1
|
Lan X, Wang H, Liang Q, Liu LL. A Crystalline Mesoionic Diazasilole Featuring Low-Valent Silicon. Angew Chem Int Ed Engl 2025; 64:e202415246. [PMID: 39478432 DOI: 10.1002/anie.202415246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
A 1,4,2-diazasilole containing a low-valent silicon atom has been synthesized employing a bulky imino N-heterocyclic carbene ligand. This molecular structure is characterized by a mesoionic C2N2Si five-membered ring, notable for its delocalized π electrons, intrinsic charge-separated zwitterionic properties, and a distinctly nucleophilic silicon center, culminating in 6π aromaticity. This compound manifests either mesoionic silylene or silylone characteristics upon coordination with transition metals. Demonstrating extraordinary versatility, this compound engages in diverse reactions such as coordination with iron or iridium, oxidation by S8, intramolecular ring saturation under the coordination influence of iridium, silicon atom transfer facilitated by Ph2Se2, ring contraction induced by Ph2Te2, and skeletal rearrangement triggered by Et3N•HCl. These reactions culminate in the formation of a variety of unprecedented silicon-based heterocycles, which are typically formidable to achieve using conventional methods. This study unveils previously unexplored facets of low-valent 1,4,2-diazasilole, positioning it as a promising foundational building block for future innovations in unique silicon compounds.
Collapse
Affiliation(s)
- Xiaofang Lan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyu Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiuming Liang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry, School of Sciences, Great Bay University, Dongguan, 523000, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2024. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Zhou B, Gao Z, Yang Y, Hu Y. Synthesis of bis(indolyl)methanes using N-heterocyclic carbene salt as a C1 precursor. Org Biomol Chem 2024; 22:9058-9062. [PMID: 39436311 DOI: 10.1039/d4ob01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yanhao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Kelly PQ, Keramati NR, Kaplin KR, Lynch-Colameta T, Phelan JP, Levin MD. Redox-Tunable Ring Expansion Enabled By A Single-Component Electrophilic Nitrogen Atom Synthon. Angew Chem Int Ed Engl 2024:e202420664. [PMID: 39527698 DOI: 10.1002/anie.202420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Controllable installation of a single nitrogen atom is central to many major goals in skeletal editing, with progress often gated by the availability of an appropriate N-atom source. Here we introduce a novel reagent, termed DNIBX, based on dibenzoazabicycloheptadiene (dbabh), which allows the electrophilic installation of dbabh to organic substrates. When indanone β-ketoesters are aminated by DNIBX, the resulting products undergo divergent ring expansions depending on the mode of activation, producing heterocycles in differing oxidation states under thermal and photochemical conditions. The mechanism of each transformation is discussed, and the different reactivity modes of the indanone-dbabh adducts are compared to other nitrogenous precursors.
Collapse
Affiliation(s)
- Patrick Q Kelly
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Nikki R Keramati
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Kate R Kaplin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Tessa Lynch-Colameta
- GSK, Department of Medicinal Chemistry, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - James P Phelan
- GSK, Department of Medicinal Chemistry, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
5
|
Bossonnet A, Garner RA, O'Brien J, Trujillo C, Trowbridge AD. Oxenoid Reactivity Enabled by Targeted Photoactivation of Periodate. Angew Chem Int Ed Engl 2024:e202417402. [PMID: 39423248 DOI: 10.1002/anie.202417402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The chemistry of low-valent intermediates continues to inspire new modes of reactivity across synthetic chemistry. But while the generation and reactivity of both carbenes and nitrenes are well-established, difficulties in accessing oxene, their oxygen-based congener, has severely hampered its application in synthesis. Here, we report a conceptually novel approach towards oxenoid reactivity through the violet-light photolysis of tetrabutylammonium periodate. Computational studies reveal an unexpected geometric change upon periodate photoexcitation that facilitates intersystem crossing and near-barrierless dissociation of triplet periodate into oxene. Under these operationally simple conditions, we have demonstrated the epoxidation of a wide range of substituted olefins, revealing unprecedented functional group compatibility. By overcoming the historic challenges associated with employing oxene as an intermediate in organic chemistry, we believe that this platform will inspire the development of new reactive oxygen-based methodologies across industry and academia.
Collapse
Affiliation(s)
- Andre Bossonnet
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Ruth A Garner
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - James O'Brien
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Cristina Trujillo
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Aaron D Trowbridge
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
6
|
Suzuki M, Kasahara H, Moriyama K. Oxidative Remote Aryl Rearrangement of N-Cinnamyl- N-alkoxybenzyl Sulfonamides Using Hypervalent Iodine(III). Org Lett 2024; 26:8768-8773. [PMID: 39388216 DOI: 10.1021/acs.orglett.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
An oxidative remote aryl rearrangement of N-cinnamyl-N-alkoxybenzyl sulfonamides with a hypervalent iodine(III) compound was developed to furnish 5,6-disubstituted 1,3-oxazinanes in high yields. This reaction proceeded through the dearomatization of the alkoxybenzene ring on the benzyl group, which acts as a good aryl donor, inducing the regioselective installation of the aryl group and the oxygen atom via cascade transformation. An enantioselective oxidative remote aryl rearrangement using C2-symmetrical chiral iodoarene gave enantioenriched products with high enantioselectivity.
Collapse
Affiliation(s)
- Mami Suzuki
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Honoka Kasahara
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Li FS, Zou XY, Hu TQ, Sun Q, Xu Z, Zhou B, Ye LW. Asymmetric one-carbon ring expansion of diverse N-heterocycles via copper-catalyzed diyne cyclization. SCIENCE ADVANCES 2024; 10:eadq7767. [PMID: 39383216 PMCID: PMC11463259 DOI: 10.1126/sciadv.adq7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
One-carbon ring expansion reaction of N-heterocycles has gained particular attention in the past decade because this method allows for the conversion of readily available N-heterocycles into potentially useful complex ring-expanded N-heterocycles, which are inaccessible by traditional methods. However, the catalytic asymmetric variant of this reaction has been rarely reported to date. Herein, we disclose an enantioselective one-carbon ring expansion reaction through chiral copper-catalyzed diyne cyclization, leading to the practical, atom-economic and divergent assembly of an array of valuable chiral N-heterocycles bearing a quaternary stereocenter in generally good to excellent yields with excellent enantioselectivities (up to >99% ee). This protocol represents the first example of asymmetric one-carbon ring expansion reaction of N-heterocycles based on alkynes.
Collapse
Affiliation(s)
- Fu-Shuai Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiu-Yuan Zou
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Tian-Qi Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Wannipurage DC, Yang ES, Chivington AD, Fletcher J, Ray D, Yamamoto N, Pink M, Goicoechea JM, Smith JM. A Transient Iron Carbide Generated by Cyaphide Cleavage. J Am Chem Soc 2024; 146:27173-27178. [PMID: 39287969 DOI: 10.1021/jacs.4c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Despite their potential relevance as molecular models for industrial and biological catalysis, well-defined mononuclear iron carbide complexes are unknown, in part due to the limited number of appropriate C1 synthons. Here, we show the ability of the cyaphide anion (C≡P-) to serve as a C1 source. The high spin (S = 2) cyaphide complex PhB(tBuIm)3Fe-C≡P (PhB(tBuIm)3- = phenyl(tris(3-tert-butylimidazol-2-ylidene)borate) is readily accessed using the new cyaphide transfer reagent [Mg(DippNacNac)(CP)]2 (DippNacNac = CH{C(CH3)N(Dipp)}2 and Dipp = 2,6-di(iso-propyl)phenyl). Phosphorus atom abstraction is effected by the three-coordinate Mo(III) complex Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3), which produces the known phosphide (tBuArN)3Mo≡P along with a transient iron carbide complex PhB(tBuIm)3Fe≡C. Electronic structure calculations reveal that PhB(tBuIm)3Fe≡C adopts a doublet ground state with nonzero spin density on the carbide ligand. While isolation of this complex is thwarted by rapid dimerization to afford the corresponding diiron ethynediyl complex, the carbide can be intercepted by styrene to provide an iron alkylidene.
Collapse
Affiliation(s)
- Duleeka C Wannipurage
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric S Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Austin D Chivington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jess Fletcher
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Debanik Ray
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Kong L, Tao Z, Li Y, Gong H, Bai Y, Li L, Zhang X, Zhou Z, Chen Y. Integrated "all-in-one" strategy to construct highly efficient Pd catalyst for CO 2 transformation. Chem Sci 2024:d4sc03106g. [PMID: 39246380 PMCID: PMC11376193 DOI: 10.1039/d4sc03106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The synthesis of high-value chemicals featuring C-C and/or C-heteroatom bonds via CO2 is critically important, yet efficiently converting thermodynamically stable and kinetically inert linear CO2 and propargylic amine to the heterocyclic compound 2-oxazolidinone with an integrated catalytic system continues to pose a considerable challenge. Herein, we have designed an "all-in-one" (AIO) palladium (Pd) catalyst (Cat1), distinguished by its co-coordination with acetylglucose (AcGlu) and bis(benzimidazolium) units at the Pd center, which promotes the cyclization of CO2 and propargylic amine achieving a highest turnover frequency (TOF) of up to 3456 h-1. Moreover, Cat1 demonstrates excellent stability across various temperatures, with its catalytic activity remaining unchanged even after 10 cycles. The catalyst Cat1 simultaneously activates propargylic amine and CO2, facilitating the formation of N-heterocyclic carbene (NHC)-CO2 adducts and AcGlu-CO2 philes from CO2 in simulated flue gas, a key factor in reaching unprecedented TOF values. The catalytic mechanism was elucidated through quasi-in-situ NMR and 13C-isotope labeling experiments. Notably, this is the first instance of an AIO Pd catalyst that enables the simultaneous capture, activation, and catalytic conversion of in-situ activated CO2 along with propargylic amine. The design strategy of this AIO catalyst introduces a novel approach to overcoming the challenges in the efficient conversion of inert CO2.
Collapse
Affiliation(s)
- Lingfang Kong
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Zekun Tao
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Yunjia Li
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Huiwen Gong
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Yun Bai
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Longbin Li
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xianjin Zhang
- Institute of Chemistry Education, Fujian Institute of Education Fuzhou 350025 P. R. China
| | - Zhonggao Zhou
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
10
|
Koike T, Yu JK, Hansmann MM. Ph 3PCN 2: A stable reagent for carbon-atom transfer. Science 2024; 385:305-311. [PMID: 39024456 DOI: 10.1126/science.ado4564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Precise modification of a chemical site in a molecule at the single-atom level is one of the most elegant yet difficult transformations in chemistry. A reagent specifically designed for chemoselective introduction of monoatomic carbon is a particularly formidable challenge. Here, we report a straightforward, azide-free synthesis of a crystalline and isolable diazophosphorus ylide, Ph3PCN2, a stable compound with a carbon atom bonded to two chemically labile groups, triphenylphosphine (PPh3) and dinitrogen (N2). Without any additives, the diazophosphorus ylide serves as a highly selective transfer reagent for fragments, including Ph3PC, to deliver phosphorus ylide-terminated heterocumulenes and CN2 to produce multisubstituted pyrazoles. Ultimately, even exclusive carbon-atom transfer is possible. In reactions with aldehydes and acyclic and cyclic ketones (R2C=O), the carbon-atom substitution forms a vinylidene (R2C=C:) en route to alkynes or butatrienes.
Collapse
Affiliation(s)
- Taichi Koike
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Jhen-Kuei Yu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Lorkowski J, Yorkgitis P, Serrato MR, Gembicky M, Pietraszuk C, Bertrand G, Jazzar R. Genuine carbene versus carbene-like reactivity. Angew Chem Int Ed Engl 2024; 63:e202401020. [PMID: 38632078 DOI: 10.1002/anie.202401020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Singlet carbenes are not always isolable and often even elude direct detection. When they escape observation, their formation can sometimes be evidenced by in situ trapping experiments. However, is carbene-like reactivity genuine evidence of carbene formation? Herein, using the first example of a spectroscopically characterized cyclic (amino)(aryl)carbene (CAArC), we cast doubt on the most common carbene trapping reactions as sufficient proof of carbene formation.
Collapse
Affiliation(s)
- Jan Lorkowski
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Patrick Yorkgitis
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Milan Gembicky
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Cezary Pietraszuk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| |
Collapse
|
12
|
Cheng Z, Xu H, Hu Z, Zhu M, Houk KN, Xue XS, Jiao N. Carbene-Assisted Arene Ring-Opening. J Am Chem Soc 2024; 146:16963-16970. [PMID: 38691630 DOI: 10.1021/jacs.4c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Despite the significant achievements in dearomatization and C-H functionalization of arenes, the arene ring-opening remains a largely unmet challenge and is underdeveloped due to the high bond dissociation energy and strong resonance stabilization energy inherent in aromatic compounds. Herein, we demonstrate a novel carbene assisted strategy for arene ring-opening. The understanding of the mechanism by our DFT calculations will stimulate wide application of bulk arene chemicals for the synthesis of value-added polyconjugated chain molecules. Various aryl azide derivatives now can be directly converted into valuable polyconjugated enynes, avoiding traditional synthesis including multistep unsaturated precursors, poor selectivity control, and subsequent transition-metal catalyzed cross-coupling reactions. The simple conditions required were demonstrated in the late-stage modification of complex molecules and fused ring compounds. This chemistry expands the horizons of carbene chemistry and provides a novel pathway for arene ring-opening.
Collapse
Affiliation(s)
- Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
| | - Haoran Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Wei C, Zhao C, Li J, Li C, Song B, Song R. Innovative Arylimidazole-Fused Phytovirucides via Carbene-Catalyzed [3+4] Cycloaddition: Locking Viral Cell-To-Cell Movement by Out-Competing Virus Capsid-Host Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309343. [PMID: 38477505 PMCID: PMC11109656 DOI: 10.1002/advs.202309343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The control of potato virus Y (PVY) induced crop failure is a challengeable issue in agricultural chemistry. Although many anti-PVY agents are designed to focus on the functionally important coat protein (CP) of virus, how these drugs act on CP to inactivate viral pathogenicity, remains largely unknown. Herein, a PVY CP inhibitor -3j (S) is disclosed, which is accessed by developing unusually efficient (up to 99% yield) and chemo-selective (> 99:1 er in most cases) carbene-catalyzed [3+4] cycloaddition reactions. Compound -3j bears a unique arylimidazole-fused diazepine skeleton and shows chirality-preferred performance against PVY. In addition, -3j (S) as a mediator allows ARG191 (R191) of CP to be identified as a key amino acid site responsible for intercellular movement of virions. R191 is further demonstrated to be critical for the interaction between PVY CP and the plant functional protein NtCPIP, enabling virions to cross plasmodesmata. This key step can be significantly inhibited through bonding with the -3j (S) to further impair pathogenic behaviors involving systemic infection and particle assembly. The study reveals the in-depth mechanism of action of antiviral agents targeting PVY CP, and contributes to new drug structures and synthetic strategies for PVY management.
Collapse
Affiliation(s)
- Chunle Wei
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunni Zhao
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Jiao Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunyi Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Baoan Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Runjiang Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| |
Collapse
|
14
|
Reisenbauer JC, Paschke ASK, Krizic J, Botlik BB, Finkelstein P, Morandi B. Direct Access to Quinazolines and Pyrimidines from Unprotected Indoles and Pyrroles through Nitrogen Atom Insertion. Org Lett 2023; 25:8419-8423. [PMID: 37983173 DOI: 10.1021/acs.orglett.3c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recent advances in single-atom insertion reactions have opened up new synthetic approaches for molecular diversification. Developing innovative strategies to directly transform biologically relevant molecules, without any prefunctionalization, is key to further expanding the scope and utility of such transformations. Herein, the direct access to quinazolines and pyrimidines from the corresponding unprotected 1H-indoles and 1H-pyrroles is reported, relying on the implementation of lithium bis(trimethylsilyl)amide (LiHMDS) as a novel nitrogen atom source in combination with commercially available hypervalent iodine reagents. Further application of this strategy in late-stage settings demonstrates its potential in lead structure diversification campaigns.
Collapse
Affiliation(s)
| | | | - Jelena Krizic
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Bence B Botlik
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Lemmerer M, Maulide N. Lewis Base-assisted Arylation of Unsaturated Carbonyls. Chemistry 2023; 29:e202302490. [PMID: 37647146 PMCID: PMC10947297 DOI: 10.1002/chem.202302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
The combination of Lewis bases with α,β-unsaturated carbonyls allows the in-situ generation of enolates without the need for strong Brønsted bases. Recently developed synthetic methods employ this approach for arylation followed by elimination of the Lewis base, regenerating the alkene. This strategy has been deployed for formal α- or β-C-H arylation in different contexts, namely (a) transition metal catalysis, (b) rearrangement reactions utilizing hypervalent main group elements and (c) organocatalysis. This concept article provides an overview of the developed strategies, highlighting and contextualizing their features.
Collapse
Affiliation(s)
- Miran Lemmerer
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| |
Collapse
|
16
|
Avigdori I, Singh K, Fridman N, Gandelman M. Nitrenium ions as new versatile reagents for electrophilic amination. Chem Sci 2023; 14:12034-12040. [PMID: 37969608 PMCID: PMC10631241 DOI: 10.1039/d3sc04268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 11/17/2023] Open
Abstract
Herein we report the utilization of N-heterocyclic nitrenium ions - easily prepared, bench-stable and non-oxidating nitrogen sources for the efficient electrophilic amination of aliphatic and aromatic organometallic nucleophiles, towards the facile and general preparation of primary amines. To this end, a plethora of abundant organolithium and organomagnesium reagents were combined with nitrenium salts to generate a variety of previously unexplored N-alkyl and N-aryl triazanes. Through the simple hydrogenolysis of these relatively stable triazanes, we have prepared a diverse scope of primary amines, including linear and branched aliphatic as well as (hetero)aromatic amines possessing various stereo-electronic substituents. Furthermore, we present the facile synthesis of valuable 15N-labelled primary amines from easily prepared 15N-labelled nitrenium salts, as well as a one-pot approach to biologically relevant primary amines. Finally, a recyclable variant of the nitrenium precursor was prepared and a simple recovery protocol was developed to improve the atom-economy of this procedure.
Collapse
Affiliation(s)
- Idan Avigdori
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Kuldeep Singh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 32000 Israel
| |
Collapse
|
17
|
Woo J, Stein C, Christian AH, Levin MD. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 2023; 623:77-82. [PMID: 37914946 PMCID: PMC10907950 DOI: 10.1038/s41586-023-06613-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 11/03/2023]
Abstract
When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a 'sticky end' approach subverts existing atom insertion-deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Colin Stein
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Mark D Levin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Fujimoto H, Nakayasu B, Tobisu M. Synthesis of γ-Lactams from Acrylamides by Single-Carbon Atom Doping Annulation. J Am Chem Soc 2023; 145:19518-19522. [PMID: 37642464 DOI: 10.1021/jacs.3c07052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A protocol for single-carbon atom doping annulation is reported, which enables the conversion of acrylamides into homologated γ-lactams through the cleavage of two σ-bonds and the formation of four new σ-bonds at the single carbon center. The key strategy is the use of N-heterocyclic carbenes as an atomic carbon equivalent by acting as carbon atom donors through the loss of a 1,2-diimine moiety. Experimental and computational studies reveal that the reaction proceeds through a spirocyclic intermediate, followed by the disassembly of the N-heterocyclic carbene skeleton via proton transfer.
Collapse
Affiliation(s)
- Hayato Fujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Bunta Nakayasu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Chen CM, Yang YN, Kong YZ, Zhu BH, Qian PC, Zhou B, Ye LW. Copper-catalyzed intermolecular formal (5 + 1) annulation of 1,5-diynes with 1,2,5-oxadiazoles. Commun Chem 2023; 6:194. [PMID: 37700020 PMCID: PMC10497616 DOI: 10.1038/s42004-023-00999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
One-carbon homologation reactions based on one-carbon insertion into the N-O bond of heterocycles have received tremendous interest over the past decades. However, these protocols have to rely on the use of hazardous and not easily accessible diazo compounds as precursors, and examples of the relevant asymmetric catalysis have not been reported. Here we show that a copper-catalyzed intermolecular formal (5 + 1) annulation of 1,5-diynes with 1,2,5-oxadiazoles involving one-carbon insertion into the heterocyclic N-O bond via non-diazo approach. This method enables practical and atom-economic synthesis of valuable pyrrole-substituted oxadiazines in generally moderate to good yields under mild reaction conditions. In addition, the possibility of such an asymmetric formal (5 + 1) annulation also emerges.
Collapse
Affiliation(s)
- Can-Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ye-Nan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yin-Zhu Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China
| | - Peng-Cheng Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China.
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
Huang HG, Zheng YQ, Zhong D, Deng JL, Liu WB. Reductive Aza-Pauson-Khand Reaction of Nitriles. J Am Chem Soc 2023; 145:10463-10469. [PMID: 37129915 DOI: 10.1021/jacs.3c01656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
γ-Lactams are valuable heterocycles in synthetic chemistry and drug development. Here, we report a reductive aza-Pauson-Khand reaction (aza-PKR) of an alkyne, a nitrile, and Co2(CO)8. A wide array of bicyclic α,β-unsaturated γ-lactams containing two adjacent stereocenters, including an all-carbon quaternary center, from alkyne-tethered malononitriles are efficiently accessed in high diastereoselectivity. Preliminary mechanistic investigations by experiments and DFT calculations reveal that the reaction undergoes an aza-PKR process followed by a in situ reduction. The reducing reagent generated in situ from water also provides a practical tool for deuterium incorporation into the γ-position of lactams using D2O as the deuterium source. This study represents a new mode for [2 + 2 + 1] cycloaddition that enables the direct use of nitrile in aza-heterocycle synthesis.
Collapse
Affiliation(s)
- Hong-Gui Huang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dayou Zhong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiang-Lian Deng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Authesserre U, Swamy VSVSN, Saffon-Merceron N, Baceiredo A, Kato T, Maerten E. New Insight into the Reactivity of S,S-Bis-ylide. Molecules 2023; 28:molecules28083295. [PMID: 37110528 PMCID: PMC10142965 DOI: 10.3390/molecules28083295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The present work focuses on the reactivity of S,S-bis-ylide 2, which presents a strong nucleophilic character, as evidenced by reactions with methyl iodide and CO2, affording C-methylated salts 3 and betaine 4, respectively. The derivatization of betaine 4 affords the corresponding ester derivative 6, which is fully characterized by using NMR spectroscopy and X-ray diffraction analysis. Furthermore, an original reaction with phosphenium ions leads to the formation of a transient push-pull phosphino(sulfonio)carbene 8, which rearranges to give stabilized sulfonium ylide derivative 7.
Collapse
Affiliation(s)
- Ugo Authesserre
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| | - V S V S N Swamy
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nathalie Saffon-Merceron
- Université de Toulouse, UPS, and CNRS, ICT UAR2599 118 Route de Narbonne, 31062 Toulouse, France
| | - Antoine Baceiredo
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| | - Tsuyoshi Kato
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| | - Eddy Maerten
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
22
|
Nakano Y, Lupton DW. One carbon-four new bonds. Science 2023; 379:439-440. [PMID: 36730389 DOI: 10.1126/science.adf2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stable carbenes deliver a carbon atom to simple amides, producing a range of cyclic compounds.
Collapse
Affiliation(s)
- Yuji Nakano
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| |
Collapse
|