1
|
Kraemer S, Schneider DJ, Paterson C, Perry D, Westacott MJ, Hagar Y, Katilius E, Lynch S, Russell TM, Johnson T, Astling DP, DeLisle RK, Cleveland J, Gold L, Drolet DW, Janjic N. Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome. J Proteome Res 2024; 23:4771-4788. [PMID: 39038188 DOI: 10.1021/acs.jproteome.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.
Collapse
Affiliation(s)
- Stephan Kraemer
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel J Schneider
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Clare Paterson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Darryl Perry
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Matthew J Westacott
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Yolanda Hagar
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Evaldas Katilius
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Sean Lynch
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Theresa M Russell
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Ted Johnson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - David P Astling
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Robert Kirk DeLisle
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Jason Cleveland
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Larry Gold
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel W Drolet
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Nebojsa Janjic
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| |
Collapse
|
2
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024. [PMID: 39479990 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer, Inc., Redwood City, California 94065, United States
- Bruker Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim, Munich, Germany
| | | | - Vincent Albrecht
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F Dagley
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B Mueller-Reif
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Leti, Clinatec, Inserm UA13 BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite D San Carlos, California 94070, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
3
|
Ikonomova SP, Yan B, Sun Z, Lyon RB, Zatopek KM, Marino JP, Kelman Z. Engineering GID4 for use as an N-terminal proline binder via directed evolution. Biotechnol Bioeng 2024. [PMID: 39450770 DOI: 10.1002/bit.28868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Nucleic acid sequencing technologies have gone through extraordinary advancements in the past several decades, significantly increasing throughput while reducing cost. To create similar advancement in proteomics, numerous approaches are being investigated to advance protein sequencing. One of the promising approaches uses N-terminal amino acid binders (NAABs), also referred to as recognizers, that selectively can identify amino acids at the N-terminus of a peptide. However, there are only a few engineered NAABs currently available that bind to specific amino acids and meet the requirements of a biotechnology reagent. Therefore, additional NAABs need to be identified and engineered to enable confident identification and, ultimately, de novo protein sequencing. To fill this gap, a human protein GID4 was engineered to create a NAAB for N-terminal proline (Nt-Pro). While native GID4 binds Nt-Pro, its binding is weak (µmol/L) and greatly influenced by the identity of residues following the Nt-Pro. Through directed evolution, yeast-surface display, and fluorescence-activated cell sorting, we identified sequence variants of GID4 with increased binding response to Nt-Pro. Moreover, variants with an A252V mutation showed a reduced influence from residues in the second and third positions of the target peptide when binding to Nt-Pro. The workflow outlined here is shown to be a viable strategy for engineering NAABs, even when starting from native Nt-binding proteins whose binding is strongly impacted by the identity of residues following Nt-amino acid.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | - Bo Yan
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Zhiyi Sun
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Rachel B Lyon
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | | | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland, USA
| |
Collapse
|
4
|
Bhandari BK, Goldman N. A generalized protein identification method for novel and diverse sequencing technologies. NAR Genom Bioinform 2024; 6:lqae126. [PMID: 39296929 PMCID: PMC11409062 DOI: 10.1093/nargab/lqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Protein sequencing is a rapidly evolving field with much progress towards the realization of a new generation of protein sequencers. The early devices, however, may not be able to reliably discriminate all 20 amino acids, resulting in a partial, noisy and possibly error-prone signature of a protein. Rather than achieving de novo sequencing, these devices may aim to identify target proteins by comparing such signatures to databases of known proteins. However, there are no broadly applicable methods for this identification problem. Here, we devise a hidden Markov model method to study the generalized problem of protein identification from noisy signature data. Based on a hypothetical sequencing device that can simulate several novel technologies, we show that on the human protein database (N = 20 181) our method has a good performance under many different operating conditions such as various levels of signal resolvability, different numbers of discriminated amino acids, sequence fragments, and insertion and deletion error rates. Our results demonstrate the possibility of protein identification with high accuracy on many early experimental devices. We anticipate our method to be applicable for a wide range of protein sequencing devices in the future.
Collapse
Affiliation(s)
- Bikash Kumar Bhandari
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
5
|
Motone K, Kontogiorgos-Heintz D, Wee J, Kurihara K, Yang S, Roote G, Fox OE, Fang Y, Queen M, Tolhurst M, Cardozo N, Jain M, Nivala J. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 2024; 633:662-669. [PMID: 39261738 PMCID: PMC11410661 DOI: 10.1038/s41586-024-07935-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal1,2. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore3,4, we provide single-molecule evidence that ClpX translocates substrates in two-residue steps. This mechanism achieves sensitivity to single amino acids on synthetic protein strands hundreds of amino acids in length, enabling the sequencing of combinations of single-amino-acid substitutions and the mapping of post-translational modifications, such as phosphorylation. To enhance classification accuracy further, we demonstrate the ability to reread individual protein molecules multiple times, and we explore the potential for highly accurate protein barcode sequencing. Furthermore, we develop a biophysical model that can simulate raw nanopore signals a priori on the basis of residue volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine full-length, folded protein domains for complete end-to-end analysis. These results provide proof of concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | - Jasmine Wee
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kyoko Kurihara
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Sangbeom Yang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Gwendolin Roote
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Oren E Fox
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Yishu Fang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Melissa Queen
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Mattias Tolhurst
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Jeff Nivala
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Lê Quý K, Chernigovskaya M, Stensland M, Singh S, Leem J, Revale S, Yadin DA, Nice FL, Povall C, Minns DH, Galson JD, Nyman TA, Snapkow I, Greiff V. Benchmarking and integrating human B-cell receptor genomic and antibody proteomic profiling. NPJ Syst Biol Appl 2024; 10:73. [PMID: 38997321 PMCID: PMC11245537 DOI: 10.1038/s41540-024-00402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Immunoglobulins (Ig), which exist either as B-cell receptors (BCR) on the surface of B cells or as antibodies when secreted, play a key role in the recognition and response to antigenic threats. The capability to jointly characterize the BCR and antibody repertoire is crucial for understanding human adaptive immunity. From peripheral blood, bulk BCR sequencing (bulkBCR-seq) currently provides the highest sampling depth, single-cell BCR sequencing (scBCR-seq) allows for paired chain characterization, and antibody peptide sequencing by tandem mass spectrometry (Ab-seq) provides information on the composition of secreted antibodies in the serum. Yet, it has not been benchmarked to what extent the datasets generated by these three technologies overlap and complement each other. To address this question, we isolated peripheral blood B cells from healthy human donors and sequenced BCRs at bulk and single-cell levels, in addition to utilizing publicly available sequencing data. Integrated analysis was performed on these datasets, resolved by replicates and across individuals. Simultaneously, serum antibodies were isolated, digested with multiple proteases, and analyzed with Ab-seq. Systems immunology analysis showed high concordance in repertoire features between bulk and scBCR-seq within individuals, especially when replicates were utilized. In addition, Ab-seq identified clonotype-specific peptides using both bulk and scBCR-seq library references, demonstrating the feasibility of combining scBCR-seq and Ab-seq for reconstructing paired-chain Ig sequences from the serum antibody repertoire. Collectively, our work serves as a proof-of-principle for combining bulk sequencing, single-cell sequencing, and mass spectrometry as complementary methods towards capturing humoral immunity in its entirety.
Collapse
Grants
- The Leona M. and Harry B. Helmsley Charitable Trust (#2019PG-T1D011, to VG), UiO World-Leading Research Community (to VG), UiO: LifeScience Convergence Environment Immunolingo (to VG), EU Horizon 2020 iReceptorplus (#825821) (to VG), a Norwegian Cancer Society Grant (#215817, to VG), Research Council of Norway projects (#300740, (#311341, #331890 to VG), a Research Council of Norway IKTPLUSS project (#311341, to VG). This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 101007799 (Inno4Vac). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA (to VG).
- Mass spectrometry-based proteomic analyses were performed by the Proteomics Core Facility, Department of Immunology, University of Oslo/Oslo University Hospital, which is supported by the Core Facilities program of the South-Eastern Norway Regional Health Authority. This core facility is also a member of the National Network of Advanced Proteomics Infrastructure (NAPI), which is funded by the Research Council of Norway INFRASTRUKTUR-program (project number: 295910).
Collapse
Affiliation(s)
- Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Proteomics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sachin Singh
- Proteomics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | - Tuula A Nyman
- Proteomics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
7
|
Guo W, Liu Y, Han Y, Tang H, Fan X, Wang C, Chen PR. Amplifiable protein identification via residue-resolved barcoding and composition code counting. Natl Sci Rev 2024; 11:nwae183. [PMID: 39055168 PMCID: PMC11272068 DOI: 10.1093/nsr/nwae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Ultrasensitive protein identification is of paramount importance in basic research and clinical diagnostics but remains extremely challenging. A key bottleneck in preventing single-molecule protein sequencing is that, unlike the revolutionary nucleic acid sequencing methods that rely on the polymerase chain reaction (PCR) to amplify DNA and RNA molecules, protein molecules cannot be directly amplified. Decoding the proteins via amplification of certain fingerprints rather than the intact protein sequence thus represents an appealing alternative choice to address this formidable challenge. Herein, we report a proof-of-concept method that relies on residue-resolved DNA barcoding and composition code counting for amplifiable protein fingerprinting (AmproCode). In AmproCode, selective types of residues on peptides or proteins are chemically labeled with a DNA barcode, which can be amplified and quantified via quantitative PCR. The operation generates a relative ratio as the residue-resolved 'composition code' for each target protein that can be utilized as the fingerprint to determine its identity from the proteome database. We developed a database searching algorithm and applied it to assess the coverage of the whole proteome and secretome via computational simulations, proving the theoretical feasibility of AmproCode. We then designed the residue-specific DNA barcoding and amplification workflow, and identified different synthetic model peptides found in the secretome at as low as the fmol/L level for demonstration. These results build the foundation for an unprecedented amplifiable protein fingerprinting method. We believe that, in the future, AmproCode could ultimately realize single-molecule amplifiable identification of trace complex samples without further purification, and it may open a new avenue in the development of next-generation protein sequencing techniques.
Collapse
Affiliation(s)
- Weiming Guo
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huan Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Ohayon S, Taib L, Verma NC, Iarossi M, Bhattacharya I, Marom B, Huttner D, Meller A. Full-Length Single Protein Molecules Tracking and Counting in Thin Silicon Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314319. [PMID: 38461367 DOI: 10.1002/adma.202314319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Emerging single-molecule protein sensing techniques are ushering in a transformative era in biomedical research. Nevertheless, challenges persist in realizing ultra-fast full-length protein sensing, including loss of molecular integrity due to protein fragmentation, biases introduced by antibodies affinity, identification of proteoforms, and low throughputs. Here, a single-molecule method for parallel protein separation and tracking is introduced, yielding multi-dimensional molecular properties used for their identification. Proteins are tagged by chemo-selective dual amino-acid specific labels and are electrophoretically separated by their mass/charge in custom-designed thin silicon channel with subwavelength height. This approach allows analysis of thousands of individual proteins within a few minutes by tracking their motion during the migration. The power of the method is demonstrated by quantifying a cytokine panel for host-response discrimination between viral and bacterial infections. Moreover, it is shown that two clinically-relevant splice isoforms of Vascular endothelial growth factor (VEGF) can be accurately quantified from human serum samples. Being non-destructive and compatible with full-length intact proteins, this method opens up ways for antibody-free single-protein molecule quantification.
Collapse
Affiliation(s)
- Shilo Ohayon
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Liran Taib
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | | | - Marzia Iarossi
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Ivy Bhattacharya
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Barak Marom
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Diana Huttner
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Amit Meller
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion-IIT, Haifa, 3200003, Israel
| |
Collapse
|
9
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Penedo JC. Topographic fingerprinting of single proteins and proteoforms. NATURE NANOTECHNOLOGY 2024; 19:580-581. [PMID: 38528111 DOI: 10.1038/s41565-024-01638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- J Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, School of Physics and Astronomy and School of Biology, University of St. Andrews, St Andrews, UK.
| |
Collapse
|
11
|
Zhang M, Tang C, Wang Z, Chen S, Zhang D, Li K, Sun K, Zhao C, Wang Y, Xu M, Dai L, Lu G, Shi H, Ren H, Chen L, Geng J. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat Methods 2024; 21:609-618. [PMID: 38443507 PMCID: PMC11009107 DOI: 10.1038/s41592-024-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Zichun Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shanchuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Sun
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, China.
| |
Collapse
|
12
|
Kayyil Veedu M, Hajda A, Olesiak-Bańska J, Wenger J. Three species multiplexing of fluorescent dyes and gold nanoclusters recovered with fluorescence lifetime correlation spectroscopy. Biochim Biophys Acta Gen Subj 2024; 1868:130611. [PMID: 38552746 DOI: 10.1016/j.bbagen.2024.130611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Biosensor applications often require the simultaneous detection of multiple analytes, with a clear need to go beyond the traditional multiplexing relying on distinct fluorescent dyes across the visible spectrum. Fluorescence lifetime correlation spectroscopy (FLCS) is a powerful approach taking advantage of the fluorescence lifetime information to separate the contributions of different fluorescent species with overlapping emission spectra. However, so far FLCS detection has been demonstrated only on binary mixtures of two fluorescent dyes, limiting its multiplexing capabilities. Here, we report the first quantitative FLCS measurements within a ternary mixture composed of three different fluorescent emitters with near-identical emission spectra. Two organic fluorescent dyes, Alexa Fluor 647 and CF640R, are combined with water-soluble Au18(SG)14 gold nanoclusters. Our experimental data establish that FLCS allows to accurately determine individual concentrations within intricate ternary mixtures. Another major aspect of interest concerns the assessment of the suitability of gold nanoclusters for FLCS multiplexing applications. With their microsecond lifetime and stable emission characteristics, gold nanoclusters add a valuable new aspect to the array of FLCS probes. Extending FLCS multiplexing beyond binary mixtures paves the way for further progress in the simultaneous highly parallel biosensing of multiple species.
Collapse
Affiliation(s)
- Malavika Kayyil Veedu
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Agata Hajda
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, AMUTech, 13013 Marseille, France.
| |
Collapse
|
13
|
Yu B, Chang BS, Loo WS, Dhuey S, O’Reilly P, Ashby PD, Connolly MD, Tikhomirov G, Zuckermann RN, Ruiz R. Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces. ACS NANO 2024; 18:7411-7423. [PMID: 38412617 PMCID: PMC10938923 DOI: 10.1021/acsnano.3c10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.
Collapse
Affiliation(s)
- Beihang Yu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Boyce S. Chang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Prizker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Scott Dhuey
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | | - Paul D. Ashby
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael D. Connolly
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Grigory Tikhomirov
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States
| | - Ronald N. Zuckermann
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ricardo Ruiz
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem 2024; 16:314-334. [PMID: 38448507 DOI: 10.1038/s41557-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/14/2023] [Indexed: 03/08/2024]
Abstract
Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.
Collapse
Affiliation(s)
- Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
15
|
Li Z, Yi Y, Liu L, Wu H. One step forward for nanopore protein sequencing. Clin Transl Med 2024; 14:e1615. [PMID: 38468491 PMCID: PMC10928323 DOI: 10.1002/ctm2.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Ziyi Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yakun Yi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics Chinese Academy of SciencesBeijingChina
| | - Hai‐Chen Wu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Ye R, Sun X, Mao X, Alfonso FS, Baral S, Liu C, Coates GW, Chen P. Optical sequencing of single synthetic polymers. Nat Chem 2024; 16:210-217. [PMID: 37945834 DOI: 10.1038/s41557-023-01363-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Microscopic sequences of synthetic polymers play crucial roles in the polymer properties, but are generally unknown and inaccessible to traditional measurements. Here we report real-time optical sequencing of single synthetic copolymer chains under living polymerization conditions. We achieve this by carrying out multi-colour imaging of polymer growth by single catalysts at single-monomer resolution using CREATS (coupled reaction approach toward super-resolution imaging). CREATS makes a reaction effectively fluorogenic, enabling single-molecule localization microscopy of chemical reactions at higher reactant concentrations. Our data demonstrate that the chain propagation kinetics of surface-grafted polymerization contains temporal fluctuations with a defined memory time (which can be attributed to neighbouring monomer interactions) and chain-length dependence (due to surface electrostatic effects). Furthermore, the microscopic sequences of individual copolymers reveal their tendency to form block copolymers, and, more importantly, quantify the size distribution of individual blocks for comparison with theoretically random copolymers. Such sequencing capability paves the way for single-chain-level structure-function correlation studies of synthetic polymers.
Collapse
Affiliation(s)
- Rong Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Chemical Engineering and Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiangcheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Materials Science and Engineering, Institute of Functional Intelligent Materials, and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
| | - Felix S Alfonso
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Susil Baral
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Chemistry, Illinois State University, Normal, IL, USA
| | - Chunming Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- School of Polymer Science and Polymer Engineering and Department of Chemistry, University of Akron, Akron, OH, USA
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Shekhar S, Bogaerts W, Chrostowski L, Bowers JE, Hochberg M, Soref R, Shastri BJ. Roadmapping the next generation of silicon photonics. Nat Commun 2024; 15:751. [PMID: 38272873 PMCID: PMC10811194 DOI: 10.1038/s41467-024-44750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Silicon photonics has developed into a mainstream technology driven by advances in optical communications. The current generation has led to a proliferation of integrated photonic devices from thousands to millions-mainly in the form of communication transceivers for data centers. Products in many exciting applications, such as sensing and computing, are around the corner. What will it take to increase the proliferation of silicon photonics from millions to billions of units shipped? What will the next generation of silicon photonics look like? What are the common threads in the integration and fabrication bottlenecks that silicon photonic applications face, and which emerging technologies can solve them? This perspective article is an attempt to answer such questions. We chart the generational trends in silicon photonics technology, drawing parallels from the generational definitions of CMOS technology. We identify the crucial challenges that must be solved to make giant strides in CMOS-foundry-compatible devices, circuits, integration, and packaging. We identify challenges critical to the next generation of systems and applications-in communication, signal processing, and sensing. By identifying and summarizing such challenges and opportunities, we aim to stimulate further research on devices, circuits, and systems for the silicon photonics ecosystem.
Collapse
Affiliation(s)
- Sudip Shekhar
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, V6T1Z4, BC, Canada.
| | - Wim Bogaerts
- Department of Information Technology, Ghent University - IMEC, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Lukas Chrostowski
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, V6T1Z4, BC, Canada
| | - John E Bowers
- Department of Electrical & Computer Engineering, University of California Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Michael Hochberg
- Luminous Computing, 4750 Patrick Henry Drive, Santa Clara, 95054, CA, USA
| | - Richard Soref
- College of Science and Mathematics, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, 02125, MA, USA
| | - Bhavin J Shastri
- Department of Physics, Engineering Physics & Astronomy, Queen's University, 64 Bader Lane, Kingston, K7L3N6, ON, Canada.
| |
Collapse
|
18
|
Zhang Y, Yi Y, Li Z, Zhou K, Liu L, Wu HC. Peptide sequencing based on host-guest interaction-assisted nanopore sensing. Nat Methods 2024; 21:102-109. [PMID: 37957431 DOI: 10.1038/s41592-023-02095-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.
Collapse
Affiliation(s)
- Yun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Tijhuis AE, Foijer F. Characterizing chromosomal instability-driven cancer evolution and cell fitness at a glance. J Cell Sci 2024; 137:jcs260199. [PMID: 38224461 DOI: 10.1242/jcs.260199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chromosomal instability (CIN), an increased rate of chromosome segregation errors during mitosis, is a hallmark of cancer cells. CIN leads to karyotype differences between cells and thus large-scale heterogeneity among individual cancer cells; therefore, it plays an important role in cancer evolution. Studying CIN and its consequences is technically challenging, but various technologies have been developed to track karyotype dynamics during tumorigenesis, trace clonal lineages and link genomic changes to cancer phenotypes at single-cell resolution. These methods provide valuable insight not only into the role of CIN in cancer progression, but also into cancer cell fitness. In this Cell Science at a Glance article and the accompanying poster, we discuss the relationship between CIN, cancer cell fitness and evolution, and highlight techniques that can be used to study the relationship between these factors. To that end, we explore methods of assessing cancer cell fitness, particularly for chromosomally unstable cancer.
Collapse
Affiliation(s)
- Andréa E Tijhuis
- European Research Institute for the Biology of Ageing , University Medical Center Groningen, University of Groningen,9713 AV Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing , University Medical Center Groningen, University of Groningen,9713 AV Groningen, The Netherlands
| |
Collapse
|
20
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Neveu M, Quinn R, Barge LM, Craft KL, German CR, Getty S, Glein C, Parra M, Burton AS, Cary F, Corpolongo A, Fifer L, Gangidine A, Gentry D, Georgiou CD, Haddadin Z, Herbold C, Inaba A, Jordan SF, Kalucha H, Klier P, Knicely K, Li AY, McNally P, Millan M, Naz N, Raj CG, Schroedl P, Timm J, Yang Z. Future of the Search for Life: Workshop Report. ASTROBIOLOGY 2024; 24:114-129. [PMID: 38227837 DOI: 10.1089/ast.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.
Collapse
Affiliation(s)
- Marc Neveu
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Kathleen L Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | | | | | | | - Macarena Parra
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Francesca Cary
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Mānoa, Hawaii, USA
| | - Andrea Corpolongo
- Department of Geosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lucas Fifer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Andrew Gangidine
- Office of Development, Yale University, New Haven, Connecticut, USA
| | - Diana Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Zaid Haddadin
- Department of Electrical and Computer Engineering, University of California, San Diego, California, USA
| | - Craig Herbold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Aila Inaba
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Seán F Jordan
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Hemani Kalucha
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Pavel Klier
- NASA Ames Research Center, Moffett Field, California, USA
- NASA Postdoctoral Program, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Kas Knicely
- Geophysical Institute, University of Alaska, Fairbanks, Alaska, USA
| | - An Y Li
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Patrick McNally
- Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Maëva Millan
- Laboratory Atmosphere and Space Observations, Guyancourt, France
| | - Neveda Naz
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter Schroedl
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jennifer Timm
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
22
|
Wu X, Borca B, Sen S, Koslowski S, Abb S, Rosenblatt DP, Gallardo A, Mendieta-Moreno JI, Nachtigall M, Jelinek P, Rauschenbach S, Kern K, Schlickum U. Molecular sensitised probe for amino acid recognition within peptide sequences. Nat Commun 2023; 14:8335. [PMID: 38097575 PMCID: PMC10721870 DOI: 10.1038/s41467-023-43844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.
Collapse
Affiliation(s)
- Xu Wu
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bogdana Borca
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - Suman Sen
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Sabine Abb
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | - Matyas Nachtigall
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
| | - Pavel Jelinek
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic.
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany.
| |
Collapse
|
23
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
24
|
Dorey A, Howorka S. Unfolding the path to nanopore protein sequencing. NATURE NANOTECHNOLOGY 2023; 18:1259-1260. [PMID: 37626147 DOI: 10.1038/s41565-023-01480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Affiliation(s)
- Adam Dorey
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
25
|
Motone K, Kontogiorgos-Heintz D, Wee J, Kurihara K, Yang S, Roote G, Fang Y, Cardozo N, Nivala J. Multi-pass, single-molecule nanopore reading of long protein strands with single-amino acid sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563182. [PMID: 37905023 PMCID: PMC10614977 DOI: 10.1101/2023.10.19.563182] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal. Here, we establish a method for long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore, we achieve single-amino acid level sensitivity, enabling sequencing of combinations of amino acid substitutions across long protein strands. For greater sequencing accuracy, we demonstrate the ability to reread individual protein molecules, spanning hundreds of amino acids in length, multiple times, and explore the potential for high accuracy protein barcode sequencing. Further, we develop a biophysical model that can simulate raw nanopore signals a priori, based on amino acid volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine intact, folded protein domains for complete end-to-end analysis. These results provide proof-of-concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Keisuke Motone, Daphne Kontogiorgos-Heintz
| | - Daphne Kontogiorgos-Heintz
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Keisuke Motone, Daphne Kontogiorgos-Heintz
| | - Jasmine Wee
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kyoko Kurihara
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Sangbeom Yang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Gwendolin Roote
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Yishu Fang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
KIM S, KAMARULZAMAN L, TANIGUCHI Y. Recent methodological advances towards single-cell proteomics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:306-327. [PMID: 37673661 PMCID: PMC10749393 DOI: 10.2183/pjab.99.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
Studying the central dogma at the single-cell level has gained increasing attention to reveal hidden cell lineages and functions that cannot be studied using traditional bulk analyses. Nonetheless, most single-cell studies exploiting genomic and transcriptomic levels fail to address information on proteins that are central to many important biological processes. Single-cell proteomics enables understanding of the functional status of individual cells and is particularly crucial when the specimen is composed of heterogeneous entities of cells. With the growing importance of this field, significant methodological advancements have emerged recently. These include miniaturized and automated sample preparation, multi-omics analyses, and combined analyses of multiple techniques such as mass spectrometry and microscopy. Moreover, artificial intelligence and single-molecule detection technologies have advanced throughput and improved sensitivity limitations, respectively, over conventional methods. In this review, we summarize cutting-edge methodologies for single-cell proteomics and relevant emerging technologies that have been reported in the last 5 years, and provide an outlook on this research field.
Collapse
Affiliation(s)
- Sooyeon KIM
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Latiefa KAMARULZAMAN
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuichi TANIGUCHI
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Vasunilashorn SM, Dillon ST, Marcantonio ER, Libermann TA. Application of Multiple Omics to Understand Postoperative Delirium Pathophysiology in Humans. Gerontology 2023; 69:1369-1384. [PMID: 37722373 PMCID: PMC10711777 DOI: 10.1159/000533789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Delirium, an acute change in cognition, is common, morbid, and costly, particularly among hospitalized older adults. Despite growing knowledge of its epidemiology, far less is known about delirium pathophysiology. Initial work understanding delirium pathogenesis has focused on assaying single or a limited subset of molecules or genetic loci. Recent technological advances at the forefront of biomarker and drug target discovery have facilitated application of multiple "omics" approaches aimed to provide a more complete understanding of complex disease processes such as delirium. At its basic level, "omics" involves comparison of genes (genomics, epigenomics), transcripts (transcriptomics), proteins (proteomics), metabolites (metabolomics), or lipids (lipidomics) in biological fluids or tissues obtained from patients who have a certain condition (i.e., delirium) and those who do not. Multi-omics analyses of these various types of molecules combined with machine learning and systems biology enable the discovery of biomarkers, biological pathways, and predictors of delirium, thus elucidating its pathophysiology. This review provides an overview of the most recent omics techniques, their current impact on identifying delirium biomarkers, and future potential in enhancing our understanding of delirium pathogenesis. We summarize challenges in identification of specific biomarkers of delirium and, more importantly, in discovering the mechanisms underlying delirium pathophysiology. Based on mounting evidence, we highlight a heightened inflammatory response as one common pathway in delirium risk and progression, and we suggest other promising biological mechanisms that have recently emerged. Advanced multiple omics approaches coupled with bioinformatics methodologies have great promise to yield important discoveries that will advance delirium research.
Collapse
Affiliation(s)
- Sarinnapha M. Vasunilashorn
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Simon T. Dillon
- Harvard Medical School, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, BIDMC, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, BIDMC, Boston, MA, USA
| | - Edward R. Marcantonio
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gerontology, Department of Medicine, BIDMC, Boston, MA, USA
| | - Towia A. Libermann
- Harvard Medical School, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, BIDMC, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, BIDMC, Boston, MA, USA
| |
Collapse
|
28
|
Mapes JH, Stover J, Stout HD, Folsom TM, Babcock E, Loudwig S, Martin C, Austin MJ, Tu F, Howdieshell CJ, Simpson ZB, Blom T, Weaver D, Winkler D, Vander Velden K, Ossareh PM, Beierle JM, Somekh T, Bardo AM, Anslyn EV, Marcotte EM, Swaminathan J. Robust and scalable single-molecule protein sequencing with fluorosequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558007. [PMID: 37745461 PMCID: PMC10516020 DOI: 10.1101/2023.09.15.558007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.
Collapse
Affiliation(s)
| | | | - Heather D Stout
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | - Christopher Martin
- Erisyon, Inc. Austin, TX, 78752
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | | | - Fan Tu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | | | | | | | | | | | | | - Angela M Bardo
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jagannath Swaminathan
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
29
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
30
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins. Mol Cell 2023; 83:1936-1952.e7. [PMID: 37267908 PMCID: PMC10281453 DOI: 10.1016/j.molcel.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Marcassa G, Dascenco D, de Wit J. Proteomics-based synapse characterization: From proteins to circuits. Curr Opin Neurobiol 2023; 79:102690. [PMID: 36805717 DOI: 10.1016/j.conb.2023.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The highly heterogeneous nature of neuronal cell types and their connections presents a major challenge to the characterization of neural circuits at the protein level. New approaches now enable an increasingly sophisticated dissection of cell type- and cellular compartment-specific proteomes, as well as the profiling of the protein composition of specific synaptic connections. Here, we provide an overview of these approaches and discuss how they hold considerable promise toward unravelling the molecular mechanisms of neural circuit formation and function. Finally, we provide an outlook of technological developments that may bring the characterization of synaptic proteomes at the single-synapse level within reach.
Collapse
Affiliation(s)
- Gabriele Marcassa
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/ddascenco
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Tao X, Li S, Chen G, Wang J, Xu S. Approaches for Modes of Action Study of Long Non-Coding RNAs: From Single Verification to Genome-Wide Determination. Int J Mol Sci 2023; 24:ijms24065562. [PMID: 36982636 PMCID: PMC10054671 DOI: 10.3390/ijms24065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are not translated into known functional proteins. This broad definition covers a large collection of transcripts with diverse genomic origins, biogenesis, and modes of action. Thus, it is very important to choose appropriate research methodologies when investigating lncRNAs with biological significance. Multiple reviews to date have summarized the mechanisms of lncRNA biogenesis, their localization, their functions in gene regulation at multiple levels, and also their potential applications. However, little has been reviewed on the leading strategies for lncRNA research. Here, we generalize a basic and systemic mind map for lncRNA research and discuss the mechanisms and the application scenarios of ‘up-to-date’ techniques as applied to molecular function studies of lncRNAs. Taking advantage of documented lncRNA research paradigms as examples, we aim to provide an overview of the developing techniques for elucidating lncRNA interactions with genomic DNA, proteins, and other RNAs. In the end, we propose the future direction and potential technological challenges of lncRNA studies, focusing on techniques and applications.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
33
|
|
34
|
MacCoss MJ, Alfaro JA, Faivre DA, Wu CC, Wanunu M, Slavov N. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat Methods 2023; 20:339-346. [PMID: 36899164 PMCID: PMC10044470 DOI: 10.1038/s41592-023-01802-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Mammalian cells have about 30,000-fold more protein molecules than mRNA molecules, which has major implications in the development of proteomics technologies. We review strategies that have been helpful for counting billions of protein molecules by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and suggest that these strategies can benefit single-molecule methods, especially in mitigating the challenges of the wide dynamic range of the proteome.
Collapse
Affiliation(s)
- Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- School of Informatics, University of Edinburgh, Edinburgh, UK.
| | - Danielle A Faivre
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine C Wu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA.
- Parallel Squared Technology Institute, Watertown, MA, USA.
| |
Collapse
|
35
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
36
|
Callahan N, Siegall WB, Bergonzo C, Marino JP, Kelman Z. Contributions from ClpS surface residues in modulating N-terminal peptide binding and their implications for NAAB development. Protein Eng Des Sel 2023; 36:gzad007. [PMID: 37498171 DOI: 10.1093/protein/gzad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Numerous technologies are currently in development for use in next-generation protein sequencing platforms. A notable published approach employs fluorescently-tagged binding proteins to identity the N-terminus of immobilized peptides, in-between rounds of digestion. This approach makes use of N-terminal amino acid binder (NAAB) proteins, which would identify amino acids by chemical and shape complementarity. One source of NAABs is the ClpS protein family, which serve to recruit proteins to bacterial proteosomes based on the identity of the N-terminal amino acid. In this study, a Thermosynechococcus vestitus (also known as Thermosynechococcus elongatus) ClpS2 protein was used as the starting point for direct evolution of an NAAB with affinity and specificity for N-terminal leucine. Enriched variants were analyzed and shown to improve the interaction between the ClpS surface and the peptide chain, without increasing promiscuity. Interestingly, interactions were found that were unanticipated which favor different charged residues located at position 5 from the N-terminus of a target peptide.
Collapse
Affiliation(s)
- Nicholas Callahan
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - William B Siegall
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Biomolecular Labeling Laboratory, IBBR, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
37
|
He H, Wu C, Saqib M, Hao R. Single-molecule fluorescence methods for protein biomarker analysis. Anal Bioanal Chem 2023:10.1007/s00216-022-04502-9. [PMID: 36609860 DOI: 10.1007/s00216-022-04502-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuhong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.,Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. .,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
38
|
Püntener S, Rivera-Fuentes P. Single-Molecule Peptide Identification Using Fluorescence Blinking Fingerprints. J Am Chem Soc 2023; 145:1441-1447. [PMID: 36603184 PMCID: PMC9853850 DOI: 10.1021/jacs.2c12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to identify peptides with single-molecule sensitivity would lead to next-generation proteomics methods for basic research and clinical applications. Existing single-molecule peptide sequencing methods can read some amino acid sequences, but they are limited in their ability to distinguish between similar amino acids or post-translational modifications. Here, we demonstrate that the fluorescence intermittency of a peptide labeled with a spontaneously blinking fluorophore contains information about the structure of the peptide. Using a deep learning algorithm, this single-molecule blinking pattern can be used to identify the peptide. This method can distinguish between peptides with different sequences, peptides with the same sequence but different phosphorylation patterns, and even peptides that differ only by the presence of epimerized residues. This study builds the foundation for a targeted proteomics method with single-molecule sensitivity.
Collapse
Affiliation(s)
- Salome Püntener
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland,Department
of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pablo Rivera-Fuentes
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland,Department
of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland,
| |
Collapse
|
39
|
|