1
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Emperauger MC, Kurek E, Semmer F, Perronet K, Daniel J, Blanchard-Desce M, Marquier F. 3D real-time single particle tracking using two-photon fluorescence from bright dye-based organic nanoparticles. NANOSCALE 2025; 17:2304-2311. [PMID: 39670866 DOI: 10.1039/d4nr03526g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
This paper addresses the use of ultrabright dye-based fluorescent organic nanoparticles in a 3D single-particle tracking two-photon microscopy setup. The nanoparticles consist of an assembly of quadrupolar dyes, presenting a large two-photon absorption cross-section. They exhibit low photobleaching, crucial for long-term tracking, and their high brightness allows nanometer localization precision. Their small size compared to previously used nonlinear inorganic nanocrystals, stable structure at physiological temperature, and adjustable optical properties make them promising tools for further biological research. This study highlights their potential to track dynamic processes with precision and stability, paving the way for exploring cellular processes at the nanoscale.
Collapse
Affiliation(s)
- Marie-Charlotte Emperauger
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Eleonore Kurek
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), 351 Cours de la Libération, 33405 Talence, France.
| | - Florian Semmer
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Karen Perronet
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Jonathan Daniel
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), 351 Cours de la Libération, 33405 Talence, France.
| | - Mireille Blanchard-Desce
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), 351 Cours de la Libération, 33405 Talence, France.
| | - François Marquier
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Salerno M, Bazzurro V, Angeli E, Bianchini P, Roushenas M, Pakravanan K, Diaspro A. MINFLUX Nanoscopy: A "Brilliant" Technique Promising Major Breakthrough. Microsc Res Tech 2025. [PMID: 39838620 DOI: 10.1002/jemt.24765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/23/2025]
Abstract
MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This "brilliant" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses. Whereas the high localization precision is definitely a strength of the MINFLUX technique, limitations and challenges also exist, especially in the labeling procedures aiming at appropriate density and on/off switching kinetics. This primer presents some significant results achieved with MINFLUX so far and highlights specific operational procedures crucial for this technique.
Collapse
Affiliation(s)
- Marco Salerno
- Dipartimento di Fisica, Università di Genova, Genova, Italy
| | | | - Elena Angeli
- Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Alberto Diaspro
- Dipartimento di Fisica, Università di Genova, Genova, Italy
- Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
4
|
Rao L, Wirth JO, Matthias J, Gennerich A. A Two-Heads-Bound State Drives KIF1A Superprocessivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632505. [PMID: 39868206 PMCID: PMC11761605 DOI: 10.1101/2025.01.14.632505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
KIF1A, a neuron-specific Kinesin-3 motor, is indispensable for long-distance axonal transport and nuclear migration, processes vital for neuronal function. Using MINFLUX tracking, we reveal that KIF1A predominantly adopts a two-heads-bound state, even under ATP-limiting conditions, challenging prior models proposing a one-head-bound rate-limiting step. This two-heads-bound conformation, stabilized by interactions between the positively charged K-loop and negatively charged tubulin tails, enhances microtubule affinity and minimizes detachment. The shorter neck linker facilitates inter-head tension, keeping the heads out of phase and enabling highly coordinated stepping. In contrast, Kinesin-1 (KIF5B) transitions to a one-head-bound state under similar conditions, limiting its processivity. Perturbing KIF1A's mechanochemical cycle by prolonging its one-head-bound state significantly reduces processivity, underscoring the critical role of the two-heads-bound state in motility. These findings establish a mechanistic framework for understanding KIF1A's adaptations for neuronal transport and dysfunction in neurological diseases.
Collapse
|
5
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2025; 85:208-224. [PMID: 39413793 PMCID: PMC11741928 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Harashima T, Otomo A, Iino R. Rational engineering of DNA-nanoparticle motor with high speed and processivity comparable to motor proteins. Nat Commun 2025; 16:729. [PMID: 39820287 PMCID: PMC11739693 DOI: 10.1038/s41467-025-56036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck. As RNase H concentration ([RNase H]) increases, pause lengths shorten from ~70 s to ~0.2 s, while step sizes (displacements between two consecutive pauses) are constant ( ~ 20 nm). At high [RNase H], speed reaches ~100 nm s-1, however, processivity (total number of steps before detachment), run-length, and unidirectionality largely decrease. A geometry-based kinetic simulation reveals switching of bottleneck from RNase H binding to DNA/RNA hybridization at high [RNase H], and trade-off mechanism between speed and other performances. An engineered motor with 3.8-times larger DNA/RNA hybridization rate simultaneously achieves 30 nm s-1 speed, 200 processivity, and 3 μm run-length comparable to motor proteins.
Collapse
Affiliation(s)
- Takanori Harashima
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.
| |
Collapse
|
7
|
Ravindran S. Profile of Stefan W. Hell. Proc Natl Acad Sci U S A 2025; 122:e2424369121. [PMID: 39793034 PMCID: PMC11725866 DOI: 10.1073/pnas.2424369121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
8
|
Kita T, Sasaki K, Niwa S. Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model. Biophys J 2025; 124:205-214. [PMID: 39604259 PMCID: PMC11739925 DOI: 10.1016/j.bpj.2024.11.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Most kinesin molecular motors dimerize to move processively and efficiently along microtubules; however, some can maintain processivity even in a monomeric state. Previous studies have suggested that asymmetric potentials between the motor domain and microtubules underlie this motility. In this study, we demonstrate that the kinesin-3 family motor protein KLP-6 can move forward along microtubules as a monomer upon release of autoinhibition. This motility can be explained by a change in length between the head and tail, rather than by asymmetric potentials. Using mass photometry and single-molecule assays, we confirmed that activated full-length KLP-6 is monomeric both in solution and on microtubules. KLP-6 possesses a microtubule-binding tail domain, and its motor domain does not exhibit biased movement, indicating that the tail domain is crucial for the processive movement of monomeric KLP-6. We developed a mathematical model to explain the biased Brownian movements of monomeric KLP-6. Our model concludes that a slight conformational change driven by neck-linker docking in the motor domain enables the monomeric kinesin to move forward if a second microtubule-binding domain exists.
Collapse
Affiliation(s)
- Tomoki Kita
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Guizetti J. Imaging malaria parasites across scales and time. J Microsc 2025. [PMID: 39749880 DOI: 10.1111/jmi.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The idea that disease is caused at the cellular level is so fundamental to us that we might forget the critical role microscopy played in generating and developing this insight. Visually identifying diseased or infected cells lays the foundation for any effort to curb human pathology. Since the discovery of the Plasmodium-infected red blood cells, which cause malaria, microscopy has undergone an impressive development now literally resolving individual molecules. This review explores the expansive field of light microscopy, focusing on its application to malaria research. Imaging technologies have transformed our understanding of biological systems, yet navigating the complex and ever-growing landscape of techniques can be daunting. This review offers a guide for researchers, especially those working on malaria, by providing historical context as well as practical advice on selecting the right imaging approach. The review advocates an integrated methodology that prioritises the research question while considering key factors like sample preparation, fluorophore choice, imaging modality, and data analysis. In addition to presenting seminal studies and innovative applications of microscopy, the review highlights a broad range of topics, from traditional techniques like white light microscopy to advanced methods such as superresolution microscopy and time-lapse imaging. It addresses the emerging challenges of microscopy, including phototoxicity and trade-offs in resolution and speed, and offers insights into future technologies that might impact malaria research. This review offers a mix of historical perspective, technological progress, and practical guidance that appeal to novice and advanced microscopists alike. It aims to inspire malaria researchers to explore imaging techniques that could enrich their studies, thus advancing the field through enhanced visual exploration of the parasite across scales and time.
Collapse
Affiliation(s)
- Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Deguchi T, Sergeev NA, Ries J. Tracking Single Kinesin in Live Cells Using MINFLUX. Methods Mol Biol 2025; 2881:119-131. [PMID: 39704940 DOI: 10.1007/978-1-0716-4280-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
MINFLUX is a super-resolution fluorescence microscopy technique that enables single-molecule tracking in live cells at a single-nanometer spatial and sub-millisecond temporal resolution. This chapter describes a method for tracking fluorescently labeled human kinesin-1 in live cells using MINFLUX and analyzing kinesin stepping dynamics.
Collapse
Affiliation(s)
- Takahiro Deguchi
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
| | - Nikolay Arkadievich Sergeev
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany.
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
- Faculty of Physics, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Carrington G, Takagi Y, Umney O, Curd A, Bird JE, Peckham M. Expression, Purification, and In Vitro Analysis of Myosin. Methods Mol Biol 2025; 2881:167-192. [PMID: 39704944 DOI: 10.1007/978-1-0716-4280-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
To understand the mechanics and kinetic properties of cytoskeletal molecular motors such as myosin, typically the motor of interest needs to be expressed and purified and then analyzed using a range of in vitro-based assays. In this chapter, we describe how to express and purify myosin using the insect cell system, how to characterize the purified protein by mass photometry and negative-stain EM to assess its quality, and how to perform in vitro assays in which fluorescently labeled myosin walks along actin tracks, including a brief description of adapting these assays for MINFLUX imaging.
Collapse
Affiliation(s)
- Glenn Carrington
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Oliver Umney
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Alistair Curd
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Michelle Peckham
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
12
|
Slivka J, Yildiz A. Multicolor Tracking of Molecular Motors at Nanometer Resolution. Methods Mol Biol 2025; 2881:133-144. [PMID: 39704941 DOI: 10.1007/978-1-0716-4280-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular motors move processively along cytoskeletal filaments by stepping of their motor domains (MDs). Observation of how the MDs step relative to each other reveals the mechanism of motor processivity and various gating mechanisms used by motors to coordinate the catalytic cycles of their MDs. This chapter will discuss developments in simultaneous observation of the stepping motions of the two MDs of processive motors using two-color single-particle tracking microscopy.Techniques presented: FIONA, multicolor tracking/image registration.
Collapse
Affiliation(s)
- Joseph Slivka
- Department of Physics, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Liu Y, Dong J, Augusto Maya J, Balzarotti F, Unser M. Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns. OPTICS LETTERS 2025; 50:37-40. [PMID: 39718850 DOI: 10.1364/ol.543882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024]
Abstract
Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.
Collapse
|
14
|
Szalai AM, Ferrari G, Richter L, Hartmann J, Kesici MZ, Ji B, Coshic K, Dagleish MRJ, Jaeger A, Aksimentiev A, Tessmer I, Kamińska I, Vera AM, Tinnefeld P. Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope. Nat Methods 2025; 22:135-144. [PMID: 39516563 DOI: 10.1038/s41592-024-02498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The intricate interplay between DNA and proteins is key for biological functions such as DNA replication, transcription and repair. Dynamic nanoscale observations of DNA structural features are necessary for understanding these interactions. Here we introduce graphene energy transfer with vertical nucleic acids (GETvNA), a method to investigate DNA-protein interactions that exploits the vertical orientation adopted by double-stranded DNA on graphene. This approach enables the dynamic study of DNA conformational changes via energy transfer from a probe dye to graphene, achieving spatial resolution down to the Ångström scale at subsecond temporal resolution. We measured DNA bending induced by adenine tracts, bulges, abasic sites and the binding of endonuclease IV. In addition, we observed the translocation of the O6-alkylguanine DNA alkyltransferase on DNA, reaching single base-pair resolution and detecting preferential binding to adenine tracts. This method promises widespread use for dynamical studies of nucleic acids and nucleic acid-protein interactions with resolution so far reserved for traditional structural biology techniques.
Collapse
Affiliation(s)
- Alan M Szalai
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Giovanni Ferrari
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lars Richter
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jakob Hartmann
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Merve-Zeynep Kesici
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bosong Ji
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kush Coshic
- Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin R J Dagleish
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annika Jaeger
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aleksei Aksimentiev
- Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Izabela Kamińska
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw, Poland
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
15
|
Otomo A, Wiemann J, Bhattacharyya S, Yamamoto M, Yu Y, Iino R. Visualizing Single V-ATPase Rotation Using Janus Nanoparticles. NANO LETTERS 2024; 24:15638-15644. [PMID: 39573818 PMCID: PMC11638961 DOI: 10.1021/acs.nanolett.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Understanding the function of rotary molecular motors, such as rotary ATPases, relies on our ability to visualize single-molecule rotation. Traditional imaging methods often involve tagging those motors with nanoparticles (NPs) and inferring their rotation from the translational motion of NPs. Here, we report an approach using "two-faced" Janus NPs to directly image the rotation of a single V-ATPase from Enterococcus hirae, an ATP-driven rotary ion pump. By employing a 500 nm silica/gold Janus NP, we exploit its asymmetric optical contrast, a silica core with a gold cap on one hemisphere, to achieve precise imaging of the unidirectional counterclockwise rotation of single V-ATPase motors immobilized on surfaces. Despite the added viscous load from the relatively large Janus NP probe, our approach provides accurate torque measurements of a single V-ATPase. This study underscores the advantages of Janus NPs over conventional probes, establishing them as powerful tools for the single-molecule analysis of rotary molecular motors.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute
for Molecular Science, National Institutes of National Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Jared Wiemann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Swagata Bhattacharyya
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mayuko Yamamoto
- Institute
for Molecular Science, National Institutes of National Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yan Yu
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ryota Iino
- Institute
for Molecular Science, National Institutes of National Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
16
|
Baig F, Bakdaleyeh M, Bazzi HM, Cao L, Tripathy SK. Dissecting the pH Sensitivity of Kinesin-Driven Transport. J Phys Chem B 2024; 128:11855-11864. [PMID: 39575923 PMCID: PMC11627161 DOI: 10.1021/acs.jpcb.4c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024]
Abstract
Kinesin-1 is a crucial motor protein that drives the microtubule-based movement of organelles, vital for cellular function and health. Mostly studied at pH 6.9, it moves at approximately 800 nm/s, covers about 1 μm before detaching, and hydrolyzes one ATP per 8 nm step. Given that cellular pH is dynamic and alterations in pH have significant implications for disease, understanding how kinesin-1 functions across different pH levels is crucial. To explore this, we executed single-molecule motility assays paired with precise optical trapping techniques over a pH range of 5.5-9.8. Our results show a consistent positive relationship between increasing pH and the enhanced detachment (off rate) and speed of kinesin-1. Measurements of the nucleotide-dependent off rate show that kinesin-1 exhibits the highest rate of ATPase activity at alkaline pH, while it demonstrates the optimal number of ATP turnover and cargo translocation efficiency at the acidic pH. Physiological pH of 6.9 optimally balances the biophysical activity of kinesin-1, potentially allowing it to function effectively across a range of pH levels. These insights emphasize the crucial role of pH homeostasis in cellular function, highlighting its importance for the precise regulation of motor proteins and efficient intracellular transport.
Collapse
Affiliation(s)
- Fawaz Baig
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Michael Bakdaleyeh
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Hassan M. Bazzi
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Lanqin Cao
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Suvranta K. Tripathy
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| |
Collapse
|
17
|
Melkikh AV. Why does a cell function? New arguments in favor of quantum effects. Biosystems 2024; 245:105311. [PMID: 39173899 DOI: 10.1016/j.biosystems.2024.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
In this study, the complexities of intracellular processes have been analyzed, including DNA folding, alternative splicing, mitochondrial function, and enzyme transport in lysosomes. Based on a previously proposed hypothesis (Levinthal's generalized paradox), a conclusion is made that all abovementioned processes cannot be realized with sufficient accuracy and in a realistic timeframe within the framework of classical physics. It is unclear why the cell functions at all. For the cell to function, its internal environment must be highly structured. In this regard, the cell shares similarities with computational devices (computers). In this study, quantum models of interactions between biologically important molecules were constructed, taking into account the long-range effects. One significant aspect of these models is the special role of the phase of the wavefunction, which serves as a controlling parameter. Experiments have been proposed that may confirm or refute these models.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
18
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024; 300:107894. [PMID: 39424144 PMCID: PMC11603008 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China.
| |
Collapse
|
19
|
Palounek D, Vala M, Bujak Ł, Kopal I, Jiříková K, Shaidiuk Y, Piliarik M. Surpassing the Diffraction Limit in Label-Free Optical Microscopy. ACS PHOTONICS 2024; 11:3907-3921. [PMID: 39429866 PMCID: PMC11487630 DOI: 10.1021/acsphotonics.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/22/2024]
Abstract
Super-resolution optical microscopy has enhanced our ability to visualize biological structures on the nanoscale. Fluorescence-based techniques are today irreplaceable in exploring the structure and dynamics of biological matter with high specificity and resolution. However, the fluorescence labeling concept narrows the range of observed interactions and fundamentally limits the spatiotemporal resolution. In contrast, emerging label-free imaging methods are not inherently limited by speed and have the potential to capture the entirety of complex biological processes and dynamics. While pushing a complex unlabeled microscopy image beyond the diffraction limit to single-molecule resolution and capturing dynamic processes at biomolecular time scales is widely regarded as unachievable, recent experimental strides suggest that elements of this vision might be already in place. These techniques derive signals directly from the sample using inherent optical phenomena, such as elastic and inelastic scattering, thereby enabling the measurement of additional properties, such as molecular mass, orientation, or chemical composition. This perspective aims to identify the cornerstones of future label-free super-resolution imaging techniques, discuss their practical applications and theoretical challenges, and explore directions that promise to enhance our understanding of complex biological systems through innovative optical advancements. Drawing on both traditional and emerging techniques, label-free super-resolution microscopy is evolving to offer detailed and dynamic imaging of living cells, surpassing the capabilities of conventional methods for visualizing biological complexities without the use of labels.
Collapse
Affiliation(s)
- David Palounek
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Milan Vala
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Łukasz Bujak
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Ivan Kopal
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Kateřina Jiříková
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Yevhenii Shaidiuk
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Marek Piliarik
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| |
Collapse
|
20
|
Rudinskiy M, Morone D, Molinari M. Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Traffic 2024; 25:e12957. [PMID: 39450581 DOI: 10.1111/tra.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Diego Morone
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Schleske JM, Hubrich J, Wirth JO, D’Este E, Engelhardt J, Hell SW. MINFLUX reveals dynein stepping in live neurons. Proc Natl Acad Sci U S A 2024; 121:e2412241121. [PMID: 39254993 PMCID: PMC11420169 DOI: 10.1073/pnas.2412241121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.
Collapse
Affiliation(s)
- Jonas M. Schleske
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Jasmine Hubrich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Jan Otto Wirth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Elisa D’Este
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| |
Collapse
|
22
|
Behrens L, Walter RM, Cai W, Ewers H, van Bommel B, Zemella A. Fast In Vitro Synthesis and Direct Labeling of Nanobodies for Prototyping in Microscopy Applications. ACS OMEGA 2024; 9:35374-35383. [PMID: 39184460 PMCID: PMC11339826 DOI: 10.1021/acsomega.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Small antigen binders, such as nanobodies, have become widely used in biomedical research and pharmaceutical development. However, the pipeline for the generation of functional conjugated probes and drugs from identified binders remains a major time-consuming bottleneck. Here, we developed a method for fast nanobody production and conjugation based on an in vitro synthesis platform. Our system allows for small batch synthesis of nanobodies with the inclusion of a noncanonical amino acid (NCAA). This NCAA can then be used for direct conjugation of molecules to the synthesized nanobody using click-chemistry, reducing the time from binder-encoding DNA to a conjugated probe tremendously. In this study, we conjugated a fluorescent dye to an anti-Green fluorescent protein (GFP) nanobody and attained a fully functional probe suitable for advanced super-resolution microscopy within a short time frame of 2 days. Our work illustrates that an in vitro synthesis platform in combination with click-chemistry can be successfully employed to produce conjugated small antigen binding probes. The fast production and conjugation, combined with the possibility for parallelization as well as precise analysis by microscopy, forms an excellent platform for nanobody prototyping. The here-illustrated method can be used for quick selection and benchmarking of obtained nanobody sequences/clones, e. g., from a phage-display, for use as conjugated small-molecule carriers. This procedure can accelerate the bioengineering of nanobodies for research and pharmaceutical applications.
Collapse
Affiliation(s)
- Lukas Behrens
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Ruben Magnus Walter
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute
of Biotechnology, Technische Universität
Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Weining Cai
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Helge Ewers
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Bas van Bommel
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Anne Zemella
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
| |
Collapse
|
23
|
Ross P, Fatima H, Leaman DP, Matthias J, Spencer K, Zwick MB, Henderson SC, Mace EM, Murin CD. Spatial localization of CD16a at the human NK cell ADCC lytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.605851. [PMID: 39149244 PMCID: PMC11326286 DOI: 10.1101/2024.08.09.605851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Natural Killer (NK) cells utilize effector functions, including antibody-dependent cellular cytotoxicity (ADCC), for the clearance of viral infection and cellular malignancies. NK cell ADCC is mediated by FcγRIIIa (CD16a) binding to the fragment crystallizable (Fc) region of immunoglobulin G (IgG) within immune complexes on a target cell surface. While antibody-induced clustering of CD16a is thought to drive ADCC, the molecular basis for this activity has not been fully described. Here we use MINFLUX nanoscopy to map the spatial distribution of stoichiometrically labeled CD16a across the NK cell membrane, revealing the presence of pairs of CD16a molecules with intra-doublet distance of approximately 17 nm. NK cells activated on supported lipid bilayers by Trastuzumab results in an increase of synaptic regions with greater CD16a density. Our results provide the highest spatial resolution yet described for CD16a imaging, offering new insight into how CD16a organization within the immune synapse could influence ADCC activity. MINFLUX holds great promise to further unravel the molecular details driving CD16a-based activation of NK cells.
Collapse
Affiliation(s)
- Patrick Ross
- San Diego Biomedical Research Institute, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Hijab Fatima
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan P. Leaman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Kathryn Spencer
- Core Microscopy Facility, Scripps Research, La Jolla, CA, USA
| | - Michael B. Zwick
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Scott C. Henderson
- Core Microscopy Facility, Scripps Research, La Jolla, CA, USA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Daniel Murin
- San Diego Biomedical Research Institute, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
24
|
DʼEste E, Lukinavičius G, Lincoln R, Opazo F, Fornasiero EF. Advancing cell biology with nanoscale fluorescence imaging: essential practical considerations. Trends Cell Biol 2024; 34:671-684. [PMID: 38184400 DOI: 10.1016/j.tcb.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Recently, biologists have gained access to several far-field fluorescence nanoscopy (FN) technologies that allow the observation of cellular components with ~20 nm resolution. FN is revolutionizing cell biology by enabling the visualization of previously inaccessible subcellular details. While technological advances in microscopy are critical to the field, optimal sample preparation and labeling are equally important and often overlooked in FN experiments. In this review, we provide an overview of the methodological and experimental factors that must be considered when performing FN. We present key concepts related to the selection of affinity-based labels, dyes, multiplexing, live cell imaging approaches, and quantitative microscopy. Consideration of these factors greatly enhances the effectiveness of FN, making it an exquisite tool for numerous biological applications.
Collapse
Affiliation(s)
- Elisa DʼEste
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Gražvydas Lukinavičius
- Chromatin Labelling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center, Göttingen 37075, Germany; NanoTag Biotechnologies GmbH, Göttingen 37079, Germany.
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
25
|
Slivka J, Gleave E, Wijewardena DP, Canty JT, Selvin PR, Carter AP, Yildiz A. Stepping dynamics of dynein characterized by MINFLUX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603667. [PMID: 39071311 PMCID: PMC11275781 DOI: 10.1101/2024.07.16.603667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cytoplasmic dynein is a dimeric motor that drives minus-end directed transport on microtubules (MTs). To couple ATP hydrolysis to a mechanical step, a dynein monomer must be released from the MT before undergoing a conformational change that generates a bias towards the minus end. However, the dynamics of dynein stepping have been poorly characterized by tracking flexible regions of the motor with limited resolution. Here, we developed a cysteine-light mutant of yeast dynein and site-specifically labeled its MT-binding domain in vitro. MINFLUX tracking at sub-millisecond resolution revealed that dynein hydrolyzes one ATP per step and takes multitudes of 8 nm steps at physiological ATP. Steps are preceded by the transient movement towards the plus end. We propose that these backward "dips" correspond to MT release and subsequent diffusion of the stepping monomer around its MT-bound partner before taking a minus-end-directed conformational change of its linker. Our results reveal the order of sub-millisecond events that result in a productive step of dynein.
Collapse
Affiliation(s)
- Joseph Slivka
- Department of Physics, University of California at Berkeley, Berkeley CA 94720 USA
| | - Emma Gleave
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Devinda P Wijewardena
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana IL 61801 USA
| | - John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley CA 94720 USA
| | - Paul R Selvin
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana IL 61801 USA
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley CA 94720 USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720 USA
| |
Collapse
|
26
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa H. Cryo-EM unveils kinesin KIF1A's processivity mechanism and the impact of its pathogenic variant P305L. Nat Commun 2024; 15:5530. [PMID: 38956021 PMCID: PMC11219953 DOI: 10.1038/s41467-024-48720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.5 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
Affiliation(s)
- Matthieu P M H Benoit
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Hernando Sosa
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
27
|
Illand A, Jouchet P, Fort E, Lévêque-Fort S. Flexible implementation of modulated localisation microscopy based on DMD. J Microsc 2024; 295:21-32. [PMID: 38353429 DOI: 10.1111/jmi.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 06/19/2024]
Abstract
Localisation microscopy of individual molecules allows one to bypass the diffraction limit, revealing cellular organisation on a nanometric scale. This method, which relies on spatial analysis of the signal emitted by molecules, is often limited to the observation of biological objects at shallow depths, or with very few aberrations. The introduction of a temporal parameter into the localisation process through a time-modulated excitation was recently proposed to address these limitations. This method, called ModLoc, is demonstrated here with an alternative flexible strategy. In this implementation, to encode the time-modulated excitation a digital micromirror device (DMD) is used in combination with a fast demodulation approach, and provides a twofold enhancement in localisation precision. Layout: Nowadays, we can use an optical microscope to observe how proteins are organised in 3D within a cell at the nanoscale. By carefully controlling the emission of molecules in both space and time, we can overcome the limitations set by the diffraction limit. This allows us to pinpoint the exact location of molecules more precisely. However, the usual spatial analysis method limits observations to shallow depths or causing low distortion of optical waves. To overcome these restrictions, a recent approach introduces a temporal element to the localisation process. This involves changing the illumination over time to enhance the precision of localisation. This method, known as ModLoc, is showcased here using a flexible and alternative strategy. In this setup, a matrix of micrometric mirrors, working together with a fast demodulation optical module, is used to encode and decode the time-modulated information. This combination results in a twofold improvement in localisation precision.
Collapse
Affiliation(s)
- Abigail Illand
- Institut des Sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS UMR8214, Orsay, France
| | - Pierre Jouchet
- Institut des Sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS UMR8214, Orsay, France
| | - Emmanuel Fort
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, Paris, France
| | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS UMR8214, Orsay, France
| |
Collapse
|
28
|
Gao Z, Li Q, Fan C, Hou S. Deciphering live-cell biomolecular dynamics with single-molecule fluorescence imaging. Sci Bull (Beijing) 2024; 69:1823-1828. [PMID: 38594097 DOI: 10.1016/j.scib.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Affiliation(s)
- Zhaoshuai Gao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
29
|
Ma J, Luo F, Hsiung CH, Dai J, Tan Z, Ye S, Ding L, Shen B, Zhang X. Chemical Control of Fluorescence Lifetime towards Multiplexing Imaging. Angew Chem Int Ed Engl 2024; 63:e202403029. [PMID: 38641550 DOI: 10.1002/anie.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Fluorescence lifetime imaging has been a powerful tool for biomedical research. Recently, fluorescence lifetime-based multiplexing imaging has expanded imaging channels by using probes that harbor the same spectral channels and distinct excited state lifetime. While it is desirable to control the excited state lifetime of any given fluorescent probes, the rational control of fluorescence lifetimes remains a challenge. Herein, we chose boron dipyrromethene (BODIPY) as a model system and provided chemical strategies to regulate the fluorescence lifetime of its derivatives with varying spectral features. We find electronegativity of structural substituents at the 8' and 5' positions is important to control the lifetime for the green-emitting and red-emitting BODIPY scaffolds. Mechanistically, such influences are exerted via the photo-induced electron transfer and the intramolecular charge transfer processes for the 8' and 5' positions of BODIPY, respectively. Based on these principles, we have generated a group of BODIPY probes that enable imaging experiments to separate multiple targets using fluorescence lifetime as a signal. In addition to BODIPY, we envision modulation of electronegativity of chemical substituents could serve as a feasible strategy to achieve rational control of fluorescence lifetime for a variety of small molecule fluorophores.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Feng Luo
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jianan Dai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Zizhu Tan
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Songtao Ye
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
30
|
Deguchi T, Ries J. Simple and robust 3D MINFLUX excitation with a variable phase plate. LIGHT, SCIENCE & APPLICATIONS 2024; 13:134. [PMID: 38849346 PMCID: PMC11161593 DOI: 10.1038/s41377-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
MINFLUX has achieved extraordinary resolution in superresolution imaging and single fluorophore tracking. It is based on localizing single fluorophores by rapid probing with a patterned beam that features a local intensity minimum. Current implementations, however, are complex and expensive and are limited in speed and robustness. Here, we show that a combination of an electro-optical modulator with a segmented birefringent element such as a spatial light modulator produces a variable phase plate for which the phase can be scanned on the MHz timescale. Bisected or top-hat phase patterns generate high-contrast compact excitation point-spread functions for MINFLUX localization in the x, y, and z-direction, respectively, which can be scanned across a fluorophore within a microsecond, switched within 60 microseconds and alternated among different excitation wavelengths. We discuss how to compensate for non-optimal performance of the components and present a robust 3D and multi-color MINFLUX excitation module, which we envision as an integral component of a high-performance and cost-effective open-source MINFLUX.
Collapse
Affiliation(s)
- Takahiro Deguchi
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Vienna, Austria.
- University of Vienna, Faculty of Physics, Vienna, Austria.
| |
Collapse
|
31
|
Shroff H, Testa I, Jug F, Manley S. Live-cell imaging powered by computation. Nat Rev Mol Cell Biol 2024; 25:443-463. [PMID: 38378991 DOI: 10.1038/s41580-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preserving cell viability. Computational methods can help to address this challenge and are now shifting the boundaries of what is possible to capture in living systems. In this Review, we discuss these computational methods focusing on artificial intelligence-based approaches that can be layered on top of commonly used existing microscopies as well as hybrid methods that integrate computation and microscope hardware. We specifically discuss how computational approaches can improve the signal-to-noise ratio, spatial resolution, temporal resolution and multi-colour capacity of live-cell imaging.
Collapse
Affiliation(s)
- Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Florian Jug
- Fondazione Human Technopole (HT), Milan, Italy
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
32
|
Chen T, Giannone G. Single molecule imaging unveils cellular architecture, dynamics and mechanobiology. Curr Opin Cell Biol 2024; 88:102369. [PMID: 38759257 DOI: 10.1016/j.ceb.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
33
|
Wirth JO, Schentarra EM, Scheiderer L, Macarrón-Palacios V, Tarnawski M, Hell SW. Uncovering kinesin dynamics in neurites with MINFLUX. Commun Biol 2024; 7:661. [PMID: 38811803 PMCID: PMC11136979 DOI: 10.1038/s42003-024-06358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons grow neurites of several tens of micrometers in length, necessitating active transport from the cell body by motor proteins. By tracking fluorophores as minimally invasive labels, MINFLUX is able to quantify the motion of those proteins with nanometer/millisecond resolution. Here we study the substeps of a truncated kinesin-1 mutant in primary rat hippocampal neurons, which have so far been mainly observed on polymerized microtubules deposited onto glass coverslips. A gentle fixation protocol largely maintains the structure and surface modifications of the microtubules in the cell. By analyzing the time between the substeps, we identify the ATP-binding state of kinesin-1 and observe the associated rotation of the kinesin-1 head in neurites. We also observed kinesin-1 switching microtubules mid-walk, highlighting the potential of MINFLUX to study the details of active cellular transport.
Collapse
Affiliation(s)
- Jan Otto Wirth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Eva-Maria Schentarra
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Victor Macarrón-Palacios
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
| |
Collapse
|
34
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
35
|
Carsten A, Failla AV, Aepfelbacher M. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J Microsc 2024. [PMID: 38661499 DOI: 10.1111/jmi.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Xie P. ATP Concentration-Dependent Fractions of One-Head-Bound and Two-Head-Bound States of the Kinesin Motor during Its Chemomechanical Coupling Cycle. J Phys Chem Lett 2024; 15:3893-3899. [PMID: 38563569 DOI: 10.1021/acs.jpclett.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Kinesin is a typical motor protein that can use the chemical energy of ATP hydrolysis to step processively on microtubules, alternating between one-head-bound and two-head-bound states. Some published experimental results showed that the duration of the one-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the two-head-bound state is independent of ATP concentration, indicating that ATP binding occurs in the one-head-bound state. On the contrary, other experimental results showed that the duration of the two-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the one-head-bound state increases slightly with a decrease in ATP concentration, indicating that ATP binding occurs mainly in the two-head-bound state. Here, we explain consistently and quantitatively these contradictory experimental results, resolving the controversy that is critical to the chemomechanical coupling mechanism of the kinesin motor.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
37
|
Hołyst R, Bubak G, Kalwarczyk T, Kwapiszewska K, Michalski J, Pilz M. Living Cell as a Self-Synchronized Chemical Reactor. J Phys Chem Lett 2024; 15:3559-3570. [PMID: 38526849 PMCID: PMC11000238 DOI: 10.1021/acs.jpclett.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Thermal fluctuations power all processes inside living cells. Therefore, these processes are inherently random. However, myriad multistep chemical reactions act in concerto inside a cell, finally leading to this chemical reactor's self-replication. We speculate that an underlying mechanism in nature must exist that allows all of these reactions to synchronize at multiple time and length scales, overcoming in this way the random nature of any single process in a cell. This Perspective discusses what type of research is needed to understand this undiscovered synchronization law.
Collapse
Affiliation(s)
- Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jarosław Michalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Pilz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
38
|
Zhu FY, Mei LJ, Tian R, Li C, Wang YL, Xiang SL, Zhu MQ, Tang BZ. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev 2024; 53:3350-3383. [PMID: 38406832 DOI: 10.1039/d3cs00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shi-Li Xiang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
39
|
Carsten A, Wolters M, Aepfelbacher M. Super-resolution fluorescence microscopy for investigating bacterial cell biology. Mol Microbiol 2024; 121:646-658. [PMID: 38041391 DOI: 10.1111/mmi.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Super-resolution fluorescence microscopy technologies developed over the past two decades have pushed the resolution limit for fluorescently labeled molecules into the nanometer range. These technologies have the potential to study bacterial structures, for example, macromolecular assemblies such as secretion systems, with single-molecule resolution on a millisecond time scale. Here we review recent applications of super-resolution fluorescence microscopy with a focus on bacterial secretion systems. We also describe MINFLUX fluorescence nanoscopy, a relatively new technique that promises to one day produce molecular movies of molecular machines in action.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Manuel Wolters
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Park JG, Jeon H, Hwang KY, Cha SS, Han RT, Cho H, Lee IG. Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein. Exp Mol Med 2024; 56:827-835. [PMID: 38556551 PMCID: PMC11059388 DOI: 10.1038/s12276-024-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
Intracellular retrograde transport in eukaryotic cells relies exclusively on the molecular motor cytoplasmic dynein 1. Unlike its counterpart, kinesin, dynein has a single isoform, which raises questions about its cargo specificity and regulatory mechanisms. The precision of dynein-mediated cargo transport is governed by a multitude of factors, including temperature, phosphorylation, the microtubule track, and interactions with a family of activating adaptor proteins. Activating adaptors are of particular importance because they not only activate the unidirectional motility of the motor but also connect a diverse array of cargoes with the dynein motor. Therefore, it is unsurprising that dysregulation of the dynein-activating adaptor transport machinery can lead to diseases such as spinal muscular atrophy, lower extremity, and dominant. Here, we discuss dynein motor motility within cells and in in vitro, and we present several methodologies employed to track the motion of the motor. We highlight several newly identified activating adaptors and their roles in regulating dynein. Finally, we explore the potential therapeutic applications of manipulating dynein transport to address diseases linked to dynein malfunction.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Rafael T Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
41
|
Scheiderer L, von der Emde H, Hesselink M, Weber M, Hell SW. MINSTED tracking of single biomolecules. Nat Methods 2024; 21:569-573. [PMID: 38480903 PMCID: PMC11009101 DOI: 10.1038/s41592-024-02209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Here we show that MINSTED localization, a method whereby the position of a fluorophore is identified with precisely controlled beams of a STED microscope, tracks fluorophores and hence labeled biomolecules with nanometer/millisecond spatiotemporal precision. By updating the position for each detected photon, MINSTED recognizes fluorophore steps of 16 nm within <250 μs using about 13 photons. The power of MINSTED tracking is demonstrated by resolving the stepping of the motor protein kinesin-1 walking on microtubules and switching protofilaments.
Collapse
Affiliation(s)
- Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mira Hesselink
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
42
|
Rickert JD, Held MO, Engelhardt J, Hell SW. 4Pi MINFLUX arrangement maximizes spatio-temporal localization precision of fluorescence emitter. Proc Natl Acad Sci U S A 2024; 121:e2318870121. [PMID: 38442172 PMCID: PMC10945813 DOI: 10.1073/pnas.2318870121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
We introduce MINFLUX localization with interferometric illumination through opposing objective lenses for maximizing the attainable precision in 3D-localization of single inelastic scatterers, such as fluorophores. Our 4Pi optical configuration employs three sequentially tilted counter-propagating beam pairs for illumination, each providing a narrow interference minimum of illumination intensity at the focal point. The localization precision is additionally improved by adding the inelastically scattered or fluorescence photons collected through both objective lenses. Our 4Pi configuration yields the currently highest precision per detected photon among all localization schemes. Tracking gold nanoparticles as non-blinking inelastic scatterers rendered a position uncertainty <0.4 nm3 in volume at a localization frequency of 2.9 kHz. We harnessed the record spatio-temporal precision of our 4Pi MINFLUX approach to examine the diffusion of single fluorophores and fluorescent nanobeads in solutions of sucrose in water, revealing local heterogeneities at the nanoscale. Our results show the applicability of 4Pi MINFLUX to study molecular nano-environments of diffusion and its potential for quantifying rapid movements of molecules in cells and other material composites.
Collapse
Affiliation(s)
- Julian D. Rickert
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Max Planck School Matter to Life, Heidelberg69120, Germany
| | - Marcus O. Held
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| |
Collapse
|
43
|
Sharma N, Jung M, Mishra PK, Mun JY, Rhee HW. FLEX: genetically encodable enzymatic fluorescence signal amplification using engineered peroxidase. Cell Chem Biol 2024; 31:S2451-9456(24)00081-3. [PMID: 38513646 DOI: 10.1016/j.chembiol.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.
Collapse
Affiliation(s)
- Nirmali Sharma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Minkyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | | | - Ji Young Mun
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
44
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Recent advancements of fluorescent biosensors using semisynthetic probes. Biosens Bioelectron 2024; 247:115862. [PMID: 38147718 DOI: 10.1016/j.bios.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Fluorescent biosensors are crucial experimental tools for live-cell imaging and the quantification of different biological analytes. Fluorescent protein (FP)-based biosensors are widely used for imaging applications in living systems. However, the use of FP-based biosensors is hindered by their large size, poor photostability, and laborious genetic manipulations required to improve their properties. Recently, semisynthetic fluorescent biosensors have been developed to address the limitations of FP-based biosensors using chemically modified fluorescent probes and self-labeling protein tag/peptide tags or DNA/RNA-based hybrid systems. Semisynthetic biosensors have unique advantages, as they can be easily modified using different probes. Moreover, the self-labeling protein tag, which labels synthetically developed ligands via covalent bonds, has immense potential for biosensor development. This review discusses the recent progress in different types of fluorescent biosensors for metabolites, protein aggregation and degradation, DNA methylation, endocytosis and exocytosis, membrane tension, and cellular viscosity. Here, we explain in detail the design strategy and working principle of these biosensors. The information presented will help the reader to create new biosensors using self-labeling protein tags for various applications.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazuya Kikuchi
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan; Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
45
|
Beck M, Covino R, Hänelt I, Müller-McNicoll M. Understanding the cell: Future views of structural biology. Cell 2024; 187:545-562. [PMID: 38306981 DOI: 10.1016/j.cell.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
Collapse
Affiliation(s)
- Martin Beck
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Frankfurt, Germany.
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Inga Hänelt
- Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
46
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
47
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
48
|
Seo D, Kammerer RA, Alexandrescu AT. Solution NMR assignments and structure for the dimeric kinesin neck domain. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:301-307. [PMID: 37861970 DOI: 10.1007/s12104-023-10159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report 1H, 15N, and 13C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad a and d positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with β-strand propensity- the β-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4-6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.
Collapse
Affiliation(s)
- Diana Seo
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT, 06269-3125, USA.
| |
Collapse
|
49
|
Samuel Russell PP, Alaeen S, Pogorelov TV. In-Cell Dynamics: The Next Focus of All-Atom Simulations. J Phys Chem B 2023; 127:9863-9872. [PMID: 37793083 PMCID: PMC10874638 DOI: 10.1021/acs.jpcb.3c05166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The cell is a crowded space where large biomolecules and metabolites are in continuous motion. Great strides have been made in in vitro studies of protein dynamics, folding, and protein-protein interactions, and much new data are emerging of how they differ in the cell. In this Perspective, we highlight the current progress in atomistic modeling of in-cell environments, both bacteria and mammals, with emphasis on classical all-atom molecular dynamics simulations. These simulations have been recently used to capture and characterize functional and non-functional protein-protein interactions, protein folding dynamics of small proteins with varied topologies, and dynamics of metabolites. We further discuss the challenges and efforts for updating modern force fields critical to the progress of cellular environment simulations. We also briefly summarize developments in relevant state-of-the-art experimental techniques. As computational and experimental methodologies continue to progress and produce more directly comparable data, we are poised to capture the complex atomistic picture of the cell.
Collapse
Affiliation(s)
- Premila P Samuel Russell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sepehr Alaeen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
It is well established that a wide variety of phenomena in cellular and molecular biology involve anomalous transport e.g. the statistics for the motility of cells and molecules are fractional and do not conform to the archetypes of simple diffusion or ballistic transport. Recent research demonstrates that anomalous transport is in many cases heterogeneous in both time and space. Thus single anomalous exponents and single generalised diffusion coefficients are unable to satisfactorily describe many crucial phenomena in cellular and molecular biology. We consider advances in the field ofheterogeneous anomalous transport(HAT) highlighting: experimental techniques (single molecule methods, microscopy, image analysis, fluorescence correlation spectroscopy, inelastic neutron scattering, and nuclear magnetic resonance), theoretical tools for data analysis (robust statistical methods such as first passage probabilities, survival analysis, different varieties of mean square displacements, etc), analytic theory and generative theoretical models based on simulations. Special emphasis is made on high throughput analysis techniques based on machine learning and neural networks. Furthermore, we consider anomalous transport in the context of microrheology and the heterogeneous viscoelasticity of complex fluids. HAT in the wavefronts of reaction-diffusion systems is also considered since it plays an important role in morphogenesis and signalling. In addition, we present specific examples from cellular biology including embryonic cells, leucocytes, cancer cells, bacterial cells, bacterial biofilms, and eukaryotic microorganisms. Case studies from molecular biology include DNA, membranes, endosomal transport, endoplasmic reticula, mucins, globular proteins, and amyloids.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|