1
|
Wu C, Shi XL, Wang L, Lyu W, Yuan P, Cheng L, Chen ZG, Yao X. Defect Engineering Advances Thermoelectric Materials. ACS NANO 2024. [PMID: 39499807 DOI: 10.1021/acsnano.4c11732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Defect engineering is an effective method for tuning the performance of thermoelectric materials and shows significant promise in advancing thermoelectric performance. Given the rapid progress in this research field, this Review summarizes recent advances in the application of defect engineering in thermoelectric materials, offering insights into how defect engineering can enhance thermoelectric performance. By manipulating the micro/nanostructure and chemical composition to introduce defects at various scales, the physical impacts of diverse types of defects on band structure, carrier and phonon transport behaviors, and the improvement of mechanical stability are comprehensively discussed. These findings provide more reliable and efficient solutions for practical applications of thermoelectric materials. Additionally, the development of relevant defect characterization techniques and theoretical models are explored to help identify the optimal types and densities of defects for a given thermoelectric material. Finally, the challenges faced in the conversion efficiency and stability of thermoelectric materials are highlighted and a look ahead to the prospects of defect engineering strategies in this field is presented.
Collapse
Affiliation(s)
- Chunlu Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Lijun Wang
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Wanyu Lyu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Pei Yuan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| | - Lina Cheng
- Institute of Green Chemistry and Molecular Engineering (IGCME), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- School of Advanced Energy and IGCME, Shenzhen Campus, Sun Yat-Sen University (SYSU), Shenzhen 518107, China
| |
Collapse
|
2
|
Ma Z, Luo Y, Dong J, Liu Y, Zhang D, Li W, Li C, Wei Y, Jiang Q, Li X, Yin H, Dravid VP, Zhang Q, Chen S, Yan Q, Yang J, Kanatzidis MG. Synergistic Performance of Thermoelectric and Mechanical in Nanotwinned High-Entropy Semiconductors AgMnGePbSbTe 5. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407982. [PMID: 39246135 DOI: 10.1002/adma.202407982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Introducing nanotwins in thermoelectric materials represents a promising approach to achieving such a synergistic combination of thermoelectric properties and mechanical properties. By increasing configurational entropy, a sharply reduced stacking fault energy in a new nanotwinned high-entropy semiconductor AgMnGePbSbTe5 is reached. Dense coherent nanotwin boundaries in this system provide an efficient phonon scattering barrier, leading to a high figure of merit ZT of ≈2.46 at 750 K and a high average ZT of ≈1.54 (300-823 K) with the presence of Ag2Te nanoprecipitate in the sample. More importantly, owing to the dislocation pinning caused by coherent nanotwin boundaries and the chemical short-range disorder caused by the high configurational entropy effect, AgMnGePbSbTe5 also exhibits robust mechanical properties, with flexural strength of 82 MPa and Vickers hardness of 210 HV.
Collapse
Affiliation(s)
- Zheng Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yubo Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yukun Liu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dan Zhang
- College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Wang Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chengjun Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yingchao Wei
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qinghui Jiang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qiang Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Shaoping Chen
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junyou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Liang JX, Yu L, Luo ST, Wei ST, Wei ZB, Wang T, Jiang YT, Song WY, Zheng SQ. Enhancing the Thermoelectric Performance of n-Type Mg 3.2Sb 1.5Bi 0.5 by Reducing Lattice Thermal Conductivity through the Incorporation of Chlorine-Containing Compounds. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39471363 DOI: 10.1021/acsami.4c15502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Mg3Sb2-based thermoelectric materials are characterized by their economic efficiency, nontoxicity, and environmental friendliness and represent a highly promising and eco-friendly functional material for midtemperature applications. To achieve a higher thermoelectric performance, we introduced two compounds, LaCl3 and CeCl3, into Mg3.2Sb1.5Bi0.5 under the guidance of first-principles calculations. The Mg3.2Sb1.5Bi0.5 + 0.03CeCl3 sample reached a maximum ZT value of approximately 1.6 at 723 K. The calculations indicate that two n-type dopants, LaCl3 and CeCl3, can adequately improve the band structure of Mg3Sb2, and the introduction of Cl atoms will also lead to lattice distortion and reduce the lattice thermal conductivity (κL). Experimental results demonstrate that the introduction of Cl atoms efficiently reduces the thermal conductivity while improving the electrical transport properties. Specifically, the Mg3.2Sb1.5Bi0.5 + 0.03CeCl3 sample achieved an exceptionally low κL of 0.3 W m-1 K-1 at 723 K, thereby validating the effectiveness of LaCl3 and CeCl3 doping. This work provides valuable insights into achieving thermoelectric decoupling in Mg3Sb2-based thermoelectric materials.
Collapse
Affiliation(s)
- Jing-Xuan Liang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Lu Yu
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Si-Tong Luo
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Si-Tong Wei
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Zhi-Bo Wei
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Tao Wang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Yun-Tian Jiang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| | - Wei-Yu Song
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Shu-Qi Zheng
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P. R. China
| |
Collapse
|
4
|
Tang G, Liu Y, Yang X, Zhang Y, Nan P, Ying P, Gong Y, Zhang X, Ge B, Lin N, Miao X, Song K, Schön CF, Cagnoni M, Kim D, Yu Y, Wuttig M. Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics. Nat Commun 2024; 15:9133. [PMID: 39443492 PMCID: PMC11500016 DOI: 10.1038/s41467-024-53599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Engineering the electronic band structures upon doping is crucial to improve the thermoelectric performance of materials. Understanding how dopants influence the electronic states near the Fermi level is thus a prerequisite to precisely tune band structures. Here, we demonstrate that the Sn-s states in SnTe contribute to the density of states at the top of the valence band. This is a consequence of the half-filled p-p σ-bond (metavalent bonding) and its resulting symmetry of the orbital phases at the valence band maximum (L point of the Brillouin zone). This insight provides a recipe for identifying superior dopants. The overlap between the dopant s- and the Te p-state is maximized, if the spatial overlap of both orbitals is maximized and their energetic difference is minimized. This simple design rule has enabled us to screen out Al as a very efficient dopant to enhance the local density of states for SnTe. In conjunction with doping Sb to tune the carrier concentration and alloying with AgBiTe2 to promote band convergence, as well as introducing dislocations to impede phonon propagation, a record-high average ZT of 1.15 between 300 and 873 K and a large ZT of 0.36 at 300 K is achieved in Sn0.8Al0.08Sb0.15Te-4%AgBiTe2.
Collapse
Affiliation(s)
- Guodong Tang
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yuqi Liu
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoyu Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yongsheng Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Pengfei Nan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Pan Ying
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yaru Gong
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuemei Zhang
- School of Physics and Electronic Information Engineering, Engineering Research Center of Nanostructure and Functional Materials, Ningxia Normal University, Guyuan, Ningxia, 756000, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China.
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nan Lin
- Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany
| | - Xuefei Miao
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kun Song
- School of Mechanical and Power Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, Jiangsu, 211816, China
| | | | - Matteo Cagnoni
- Department of Electronics and Telecommunications, Politechnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Dasol Kim
- Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany.
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany.
- Peter Grünberg Institute-JARA-Institute Energy-Efficient Information Technology (PGI-10), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany.
| |
Collapse
|
5
|
Pathak R, Paul S, Das S, Das A, Pati SK, Biswas K. Deciphering Pauling's Third Rule: Uncovering Strong Anharmonicity and Exceptionally Low Thermal Conductivity in TlAgSe for Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202408908. [PMID: 39058220 DOI: 10.1002/anie.202408908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The elucidation of chemical bonding, coupled with an exploration of the correlated dynamics of constituent atoms, is essential for unravelling the underlying mechanism responsible for low lattice thermal conductivity (κL) exhibited by a crystalline solid, which is essential for thermoelectrics and thermal barrier coatings. In this regard, Pauling's third empirical rule, which deals with the cationic repulsion due to proximity in the face or edge shared polyhedra in a crystal structure, can bring about the lattice instability required to suppress the κL. Here, we demonstrate the presence of such instability in a ternary selenide, TlAgSe, leading to a ultra-low κL of 0.17 W/m.K at 573 K. Our study reveals the instability arising from Ag-Ag repulsion within edge-shared AgSe4 tetrahedra through investigation of the local structure using synchrotron X-ray pair distribution function (PDF) analysis and supported by first-principles density functional theory calculations. We observe correlation between weakening in the Ag and the Tl-sublattice, providing direct experimental evidence of Pauling's third empirical rule. The correlated rattling of Ag and Tl induces a highly anharmonic lattice and low energy optical phonons, resulting in suppressed sound velocity and ultralow κL in TlAgSe. The electronic origin of soft and anharmonic lattice is the presence of filled antibonding states in the valence band near the Fermi level constructed by Ag(4d)-Se(4p) and Tl(6s)-Se(4p) interactions. This work demonstrates that the evidence of dynamic distortion in a crystal lattice is governed by the third empirical rule given by Pauling, which can act as a potential new strategy for diminishing κL in crystalline solids.
Collapse
Affiliation(s)
- Riddhimoy Pathak
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Sayan Paul
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Subarna Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Anustoop Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
- School of Advanced Materials and International Centre of Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Kanishka Biswas
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
- School of Advanced Materials and International Centre of Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
6
|
Qin B, Kanatzidis MG, Zhao LD. The development and impact of tin selenide on thermoelectrics. Science 2024; 386:eadp2444. [PMID: 39418358 DOI: 10.1126/science.adp2444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
Thermoelectric technology experienced rapid development over the past 20 years, with the most promising applications being in both power generation and active cooling. Among existing thermoelectrics, tin selenide (SnSe) has had particularly rapid development owing to the unexpectedly high thermoelectric efficiency that has been continuously established over the past decade. Several transport mechanisms and strategies used to interpret and improve the thermoelectric performance of SnSe have been important for understanding and developing other material systems with SnSe-like characteristics. Similar to other thermoelectrics, building commercially viable SnSe-based devices requires advances in device efficiency and service stability. Further optimization across all material systems should enable thermoelectric technology to play a critical role in the future global energy landscape.
Collapse
Affiliation(s)
- Bingchao Qin
- Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | | | - Li-Dong Zhao
- Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Zhan S, Bai S, Qiu Y, Zheng L, Wang S, Zhu Y, Tan Q, Zhao LD. Insight into Carrier and Phonon Transports of PbSnS 2 Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412967. [PMID: 39363688 DOI: 10.1002/adma.202412967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Indexed: 10/05/2024]
Abstract
The simultaneous optimization of n-type and p-type thermoelectric materials is advantageous to the practical application of the device. As an emerging thermoelectric material, PbSnS2 exhibits highly competitive thermoelectric properties due to its unique carrier and phonon transport characteristics. To promote the utilization of this low-cost thermoelectric material, p-type PbSnS2 crystals are synthesized and optimized through Na doping and Se alloying. The resulting thermoelectric transport properties differ significantly from those reported for n-type crystals, prompting us to compare and analyze both n-type (Cl-doped) and p-type (Na-doped) PbSnS2 crystals from various perspectives. Cl doping is subject to weaker "Fermi pinning" and lower impurity ionization energy compared with Na doping, leading to higher doping efficiency. The different optimal performance directions in n-type and p-type crystals can be attributed to the distinct charge density distributions near the conduction band minimum (CBM) and the valence band maximum (VBM). Additionally, both n-type and p-type crystals exhibit ultralow lattice thermal conductivity due to the low symmetry of their twisted NaCl structure combined with the strong anharmonicity. This comprehensive analysis of PbSnS2 crystals provides a solid foundation for further performance optimization and device assembly, while also sheds light on the investigation of layered thermoelectric materials.
Collapse
Affiliation(s)
- Shaoping Zhan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shulin Bai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yuting Qiu
- Beihang School, Beihang University, Beijing, 100191, China
| | - Lei Zheng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Sining Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingcai Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, China
| | - Qing Tan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
| |
Collapse
|
9
|
Zhou Z, Guo J, Zheng Y, Yang Y, Yang B, Li D, Zhang W, Wei B, Liu C, Lan JL, Nan CW, Lin YH. Boosting Thermoelectric Performance via Weakening Carrier-Phonon Coupling in BiCuSeO-Graphene Composites. SMALL METHODS 2024; 8:e2301619. [PMID: 38488726 DOI: 10.1002/smtd.202301619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Indexed: 10/18/2024]
Abstract
BiCuSeO is a promising oxygen-containing thermoelectric material due to its intrinsically low lattice thermal conductivity and excellent service stability. However, the low electrical conductivity limits its thermoelectric performance. Aliovalent element doping can significantly improve their carrier concentration, but it may also impact carrier mobility and thermal transport properties. Considering the influence of graphene on carrier-phonon decoupling, Bi0.88Pb0.06Ca0.06CuSeO (BPCCSO)-graphene composites are designed. For further practical application, a rapid preparation method is employed, taking less than 1 h, which combines self-propagating high-temperature synthesis with spark plasma sintering. The incorporation of graphene simultaneously optimizes the electrical properties and thermal conductivity, yielding a high ratio of weighted mobility to lattice thermal conductivity (144 at 300 K and 95 at 923 K). Ultimately, BPCCSO-graphene composites achieve exceptional thermoelectric performance with a ZT value of 1.6 at 923 K, bringing a ≈40% improvement over BPCCSO without graphene. This work further promotes the practical application of BiCuSeO-based materials and this facile and effective strategy can also be extended to other thermoelectric systems.
Collapse
Affiliation(s)
- Zhifang Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinming Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yunpeng Zheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yueyang Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Yang
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Dengfeng Li
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Wenyu Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chang Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jin-Le Lan
- State Key Laboratory of Organic-inorganic Composite, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan-Hua Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Ren K, Yuan H, Pan Z, Li Z, Pan H, Chu H, Li D. Copper Functionalized SnSe Nanoflakes Enabling Nonlinear Optical Features for Ultrafast Photonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401218. [PMID: 39046309 PMCID: PMC11481223 DOI: 10.1002/advs.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
This study enhances the ultrafast photonics application of tin selenide (SnSe) nanoflakes via copper (Cu) functionalization to overcome challenges such as low conductivity and weak near-infrared (NIR) absorption. Cu functionalization enhances concentration, induces strain, and reduces the bandgap through Sn substitution and Sn vacancy filling with Cu ions. Demonstrated by density functional theory calculations and experimental analyses, Cu-functionalized SnSe exhibits improved NIR optical absorption and superior third-order nonlinear optical properties. Z-scan measurements and femtosecond transient absorption spectroscopy reveal better performance of Cu-functionalized SnSe in terms of nonlinear optical properties and shorter carrier relaxation times compared to pristine SnSe. Furthermore, saturable absorbers based on both SnSe types, when integrated into an erbium-doped fiber laser, show that Cu functionalization leads to a decrease in pulse duration to 798 fs and an increase in 3 dB spectral bandwidth to 3.44 nm. Additionally, it enables stable harmonic mode-locking of bound-state solitons. This work suggests a new direction for improving wide bandgap 2D materials by highlighting the enhanced nonlinear optical properties and potential of Cu-functionalized SnSe in ultrafast photonics.
Collapse
Affiliation(s)
- Ke Ren
- School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Hualei Yuan
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Zhongben Pan
- School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Zongsheng Li
- School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Han Pan
- School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Hongwei Chu
- School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Dechun Li
- School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| |
Collapse
|
11
|
Zhuang HL, Cai B, Pan Y, Su B, Jiang Y, Pei J, Liu F, Hu H, Yu J, Li JW, Wang Z, Han Z, Li H, Wang C, Li JF. Strong and efficient bismuth telluride-based thermoelectrics for Peltier microcoolers. Natl Sci Rev 2024; 11:nwae329. [PMID: 39439720 PMCID: PMC11495490 DOI: 10.1093/nsr/nwae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Thermoelectric Peltier coolers (PCs) are being increasingly used as temperature stabilizers for optoelectronic devices. Increasing integration drives PC miniaturization, requiring thermoelectric materials with good strength. We demonstrate a simultaneous gain of thermoelectric and mechanical performance in (Bi, Sb)2Te3, and successfully fabricate micro PCs (2 × 2 mm2 cross-section) that show excellent maximum cooling temperature difference of 89.3 K with a hot-side temperature of 348 K. A multi-step process involving annealing, hot-forging and composition design, is developed to modify the atomic defects and nano- and microstructures. The peak ZT is improved to ∼1.50 at 348 K, and the flexural and compressive strengths are significantly enhanced to ∼140 MPa and ∼224 MPa, respectively. These achievements hold great potential for advancing solid-state refrigeration technology in small spaces.
Collapse
Affiliation(s)
- Hua-Lu Zhuang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bowen Cai
- Guangxi Pilot Free Trade Zone Jianju Technology Co., LTD., Qinzhou 535000, China
| | - Yu Pan
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Bin Su
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yilin Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Pei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fengming Liu
- Guangxi Pilot Free Trade Zone Jianju Technology Co., LTD., Qinzhou 535000, China
| | - Haihua Hu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jincheng Yu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing-Wei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhengqin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhanran Han
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hezhang Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Zhang F, He M, Zhu L, Jia B, Shi Y, Wang W, Peng Z, Liang P, Chao X, Yang Z, Wu D. Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi 2Te 3 Via Deformation Potential Modulation and Giant Deformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405182. [PMID: 39300867 DOI: 10.1002/smll.202405182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Thermoelectric refrigeration, utilizing Peltier effect, has great potential in all-solid-state active cooling field near room temperature. The performance of a thermoelectric cooling device is highly determined by the power factor of consisting materials besides the figure of merit. In this work, it is demonstrated that successive addition of Cu and Nd can realize non-trivial modulation of deformation potential in n-type room temperature thermoelectric material Bi2Te2.7Se0.3 and result in a significant increment of electron mobility and remarkably enhanced power factor. Following giant hot deformation process improves grain texturing and strengthens inter-layer interaction in Bi2Te2.7Se0.3 lattice, further pushing the power factor to ≈47 µW cm-1 K-2 at 300 K and maximal figure of merit ZTmax to ≈1.34 at 423 K with average ZTave of ≈1.27 at 300-473 K. Moreover, robust compressive strength is enhanced to ≈146.6 MPa. The corresponding finite element simulations demonstrate large temperature differences ΔT of ≈70 K and a maximal coefficient of performance COP ≈ 10.6 (hot end temperature at 300 K), which can be achieved in a ten-pair thermoelectric cooling virtual module. The strategies and results as shown in this work can further advance the application of n-type Bi2Te3 for thermoelectric cooling.
Collapse
Affiliation(s)
- Fudong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Mingkai He
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Lujun Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Beiquan Jia
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yalin Shi
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Weishuai Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhanhui Peng
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Pengfei Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaolian Chao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zupei Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Di Wu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
13
|
Taneja V, Goyal N, Das S, Chandra S, Dutta P, Ravishankar N, Biswas K. Nanostructured Ferecrystal Intergrowths with TaSe 2 Unveiled High Thermoelectric Performance in n-Type SnSe. J Am Chem Soc 2024; 146:24716-24723. [PMID: 39167763 DOI: 10.1021/jacs.4c09943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Ferecrystals, a distinctive class of misfit layered compounds, hold significant promise in manipulating the phonon transport owing to their two-dimensional (2D) natural superlattice-type structure and turbostratic (rotational) disorder present between the constituent layers. Integrating these 2D intergrowth structures as nanodomains embedded in a bulk thermoelectric matrix is a formidable challenge in synthetic chemistry, yet offers groundbreaking opportunities for efficient thermoelectrics. Here, we have achieved an exceptionally high thermoelectric figure of merit, zT ∼ 2.2, at 823 K in n-type Ta and Br-codoped SnSe, by successfully incorporating [(SnSe)1.15]7(TaSe2)1 ferecrystals with [110] SnSe//[100] TaSe2 orientation, as nanostructures with modulations in few nm in bulk SnSe solid-state matrix. While the presence of ferecrystal nanostructures induces strong scattering of heat-carrying phonons resulting in an ultralow lattice thermal conductivity (κL) of ∼0.18 W m-1 K-1 at 773 K, the Ta and Br codoping strategy increases the concentration of n-type charge carriers for enhanced electrical conductivity. Our approach provides a new pathway for damping the phonon transport and enhancing the thermoelectric performance in 2D layered materials.
Collapse
Affiliation(s)
- Vaishali Taneja
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Naveen Goyal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Subarna Das
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Sushmita Chandra
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Prabir Dutta
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - N Ravishankar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Kanishka Biswas
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
14
|
Xu L, Yin Z, Xiao Y, Zhao LD. Interstitials in Thermoelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406009. [PMID: 38814637 DOI: 10.1002/adma.202406009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Defect structure is pivotal in advancing thermoelectric performance with interstitials being widely recognized for their remarkable roles in optimizing both phonon and electron transport properties. Diverse interstitial atoms are identified in previous works according to their distinct roles and can be classified into rattling interstitial, decoupling interstitial, interlayer interstitial, dynamic interstitial, and liquid interstitial. Specifically, rattling interstitial can cause phonon resonance in cage compound to scatter phonon transport; decoupling interstitial can contribute to phonon blocking and electron transport due to their significantly different mean free paths; interlayer interstitial can facilitate out-of-layer electron transport in layered compounds; dynamic interstitial can tune temperature-dependent carrier density and optimize electrical transport properties at wide temperatures; liquid interstitial could improve the carrier mobility at homogeneous dispersion state. All of these interstitials have positive impact on thermoelectric performance by adjusting transport parameters. This perspective therefore intends to provide a thorough overview of advances in interstitial strategy and highlight their significance for optimizing thermoelectric parameters. Finally, the profound potential for extending interstitial strategy to various other thermoelectric systems is discussed and some future directions in thermoelectric material are also outlined.
Collapse
Affiliation(s)
- Liqing Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanxiang Yin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Xiao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
| |
Collapse
|
15
|
Chen BC, Wang KK, Wu HJ. Cation Modulation in AgSbTe 2 Realizes Carrier Optimization, Defect Engineering, and a 7% Single-Leg Thermoelectric Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401723. [PMID: 38711306 DOI: 10.1002/smll.202401723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Indexed: 05/08/2024]
Abstract
AgSbTe2 plays a pivotal role in mid-temperature thermoelectric generators (TEGs). Leveraging the seminal advances in cation manipulation within AgSbTe2, this study demonstrates an enhanced TE power factor (PF = S2σ) of 1.5 mWm-1 K-2 and a peak zT of 1.5 at 583 K in an off-stoichiometric Ag1.04Sb0.96Te2 crystal. The introduction of Ge in place of Ag leads to an increased nH as evidenced by the detection of trace Ge4+ through XPS analysis. Further chemical state analysis reveals the simultaneous presence of Ag+, Sb3+, and Ge4+, elucidating the effect of cation modulations. TEM characterizations validate the presence of superlattice structure, and the linear defects discerned within the AgSbTe2 matrix. Consequently, the lattice thermal conductivity κL is substantially reduced in the Ag1.02Ge0.02Sb0.96Te2 crystal, yielding a peak zT of 1.77 at 623 K. This notable advancement is attributed to the counterbalance achieved between the enhanced PF and the reduced κL, facilitated by cation modulation. Additionally, a single-leg TE device incorporating Ag1.02Ge0.02Sb0.96Te2 demonstrates a conversion efficiency of 7% across a temperature gradient (ΔT) of 350 K. This study corroborates the efficacy of cation modulation through thermodynamic approaches and establishes a relationship between transport properties and the presence of defects.
Collapse
Affiliation(s)
- Bo-Chia Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kuang-Kuo Wang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsin-Jay Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
16
|
Yang L, Zhao Z, Tian B, Yang M, Dong Y, Zhou B, Gai S, Xie Y, Lin J. A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy. Nat Commun 2024; 15:7499. [PMID: 39209877 PMCID: PMC11362521 DOI: 10.1038/s41467-024-51772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like Cu2-xSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes. Under irradiation by a 1064 nm laser, the plasmonic absorption of Cu2-xSe HNSs, featuring rich copper vacancies (VCu), leads to a rapid localized temperature gradient due to their exceptionally high photothermal conversion efficiency (67.0%). This temperature gradient activates thermoelectric catalysis, generating toxic reactive oxygen species (ROS) targeted at cancer cells. Density functional theory calculations reveal that this vacancy-enhanced thermoelectric catalytic effect arises from a much more carrier concentration and higher electrical conductivity. Furthermore, the exceptional photothermal performance of Cu2-xSe HNSs enhances their peroxidase-like and catalase-like activities, resulting in increased ROS production and apoptosis induction in cancer cells. Here we show that the accumulation of copper ions within cancer cells triggers cuproptosis through toxic mitochondrial protein aggregation, creating a synergistic therapeutic effect. Tumor-bearing female BALB/c mice are used to evaluate the high anti-cancer efficiency. This innovative approach represents the promising instance of plasmonic-thermoelectric catalytic therapy, employing dual pathways (membrane potential reduction and thioctylated protein aggregation) of mitochondrial dysfunction, all achieved within a singular nanostructure. These findings hold significant promise for inspiring the development of energy-converting nanomedicines.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Meiqi Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Bingchen Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, P. R. China.
| | - Jun Lin
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
| |
Collapse
|
17
|
Kuang F, Kang S, Huang W, Xu Y, Qi Y. Ultralow lattice thermal conductivity and excellent thermoelectric performance of monolayer CdGaInS 4: a first-principles investigation. Phys Chem Chem Phys 2024; 26:21485-21492. [PMID: 39081044 DOI: 10.1039/d4cp01491j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Monolayer CdGaInS4 is an excellent optoelectronic material, but its thermoelectric properties remain unexplored. Through first-principles studies, we investigate the thermoelectric transport properties of monolayer CdGaInS4. The results show that the degenerate weakly dispersive valence band results in an ultrahigh Seebeck coefficient, and the small parabolic electron pockets lead to good electron mobility and conductivity. The ultralow lattice thermal conductivity is attributed to the complete decoupling and softening of the low frequency out-of-plane mode and the strong bonding anharmonicity, giving rise to significant phonon scattering. These results provide good physical descriptors for the search for and theoretical design of excellent two-dimensional thermoelectric materials, and motivate relative measurements in monolayer CdGaInS4 and its applications as a promising thermoelectric material.
Collapse
Affiliation(s)
- Fangguang Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China.
| | - Shuying Kang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China.
| | - Wei Huang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China.
| | - Yongqiang Xu
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China.
| | - Yu Qi
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
18
|
Wang S, Wen Y, Zhu Y, Wang Z, Liu D, Zheng J, Zhan S, Xie H, Ge Z, Gao X, Cao Q, Chang C, Zhao LD. High Carrier Mobility and Promising Thermoelectric Module Performance of N-Type PbSe Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400866. [PMID: 38639306 DOI: 10.1002/smll.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/01/2024] [Indexed: 04/20/2024]
Abstract
The scarcity of Te hampers the widespread use of Bi2Te3-based thermoelectric modules. Here, the thermoelectric module potential of PbSe is investigated by improving its carrier mobility. Initially, large PbSe crystals are grown with the temperature gradient method to mitigate grain boundary effects on carrier transport. Subsequently, light doping with <1mole‰ halogens (Cl/Br/I) increases room-temperature carrier mobility to ~1600 cm2 V-1 s-1, achieved by reducing carrier concentration compared to traditional heavy doping. Crystal growth design and light doping enhance carrier mobility without affecting effective mass, resulting in a high power factor ~40 µW cm-1 K-2 in PbSe-Cl/Br/I crystals at 300 K. Additionally, Cl/Br/I doping reduces thermal conductivity and bipolar diffusion, leading to significantly lower thermal conductivity at high temperature. Enhanced carrier mobility and suppressed bipolar effect boost ZT values across the entire temperature range in n-type PbSe-Cl/Br/I crystals. Specifically, ZT values of PbSe-Br crystal reach ~0.6 at 300 K, ~1.2 at 773 K, and the average ZT (ZTave) reaches ~1.0 at 300-773 K. Ultimately, ~5.8% power generation efficiency in a PbSe single leg with a maximum temperature cooling difference of 40 K with 7-pair modules is achieved. These results indicate the potential for cost-effective and high-performance thermoelectric cooling modules based on PbSe.
Collapse
Affiliation(s)
- Siqi Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yi Wen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingcai Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziyuan Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Dongrui Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Junqing Zheng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shaoping Zhan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Hongyao Xie
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhenhua Ge
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xiang Gao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Qian Cao
- Huabei Cooling Device Co. Ltd., Hebei, 065400, China
| | - Cheng Chang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
19
|
Wang D, Ding J, Ma Y, Xu C, Li Z, Zhang X, Zhao Y, Zhao Y, Di Y, Liu L, Dai X, Zou Y, Kim B, Zhang F, Liu Z, McCulloch I, Lee M, Chang C, Yang X, Wang D, Zhang D, Zhao LD, Di CA, Zhu D. Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 2024; 632:528-535. [PMID: 39048826 DOI: 10.1038/s41586-024-07724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Conjugated polymers promise inherently flexible and low-cost thermoelectrics for powering the Internet of Things from waste heat1,2. Their valuable applications, however, have been hitherto hindered by the low dimensionless figure of merit (ZT)3-6. Here we report high-ZT thermoelectric plastics, which were achieved by creating a polymeric multi-heterojunction with periodic dual-heterojunction features, where each period is composed of two polymers with a sub-ten-nanometre layered heterojunction structure and an interpenetrating bulk-heterojunction interface. This geometry produces significantly enhanced interfacial phonon-like scattering while maintaining efficient charge transport. We observed a significant suppression of thermal conductivity by over 60 per cent and an enhanced power factor when compared with individual polymers, resulting in a ZT of up to 1.28 at 368 kelvin. This polymeric thermoelectric performance surpasses that of commercial thermoelectric materials and existing flexible thermoelectric candidates. Importantly, we demonstrated the compatibility of the polymeric multi-heterojunction structure with solution coating techniques for satisfying the demand for large-area plastic thermoelectrics, which paves the way for polymeric multi-heterojunctions towards cost-effective wearable thermoelectric technologies.
Collapse
Affiliation(s)
- Dongyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Ding
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingqiao Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chunlin Xu
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - BongSoo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Myeongjae Lee
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Cheng Chang
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Xiao Yang
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, China.
- Tianmushan Laboratory, Hangzhou, China.
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Sarkar D, Bhui A, Maria I, Dutta M, Biswas K. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Chem Soc Rev 2024; 53:6100-6149. [PMID: 38717749 DOI: 10.1039/d4cs00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The long-range periodic atomic arrangement or the lack thereof in solids typically dictates the magnitude and temperature dependence of their lattice thermal conductivity (κlat). Compared to crystalline materials, glasses exhibit a much-suppressed κlat across all temperatures as the phonon mean free path reaches parity with the interatomic distances therein. While the occurrence of such glass-like thermal transport in crystalline solids captivates the scientific community with its fundamental inquiry, it also holds the potential for profoundly impacting the field of thermoelectric energy conversion. Therefore, efficient manipulation of thermal transport and comprehension of the microscopic mechanisms dictating phonon scattering in crystalline solids are paramount. As quantized lattice vibrations (i.e., phonons) drive κlat, atomistic insights into the chemical bonding characteristics are crucial to have informed knowledge about their origins. Recently, it has been observed that within the highly symmetric 'averaged' crystal structures, often there are hidden locally asymmetric atomic motifs (within a few Å), which exert far-reaching influence on phonon transport. Phenomena such as local atomic off-centering, atomic rattling or tunneling, liquid-like atomic motion, site splitting, local ordering, etc., which arise within a few Å scales, are generally found to drastically disrupt the passage of heat carrying phonons. Despite their profound implication(s) for phonon dynamics, they are often overlooked by traditional crystallographic techniques. In this review, we provide a brief overview of the fundamental aspects of heat transport and explore the status quo of innately low thermally conductive crystalline solids, wherein the phonon dynamics is majorly governed by local structural phenomena. We also discuss advanced techniques capable of characterizing the crystal structure at the sub-atomic level. Subsequently, we delve into the emergent new ideas with examples linked to local crystal structure and lattice dynamics. While discussing the implications of the local structure for thermal conductivity, we provide the state-of-the-art examples of high-performance thermoelectric materials. Finally, we offer our viewpoint on the experimental and theoretical challenges, potential new paths, and the integration of novel strategies with material synthesis to achieve low κlat and realize high thermoelectric performance in crystalline solids via local structure designing.
Collapse
Affiliation(s)
- Debattam Sarkar
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Animesh Bhui
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Ivy Maria
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Moinak Dutta
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Kanishka Biswas
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
21
|
Liu S, Wen Y, Bai S, Shi H, Qin Y, Qin B, Liu D, Cao Q, Gao X, Su L, Chang C, Zhang X, Zhao LD. Lattice Plainification Leads to High Thermoelectric Performance of P-Type PbSe Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401828. [PMID: 38466123 DOI: 10.1002/adma.202401828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Thermoelectrics has applications in power generation and refrigeration. Since only commercial Bi2Te3 has a low abundance Te, PbSe gets attention. This work enhances the near-room temperature performance of p-type PbSe through enhancing carrier mobility via lattice plainification. Composition controlled and Cu-doped p-type PbSe crystals are grown through physical vapor deposition. Results exhibit an enhanced carrier mobility ≈2578 cm2 V-1 s-1 for Pb0.996Cu0.0004Se. Microstructure characterization and density functional theory calculations verify the introduced Cu atoms filled Pb vacancies, realizing lattice plainification and enhancing the carrier mobility. The Pb0.996Cu0.0004Se sample achieves a power factor ≈42 µW cm-1 K-2 and a ZT ≈ 0.7 at 300 K. The average ZT of it reaches ≈0.9 (300-573 K), resulting in a single-leg power generation efficiency of 7.1% at temperature difference of 270 K, comparable to that of p-type commercial Bi2Te3. A 7-pairs device paired the p-type Pb0.996Cu0.0004Se with the n-type commercial Bi2Te3 shows a maximum cooling temperature difference ≈42 K with the hot side at 300 K, ≈65% of that of the commercial Bi2Te3 device. This work highlights the potential of p-type PbSe for power generation and refrigeration near room temperature and hope to inspire researchers on replacing commercial Bi2Te3.
Collapse
Affiliation(s)
- Shibo Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yi Wen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shulin Bai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Haonan Shi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongxin Qin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bingchao Qin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Dongrui Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qian Cao
- Huabei Cooling Device Co. LTD, Hebei, 065400, China
| | - Xiang Gao
- Center for High-Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Lizhong Su
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Cheng Chang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiao Zhang
- Research Institute for Frontier Science, Beihang University, Beijing, 100191, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
| |
Collapse
|
22
|
Cheng R, Ge H, Huang S, Xie S, Tong Q, Sang H, Yan F, Zhu L, Wang R, Liu Y, Hong M, Uher C, Zhang Q, Liu W, Tang X. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi,Sb) 2Te 3. SCIENCE ADVANCES 2024; 10:eadn9959. [PMID: 38787957 PMCID: PMC11122684 DOI: 10.1126/sciadv.adn9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
P-type Bi2-xSbxTe3 compounds are crucial for thermoelectric applications at room temperature, with Bi0.5Sb1.5Te3 demonstrating superior performance, attributed to its maximum density-of-states effective mass (m*). However, the underlying electronic origin remains obscure, impeding further performance optimization. Herein, we synthesized high-quality Bi2-xSbxTe3 (00 l) films and performed comprehensive angle-resolved photoemission spectroscopy (ARPES) measurements and band structure calculations to shed light on the electronic structures. ARPES results directly evidenced that the band convergence along the [Formula: see text]-[Formula: see text] direction contributes to the maximum m* of Bi0.5Sb1.5Te3. Moreover, strategic manipulation of intrinsic defects optimized the hole density of Bi0.5Sb1.5Te3, allowing the extra valence band along [Formula: see text]-[Formula: see text] to contribute to the electrical transport. The synergy of the above two aspects documented the electronic origins of the Bi0.5Sb1.5Te3's superior performance that resulted in an extraordinary power factor of ~5.5 milliwatts per meter per square kelvin. The study offers valuable guidance for further performance optimization of p-type Bi2-xSbxTe3.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haoran Ge
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shengpu Huang
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China
| | - Sen Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qiwei Tong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Liangyu Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Wang
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China
| | - Yong Liu
- School of Physics and Technology and The Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Min Hong
- Centre for Future Materials, and School of Engineering, University of Southern Queensland, Springfield Central, Brisbane, Queensland 4300, Australia
| | - Ctirad Uher
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
23
|
Wang L, Shi XL, Li L, Hong M, Lin B, Miao P, Ding J, Yuan N, Zheng S, Chen ZG. Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe. Chem Asian J 2024; 19:e202400130. [PMID: 38380867 DOI: 10.1002/asia.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m-1 K-1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe-based materials.
Collapse
Affiliation(s)
- Lijun Wang
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Lvzhou Li
- Yangzhou Technology Innovation Research Center for Carbon Neutrality of Yangzhou University, School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Min Hong
- Centre for Future Materials and School of Engineering, University of Southern Queensland, Springfield Central, Queensland, 4300, Australia
| | - Bencai Lin
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Pengcheng Miao
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianning Ding
- Yangzhou Technology Innovation Research Center for Carbon Neutrality of Yangzhou University, School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ningyi Yuan
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuqi Zheng
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
24
|
Li Z, Pal K, Lee H, Wolverton C, Xia Y. Electron-Phonon Interaction Mediated Gigantic Enhancement of Thermoelectric Power Factor Induced by Topological Phase Transition. NANO LETTERS 2024; 24:5816-5823. [PMID: 38684443 DOI: 10.1021/acs.nanolett.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We propose an effective strategy to significantly enhance the thermoelectric power factor (PF) of a series of 2D semimetals and semiconductors by driving them toward a topological phase transition (TPT). Employing first-principles calculations with an explicit consideration of electron-phonon interactions, we analyze the electronic transport properties of germanene across the TPT by applying hydrogenation and biaxial strain. We reveal that the nontrivial semimetal phase, hydrogenated germanene with 8% biaxial strain, achieves a considerable 4-fold PF enhancement, attributed to the highly asymmetric electronic structure and semimetallic nature of the nontrivial phase. We extend the strategy to another two representative 2D materials (stanene and HgSe) and observe a similar trend, with a marked 7-fold and 5-fold increase in PF, respectively. The wide selection of functional groups, universal applicability of biaxial strain, and broad spectrum of 2D semimetals and semiconductors render our approach highly promising for designing novel 2D materials with superior thermoelectric performance.
Collapse
Affiliation(s)
- Zhi Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Koushik Pal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Huiju Lee
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xia
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
25
|
Sun K, Xia W, Wang C, Suo P, Zou Y, Peng J, Wang W, Lin X, Jin Z, Guo Y, Ma G. Highly intrinsic carrier mobility in tin diselenide crystal accessed with ultrafast terahertz spectroscopy. OPTICS EXPRESS 2024; 32:17657-17666. [PMID: 38858943 DOI: 10.1364/oe.523383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Tin diselenide (SnSe2), a layered transition metal dichalcogenide (TMDC), stands out among other TMDCs for its extraordinary photoactive ability and low thermal conductivity. Consequently, it has stimulated many influential researches on photodetectors, ultrafast pulse shaping, thermoelectric devices, etc. However, the carrier mobility in SnSe2, as determined experimentally, remains limited to tens of cm2V-1s-1. This limitation poses a challenge for achieving high-performance SnSe2-based devices. Theoretical calculations, on the other hand, predict that the carrier mobility in SnSe2 can reach hundreds of cm2V-1s-1, approximately one order of magnitude higher than experimental value. Interestingly, the carrier mobility could be underestimated significantly in long-range transportation measurements due to the presence of defects and boundary scattering effects. To address this discrepancy, we employ optic pump terahertz probe spectroscopy to access the photoinduced dynamical THz photoconductivity of SnSe2. Our findings reveal that the intrinsic carrier mobility in conventional SnSe2 single crystal is remarkably high, reaching 353.2 ± 37.7 cm2V-1s-1, consistent with the theoretical prediction. Additionally, dynamical THz photoconductivity measurements reveal that the SnSe2 crystal containing rich defects efficiently capture photoinduced conduction-band electrons and valence-band holes with time constants of ∼20 and ∼200 ps, respectively. Meanwhile, we observe an impulsively stimulated Raman scattering at 0.60 THz. Our study not only demonstrates ultrafast THz spectroscopy as a reliable method for determining intrinsic carrier mobility and detection of low frequency coherent Raman mode in materials but also provides valuable reference for the future application of high-performance SnSe2-based devices.
Collapse
|
26
|
Yang Z, Yuan M, Cheng Z, Liu B, Ma Z, Ma J, Zhang J, Ma X, Ma P, Lin J. Defect-Repaired g-C 3N 4 Nanosheets: Elevating the Efficacy of Sonodynamic Cancer Therapy Through Enhanced Charge Carrier Migration. Angew Chem Int Ed Engl 2024; 63:e202401758. [PMID: 38320968 DOI: 10.1002/anie.202401758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Sonodynamic therapy (SDT) has garnered growing interest owing to its high tissue penetration depth and minimal side effects. However, the lack of efficient sonosensitizers remains the primary limiting factor for the clinical application of this treatment method. Here, defect-repaired graphene phase carbon nitride (g-C3N4) nanosheets are prepared and utilized for enhanced SDT in anti-tumor treatment. After defect engineering optimization, the bulk defects of g-C3N4 are significantly reduced, resulting in higher crystallinity and exhibiting a polyheptazine imide (PHI) structure. Due to the more extended conjugated structure of PHI, facilitating faster charge transfer on the surface, it exhibits superior SDT performance for inducing apoptosis in tumor cells. This work focuses on introducing a novel carbon nitride nanomaterial as a sonosensitizer and a strategy for optimizing sonosensitizer performance by reducing bulk defects.
Collapse
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
27
|
Abusa Y, Yox P, Viswanathan G, Opare-Addo J, Sarkar A, Kyveryga V, Smith E, Lebedev OI, Kovnir K. A Recipe for a Great Meal: A Benchtop Route from Elemental Se to Superior Thermoelectric β-Ag 2Se. J Am Chem Soc 2024. [PMID: 38606803 DOI: 10.1021/jacs.4c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The low-temperature modification of β-Ag2Se has proven to be useful as a near-room-temperature thermoelectric material. Over the past years, research has been devoted to interstitial, vacancy, and substitutional doping into the parent β-Ag2Se structure, aiming at tuning the material's charge and heat transport properties to enhance thermoelectric performance. The transformation of β-Ag2Se into α-Ag2Se at ∼134 °C and the low solubility of dopants are the main obstacles for the doping approach. Herein, we report a facile, safe, scalable, and cost-effective benchtop approach to successfully produce metal-doped β-Ag2Se. The doped materials display a remarkable enhancement of thermoelectric performance with a record-high peak zT of 1.30 at 120 °C and an average zT of ∼1.15 in the 25-120 °C range for 0.2 at. % Zn-doped Ag2Se. The enhancement in zT is attributed to point defects created by Zn doping into Ag vacancies/interstitials, which enhances the scattering of phonons and tunes the charge carrier properties, leading to the significant suppression of thermal conductivity. The simplicity of the synthetic method developed herein and the high performance of the final products provide an avenue to produce high-quality Ag2Se-based thermoelectric materials.
Collapse
Affiliation(s)
- Yao Abusa
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Philip Yox
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Gayatri Viswanathan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Jemima Opare-Addo
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Arka Sarkar
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Victoria Kyveryga
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Emily Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Oleg I Lebedev
- Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, Caen 14050, France
| | - Kirill Kovnir
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Wu H, Chen L, Malinowski P, Jang BG, Deng Q, Scott K, Huang J, Ruff JPC, He Y, Chen X, Hu C, Yue Z, Oh JS, Teng X, Guo Y, Klemm M, Shi C, Shi Y, Setty C, Werner T, Hashimoto M, Lu D, Yilmaz T, Vescovo E, Mo SK, Fedorov A, Denlinger JD, Xie Y, Gao B, Kono J, Dai P, Han Y, Xu X, Birgeneau RJ, Zhu JX, da Silva Neto EH, Wu L, Chu JH, Si Q, Yi M. Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet. Nat Commun 2024; 15:2739. [PMID: 38548765 PMCID: PMC10978849 DOI: 10.1038/s41467-024-46862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5-δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
Collapse
Affiliation(s)
- Han Wu
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Lei Chen
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Paul Malinowski
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Bo Gyu Jang
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, Republic of Korea
| | - Qinwen Deng
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirsty Scott
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Department of Physics and Astronomy, University of California, Davis, CA, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Jianwei Huang
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Jacob P C Ruff
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | - Yu He
- Department of Physics, University of California, Berkeley, CA, USA
| | - Xiang Chen
- Department of Physics, University of California, Berkeley, CA, USA
| | - Chaowei Hu
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Ziqin Yue
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Ji Seop Oh
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Xiaokun Teng
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Yucheng Guo
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Mason Klemm
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Chuqiao Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Yue Shi
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Chandan Setty
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Tyler Werner
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Makoto Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Donghui Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Turgut Yilmaz
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA
| | - Elio Vescovo
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexei Fedorov
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Yaofeng Xie
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Bin Gao
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Junichiro Kono
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- Departments of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Pengcheng Dai
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Robert J Birgeneau
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jian-Xin Zhu
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Eduardo H da Silva Neto
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Department of Physics and Astronomy, University of California, Davis, CA, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Liang Wu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Qimiao Si
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Ming Yi
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA.
| |
Collapse
|
29
|
Hong T, Qin B, Qin Y, Bai S, Wang Z, Cao Q, Ge ZH, Zhang X, Gao X, Zhao LD. All-SnTe-Based Thermoelectric Power Generation Enabled by Stepwise Optimization of n-Type SnTe. J Am Chem Soc 2024; 146:8727-8736. [PMID: 38487899 DOI: 10.1021/jacs.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The practical application of thermoelectric devices requires both high-performance n-type and p-type materials of the same system to avoid possible mismatches and improve device reliability. Currently, environmentally friendly SnTe thermoelectrics have witnessed extensive efforts to develop promising p-type transport, making it rather urgent to investigate the n-type counterparts with comparable performance. Herein, we develop a stepwise optimization strategy for improving the transport properties of n-type SnTe. First, we improve the n-type dopability of SnTe by PbSe alloying to narrow the band gap and obtain n-type transport in SnTe with halogen doping over the whole temperature range. Then, we introduce additional Pb atoms to compensate for the cationic vacancies in the SnTe-PbSe matrix, further enhancing the electron carrier concentration and electrical performance. Resultantly, the high-ranged thermoelectric performance of n-type SnTe is substantially optimized, achieving a peak ZT of ∼0.75 at 573 K with a high average ZT (ZTave) exceeding 0.5 from 300 to 823 K in the (SnTe0.98I0.02)0.6(Pb1.06Se)0.4 sample. Moreover, based on the performance optimization on n-type SnTe, for the first time, we fabricate an all-SnTe-based seven-pair thermoelectric device. This device can produce a maximum output power of ∼0.2 W and a conversion efficiency of ∼2.7% under a temperature difference of 350 K, demonstrating an important breakthrough for all-SnTe-based thermoelectric devices. Our research further illustrates the effectiveness and application potential of the environmentally friendly SnTe thermoelectrics for mid-temperature power generation.
Collapse
Affiliation(s)
- Tao Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Bingchao Qin
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yongxin Qin
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Shulin Bai
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ziyuan Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Qian Cao
- Huabei Cooling Device Co., Ltd., Hebei 065400, China
| | - Zhen-Hua Ge
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiao Zhang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
| | - Xiang Gao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China
| |
Collapse
|
30
|
Li J, Qi Y, Yang Q, Yue L, Yao C, Chen Z, Meng S, Xiang D, Cao J. Femtosecond Electron Diffraction Reveals Local Disorder and Local Anharmonicity in Thermoelectric SnSe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313742. [PMID: 38444186 DOI: 10.1002/adma.202313742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Indexed: 03/07/2024]
Abstract
In addition to long-range periodicity, local disorder, with local structures deviating from the average lattice structure, dominates the physical properties of phonons, electrons, and spin subsystems in crystalline functional materials. Experimentally characterizing the 3D atomic configuration of such a local disorder and correlating it with advanced functions remains challenging. Using a combination of femtosecond electron diffraction, structure factor calculations, and time-dependent density functional theory molecular dynamics simulations, the static local disorder and its local anharmonicity in thermoelectric SnSe are identified exclusively. The ultrafast structural dynamics reveal that the crystalline SnSe is composed of multiple locally correlated configurations dominated by the static off-symmetry displacements of Sn (≈0.4 Å) and such a set of locally correlated structures is termed local disorder. Moreover, the anharmonicity of this local disorder induces an ultrafast atomic displacement within 100 fs, indicating the signature of probable THz Einstein oscillators. The identified local disorder and local anharmonicity suggest a glass-like thermal transport channel, which updates the fundamental insight into the long-debated ultralow thermal conductivity of SnSe. The method of revealing the 3D local disorder and the locally correlated interactions by ultrafast structural dynamics will inspire broad interest in the construction of structure-property relationships in material science.
Collapse
Affiliation(s)
- Jingjun Li
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingpeng Qi
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Luye Yue
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changyuan Yao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianming Cao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
31
|
Zhang Y, Pang K, Zhang Q, Li Y, Zhou W, Tan X, Noudem JG, Wu G, Chen L, Hu H, Sun P, Wu J, Liu GQ, Jiang J. Enhanced Thermoelectric Performance of P-Type (Bi,Sb) 2 Te 3 by Incorporating Non-Stoichiometric Ag 5 Te 3 and Refining Te-Se Ratio. SMALL METHODS 2024; 8:e2301256. [PMID: 38009750 DOI: 10.1002/smtd.202301256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Power generation modules utilizing thermoelectric (TE) materials are suitable for recycling widespread low-grade waste heat (<600 K), highlighting the immediate necessity for advanced Bi2 Te3 -based alloys. Herein, the substantial enhancement in TE performance of the p-type Bi0.4 Sb1.6 Te3 (BST) sintered sample is realized by subtly incorporating the non-stoichiometric Ag5 Te3 and counteractive Se. Specifically, Ag atoms diffused into the BST lattice improve the density-of-states effective mass (md * ) and boost the hole concentration for the suppressed bipolar effect. The addition of Se further improves md * prompting the room-temperature power factor upgrade to 46 W cm-1 K-2 . Concurrently, the lattice thermal conductivity is considerably lowered by multiple scattering sources exemplified by Sb-rich nanoprecipitates and dense dislocations. These synergistic results yield a high peak ZT of 1.44 at 375 K and an average ZT of 1.28 between 300 and 500 K in the Bi0.4 Sb1.6 Te2.95 Se0.05 + 0.05 wt.% Ag5 Te3 sample. More significantly, when coupled with n-type zone-melted Bi2 Te2.7 Se0.3 , the integrated 17-pair TE module achieves a competitive conversion efficiency of 6.1% and an output power density of 0.40 W cm-2 at a temperature difference of 200 K, demonstrating great potential for practical applications.
Collapse
Affiliation(s)
- Yuyou Zhang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Kaikai Pang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qiang Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenjie Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Tan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jacques G Noudem
- Normandie University, ENSICAEN, UNICAEN, CNRS, CRISMAT, Caen, 14000, France
| | - Gang Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lidong Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyang Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peng Sun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiehua Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Guo-Qiang Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Pang K, Yuan M, Zhang Q, Li Y, Zhang Y, Zhou W, Wu G, Tan X, Noudem JG, Cui C, Hu H, Wu J, Sun P, Liu GQ, Jiang J. High Performance Thermoelectric Power of Bi 0.5Sb 1.5Te 3 Through Synergistic Cu 2GeSe 3 and Se Incorporations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306701. [PMID: 37948419 DOI: 10.1002/smll.202306701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state refrigeration makes it imperative to enhance the figure-of-merits. In this study, high-performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density-of-states effective mass (md *), compensating for the loss of "donor-like effect" exacerbated by ball milling. The subsequent Se addition further increases md *, enabling a total 28% improvement of room-temperature power factor (S2σ), reaching 43.6 µW cm-1 K-2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu-rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300-500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17-pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST-based TE modules.
Collapse
Affiliation(s)
- Kaikai Pang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Minhui Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuyou Zhang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenjie Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Gang Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojian Tan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jacques G Noudem
- ENSICAEN, UNICAEN, CNRS, CRISMAT, Normandie University, Caen, 14000, France
| | - Chen Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyang Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jiehua Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Sun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Qiang Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Santana-Andreo J, Márquez AM, Plata JJ, Blancas EJ, González-Sánchez JL, Sanz JF, Nath P. High-Throughput Prediction of the Thermal and Electronic Transport Properties of Large Physical and Chemical Spaces Accelerated by Machine Learning: Charting the ZT of Binary Skutterudites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4606-4617. [PMID: 38253557 PMCID: PMC10835667 DOI: 10.1021/acsami.3c15741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Thermal and electronic transport properties are the keys to many technological applications of materials. Thermoelectric, TE, materials can be considered a singular case in which not only one but three different transport properties are combined to describe their performance through their TE figure of merit, ZT. Despite the availability of high-throughput experimental techniques, synthesizing, characterizing, and measuring the properties of samples with numerous variables affecting ZT are not a cost- or time-efficient approach to lead this strategy. The significance of computational materials science in discovering new TE materials has been running in parallel to the development of new frameworks and methodologies to compute the electron and thermal transport properties linked to ZT. Nevertheless, the trade-off between computational cost and accuracy has hindered the reliable prediction of TE performance for large chemical spaces. In this work, we present for the first time the combination of new ab initio methodologies to predict transport properties with machine learning and a high-throughput framework to establish a solid foundation for the accurate prediction of thermal and electron transport properties. This strategy is applied to a whole family of materials, binary skutterudites, which are well-known as good TE candidates. Following this methodology, it is possible not only to connect ZT with the experimental synthetic (carrier concentration and grain size) and operando (temperature) variables but also to understand the physical and chemical phenomena that act as driving forces in the maximization of ZT for p-type and n-type binary skutterudites.
Collapse
Affiliation(s)
- Julia Santana-Andreo
- Departamento
de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain
| | - Antonio M. Márquez
- Departamento
de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain
| | - Jose J. Plata
- Departamento
de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain
| | - Ernesto J. Blancas
- Departamento
de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain
| | - José-Luis González-Sánchez
- Department
of Computer Systems Engineering and Telematics, University of Extremadura, School of Technology, Cáceres 10003, Extremadura, Spain
| | - Javier Fdez. Sanz
- Departamento
de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain
| | - Pinku Nath
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
34
|
Liu X, Chen Y, Wang H, Liu S, Zhang B, Lu X, Wang G, Han G, Chen X, Zhou X. Simultaneously Enhanced Thermoelectric and Mechanical Performance in SnSe-Based Nanocomposites Produced via Sintering SnSe and KCu 7S 4 Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2240-2250. [PMID: 38172084 DOI: 10.1021/acsami.3c14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Both thermoelectric and mechanical properties are important to the practical applications of thermoelectric materials. Herein, we develop a strategy for alloying KCu7S4 to improve the dimensionless figure of merit (zT), compressive strength, and Vickers hardness of polycrystalline SnSe. Through chemical synthesis and particle mixing in solutions, powders with SnSe nanoparticles and KCu7S4 nanowires are produced, and the subsequent spark plasma sintering triggers the reaction between the two chalcogenides, resulting in the formation of Cu2SnSe3 nanoparticles and substitution of Cu and S in the SnSe matrix. The composition tuning and secondary phase formation effectively enhance the power factor and diminish the lattice thermal conductivity, leading to a maximum zT of 1.13 at 823 K for the optimal sample, which is improved by 135% over that of SnSe. Simultaneously, the compressive strength and hardness are also enhanced, as exemplified by a high compressive strength of 135 MPa that is enhanced by ∼81% compared to that of SnSe. The current study demonstrates effective composite and composition design toward enhanced thermoelectric and mechanical performance in polycrystalline SnSe.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Yao Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Hengyang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Siyun Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Bin Zhang
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Xu Lu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Guoyu Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Guang Han
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Xianhua Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Xiaoyuan Zhou
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
- College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
35
|
Yu L, Shi XL, Mao Y, Liu WD, Ji Z, Wei S, Zhang Z, Song W, Zheng S, Chen ZG. Simultaneously Boosting Thermoelectric and Mechanical Properties of n-Type Mg 3Sb 1.5Bi 0.5-Based Zintls through Energy-Band and Defect Engineering. ACS NANO 2024; 18:1678-1689. [PMID: 38164927 DOI: 10.1021/acsnano.3c09926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Incorporating donor doping into Mg3Sb1.5Bi0.5 to achieve n-type conductivity is one of the crucial strategies for performance enhancement. In pursuit of higher thermoelectric performance, we herein report co-doping with Te and Y to optimize the thermoelectric properties of Mg3Sb1.5Bi0.5, achieving a peak ZT exceeding 1.7 at 703 K in Y0.01Mg3.19Sb1.5Bi0.47Te0.03. Guided by first-principles calculations for compositional design, we find that Te-doping shifts the Fermi level into the conduction band, resulting in n-type semiconductor behavior, while Y-doping further shifts the Fermi level into the conduction band and reduces the bandgap, leading to enhanced thermoelectric performance with a power factor as high as >20 μW cm-1 K-2. Additionally, through detailed micro/nanostructure characterizations, we discover that Te and Y co-doping induces dense crystal and lattice defects, including local lattice distortions and strains caused by point defects, and densely distributed grain boundaries between nanocrystalline domains. These defects efficiently scatter phonons of various wavelengths, resulting in a low thermal conductivity of 0.83 W m-1 K-1 and ultimately achieving a high ZT. Furthermore, the dense lattice defects induced by co-doping can further strengthen the mechanical performance, which is crucial for its service in devices. This work provides guidance for the composition and structure design of thermoelectric materials.
Collapse
Affiliation(s)
- Lu Yu
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Yuanqing Mao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Physics and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Wei-Di Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Zhen Ji
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Sitong Wei
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Zipei Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Weiyu Song
- College of Science, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Shuqi Zheng
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
36
|
Gong Z, Saglik K, Wu J, Suwardi A, Cao J. Suppressing Ag 2Te nanoprecipitates for enhancing thermoelectric efficiency of AgSbTe 2. NANOSCALE 2023; 15:18283-18290. [PMID: 37941461 DOI: 10.1039/d3nr04584f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Thermoelectrics are a class of materials that provide interconversion between heat and electricity, with desirable traits such as low thermal conductivity and low electrical resistivity. AgSbTe2 has emerged as one of the leading materials in recent years due to its ultra-low thermal conductivity. However, one major hindrance in undoped AgSbTe2 is its high electrical resistivity and low Seebeck coefficient due to the presence of Ag2Te nanoprecipitates. In this work, we leverage on the combination of an off-stoichiometric composition and a non-equilibrium process to simultaneously enhance the properties of AgSbTe2 and its thermoelectric device performance. Microscopically, the Ag2Te-deficient starting composition combined with a non-equilibrium thermal process suppresses the Ag2Te nanoprecipitates in the material. In addition, it is evident from the density functional theory (DFT) electronic structure that Ag2Te deficiency results in a smaller lattice and higher density-of-states near the Fermi level, which simultaneously lower the electrical resistivity and increase the Seebeck coefficient. As a result, zT as high as 1.7 was achieved at 573 K. Additionally, when combined with a high room temperature zT of 0.75, a power conversion efficiency of 7.3% was achieved at a ΔT of 290 K. Crucially, the strategy in this work can inspire application in other ABX2 material systems to achieve improved thermoelectric performances.
Collapse
Affiliation(s)
- Zichen Gong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Kivanc Saglik
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jing Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Jing Cao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore.
| |
Collapse
|
37
|
Bhui A, Das S, Arora R, Bhat U, Dutta P, Ghosh T, Pathak R, Datta R, Waghmare UV, Biswas K. Hg Doping Induced Reduction in Structural Disorder Enhances the Thermoelectric Performance in AgSbTe 2. J Am Chem Soc 2023; 145:25392-25400. [PMID: 37942795 DOI: 10.1021/jacs.3c09643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Defect engineering, achieved by precise tuning of the atomic disorder within crystalline solids, forms a cornerstone of structural chemistry. This nuanced approach holds the potential to significantly augment thermoelectric performance by synergistically manipulating the interplay between the charge carrier and lattice dynamics. Here, the current study presents a distinctive investigation wherein the introduction of Hg doping into AgSbTe2 serves to partially curtail structural disorder. This strategic maneuver mitigates potential fluctuations originating from pronounced charge and size disparities between Ag+ and Sb3+, positioned in octahedral sites within the rock salt structure. Hg doping significantly improves the phase stability of AgSbTe2 by restricting the congenital emergence of the Ag2Te minor secondary phase and promotes partial atomic ordering in the cation sublattice. Reduction in atomic disorder coalesced with a complementary modification of electronic structure by Hg doping results in increased carrier mobility. The formation of nanoscale superstructure with sizes (2-5 nm) of the order of phonon mean free path in AgSbTe2 is further promoted by reduced partial disorder, causes enhanced scattering of heat-carrying phonons, and results in a glass-like ultralow lattice thermal conductivity (∼0.32 W m-1 K-1 at 297 K). Cumulatively, the multifaceted influence of Hg doping, in conjunction with the consequential reduction in disorder, allows achieving a high thermoelectric figure-of-merit, zT, of ∼2.4 at ∼570 K. This result defies conventional paradigms that prioritize increased disorder for optimizing zT.
Collapse
Affiliation(s)
- Animesh Bhui
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Subarna Das
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Raagya Arora
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Usha Bhat
- Chemistry and Physics of Materials Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Prabir Dutta
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Tanmoy Ghosh
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Riddhimoy Pathak
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Ranjan Datta
- Chemistry and Physics of Materials Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Kanishka Biswas
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
38
|
Bai S, Zhang X, Zhao LD. Rethinking SnSe Thermoelectrics from Computational Materials Science. Acc Chem Res 2023; 56:3065-3075. [PMID: 37801363 DOI: 10.1021/acs.accounts.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ConspectusThe growing energy crisis and the adverse environmental impacts caused by carbon-based energy consumption have spurred the exploration of green and sustainable energy. Researchers have been devoted to developing thermoelectric technology that could directly and reversibly convert heat into electricity. By virtue of zero emissions, nonmoving parts, precise temperature control, and long service life, thermoelectrics exhibit broad application in power generation and refrigeration. Nevertheless, traditional narrow-bandgap thermoelectrics exhibit high performance within a narrow temperature range, limiting the overall energy conversion. Consequently, a selection rule for exploring advanced thermoelectrics was proposed: materials with wide-bandgap, crystals form, asymmetry, and anisotropic structure. According to the rules, we conducted much research and found some promising materials.As the lead-free, cost-effective, and stable thermoelectric candidates, layered SnSe crystals with wide-bandgap and covalent bonding have gained significant attention due to their ultralow thermal conductivity resulting from strong bonding anharmonicity, via strong polar covalent bonding, because of the electronegativity difference between the Sn and Se atoms. This was proved to be the result from the unique structure of layered SnSe crystals, a distorted rock-salt structure with high and anisotropic Grüneisen parameters. In this Account, we introduce and rethink our recent advancements in developing high-performance thermoelectric SnSe crystals from computational materials science, involving p- and n-type SnSe crystals, respectively. For p-type SnSe crystals, according to the complex valence band structures, we utilized the multiband synglisis via electronic structure calculations and multiband simulations to activate valence bands to participate in electrical transport of in-plane direction, achieving an ultrahigh power factor (PF) of ∼75 μW cm-1 K-2 at room temperature and an average figure-of-merit ZTave of ∼1.9 for Sn0.91Pb0.09Se. Besides, on the basis of defect chemistry, the characteristics of p-type SnSe crystals are determined by intrinsic Sn vacancies. We thus used point-defect calculations to achieve the lattice plainification, and we fixed the lattice intrinsic defects to weaken defect scattering of carriers along the in-plane direction, facilitating further a PF > 100 μW cm-1 K-2 and a ZT of ∼1.5 at room temperature for SnCu0.001Se. For n-type SnSe crystals, inspired by the anisotropic characteristics of the layered materials, we analyzed charge density and proposed the insight of 3D charge and 2D phonon transports and calculated the deformation potential to manipulate layered phonon-electron decoupling to achieve high performance, ultimately Pb-alloyed and Cl-doped SnSe (SnSe-Cl-PbSe) reaching a ZTave of ∼1.7 from 300 to 773 K. In the end, we offer potential perspectives on high-throughput calculations (HTC) and machine learning (ML), combined with our proposed insights, which could be a promising avenue for future thermoelectrics. By virtue of our theoretical and experimental understanding of thermoelectrics, integrating these insights as rules and descriptors for HTC and ML will accelerate the research and development of thermoelectrics. We want to share our recent works and latest perspectives in SnSe thermoelectrics, and we expect to inspire enthusiasm for innovative research on advanced thermoelectric materials and devices.
Collapse
Affiliation(s)
- Shulin Bai
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiao Zhang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
39
|
Zhu Y, Yu Y, Zhang H, Qin Y, Wang ZY, Zhan S, Liu D, Lin N, Tao Y, Hong T, Wang S, Ge ZH, Wuttig M, Zhao LD. Large Mobility Enables Higher Thermoelectric Cooling and Power Generation Performance in n-type AgPb 18+xSbTe 20 Crystals. J Am Chem Soc 2023. [PMID: 37922502 DOI: 10.1021/jacs.3c09655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The room-temperature thermoelectric performance of materials underpins their thermoelectric cooling ability. Carrier mobility plays a significant role in the electronic transport property of materials, especially near room temperature, which can be optimized by proper composition control and growing crystals. Here, we grow Pb-compensated AgPb18+xSbTe20 crystals using a vertical Bridgman method. A large weighted mobility of ∼410 cm2 V-1 s-1 is achieved in the AgPb18.4SbTe20 crystal, which is almost 4 times higher than that of the polycrystalline counterpart due to the elimination of grain boundaries and Ag-rich dislocations verified by atom probe tomography, highlighting the significant benefit of growing crystals for low-temperature thermoelectrics. Due to the largely promoted weighted mobility, we achieve a high power factor of ∼37.8 μW cm-1 K-2 and a large figure of merit ZT of ∼0.6 in AgPb18.4SbTe20 crystal at 303 K. We further designed a 7-pair thermoelectric module using this n-type crystal and a commercial p-type (Bi, Sb)2Te3-based material. As a result, a high cooling temperature difference (ΔT) of ∼42.7 K and a power generation efficiency of ∼3.7% are achieved, revealing promising thermoelectric applications for PbTe-based materials near room temperature.
Collapse
Affiliation(s)
- Yingcai Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Huaide Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Yongxin Qin
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zi-Yuan Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shaoping Zhan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Dongrui Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Nan Lin
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Yinghao Tao
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Tao Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Siqi Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhen-Hua Ge
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
40
|
Jang H, Jung YS, Oh MW. Advances in thermoelectric AgBiSe 2: Properties, strategies, and future challenges. Heliyon 2023; 9:e21117. [PMID: 37928035 PMCID: PMC10623285 DOI: 10.1016/j.heliyon.2023.e21117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Thermoelectric materials are attracting considerable attention to alleviate the global energy crisis by enabling the direct conversion of heat into electricity. As a class of I-V-VI2 semiconductors, AgBiSe2 is expected to be the potential thermoelectric material to replace conventional PbTe-based compounds due to its non-toxic and abundant nature of its constituent elements. This review article summarizes the fundamental properties of AgBiSe2, thermoelectric properties, the effect of different dopants on its transport properties and entropy engineering for cubic phase stabilization with the detailed description of related techniques used to analyze the properties of AgBiSe2. The current thermoelectric figure-of-merit and approaches to further improve performance and operational stability are also discussed.
Collapse
Affiliation(s)
- Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Wook Oh
- Department of Materials Science and Engineering, Hanbat National University, Yuseong-gu, Daejeon, 34158, Republic of Korea
| |
Collapse
|
41
|
Ang AKR, Yamazaki I, Hirata K, Singh S, Matsunami M, Takeuchi T. Development of Cu 2Se/Ag 2(S,Se)-Based Monolithic Thermoelectric Generators for Low-Grade Waste Heat Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46962-46970. [PMID: 37768216 DOI: 10.1021/acsami.3c09823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the ongoing climate and energy crises, thermoelectric conversion has slowly emerged as a clean and reliable alternative energy source for small Internet of Things (IoT) devices. Commercially available thermoelectric generators (TEGs) are typically composed of expensive and toxic Bi2Te3-based thermoelectric materials and require complicated and energy-intensive device assembly processes. As an alternative solution, we have developed a Ag- and Cu-chalcogenide-based monolithic TEG using simple, quick, and low-energy-cost device fabrication processes for low-grade waste heat recovery for energy harvesting. We used ductile Ag2S0.55Se0.45 and overstoichiometric Cu2.075Se, both possessing excellent transport properties around room temperature, with a zT value of ∼0.5 at 300 K. By optimizing the device fabrication process, we were successfully able to assemble the monolithic TEGs without any significant Ag- or Cu-ion migration and obtained a dense and robust device. Strategic optimization of the device structure was able to reduce the electrical contact resistance of the device, which resulted in increased power output. A maximum power density of 0.68 mW/cm2 at a ΔT = 30 K was obtained, which is comparable to a similar Bi2Te3-based monolithic TEG. These results show the potential of chalcogenide-based monolithic TEG as a simple and low-cost alternative to Bi2Te3-based TEGs for energy harvesting applications.
Collapse
Affiliation(s)
- Artoni Kevin R Ang
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Itsuki Yamazaki
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Keisuke Hirata
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Saurabh Singh
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Masaharu Matsunami
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Tsunehiro Takeuchi
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| |
Collapse
|
42
|
Sarkar D, Dolui K, Taneja V, Ahad A, Dutta M, Manjunatha SO, Swain D, Biswas K. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe 3. Angew Chem Int Ed Engl 2023; 62:e202308515. [PMID: 37583094 DOI: 10.1002/anie.202308515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Comprehension of chemical bonding and its intertwined relation with charge carriers and heat propagation through a crystal lattice is imperative to design compounds for thermoelectric energy conversion. Here, we report the synthesis of large single crystal of new p-type cubic AgSnSbTe3 which shows an innately ultra-low lattice thermal conductivity (κlat ) of 0.47-0.27 Wm-1 K-1 and a high electrical conductivity (1238 - 800 S cm-1 ) in the temperature range 294-723 K. We investigated the origin of the low κlat by analysing the nature of the chemical bonding and its crystal structure. The interaction between Sn(5 s)/Ag(4d) and Te(5p) orbitals was found to generate antibonding states just below the Fermi level in the electronic band structure, resulting in a softening of the lattice in AgSnSbTe3 . Furthermore, the compound exhibits metavalent bonding which provides highly polarizable bonds with a strong lattice anharmonicity while maintaining the superior electrical conductivity. The electronic band structure exhibits nearly degenerate valence-band maxima that help to achieve a high Seebeck coefficient throughout the measured temperature range and, as a result, the maximum thermoelectric figure of merit reaches to ≈1.2 at 661 K in pristine single crystal of AgSnSbTe3 .
Collapse
Affiliation(s)
- Debattam Sarkar
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Kapildeb Dolui
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Vaishali Taneja
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Abdul Ahad
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Moinak Dutta
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - S O Manjunatha
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil, Odisha Campus, Bhubaneswar, 751013, India
| | - Kanishka Biswas
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
43
|
Chung I. Plainly fixing crystal lattices. Science 2023; 380:800. [PMID: 37228213 DOI: 10.1126/science.adi2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A thermoelectric alloy achieves high performance in electronic cooling.
Collapse
Affiliation(s)
- In Chung
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
| |
Collapse
|