiliation(s)
- Xiaolin Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xue Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuanxiang Ye
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Ying Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuming Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yusheng Zhang
- Suzhou Institute for Advanced Research, University of Science and Technology of China (USTC), Suzhou, 215127, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
7
|
Hu H, Deng C, Gao H, Han T, Xue S, Tang Y, Zhang M, Li M, Liu H, Deng L, Xiong W. 3D Nanoprinting of Heterogeneous Metal Oxides with High Shape Fidelity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405053. [PMID: 38857896 DOI: 10.1002/adma.202405053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Indexed: 06/12/2024]
Abstract
3D nanoprinting can significantly enhance the performance of sensors, batteries, optoelectronic/microelectronic devices, etc. However, current 3D nanoprinting methods for metal oxides are suffering from three key issues including limited material applicability, serious shape distortion, and the difficulty of heterogeneous integration. This paper discovers a mechanism in which imidazole and acrylic acid synergistically coordinate with metal ions in water. Using the mechanism, this work develops a series of metal ion synergistic coordination water-soluble (MISCWS) resins for 3D nanoprinting of various metal oxides, including MnO2, Cr2O3, Co3O4, and ZnO, as well as heterogeneous structures of MnO2/NiO, Cr2O3/Al2O3, and ZnO/MgO. Besides, the synergistic coordination effect results in a 2.54-fold increase in inorganic mass fraction within the polymer, compared with previous works, which effectively mitigates the shape distortion of metal oxide microstructures. Based on this method, this work also demonstrates a 3D ZnO microsensor with a high sensitivity (1.113 million at 200 ppm NO2), surpassing the conventional 2D ZnO sensors by tenfold. The method yields high-fidelity 3D structures of heterogeneous metal oxides with nanoscale resolution, paving the way for applications such as sensing, micro-optics, energy storage, and microsystems.
Collapse
Affiliation(s)
- Huace Hu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Tao Han
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Songyan Xue
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanting Tang
- School of Integrated Circuits, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Minjing Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Huan Liu
- Optics Valley Laboratory, Hubei, 430074, China
- School of Integrated Circuits, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
8
|
Asgari Sabet R, Ishraq A, Saltik A, Bütün M, Tokel O. Laser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding. Nat Commun 2024; 15:5786. [PMID: 39013851 PMCID: PMC11252398 DOI: 10.1038/s41467-024-49303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/29/2024] [Indexed: 07/18/2024] Open
Abstract
Nanofabrication in silicon, arguably the most important material for modern technology, has been limited exclusively to its surface. Existing lithography methods cannot penetrate the wafer surface without altering it, whereas emerging laser-based subsurface or in-chip fabrication remains at greater than 1 μm resolution. In addition, available methods do not allow positioning or modulation with sub-micron precision deep inside the wafer. The fundamental difficulty of breaking these dimensional barriers is two-fold, i.e., complex nonlinear effects inside the wafer and the inherent diffraction limit for laser light. Here, we overcome these challenges by exploiting spatially-modulated laser beams and anisotropic feedback from preformed subsurface structures, to establish controlled nanofabrication capability inside silicon. We demonstrate buried nanostructures of feature sizes down to 100 ± 20 nm, with subwavelength and multi-dimensional control; thereby improving the state-of-the-art by an order-of-magnitude. In order to showcase the emerging capabilities, we fabricate nanophotonics elements deep inside Si, exemplified by nanogratings with record diffraction efficiency and spectral control. The reported advance is an important step towards 3D nanophotonics systems, micro/nanofluidics, and 3D electronic-photonic integrated systems.
Collapse
Affiliation(s)
- Rana Asgari Sabet
- Department of Physics, Bilkent University, Ankara, Turkey
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Aqiq Ishraq
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Alperen Saltik
- Department of Physics, Bilkent University, Ankara, Turkey
| | - Mehmet Bütün
- Department of Physics, Bilkent University, Ankara, Turkey
| | - Onur Tokel
- Department of Physics, Bilkent University, Ankara, Turkey.
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
9
|
Zhu P, Song Q, Bhagwat S, Mayoussi F, Goralczyk A, Nekoonam N, Sanjaya M, Hou P, Tisato S, Kotz-Helmer F, Helmer D, Rapp BE. Generation of precision microstructures based on reconfigurable photoresponsive hydrogels for high-resolution polymer replication and microoptics. Nat Commun 2024; 15:5673. [PMID: 38971797 PMCID: PMC11227548 DOI: 10.1038/s41467-024-50008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Microstructured molds are essential for fabricating various components ranging from precision optics and microstructured surfaces to microfluidics. However, conventional fabrication technology such as photolithography requires expensive equipment and a large number of processing steps. Here, we report a facile method to fabricate micromolds based on a reusable photoresponsive hydrogel: Uniform micropatterns are engraved into the hydrogel surface using photo masks under UV irradiation within a few minutes. Patterns are replicated using polydimethylsiloxane with minimum feature size of 40 μm and smoothness of Rq ~ 3.4 nm. After replication, the patterns can be fully erased by light thus allowing for reuse as a new mold without notable loss in performance. Utilizing greyscale lithography, patterns with different height levels can be produced within the same exposure step. We demonstrate the versatility of this method by fabricating diffractive optical elements devices and a microlens array and microfluidic device with 100 µm wide channels.
Collapse
Affiliation(s)
- Pang Zhu
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Qingchuan Song
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
- Freiburg Center of Interactive Materials and Bioinspired Technologies(FIT), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Sagar Bhagwat
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Fadoua Mayoussi
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Andreas Goralczyk
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Niloofar Nekoonam
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | - Peilong Hou
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Silvio Tisato
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
- Freiburg Center of Interactive Materials and Bioinspired Technologies(FIT), Albert Ludwig University of Freiburg, Freiburg, Germany
- Glassomer GmbH, Freiburg, Germany
| | - Dorothea Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany.
- Freiburg Center of Interactive Materials and Bioinspired Technologies(FIT), Albert Ludwig University of Freiburg, Freiburg, Germany.
- Glassomer GmbH, Freiburg, Germany.
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, Germany.
| | - Bastian E Rapp
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, Germany
- Freiburg Center of Interactive Materials and Bioinspired Technologies(FIT), Albert Ludwig University of Freiburg, Freiburg, Germany
- Glassomer GmbH, Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Liu Z, Wang Y, He H, Zhang C, Pan N, Wang L. Interfacial Dehydration Strategy for Chitosan Film Shape Morphing and Its Application. NANO LETTERS 2024; 24:6665-6672. [PMID: 38767991 DOI: 10.1021/acs.nanolett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.
Collapse
Affiliation(s)
- Zhongqi Liu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yuanyu Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hailong He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Chenyuan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Na Pan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
11
|
Huang S, Liu X, Lin S, Glynn C, Felix K, Sahasrabudhe A, Maley C, Xu J, Chen W, Hong E, Crosby AJ, Wang Q, Rao S. Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics. Nat Commun 2024; 15:3525. [PMID: 38664445 PMCID: PMC11045824 DOI: 10.1038/s41467-024-47988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Xinyue Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher Glynn
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Kayla Felix
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Collin Maley
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Jingyi Xu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Eunji Hong
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
12
|
Shen Y, Le X, Wu Y, Chen T. Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: recent advances and future challenges. Chem Soc Rev 2024; 53:606-623. [PMID: 38099593 DOI: 10.1039/d3cs00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Information storage and security is one of the perennial hot issues in society, while the further advancements of related chemical anti-counterfeiting systems remain a formidable challenge. As emerging anti-counterfeiting materials, stimulus-responsive polymers (SRPs) have attracted extensive attention due to their unique stimulus-responsiveness and charming discoloration performance. At the same time, single-channel decryption technology with low-security levels has been unable to effectively prevent information from being stolen or mimicked. As a result, it would be of great significance to develop SRPs with multi-mode and multi-level anti-counterfeiting characteristics. This study summarizes the latest achievements in advance anti-counterfeiting strategies based on SRPs, including multi-mode anti-counterfeiting (static information) and multi-level anti-counterfeiting (dynamic information). In addition, the promising applications of such materials in anti-counterfeiting labels, identification platforms, intelligent displays, and others are briefly reviewed. Finally, the challenges and opportunities in this emerging field are discussed. This review serves as a useful resource for manipulating SRP-based anti-counterfeiting materials and creating cutting-edge information security and encryption systems.
Collapse
Affiliation(s)
- Ying Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Kuang X, Rong Q, Belal S, Vu T, López AML, Wang N, Arıcan MO, Garciamendez-Mijares CE, Chen M, Yao J, Zhang YS. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 2023; 382:1148-1155. [PMID: 38060634 PMCID: PMC11034850 DOI: 10.1126/science.adi1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/13/2023] [Indexed: 04/24/2024]
Abstract
Volumetric printing, an emerging additive manufacturing technique, builds objects with enhanced printing speed and surface quality by forgoing the stepwise ink-renewal step. Existing volumetric printing techniques almost exclusively rely on light energy to trigger photopolymerization in transparent inks, limiting material choices and build sizes. We report a self-enhancing sonicated ink (or sono-ink) design and corresponding focused-ultrasound writing technique for deep-penetration acoustic volumetric printing (DAVP). We used experiments and acoustic modeling to study the frequency and scanning rate-dependent acoustic printing behaviors. DAVP achieves the key features of low acoustic streaming, rapid sonothermal polymerization, and large printing depth, enabling the printing of volumetric hydrogels and nanocomposites with various shapes regardless of their optical properties. DAVP also allows printing at centimeter depths through biological tissues, paving the way toward minimally invasive medicine.
Collapse
Affiliation(s)
- Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Saud Belal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Alice M. López López
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Nanchao Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mehmet Onur Arıcan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Zhou MX, Jin F, Wang JY, Dong XZ, Liu J, Zheng ML. Dynamic Color-Switching of Hydrogel Micropillar Array under Ethanol Vapor for Optical Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304384. [PMID: 37480176 DOI: 10.1002/smll.202304384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Responsive structural colors from artificially engineered micro/nanostructures are critical to the development of anti-counterfeiting, optical encryption, and intelligent display. Herein, the responsive structural color of hydrogel micropillar array is demonstrated under the external stimulus of ethanol vapor. Micropillar arrays with full color are fabricated via femtosecond laser direct writing by controlling the height and diameter of the micropillars according to the FDTD simulation. Color-switching of the micropillar arrays is achieved in <1 s due to the formation of liquid film among micropillars. More importantly, the structural color blueshift of the micropillar arrays is sensitive to the micropillar diameter, instead of the micropillar height. The micropillar array with a diameter of 772 nm takes 400 ms to complete blueshift under ethanol vapor, while that with a diameter of 522 nm blueshifts at 2400 ms. Microscale patterns are realized by employing the size-dependent color-switching of designed micropillar arrays under ethanol vapor. Moreover, Morse code and directional blueshift of structural colors are realized in the micropillar arrays. The advantages of controllable color-switching of the hydrogel micropillar array would be prospective in the areas of optical encryption, dynamic display, and anti-counterfeiting.
Collapse
Affiliation(s)
- Ming-Xia Zhou
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jian-Yu Wang
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
15
|
He M, Shen X, Liu X, Kuang C, Liu X. 3D nanoprinting for fiber-integrated achromatic diffractive lens. OPTICS LETTERS 2023; 48:5221-5224. [PMID: 37831832 DOI: 10.1364/ol.501356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Achromatic performance is crucial for numerous multi-wavelength optical fiber applications, including endoscopic imaging and fiber sensing. This paper presents the design and nanoprinting of a fiber-integrated achromatic diffractive lens within the visible spectrum (450-650 nm). The 3D nanoprinting is achieved by a high-resolution direct laser writing technology, overcoming limitations in the optical performance caused by the lack of an arbitrary 3D structure writing capability and an insufficient feature resolution in the current manufacturing technology for visible light broadband achromatic diffractive lenses. A three-step optimization algorithm is proposed to effectively balance optical performance with writing difficulty. The characterization results demonstrate excellent achromatic focusing performance, paving the way towards the development of nanoprinted flat optical devices for applications such as optical fiber traps, miniature illumination systems, and integrated photonic chips.
Collapse
|
16
|
Ding B, Li X, Li C, Li Y, Chen SC. A survey on the mechanical design for piezo-actuated compliant micro-positioning stages. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:101502. [PMID: 37812048 DOI: 10.1063/5.0162246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
This paper presents a comprehensive review of mechanical design and synthesis methods for piezo-actuated compliant micro-positioning stages, which play an important role in areas where high precision motion is required, including bio-robotics, precision manufacturing, automation, and aerospace. Unlike conventional rigid-link mechanisms, the motion of compliant mechanisms is realized by using flexible elements, whereby deformation requires no lubrication while achieving high movement accuracy without friction. As compliant mechanisms differ significantly from traditional rigid mechanisms, recent research has focused on investigating various technologies and approaches to address challenges in the flexure-based micro-positioning stage in the aspects of synthesis, analysis, material, fabrication, and actuation. In this paper, we reviewed the main concepts and key advances in the mechanical design of compliant piezo-actuated micro-positioning stages, with a particular focus on flexure design, kineto-static modeling, actuators, material selection, and functional mechanisms including amplification and self-guiding ones. We also identified the key issues and directions for the development trends of compliant micro-positioning stages.
Collapse
Affiliation(s)
- Bingxiao Ding
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xuan Li
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
| | - Chenglin Li
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yangmin Li
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Perceptual and Interactive Intelligence, Shatin, N.T., Hong Kong, China
| |
Collapse
|
17
|
Li F, Liu SF, Liu W, Hou ZW, Jiang J, Fu Z, Wang S, Si Y, Lu S, Zhou H, Liu D, Tian X, Qiu H, Yang Y, Li Z, Li X, Lin L, Sun HB, Zhang H, Li J. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science 2023; 381:1468-1474. [PMID: 37769102 DOI: 10.1126/science.adg6681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.
Collapse
Affiliation(s)
- Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shao-Feng Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Zheng-Wei Hou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jiaxi Jiang
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yilong Si
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuchen Yang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Zhengcao Li
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Zheng M, Shen Y, Zheng L, She X, Jin C. Transfer-Printing Hydrogel-Based Platform for Moisture-Driven Dynamic Display and Optical Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45239-45248. [PMID: 37703469 DOI: 10.1021/acsami.3c10929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Humidity-responsive materials offer a promising approach to achieving tunable metasurface systems due to their fast and reversible swelling responses to moisture, which enables many important applications, such as real-time humidity sensing, optical switches, dynamic displays, and optical information encryption. However, the humidity-responsive structural coloration generally cannot provide a high spatial resolution and requires a complex patterning process. Here, we present a scalable moisture-driven color-changing Fabry-Pérot (FP)-like cavity composed of a polyvinyl alcohol layer sandwiched between an upper gold nanoparticles assembly and a bottom gold mirror. Through nanoparticle contact printing, we pixelated these cavities with sub-micrometer sizes without crosstalk and achieved an ultrahigh display resolution of ∼400 nm. Meanwhile, these nanoparticle-based FP (NBFP) cavities exhibit more vibrant colors than those of conventional film-based ones due to broadband absorption of the disordered nanoparticle assembly. Moreover, the NBFP cavities exhibit a rapid response (<300 ms), benefiting from the membrane pores formed in the gaps between the adjacent nanoparticles. Finally, we demonstrated the applications of the NBFP cavities in optical anti-counterfeiting and dynamic multi-color printing. These results suggest that our approach will help to realize a colorful, fast, and ultrahigh-resolution dynamic display device in optical security and colorimetric sensing.
Collapse
Affiliation(s)
- Manchun Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyi She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongjun Jin
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
20
|
Liu B, Liu S, Devaraj V, Yin Y, Zhang Y, Ai J, Han Y, Feng J. Metal 3D nanoprinting with coupled fields. Nat Commun 2023; 14:4920. [PMID: 37582962 PMCID: PMC10427678 DOI: 10.1038/s41467-023-40577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Metallized arrays of three-dimensional (3D) nanoarchitectures offer new and exciting prospects in nanophotonics and nanoelectronics. Engineering these repeating nanoarchitectures, which have dimensions smaller than the wavelength of the light source, enables in-depth investigation of unprecedented light-matter interactions. Conventional metal nanomanufacturing relies largely on lithographic methods that are limited regarding the choice of materials and machine write time and are restricted to flat patterns and rigid structures. Herein, we present a 3D nanoprinter devised to fabricate flexible arrays of 3D metallic nanoarchitectures over areas up to 4 × 4 mm2 within 20 min. By suitably adjusting the electric and flow fields, metal lines as narrow as 14 nm were printed. We also demonstrate the key ability to print a wide variety of materials ranging from single metals, alloys to multimaterials. In addition, the optical properties of the as-printed 3D nanoarchitectures can be tailored by varying the material, geometry, feature size, and periodic arrangement. The custom-designed and custom-built 3D nanoprinter not only combines metal 3D printing with nanoscale precision but also decouples the materials from the printing process, thereby yielding opportunities to advance future nanophotonics and semiconductor devices.
Collapse
Affiliation(s)
- Bingyan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shirong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuxiang Yin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueqi Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingui Ai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yaochen Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jicheng Feng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
21
|
Li WF, Arya G, Roques-Carmes C, Lin Z, Johnson SG, Soljačić M. Transcending shift-invariance in the paraxial regime via end-to-end inverse design of freeform nanophotonics. OPTICS EXPRESS 2023; 31:24260-24272. [PMID: 37475257 DOI: 10.1364/oe.492553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/28/2023] [Indexed: 07/22/2023]
Abstract
Traditional optical elements and conventional metasurfaces obey shift-invariance in the paraxial regime. For imaging systems obeying paraxial shift-invariance, a small shift in input angle causes a corresponding shift in the sensor image. Shift-invariance has deep implications for the design and functionality of optical devices, such as the necessity of free space between components (as in compound objectives made of several curved surfaces). We present a method for nanophotonic inverse design of compact imaging systems whose resolution is not constrained by paraxial shift-invariance. Our method is end-to-end, in that it integrates density-based full-Maxwell topology optimization with a fully iterative elastic-net reconstruction algorithm. By the design of nanophotonic structures that scatter light in a non-shift-invariant manner, our optimized nanophotonic imaging system overcomes the limitations of paraxial shift-invariance, achieving accurate, noise-robust image reconstruction beyond shift-invariant resolution.
Collapse
|
22
|
Gao R, Ge Q, Cong H, Zhang Y, Zhao J. Preparation and Biomedical Applications of Cucurbit[n]uril-Based Supramolecular Hydrogels. Molecules 2023; 28:3566. [PMID: 37110800 PMCID: PMC10142449 DOI: 10.3390/molecules28083566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The cucurbit[n]uril supramolecular hydrogels are driven by weak intermolecular interactions, of which exhibit good stimuli responsiveness and excellent self-healing properties. According to the composition of the gelling factor, supramolecular hydrogels comprise Q[n]-cross-linked small molecules and Q[n]-cross-linked polymers. According to different driving forces, hydrogels are driven by the outer-surface interaction, the host-guest inclusion interaction, and the host-guest exclusion interaction. Host-guest interactions are widely used in the construction of self-healing hydrogels, which can spontaneously recover after being damaged, thereby prolonging their service life. The smart Q[n]s-based supramolecular hydrogel composed is a kind of adjustable and low-toxicity soft material. By designing the structure of the hydrogel or modifying the fluorescent properties, etc., it can be widely used in biomedicine. In this review, we mainly focus on the preparation of Q[n]-based hydrogels and their biomedical applications including cell encapsulation for biocatalysis, biosensors for high sensitivity, 3D printing for potential tissue engineering, drug release for sustained delivery, and interfacial adhesion for self-healing materials. In addition, we also presented the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Ruihan Gao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yunqian Zhang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jianglin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| |
Collapse
|
23
|
Ouyang W, Xu X, Lu W, Zhao N, Han F, Chen SC. Ultrafast 3D nanofabrication via digital holography. Nat Commun 2023; 14:1716. [PMID: 36973254 PMCID: PMC10043265 DOI: 10.1038/s41467-023-37163-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
There has been a compelling demand of fabricating high-resolution complex three-dimensional (3D) structures in nanotechnology. While two-photon lithography (TPL) largely satisfies the need since its introduction, its low writing speed and high cost make it impractical for many large-scale applications. We report a digital holography-based TPL platform that realizes parallel printing with up to 2000 individually programmable laser foci to fabricate complex 3D structures with 90 nm resolution. This effectively improves the fabrication rate to 2,000,000 voxels/sec. The promising result is enabled by the polymerization kinetics under a low-repetition-rate regenerative laser amplifier, where the smallest features are defined via a single laser pulse at 1 kHz. We have fabricated large-scale metastructures and optical devices of up to centimeter-scale to validate the predicted writing speed, resolution, and cost. The results confirm our method provides an effective solution for scaling up TPL for applications beyond laboratory prototyping.
Collapse
Affiliation(s)
- Wenqi Ouyang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiayi Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong
| | - Wanping Lu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fei Han
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong.
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong.
- Centre for Perceptual and Interactive Intelligence, Hong Kong Science Park, Shatin, N.T., Hong Kong.
| |
Collapse
|