1
|
Stoumpos A, Heine G, Saggau C, Scheffold A. The role of allergen-specific regulatory T cells in the control of allergic disease. Curr Opin Immunol 2025; 92:102509. [PMID: 39642798 DOI: 10.1016/j.coi.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Allergies result from an antigen-specific loss of tolerance against innocuous foreign substances. Allergen immunotherapy (AIT) aims to reverse the pathogenic response and to re-establish physiological tolerance. However, the tolerogenic mechanisms that prevent allergy in healthy and act during AIT are still obscure. Foxp3 expressing 'regulatory' CD4 T cells (Tregs) are essential mediators of tolerance against allergens. It remains controversial which antigen specificity of Tregs is required to prevent allergy and the role of allergen-specific Tregs during AIT. Recent work provided precise insight into physiological T cell responses against environmental and food compounds. This identified Treg responses mainly against peptides and proteins not involved in immune pathology, revealing an unexpected role of Treg antigen specificity for tolerance. This review will focus on antigen-specific Treg responses against food and airborne allergens, and the impact of the technological approach utilized for antigen-specific Treg characterization is discussed, with critical points to be addressed in future research.
Collapse
Affiliation(s)
- Athanasios Stoumpos
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
2
|
Jiang H, Limsuwannarot S, Kulhanek KR, Pal A, Rysavy LW, Su L, Labiad O, Testa S, Ogana H, Waghray D, Tao P, Jude KM, Seet CS, Crooks GM, Moding EJ, Garcia KC, Kalbasi A. IL-9 as a naturally orthogonal cytokine with optimal JAK/STAT signaling for engineered T cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633105. [PMID: 39868284 PMCID: PMC11760723 DOI: 10.1101/2025.01.15.633105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Arming T cells with a synthetically orthogonal IL-9 receptor (o9R) permits facile engraftment and potent anti-tumor functions. We considered whether the paucity of natural IL-9R expression could be exploited for T cell immunotherapy given that, in mice, high doses of IL-9 were well-tolerated without discernible immune modulation. Compared to o9R, T cells engineered with IL-9R exhibit superior tissue infiltration, stemness, and anti-tumor activity. These qualities are consistent with a stronger JAK/STAT signal, which in addition to STAT1/3/5, unexpectedly includes STAT4 (canonically associated with IL-12 but not common γ-chain cytokines). IL-9R T cells are exquisitely sensitive to perturbations of proximal signaling, including structure-guided attenuation, amplification, and rebalancing of JAK/STAT signals. Biased IL-9R mutants uncover STAT1 as a rheostat between proliferative stem-like and terminally differentiated effector states. In summary, we identify native IL-9/IL-9R as a natural cytokine-receptor pair with near-orthogonal qualities and an optimal JAK/STAT signaling profile for engineered T cell therapy.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Sam Limsuwannarot
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Kayla R. Kulhanek
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94143, USA
- Stanford Center for Cancer Cell Therapy
- These authors contributed equally to this work
| | - Aastha Pal
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Lea W. Rysavy
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Ossama Labiad
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Stefano Testa
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Heather Ogana
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Deepa Waghray
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Kevin M. Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Christopher S. Seet
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Everett J. Moding
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94143, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Center for Cancer Cell Therapy
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94143, USA
- Lead contact
| |
Collapse
|
3
|
Ju X, Fard NE, Bhalla A, Dvorkin-Gheva A, Xiao M, Radford K, Zhang K, Ditta R, Oliveria JP, Paré G, Mukherjee M, Nair P, Sehmi R. A population of c-kit + IL-17A + ILC2s in sputum from individuals with severe asthma supports ILC2 to ILC3 trans-differentiation. Sci Transl Med 2025; 17:eado6649. [PMID: 39813318 DOI: 10.1126/scitranslmed.ado6649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/29/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear. Here, we found by flow cytometry that sputum ILC3s are increased in severe asthma with intense airway neutrophilia, whereas equivalently raised sputum ILC2s and ILC3s were found in severe asthma with mixed granulocytic inflammation. Unbiased clustering analyses identified an "intermediate-ILC2" population displaying markers of both ILC2s (prostaglandin D2 receptor 2; CRTH2, IL-5, and IL-13) and ILC3s (c-kit and IL-17A) that were most abundant in severe asthma with mixed granulocytic airway inflammation. Intermediate ILC2s correlated with airway neutrophilia and were associated with increased amounts of IL-1β and IL-18 in sputum supernatants. Coculture of sort-purified canonical ILC2s with IL-1β and IL-18 in vitro up-regulated c-kit and IL-17A as well as gene expression profiles related to both type 2 and type 17 inflammatory pathways. Together, we have identified an intermediate-ILC2 phenotype in the airways of individuals with severe mixed granulocytic asthma, representing a candidate therapeutic target for controlling neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Xiaotian Ju
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Nahal Emami Fard
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Anurag Bhalla
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Anna Dvorkin-Gheva
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Maria Xiao
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Kayla Zhang
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Reina Ditta
- Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Clinical Research Laboratory and Biobank and the Genetic and Molecular Epidemiology Laboratory (CRLB-GMEL), Population Health Research Institute and Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada
| | - John Paul Oliveria
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Guillaume Paré
- Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Clinical Research Laboratory and Biobank and the Genetic and Molecular Epidemiology Laboratory (CRLB-GMEL), Population Health Research Institute and Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
4
|
Dantzer JA, Lewis SA, Psoter KJ, Sutherland A, Frazier A, Richardson E, Maiche S, Seumois G, Peters B, Wood RA. Clinical and immunological outcomes after randomized trial of baked milk oral immunotherapy for milk allergy. JCI Insight 2025; 10:e184301. [PMID: 39782691 PMCID: PMC11721308 DOI: 10.1172/jci.insight.184301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUNDCow's milk (CM) allergy is the most common food allergy in young children. Treatment with oral immunotherapy (OIT) has shown efficacy, but high rates of adverse reactions. The aim of this study was to determine whether baked milk OIT (BMOIT) could reduce adverse reactions while still inducing desensitization, and to identify immunological correlates of successful BMOIT.METHODSThis phase II, randomized trial evaluated the safety and efficacy of BMOIT in milk-allergic children 3-18 years old. After the initial placebo-controlled first year of treatment, placebo-treated participants crossed over to active BMOIT. Double-blind, placebo-controlled oral food challenges (OFCs) were conducted with BM after year 1 and to both BM and unheated milk (UM) after year 2. IgG and IgE antibodies were measured along with CM-specific (CM+) CD4+ memory T cell populations, profiled using flow cytometry and scRNA-Seq.RESULTSTwenty-one of 30 (70%) reached the primary endpoint of tolerating 4044 mg of BM protein at month 24, and 11 of 30 tolerated 2000 mg or more of UM protein. Dosing symptoms were common, but more than 98% were mild, with no severe reactions. Immunological changes associated with desensitization included increased CM IgG4, CM+ FOXP3+ cells, and Tregs and corresponding decreases in CM IgE, CM+ Th2A cells, and CD154+ cells. T cell and antibody measurements were combined to build a model that predicted UM OFC outcomes.CONCLUSIONBMOIT was well tolerated and induced desensitization to BM and UM. This desensitization corresponded to redistribution within antigen-specific antibody and T cell compartments that provided insight into the mechanistic changes that occur with OIT treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT03462030.FUNDING: Myra Reinhardt Family Foundation (grant number 128388), NIH/NIAID (U19AI135731, T32AI125179, S10OD025052).
Collapse
Affiliation(s)
- Jennifer A. Dantzer
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sloan A. Lewis
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Kevin J. Psoter
- Division of General Pediatrics, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - April Frazier
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Eve Richardson
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Synaida Maiche
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Gregory Seumois
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert A. Wood
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
6
|
Zhou S, Xiao H, Gao M, Wang M, He W, Shu Y, Wang X. Causal role of immune cells in asthma: a Mendelian randomization study. J Asthma 2025; 62:84-90. [PMID: 39087928 DOI: 10.1080/02770903.2024.2387758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Immune cells may have a significant role in the pathophysiology of asthma, according to increasing evidence, although it is yet unclear how immune cells cause asthma. Therefore, we aimed to use Mendelian randomization (MR) methods to investigate this causal relationship. METHODS This study explored the causal effects between immune cells and asthma using a two-sample MR technique. Using publicly available genetic data, the causal connection between asthma risk and 731 immune cell phenotypes was investigated. Sensitivity analysis guaranteed the results' stability. To further evaluate the existence of reverse causality, we employed reverse MR analysis. RESULTS According to the inverse-variance weighted (IVW) method, five immune cell phenotypes were found to be statistically significantly associated with asthma risk (p < 0.001). Among them, TCRgd %T cell (OR = 0.968, 95%CI = 0.951 - 0.986), TCRgd %lymphocyte (OR = 0.978, 95%CI = 0.965 - 0.991), HLA DR + NK AC (OR = 0.966, 95% CI = 0.947 - 0.986) and CD3 on CD4 Treg (OR = 0.956, 95%CI= 0.931 - 0.981), four phenotypes that resulted in a decreased risk of asthma. CD25 on transitional (OR = 1.033, 95%CI = 1.014 - 1.052) resulted in an increased risk of asthma. Reverse MR analysis revealed that asthma increases HLA DR + NK AC levels (p < 0.05). CONCLUSION The results of MR analysis showed a causal relationship between immune cell phenotype and asthma risk, which provides a direction for future asthma treatment.
Collapse
Affiliation(s)
- Siding Zhou
- Department of Medical College of Yangzhou University, Yangzhou, China
| | - Hongbi Xiao
- Department of Medical College of Yangzhou University, Yangzhou, China
| | - Mingjun Gao
- Department of Dalian Medical University, Dalian, China
| | - Mengmeng Wang
- Department of Dalian Medical University, Dalian, China
| | - Wenbo He
- Department of Medical College of Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Zou X, Wang K, Deng Y, Guan P, Pu Q, Wang Y, Mou J, Du Y, Lou X, Wang S, Jiang N, Zhou S, Wang H, Du D, Liu X, Hu H, Zhang H. Hypoxia-inducible factor 2α promotes pathogenic polarization of stem-like Th2 cells via modulation of phospholipid metabolism. Immunity 2024; 57:2808-2826.e8. [PMID: 39609127 DOI: 10.1016/j.immuni.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
T helper 2 (Th2) cells orchestrate immunity against parasite infection and promote tissue repair but promote pathology in asthma and tissue fibrosis. Here, we examined the mechanisms driving pathogenic differentiation of Th2 cells. Single-cell analyses of CD4+ T cells from asthma and chronic rhinosinusitis patients revealed high expression of the hypoxia-inducible factor (HIF)2α in Th2 cells. In mice, HIF2α deficiency impaired Th2 differentiation and alleviated asthmatic inflammation. Single-cell and lineage tracing approaches delineated a differentiation trajectory from TCF1+Ly108+ stem-like Th2 cells to the ST2+CD25+ pathogenic progeny, depending on a HIF2α-GATA3 circuit that modulated phospholipid metabolism and T cell receptor (TCR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) activation via transcriptional regulation of the inositol polyphosphate multikinase (IPMK). Overexpression of IPMK in HIF2α-deficient cells promoted Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis and pathogenic Th2 cell differentiation, whereas pharmacological inhibition of HIF2α impaired pathogenic differentiation of Th2 cells and mitigated airway inflammation. Our findings provide insight into the contextual cues that promote Th2-mediated pathology and suggest HIF2α as a therapeutic target in asthma.
Collapse
Affiliation(s)
- Xinkai Zou
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Keyue Wang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Deng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengbo Guan
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianlun Pu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuemeng Wang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Mou
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhou Du
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxian Lou
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sijiao Wang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chongqing International Institute for Immunology, Chongqing, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China.
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Xu H, Du Z, Li Z, Liu X, Li X, Zhang X, Ma J. MUC1-EGFR crosstalk with IL-6 by activating NF-κB and MAPK pathways to regulate the stemness and paclitaxel-resistance of lung adenocarcinoma. Ann Med 2024; 56:2313671. [PMID: 38325364 PMCID: PMC10851807 DOI: 10.1080/07853890.2024.2313671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The chemotherapy resistance often leads to chemotherapy failure. This study aims to explore the molecular mechanism by which MUC1 regulates paclitaxel resistance in lung adenocarcinoma (LUAD), providing scientific basis for future target selection. METHODS The bioinformatics method was used to analyse the mRNA and protein expression characteristics of MUC1 in LUAD. RT-qPCR and ELISA were used to detect the mRNA and protein expression, flow cytometry was used to detect CD133+ cells, and cell viability was detected by CCK-8 assay. The mRNA-seq was performed to analyse the changes in expression profile, GO and KEGG analysis were used to explore the potential biological functions. RESULTS MUC1 is highly expressed in LUAD patients and is associated with a higher tumour infiltration. In paclitaxel resistance LUAD cells (A549/TAX cells), the expression of MUC1, EGFR/p-EGFR and IL-6 were higher than that of A549 cells, the proportion of CD133+ cells was significantly increased, and the expression of cancer stem cell (CSCs) transcription factors (NANOG, OCT4 and SOX2) were significantly up-regulated. After knocking down MUC1 in A549/Tax cells, the activity of A549/Tax cells was significantly decreased. Correspondingly, the expression of EGFR, IL-6, OCT4, NANOG, and SOX2 were significantly down-regulated. The mRNA-seq showed that knocking down MUC1 affected the gene expression, DEGs mainly enriched in NF-κB and MAPK signalling pathway. CONCLUSION MUC1 was highly expressed in A549/TAX cells, and MUC1-EGFR crosstalk with IL-6 may be due to the activation of NF-κB and MAPK pathways, which promote the enrichment of CSCs and lead to paclitaxel resistance.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Zedong Du
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, Sichuan, P.R. China
| | - Xianguo Liu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Xueting Li
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Xuan Zhang
- Science and Education Department, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Jiayu Ma
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| |
Collapse
|
9
|
Sen Chaudhuri A, Sun J. Lung-resident lymphocytes and their roles in respiratory infections and chronic respiratory diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:214-223. [PMID: 39834580 PMCID: PMC11742555 DOI: 10.1016/j.pccm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/22/2025]
Abstract
Recent scientific breakthroughs have blurred traditional boundaries between innate and adaptive immunity, revealing a sophisticated network of tissue-resident cells that deliver immediate, localized immune responses. These lymphocytes not only provide rapid frontline defense but also present a paradoxical role in the pathogenesis of respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and the long-term tissue consequences of viral infections including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review traverses the intricate landscape of lung-resident lymphocytes, delving into their origins, diverse functions, and their dualistic impact on pulmonary health. We dissect their interactions with the microenvironment and the regulatory mechanisms guiding their activity, with an emphasis on their contribution to both immune protection and immunopathology. This review aims to elucidate the complex narrative of these cells, enhancing our understanding of the development of precise therapeutic strategies to combat acute and chronic pulmonary diseases. Through this exploration, the review aspires to shed light on the potential of harnessing lung-resident lymphocytes for the treatment of respiratory conditions.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Zhang R, Chen S, Luo T, Guo S, Qu J. Activated Tim-3/Galectin-9 participated in the development of multiple myeloma by negatively regulating CD4 T cells. Hematology 2024; 29:2288481. [PMID: 38108336 DOI: 10.1080/16078454.2023.2288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The interaction between Tim-3 on T cells and its ligand Galectin-9 negatively regulates the cellular immune response. However, the regulation of Tim-3/Galectin-9 on CD4 T cell subsets in multiple myeloma (MM) remains unclear. The aim of this study was to investigate the relationship between the regulation of CD4 T cell subsets by the Tim-3/Galectin-9 pathway and clinical prognostic indicators in MM. Tim-3/Galectin-9 were detected by flow cytometry, PCR and ELISA in 60 MM patients and 40 healthy controls, and its correlation with clinical prognostic parameters was analyzed. The expressions of Tim-3 on CD4 T cells, Galectin-9 mRNA in PBMC and level of Galectin-9 protein in serum were significantly elevated in MM patients, especially those with poor prognostic indicators. In MM patients, Tim-3 was highly expressed on the surfaces of Th1, Th2, and Th17 cells, but lowly expressed on Treg. Moreover, level of cytokine IFN-γ in serum was negatively correlated with Tim-3+Th1 cell and Galectin-9mRNA, Galectin-9 protein level. In addition, cell culture experiments showed that the anti-tumor effect and the ability to secrete IFN-γ were restored by blocking the Tim-3/Galectin-9 pathway. In MM patients, Tim-3/Galectin-9 is elevated and associated with disease progression, by inhibiting the cytotoxic function of Th1, and also promoting Th2 and Th17 to be involved in immune escape of MM. Therefore, Tim-3/Galectin-9 may serve as a new immunotherapeutic target for MM patients.
Collapse
Affiliation(s)
- Rui Zhang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Shuang Chen
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Tingting Luo
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Sha Guo
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Jianhua Qu
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| |
Collapse
|
11
|
Guo CL, Wang CS, Wang ZC, Liu FF, Liu L, Yang Y, Li X, Guo B, Lu RY, Liao B, Liu JX, Wang H, Song J, Yao Y, Zhu LP, Yu D, Liu Z. Granzyme K +CD8 + T cells interact with fibroblasts to promote neutrophilic inflammation in nasal polyps. Nat Commun 2024; 15:10413. [PMID: 39614076 DOI: 10.1038/s41467-024-54685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Sophisticated interactions between stromal and immune cells play crucial roles in various biological and pathological processes. In chronic rhinosinusitis with nasal polyps (CRSwNP), the upper airway inflammation in many patients is driven by TH2, ILC2, and eosinophils, thus being treated with glucocorticoids and anti-type 2 inflammation biologics. The resistance to these therapies is often associated with neutrophilic inflammation, which has also been widely identified in CRSwNP, but the underlying mechanisms remain unclear. Using single-cell analysis, spatial transcriptomics, and T-cell receptor sequencing, we identify an increased presence of granzyme K+(GZMK+) CD8+ T cells in NPs, which possess a phenotype distinct from the cytotoxic GZMB+ effector CD8+ T subset. GZMK+CD8+ T cells are found to express CXCR4 and interact with CXCL12-secreting fibroblasts, inducing the latter to produce neutrophil chemoattractants in a manner uniquely mediated by GZMK but not other granzymes. This GZMK+CD8+ T cell-fibroblast crosstalk is also observed in other inflammatory diseases. Furthermore, GZMK+CD8+ T cells exhibit a selective expansion of clones that recognize Epstein-Barr virus. Here, we show that GZMK marks a phenotypically distinct subset of effector CD8+ T cells that promote neutrophilic inflammation.
Collapse
Affiliation(s)
- Cui-Lian Guo
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Chong-Shu Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Zhi-Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Fei-Fan Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | | | - Yang Yang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Xia Li
- Wuhan Biobank, Wuhan, China
| | - Bei Guo
- Department of Otolaryngology-Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruo-Yu Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Bo Liao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Jin-Xin Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Jia Song
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China
| | - Li-Ping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, P.R. China.
| |
Collapse
|
12
|
Hogan NT, Castaneda-Castro FE, Logandha Ramamoorthy Premlal A, Brickner H, Mondal M, Herrera-De La Mata S, Vijayanand P, Crotty Alexander LE, Seumois G, Akuthota P. E-cigarette vapor extract alters human eosinophil gene expression in an effect mediated by propylene glycol, glycerin, and nicotine. J Leukoc Biol 2024; 116:1420-1431. [PMID: 39136235 DOI: 10.1093/jleuko/qiae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/24/2024] [Indexed: 11/28/2024] Open
Abstract
E-cigarette use has become widespread, and its effects on airway inflammation and disease are not fully delineated. E-cigarette vapor extract (EVE) profoundly affects neutrophil function. We hypothesized that EVE also alters eosinophil function and thus could impact allergic airway disease. We employed RNA sequencing to measure the ex vivo effect of EVE components on human eosinophil transcription. Blood eosinophils from 9 nonvaping subjects without asthma were isolated by negative selection. Cells were incubated for 48 h with EVE consisting of glycerin, propylene glycol, and nicotine (EVE+), EVE without nicotine ("EVE-"), air-exposed media termed extract buffer (EB), or untreated media. Bulk RNA sequencing was performed. Transcriptomic analysis revealed that the EB, EVE-, and EVE+ conditions showed highly variable gene expression with respect to no treatment and each other. Differential gene expression analysis comparing a combination of EVE+, EVE-, and EB revealed 3,030 differentially expressed genes (DEGs) with an adjusted P value <0.05 and log2 fold change >0.5 or <0.5. There were 645 DEGs between EB and EVE-, 1,713 between EB and EVE+, and 404 between EVE- and EVE+. Gene set enrichment analysis demonstrated that DEGs between both EVE+ and EVE- and the EB control were positively enriched for heme metabolism and apoptosis and negatively enriched tumor necrosis factor α signaling, interferon γ signaling, and inflammatory response. Thus, EVE significantly alters eosinophil metabolic and inflammatory pathways, mediated by propylene glycol and glycerin, with both enhancing and unique effects of nicotine. This study motivates further research into the pathogenic effects of vaping on airway eosinophils and allergic airways disease.
Collapse
Affiliation(s)
- Nicholas T Hogan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| | | | | | - Howard Brickner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| | - Monalisa Mondal
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Sara Herrera-De La Mata
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Pandurangan Vijayanand
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States
| | - Gregory Seumois
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| |
Collapse
|
13
|
Rodríguez-González D, Guillén-Sánchez G, Del Pozo V, Cañas JA. Single-Cell Analysis: A Method for In-Depth Phenotyping of Cells Involved in Asthma. Int J Mol Sci 2024; 25:12633. [PMID: 39684345 DOI: 10.3390/ijms252312633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Asthma is a chronic inflammatory lung disease with high prevalence, making it one of the most common chronic conditions worldwide. Its pathophysiology is influenced by a range of genetic and environmental factors, resulting in a complex and heterogeneous disease profile. Asthma is primarily associated with a type 2 (T2) immune response, though non-T2 endotypes also contribute to disease pathology. Generally, asthma is characterized by the infiltration and activation of various cell types, including dendritic cells, eosinophils, innate lymphoid cells, lymphocytes, mast cells, and neutrophils, which participate in T1, T2, and T17 immune responses. Despite advances in understanding, many questions remain unresolved. Therefore, emerging omic techniques, such as single-cell RNA sequencing (scRNA-seq), offer novel insights into the underlying mechanisms of asthma and the roles of these immune cells. Recent scRNA-seq studies in asthma have identified multiple novel immune cell subtypes and clusters, suggesting their potential functions in disease pathology. The rapid advancement of scRNA-seq technology now enables in-depth investigation of individual cells within tissues, allowing for precise cell-type classification and detailed molecular profiling. Nonetheless, certain limitations persist, which require further refinement in future studies.
Collapse
Affiliation(s)
- Daniel Rodríguez-González
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Gema Guillén-Sánchez
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain
| | - Victoria Del Pozo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Medicine Department, School of Medicine, Faculty of Medicine, Campus of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - José Antonio Cañas
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
14
|
Walker CR, Li X, Chakravarthy M, Lounsbery-Scaife W, Choi YA, Singh R, Gürsoy G. Private information leakage from single-cell count matrices. Cell 2024; 187:6537-6549.e10. [PMID: 39362221 PMCID: PMC11568916 DOI: 10.1016/j.cell.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The increase in publicly available human single-cell datasets, encompassing millions of cells from many donors, has significantly enhanced our understanding of complex biological processes. However, the accessibility of these datasets raises significant privacy concerns. Due to the inherent noise in single-cell measurements and the scarcity of population-scale single-cell datasets, recent private information quantification studies have focused on bulk gene expression data sharing. To address this gap, we demonstrate that individuals in single-cell gene expression datasets are vulnerable to linking attacks, where attackers can infer their sensitive phenotypic information using publicly available tissue or cell-type-specific expression quantitative trait loci (eQTLs) information. We further develop a method for genotype prediction and genotype-phenotype linking that remains effective without relying on eQTL information. We show that variants from one study can be exploited to uncover private information about individuals in another study.
Collapse
Affiliation(s)
- Conor R Walker
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA
| | - Xiaoting Li
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA
| | - Manav Chakravarthy
- Department of Computer Science, Brown University, Providence, RI 02912, USA
| | - William Lounsbery-Scaife
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA
| | - Yoolim A Choi
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02912, USA
| | - Gamze Gürsoy
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA; Department of Computer Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Zhang W, Zhang Y, Li L, Chen R, Shi F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. FRONTIERS IN ALLERGY 2024; 5:1496392. [PMID: 39563781 PMCID: PMC11573763 DOI: 10.3389/falgy.2024.1496392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Asthma has become one of the most serious chronic respiratory diseases threatening people's lives worldwide. The pathogenesis of asthma is complex and driven by numerous cells and their interactions, which contribute to its genetic and phenotypic heterogeneity. The clinical characteristic is insufficient for the precision of patient classification and therapies; thus, a combination of the functional or pathophysiological mechanism and clinical phenotype proposes a new concept called "asthma endophenotype" representing various patient subtypes defined by distinct pathophysiological mechanisms. High-throughput omics approaches including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome enable us to investigate the pathogenetic heterogeneity of diverse endophenotypes and the underlying mechanisms from different angles. In this review, we provide a comprehensive overview of the roles of diverse cell types in the pathophysiology and heterogeneity of asthma and present a current perspective on their contribution into the bidirectional interaction between airway inflammation and airway remodeling. We next discussed how integrated analysis of multi-omics data via machine learning can systematically characterize the molecular and biological profiles of genetic heterogeneity of asthma phenotype. The current application of multi-omics approaches on patient stratification and therapies will be described. Integrating multi-omics and clinical data will provide more insights into the key pathogenic mechanism in asthma heterogeneity and reshape the strategies for asthma management and treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Fei Shi
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
16
|
Bick F, Brenis Gómez CM, Lammens I, Van Moorleghem J, De Wolf C, Dupont S, Dumoutier L, Smith NP, Villani AC, Browaeys R, Alladina J, Haring AM, Medoff BD, Cho JL, Bigirimana R, Vieira J, Hammad H, Blanchetot C, Schuijs MJ, Lambrecht BN. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma. J Allergy Clin Immunol 2024; 154:1129-1145. [PMID: 39147327 DOI: 10.1016/j.jaci.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Asthma is often accompanied by type 2 immunity rich in IL-4, IL-5, and IL-13 cytokines produced by TH2 lymphocytes or type 2 innate lymphoid cells (ILC2s). IL-2 family cytokines play a key role in the differentiation, homeostasis, and effector function of innate and adaptive lymphocytes. OBJECTIVE IL-9 and IL-21 boost activation and proliferation of TH2 and ILC2s, but the relative importance and potential synergism between these γ common chain cytokines are currently unknown. METHODS Using newly generated antibodies, we inhibited IL-9 and IL-21 alone or in combination in various murine models of asthma. In a translational approach using segmental allergen challenge, we recently described elevated IL-9 levels in human subjects with allergic asthma compared with nonasthmatic controls. Here, we also measured IL-21 in both groups. RESULTS IL-9 played a central role in controlling innate IL-33-induced lung inflammation by promoting proliferation and activation of ILC2s in an IL-21-independent manner. Conversely, chronic house dust mite-induced airway inflammation, mainly driven by adaptive immunity, was solely dependent on IL-21, which controlled TH2 activation, eosinophilia, total serum IgE, and formation of tertiary lymphoid structures. In a model of innate on adaptive immunity driven by papain allergen, a clear synergy was found between both pathways, as combined anti-IL-9 or anti-IL-21 blockade was superior in reducing key asthma features. In human bronchoalveolar lavage samples we measured elevated IL-21 protein within the allergic asthmatic group compared with the allergic control group. We also found increased IL21R transcripts and predicted IL-21 ligand activity in various disease-associated cell subsets. CONCLUSIONS IL-9 and IL-21 play important and nonredundant roles in allergic asthma by boosting ILC2s and TH2 cells, revealing a dual IL-9 and IL-21 targeting strategy as a new and testable approach.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, Zwijnaarde, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claudia M Brenis Gómez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Inés Lammens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Dupont
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jehan Alladina
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Alexis M Haring
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Saito A, Koya T, Aoki A, Naramoto S, Ueno H, Nishiyama Y, Shima K, Kimura Y, Hasegawa T, Watanabe S, Ohshima Y, Suzuki K, Ohashi-Doi K, Kikuchi T. Mechanism differences in the start time of sublingual immunotherapy in a mouse allergic airway inflammation model. Sci Rep 2024; 14:26334. [PMID: 39487347 PMCID: PMC11530651 DOI: 10.1038/s41598-024-78062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Sublingual immunotherapy (SLIT) has received considerable attention as a method for allergen immunotherapy (AIT). However, the mechanism of SLIT, especially its timing, has not been thoroughly investigated. We evaluated therapeutic and prophylactic SLIT in an allergic airway inflammation model and evaluated their efficacies. Mice were intranasally exposed to Dermatophagoides farinae (Der f) extract and received SLIT before (prophylactic model) and after (therapeutic model) intranasal exposure of Der f. We investigated airway responsiveness, airway inflammation, allergen-specific antibodies, lung histology and single-cell RNA sequencing (scRNA-seq) and T-cell receptor sequencing were also investigated. SLIT in the therapeutic model was effective; however, the effects of SLIT in the prophylactic model were stronger and immune tolerance was maintained for three months. ScRNA-seq of lung CD4+CD25+ T cells revealed that the expansion of induced T regulatory (iTreg) cells was greater in the prophylactic model than that in the therapeutic model. Additionally, the TCR repertoire of iTregs from the prophylactic model was abundant, sharing many clones with the TCR repertoire of effector T cells. These data suggest that the prophylactic model of AIT is extremely effective and persistent, and may respond to allergen diversity, and provide evidence for the clinical recommendation of preventive AIT.
Collapse
MESH Headings
- Animals
- Sublingual Immunotherapy/methods
- Mice
- Disease Models, Animal
- Allergens/immunology
- Allergens/administration & dosage
- Female
- T-Lymphocytes, Regulatory/immunology
- Lung/immunology
- Lung/pathology
- Dermatophagoides farinae/immunology
- Mice, Inbred BALB C
- Antigens, Dermatophagoides/immunology
- Antigens, Dermatophagoides/administration & dosage
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Respiratory Hypersensitivity/therapy
- Respiratory Hypersensitivity/immunology
- Inflammation/therapy
- Inflammation/immunology
- Asthma/therapy
- Asthma/immunology
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan.
| | - Ami Aoki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Shun Naramoto
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Hiroshi Ueno
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Yuki Nishiyama
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Kenjiro Shima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Yosuke Kimura
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Takashi Hasegawa
- Department of General Medicine, Niigata University Medical and Dental Hospital, Niigata City, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Keisuke Suzuki
- Research Laboratory, Torii Pharmaceutical Co. Ltd., Tokyo, Japan
| | | | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| |
Collapse
|
18
|
Nishide M, Shimagami H, Kumanogoh A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol 2024; 24:781-797. [PMID: 38914790 DOI: 10.1038/s41577-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
19
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
20
|
Liu J, Sun Y, Tian C, Qin D, Gao L. Deciphering cuproptosis-related signatures in pediatric allergic asthma using integrated scRNA-seq and bulk RNA-seq analysis. J Asthma 2024; 61:1316-1327. [PMID: 38687912 DOI: 10.1080/02770903.2024.2349596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Allergic asthma (AA) is common in children. Excess copper is observed in AA patients. It is currently unclear whether copper imbalance can cause cuproptosis in pediatric AA. METHODS The datasets about pediatric AA (GSE40732 and GSE40888) were obtained from Gene Expression Omnibus (GEO) database. The expression of cuproptosis-related genes (CRGs) and immune cell infiltration in pediatric AA samples were analyzed. Single-cell RNA sequencing (scRNA-seq) data (GSE193816) were used to evaluate the expression patterns of CRGs in AA. The identification of differentially expressed genes within clusters was conducted using weighted gene co-expression network analysis. Subsequently, disease progression and cuproptosis-related models were screened using random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and general linear model (GLM) algorithms. RESULTS Four CRGs were notably increased in pediatric AA samples. CD4+ T cells, macrophages and mast cells exhibited a lower cuproptosis score in AA samples, indicating that these immune cells may be closely associated with cuproptosis in AA development. Co-expression network of CRGs in AA was constructed. AA samples were divided into two cuprotosis clusters. Following construction of four machine-learning models, SVM model exhibited the highest efficacy of prediction in the testing set (AUC = 0.952). SVM model containing five important variables can be used for prediction of AA. CONCLUSION This work provided a machine learning model containing five important variables, which may have good diagnostic efficiency for pediatric AA.
Collapse
Affiliation(s)
- Jingping Liu
- Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujia Sun
- Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Chunxin Tian
- Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Dong Qin
- Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Lanying Gao
- Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Ulrich BJ, Zhang W, Kenworthy BT, Kharwadkar R, Olson MR, Kaplan MH. Activin A Promotes Differentiation of a Pathogenic Multicytokine IL-9-secreting CD4+ T Cell Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:823-830. [PMID: 39058312 PMCID: PMC11371476 DOI: 10.4049/jimmunol.2300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The development of Th subsets results from cellular and cytokine cues that are present in the inflammatory environment. The developing T cell integrates multiple signals from the environment that sculpt the cytokine-producing capacity of the effector T cell. Importantly, T cells can discriminate similar cytokine signals to generate distinct outcomes, and that discrimination is critical in Th subset development. IL-9-secreting Th9 cells regulate multiple immune responses, including immunity to pathogens and tumors, allergic inflammation, and autoimmunity. In combination with IL-4, TGF-β or activin A promotes IL-9 production; yet, it is not clear if both TGF-β family members generate Th9 cells with identical phenotype and function. We observed that in contrast to TGF-β that efficiently represses Th2 cytokines in murine Th9 cultures, differentiation with activin A produced a multicytokine T cell phenotype with secretion of IL-4, IL-5, IL-13, and IL-10 in addition to IL-9. Moreover, multicytokine secreting cells are more effective at promoting allergic inflammation. These observations suggest that although TGF-β and IL-4 were identified as cytokines that stimulate optimal IL-9 production, they might not be the only cytokines that generate optimal function from IL-9-producing T cells in immunity and disease.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Blake T Kenworthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Djeddi S, Fernandez-Salinas D, Huang GX, Aguiar VRC, Mohanty C, Kendziorski C, Gazal S, Boyce JA, Ober C, Gern JE, Barrett NA, Gutierrez-Arcelus M. Rhinovirus infection of airway epithelial cells uncovers the non-ciliated subset as a likely driver of genetic risk to childhood-onset asthma. CELL GENOMICS 2024; 4:100636. [PMID: 39197446 PMCID: PMC11480861 DOI: 10.1016/j.xgen.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Asthma is a complex disease caused by genetic and environmental factors. Studies show that wheezing during rhinovirus infection correlates with childhood asthma development. Over 150 non-coding risk variants for asthma have been identified, many affecting gene regulation in T cells, but the effects of most risk variants remain unknown. We hypothesized that airway epithelial cells could also mediate genetic susceptibility to asthma given they are the first line of defense against respiratory viruses and allergens. We integrated genetic data with transcriptomics of airway epithelial cells subject to different stimuli. We demonstrate that rhinovirus infection significantly upregulates childhood-onset asthma-associated genes, particularly in non-ciliated cells. This enrichment is also observed with influenza infection but not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or cytokine activation. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.
Collapse
Affiliation(s)
- Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Licenciatura en Ciencias Genómicas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - George X Huang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Steven Gazal
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - James E Gern
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
García-Jiménez I, Sans-de San Nicolás L, Curto-Barredo L, Bertolín-Colilla M, Sensada-López E, Figueras-Nart I, Bonfill-Ortí M, Guilabert-Vidal A, Ryzhkova A, Ferran M, Damiani G, Czarnowicki T, Pujol RM, Santamaria-Babí LF. Heterogeneous IL-9 Production by Circulating Skin-Tropic and Extracutaneous Memory T Cells in Atopic Dermatitis Patients. Int J Mol Sci 2024; 25:8569. [PMID: 39201262 PMCID: PMC11354683 DOI: 10.3390/ijms25168569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Interleukin (IL)-9 is present in atopic dermatitis (AD) lesions and is considered to be mainly produced by skin-homing T cells expressing the cutaneous lymphocyte-associated antigen (CLA). However, its induction by AD-associated triggers remains unexplored. Circulating skin-tropic CLA+ and extracutaneous/systemic CLA- memory T cells cocultured with autologous lesional epidermal cells from AD patients were activated with house dust mite (HDM) and staphylococcal enterotoxin B (SEB). Levels of AD-related mediators in response to both stimuli were measured in supernatants, and the cytokine response was associated with different clinical characteristics. Both HDM and SEB triggered heterogeneous IL-9 production by CLA+ and CLA- T cells in a clinically homogenous group of AD patients, which enabled patient stratification into IL-9 producers and non-producers, with the former group exhibiting heightened HDM-specific and total IgE levels. Upon allergen exposure, IL-9 production depended on the contribution of epidermal cells and class II-mediated presentation; it was the greatest cytokine produced and correlated with HDM-specific IgE levels, whereas SEB mildly induced its release. This study demonstrates that both skin-tropic and extracutaneous memory T cells produce IL-9 and suggests that the degree of allergen sensitization reflects the varied IL-9 responses in vitro, which may allow for patient stratification in a clinically homogenous population.
Collapse
Affiliation(s)
- Irene García-Jiménez
- Immunologia Translacional, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (I.G.-J.)
| | - Lídia Sans-de San Nicolás
- Immunologia Translacional, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (I.G.-J.)
| | - Laia Curto-Barredo
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Marta Bertolín-Colilla
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Eloi Sensada-López
- Immunologia Translacional, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (I.G.-J.)
| | - Ignasi Figueras-Nart
- Departament de Dermatologia, Hospital de Bellvitge, Universitat de Barcelona (UB), 08907 L’Hospitalet de Llobregat, Spain
| | - Montserrat Bonfill-Ortí
- Departament de Dermatologia, Hospital de Bellvitge, Universitat de Barcelona (UB), 08907 L’Hospitalet de Llobregat, Spain
| | | | - Anna Ryzhkova
- Immunologia Translacional, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (I.G.-J.)
| | - Marta Ferran
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Giovanni Damiani
- Italian Center of Precision Medicine and Chronic Inflammation Milan, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Faculty of Medicine and Surgery, University of Milan, 20122 Milan, Italy
| | - Tali Czarnowicki
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ramon M. Pujol
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Luis F. Santamaria-Babí
- Immunologia Translacional, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (I.G.-J.)
| |
Collapse
|
24
|
Sharma S, Gerber AN, Kraft M, Wenzel SE. Asthma Pathogenesis: Phenotypes, Therapies, and Gaps: Summary of the Aspen Lung Conference 2023. Am J Respir Cell Mol Biol 2024; 71:154-168. [PMID: 38635858 PMCID: PMC11299090 DOI: 10.1165/rcmb.2024-0082ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Although substantial progress has been made in our understanding of asthma pathogenesis and phenotypes over the nearly 60-year history of the Aspen Lung Conferences on asthma, many ongoing challenges exist in our understanding of the clinical and molecular heterogeneity of the disease and an individual patient's response to therapy. This report summarizes the proceedings of the 2023 Aspen Lung Conference, which was organized to review the clinical and molecular heterogeneity of asthma and to better understand the impact of genetic, environmental, cellular, and molecular influences on disease susceptibility, heterogeneity, and severity. The goals of the conference were to review new information about asthma phenotypes, cellular processes, and cellular signatures underlying disease heterogeneity and treatment response. The report concludes with ongoing gaps in our understanding of asthma pathobiology and provides some recommendations for future research to better understand the clinical and basic mechanisms underlying disease heterogeneity in asthma and to advance the development of new treatments for this growing public health problem.
Collapse
Affiliation(s)
- Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony N. Gerber
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York; and
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Niese ML, Pajulas AL, Rostron CR, Cheung CCL, Krishnan MS, Zhang J, Cannon AM, Kaplan MH. TL1A priming induces a multi-cytokine Th9 cell phenotype that promotes robust allergic inflammation in murine models of asthma. Mucosal Immunol 2024; 17:537-553. [PMID: 38493956 PMCID: PMC11354665 DOI: 10.1016/j.mucimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the Il9 and Il13 loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to Il9 and Il13 loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.
Collapse
Affiliation(s)
- Michelle L Niese
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail L Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cameron R Rostron
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maya S Krishnan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony M Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
27
|
Ramirez A, Orcutt-Jahns BT, Pascoe S, Abraham A, Remigio B, Thomas N, Meyer AS. Integrative, high-resolution analysis of single cells across experimental conditions with PARAFAC2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605698. [PMID: 39131377 PMCID: PMC11312543 DOI: 10.1101/2024.07.29.605698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Effective tools for exploration and analysis are needed to extract insights from large-scale single-cell measurement data. However, current techniques for handling single-cell studies performed across experimental conditions (e.g., samples, perturbations, or patients) require restrictive assumptions, lack flexibility, or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that the tensor decomposition method PARAFAC2 (Pf2) enables the dimensionality reduction of single-cell data across conditions. We demonstrate these benefits across two distinct contexts of single-cell RNA-sequencing (scRNA-seq) experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus (SLE) patient samples. By isolating relevant gene modules across cells and conditions, Pf2 enables straightforward associations of gene variation patterns across specific patients or perturbations while connecting each coordinated change to certain cells without pre-defining cell types. The theoretical grounding of Pf2 suggests a unified framework for many modeling tasks associated with single-cell data. Thus, Pf2 provides an intuitive universal dimensionality reduction approach for multi-sample single-cell studies across diverse biological contexts.
Collapse
Affiliation(s)
- Andrew Ramirez
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | | | - Sean Pascoe
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Armaan Abraham
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | | | | | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, CA, USA
| |
Collapse
|
28
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Kar R, Chattopadhyay S, Sharma A, Sharma K, Sinha S, Arimbasseri GA, Patil VS. Single-cell transcriptomic and T cell antigen receptor analysis of human cytomegalovirus (hCMV)-specific memory T cells reveals effectors and pre-effectors of CD8 +- and CD4 +-cytotoxic T cells. Immunology 2024; 172:420-439. [PMID: 38501302 PMCID: PMC7616077 DOI: 10.1111/imm.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Latent human cytomegalovirus (hCMV) infection can pose a serious threat of reactivation and disease occurrence in immune-compromised individuals. Although T cells are at the core of the protective immune response to hCMV infection, a detailed characterization of different T cell subsets involved in hCMV immunity is lacking. Here, in an unbiased manner, we characterized over 8000 hCMV-reactive peripheral memory T cells isolated from seropositive human donors, at a single-cell resolution by analysing their single-cell transcriptomes paired with the T cell antigen receptor (TCR) repertoires. The hCMV-reactive T cells were highly heterogeneous and consisted of different developmental and functional memory T cell subsets such as, long-term memory precursors and effectors, T helper-17, T regulatory cells (TREGs) and cytotoxic T lymphocytes (CTLs) of both CD4 and CD8 origin. The hCMV-specific TREGs, in addition to being enriched for molecules known for their suppressive functions, showed enrichment for the interferon response signature gene sets. The hCMV-specific CTLs were of two types, the pre-effector- and effector-like. The co-clustering of hCMV-specific CD4-CTLs and CD8-CTLs in both pre-effector as well as effector clusters suggest shared transcriptomic signatures between them. The huge TCR clonal expansion of cytotoxic clusters suggests a dominant role in the protective immune response to CMV. The study uncovers the heterogeneity in the hCMV-specific memory T cells revealing many functional subsets with potential implications in better understanding of hCMV-specific T cell immunity. The data presented can serve as a knowledge base for designing vaccines and therapeutics.
Collapse
Affiliation(s)
- Raunak Kar
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| | | | - Anjali Sharma
- Department of Transfusion Medicine and Blood Bank, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, Delhi, India
| | - Kirti Sharma
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| | - Shreya Sinha
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| | | | - Veena S. Patil
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| |
Collapse
|
30
|
Schmitt P, Duval A, Camus M, Lefrançais E, Roga S, Dedieu C, Ortega N, Bellard E, Mirey E, Mouton-Barbosa E, Burlet-Schiltz O, Gonzalez-de-Peredo A, Cayrol C, Girard JP. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation. J Exp Med 2024; 221:e20231236. [PMID: 38597952 PMCID: PMC11010340 DOI: 10.1084/jem.20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.
Collapse
Affiliation(s)
- Pauline Schmitt
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anais Duval
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emma Lefrançais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Stéphane Roga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Cécile Dedieu
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Ortega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emilie Mirey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
31
|
Chen J, Wang S, Cheng Y, Wang F, Liu X. Expression and clinical significance of interleukin-10, transforming growth factor-β1, and CD4+CD25 cytokines in paediatric allergic rhinitis with allergic asthma. Postepy Dermatol Alergol 2024; 41:276-283. [PMID: 39027694 PMCID: PMC11253320 DOI: 10.5114/ada.2024.140522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction It was intended to research the level changes and clinical significance of interleukin (IL)-10, transforming growth factor β1 (TGF-β1), and CD4+CD25 cytokines in paediatric allergic rhinitis (AR) accompanied with allergic asthma (AA). Material and methods Eighty children of AA with AR receiving immunotherapy indications were included as the experimental group (EG), while another 40 healthy children in the same period were selected as the control group (CG). IL-10, TGF-β1, and CD4+CD25 levels in cells of the two groups before and after treatment were compared and analysed. Results The serum TGF-β1 level was determined as 1,045.7 ±44.7 pg/ml in the EG at admission, remarkably higher than that in the CG (p < 0.05). The IL-10 level was 21.4 ±2.8 pg/ml; CD4+CD25 cells accounted for 9.2 ±2.4%, CD4+CD25high cells accounted for 0.6 ±0.3%. These were all greatly lower than those in the CG (p < 0.05). At discharge, the serum TGF-β1 level in the EG was 903.7 ±29.4 pg/ml, which was still memorably higher than that in the CG (p < 0.05). The IL-10 level changed to 32.8 ±3.7 pg/ml; the percentage of CD4+CD25 was 11.3 ±1.8, respectively, among CD4+T cells. These were also notably lower than those in the CG at discharge (p < 0.05). Conclusions IL-10, TGF-β1, and CD4+CD25 level changes in cells might be of reference value as therapeutic indicators for clinical treatment or evaluation of paediatric AR with AA.
Collapse
Affiliation(s)
- Jing Chen
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Shuyu Wang
- Department of Paediatric Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Yan Cheng
- Department of Basic Medical Laboratory, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Fukun Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Xuechao Liu
- Department of Clinical Laboratory, Hebei Children’s Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
32
|
Saikumar Jayalatha AK, Ketelaar ME, Hesse L, Badi YE, Zounemat-Kermani N, Brouwer S, Dijk NF, van den Berge M, Guryev V, Sayers I, Vonk JE, Adcock IM, Koppelman GH, Nawijn MC. IL-33 induced gene expression in activated Th2 effector cells is dependent on IL-1RL1 haplotype and asthma status. Eur Respir J 2024; 63:2400005. [PMID: 38843913 PMCID: PMC11187316 DOI: 10.1183/13993003.00005-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
Asthma is a heterogeneous respiratory disease caused by the interaction between environmental and genetic factors [1]. The IL-33 and IL-1RL1 genes are strongly associated with childhood-onset and type-2 high asthma, and the asthma risk alleles amplify interleukin (IL)-33 pathway activity [2]. Environmental factors, such as allergens and viral infections, trigger bronchial epithelial cells to release IL-33, which can activate signalling by binding to the IL-1RL1/IL-1RAcP receptor complex [3], and contribute to hyper-responsiveness, remodelling and chronic type 2 inflammation of the airways [4]. IL-33 response in Th2 cells is specific to asthma and represents a high risk haplotype, highlighting its role in airway wall cells. Yet, its detection is challenging in bulk asthma transcriptomes due to the scarcity of effector Th2 cells. https://bit.ly/3WhuMbo
Collapse
Affiliation(s)
- Akshaya Keerthi Saikumar Jayalatha
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
- Shared first authorship
| | - Marlies E Ketelaar
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
- Shared first authorship
| | - Laura Hesse
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
- Shared first authorship
| | - Yusef E Badi
- National Heart and Lung Institute, Department of Respiratory Cell and Molecular Biology, Imperial College London, London, UK
| | - Nazanin Zounemat-Kermani
- National Heart and Lung Institute, Department of Respiratory Cell and Molecular Biology, Imperial College London, London, UK
| | - Sharon Brouwer
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Nicole F Dijk
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Victor Guryev
- University of Groningen, GRIAC Research Institute and European Research Institute for the Biology of Ageing, Groningen, The Netherlands
| | - Ian Sayers
- Centre for Respiratory Research, NIHR Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Judith E Vonk
- University of Groningen, University Medical Center Groningen, GRIAC Research institute, Department of Epidemiology, Groningen, The Netherlands
| | - Ian M Adcock
- National Heart and Lung Institute, Department of Respiratory Cell and Molecular Biology, Imperial College London, London, UK
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
33
|
Cen Y, Li F, Li Y, Zhang K, Riaz F, Zhao K, Wei P, Pan F. Dimethyl fumarate alleviates allergic asthma by strengthening the Nrf2 signaling pathway in regulatory T cells. Front Immunol 2024; 15:1375340. [PMID: 38711519 PMCID: PMC11070462 DOI: 10.3389/fimmu.2024.1375340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Allergic asthma is a widely prevalent inflammatory condition affecting people across the globe. T cells and their secretory cytokines are central to the pathogenesis of allergic asthma. Here, we have evaluated the anti-inflammatory impact of dimethyl fumarate (DMF) in allergic asthma with more focus on determining its effect on T cell responses in allergic asthma. By utilizing the ovalbumin (OVA)-induced allergic asthma model, we observed that DMF administration reduced the allergic asthma symptoms and IgE levels in the OVA-induced mice model. Histopathological analysis showed that DMF treatment in an OVA-induced animal model eased the inflammation in the nasal and bronchial tissues, with a particular decrease in the infiltration of immune cells. Additionally, RT-qPCR analysis exhibited that treatment of DMF in an OVA-induced model reduced the expression of inflammatory cytokine (IL4, IL13, and IL17) while augmenting anti-inflammatory IL10 and Foxp3 (forkhead box protein 3). Mechanistically, we found that DMF increased the expression of Foxp3 by exacerbating the expression of nuclear factor E2-related factor 2 (Nrf2), and the in-vitro activation of Foxp3+ Tregs leads to an escalated expression of Nrf2. Notably, CD4-specific Nrf2 deletion intensified the allergic asthma symptoms and reduced the in-vitro iTreg differentiation. Meanwhile, DMF failed to exert protective effects on OVA-induced allergic asthma in CD4-specific Nrf2 knock-out mice. Overall, our study illustrates that DMF enhances Nrf2 signaling in T cells to assist the differentiation of Tregs, which could improve the anti-inflammatory immune response in allergic asthma.
Collapse
Affiliation(s)
- Yanhong Cen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Otolaryngology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Fangfang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yikui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaimin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Farooq Riaz
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Ping Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Otolaryngology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
34
|
Gao P, Song S, Wang Y, Liu H, Wang X, Shu Q, Yang P, Zheng P. Semaphorin 3 a restores the ability of type 1 regulatory T cells to suppress food allergy. Immunol Res 2024; 72:320-330. [PMID: 37999823 DOI: 10.1007/s12026-023-09437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Food allergy (FA) is a common immune disorder that involves dysfunctional immune regulation. More remedies for restoring immune regulation are necessary. Semaphorin 3 A (Sema3a) is a secreted protein of the semaphorin family, which plays a role in immune responses at all stages. The objective of this study is to gain an understanding of how Sema3a can restore the immune regulatory abilities of type 1 regulatory T cells (Tr1 cells). In this study, blood samples were taken from patients with FA. Tr1 cells were purified from blood samples using flow cytometry cell sorting, using LAG3 and CD49b as surface markers. RNA sequencing was employed to examine the characteristics of Tr1 cells. We observed an exaggerated increase in ER stress in peripheral Tr1 cells of FA patients. Enforced expression of spliced X-box protein-1 (XBP1s, one of the key molecules in ER stress) resulted in suppression of interleukin (IL)-10 expression in CD4+ T cells. Eukaryotic initiation factor 2a (eIF2a) mediated the effects of XBP1 on suppressing IL-10 expression in Tr1 cells. The use of Sema3a resulted in a decrease in ER stress, and an increase in IL-10 expression in Tr1 cells of FA patients. Sema3a administration reduced experimental FA by increasing the number of Tr1 cells. In conclusion, IL-10 expression in Tr1 cells is disturbed by ER stress. Sema3a treatment restores the expression of IL-10 and the immunosuppressive capability of Tr1 cells.
Collapse
Affiliation(s)
- Panpan Gao
- Department of Clinical Nutrition, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shuo Song
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen University School of Medicine, Shenzhen, China
| | - Yanan Wang
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huazhen Liu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qing Shu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pingchang Yang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.
- Institute of Allergy & Immunology, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen University School of Medicine, Shenzhen, China.
| | - Pengyuan Zheng
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
35
|
Reddy KD, Bizymi N, Schweikert A, Ananth S, Lim CX, Lodge KM, Joannes A, Ubags N, van der Does AM, Cloonan SM, Mailleux A, Mansouri N, Reynaert NL, Heijink IH, Cuevas-Ocaña S. ERS International Congress 2023: highlights from the Basic and Translational Sciences Assembly. ERJ Open Res 2024; 10:00875-2023. [PMID: 38686182 PMCID: PMC11057505 DOI: 10.1183/23120541.00875-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 05/02/2024] Open
Abstract
Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered is "Micro- and macro-environments and respiratory health", which is followed by a summary of the "Scientific year in review" session. Next, recent advances in experimental methodologies and new technologies are discussed from the "Tissue modelling and remodelling" session and a summary provided of the translational science session, "What did you always want to know about omics analyses for clinical practice?", which was organised as part of the ERS Translational Science initiative's aims. The "Lost in translation: new insights into cell-to-cell crosstalk in lung disease" session highlighted how next-generation sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the "From the transcriptome landscape to innovative preclinical models in lung diseases" session, which links the transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected sessions and the high quality of the research discussed demonstrate the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Epigenetics of Chronic Lung Disease Group, Forschungszentrum Borstel Leibniz Lungenzentrum, Borstel, Germany
- Division of Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- These authors contributed equally
| | - Nikoleta Bizymi
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, Heraklion, Greece
- These authors contributed equally
| | - Anja Schweikert
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- These authors contributed equally
| | - Sachin Ananth
- London North West University Healthcare NHS Trust, London, UK
- These authors contributed equally
| | - Clarice X. Lim
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Clinic Penzing, Vienna, Austria
- These authors contributed equally
| | - Katharine M. Lodge
- National Heart and Lung Institute, Imperial College London, London, UK
- These authors contributed equally
| | - Audrey Joannes
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, Rennes, France
| | - Niki Ubags
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M. Cloonan
- School of Medicine, Trinity Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arnaud Mailleux
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, Paris, France
| | - Nahal Mansouri
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki L. Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sara Cuevas-Ocaña
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
36
|
Yue M, Tao S, Gaietto K, Chen W. Omics approaches in asthma research: Challenges and opportunities. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:1-9. [PMID: 39170962 PMCID: PMC11332849 DOI: 10.1016/j.pccm.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/23/2024]
Abstract
Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.
Collapse
Affiliation(s)
- Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
37
|
Ashley SE, Bosco A, Tang MLK. Transcriptomic changes associated with oral immunotherapy for food allergy. Pediatr Allergy Immunol 2024; 35:e14106. [PMID: 38520061 DOI: 10.1111/pai.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
This review summarizes recent advances in characterizing the transcriptional pathways associated with outcomes following Oral Immunotherapy. Recent technological advances including single-cell sequencing are transforming the ways in which the transcriptional landscape is understood. The application of these technologies is still in its infancy in food allergy but here we summarize current understanding of gene expression changes following oral immunotherapy for food allergy and specific signatures underpinning the different clinical outcomes of desensitization and remission (sustained unresponsiveness). T helper 2A cells have been identified as a cell type which correlates with disease activity and is modified by treatment. Molecular features at study entry may differentiate individuals who achieve more positive outcomes during OIT. Recent findings point to T cell anergy and Type 1 interferon pathways as potential mechanisms supporting redirection of the allergen-specific immune response away from allergy towards remission. Despite these developments in our understanding of immune mechanisms following OIT, there are still significant gaps. Additional studies examining immune signatures associated with long term and well-defined clinical outcomes are required to gain a more complete understanding of the pathways leading to remission of allergy, in order to optimize treatments and gain improved outcomes for patients.
Collapse
Affiliation(s)
- Sarah E Ashley
- Allergy Immunology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Mimi L K Tang
- Allergy Immunology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Wang J, Jiang T, Hu JD. Risk prediction model construction for asthma after allergic rhinitis by blood immune T effector cells. Medicine (Baltimore) 2024; 103:e37287. [PMID: 38394538 PMCID: PMC10883636 DOI: 10.1097/md.0000000000037287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) and asthma (AS) are prevalent and frequently co-occurring respiratory diseases, with mutual influence on each other. They share similar etiology, pathogenesis, and pathological changes. Due to the anatomical continuity between the upper and lower respiratory tracts, allergic inflammation in the nasal cavity can readily propagate downwards, leading to bronchial inflammation and asthma. AR serves as a significant risk factor for AS by potentially inducing airway hyperresponsiveness in patients. Currently, there is a lack of reliable predictors for the progression from AR to AS. METHODS In this exhaustive investigation, we reexamined peripheral blood single cell RNA sequencing datasets from patients with AS following AR and healthy individuals. In addition, we used the bulk RNA sequencing dataset as a validation lineup, which included AS, AR, and healthy controls. Using marker genes of related cell subtype, signatures predicting the progression of AR to AS were generated. RESULTS We identified a subtype of immune-activating effector T cells that can distinguish patients with AS after AR. By combining specific marker genes of effector T cell subtype, we established prediction models of 16 markers. The model holds great promise for assessing AS risk in individuals with AR, providing innovative avenues for clinical diagnosis and treatment strategies. CONCLUSION Subcluster T effector cells may play a key role in post-AR AS. Notably, ACTR3 and HSPA8 genes were significantly upregulated in the blood of AS patients compared to healthy patients.
Collapse
Affiliation(s)
- Jian Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Tao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jian-Dao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
39
|
Djeddi S, Fernandez-Salinas D, Huang GX, Aguiar VRC, Mohanty C, Kendziorski C, Gazal S, Boyce J, Ober C, Gern J, Barrett N, Gutierrez-Arcelus M. Rhinovirus infection of airway epithelial cells uncovers the non-ciliated subset as a likely driver of genetic susceptibility to childhood-onset asthma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302068. [PMID: 38370648 PMCID: PMC10871459 DOI: 10.1101/2024.02.02.24302068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Asthma is a complex disease caused by genetic and environmental factors. Epidemiological studies have shown that in children, wheezing during rhinovirus infection (a cause of the common cold) is associated with asthma development during childhood. This has led scientists to hypothesize there could be a causal relationship between rhinovirus infection and asthma or that RV-induced wheezing identifies individuals at increased risk for asthma development. However, not all children who wheeze when they have a cold develop asthma. Genome-wide association studies (GWAS) have identified hundreds of genetic variants contributing to asthma susceptibility, with the vast majority of likely causal variants being non-coding. Integrative analyses with transcriptomic and epigenomic datasets have indicated that T cells drive asthma risk, which has been supported by mouse studies. However, the datasets ascertained in these integrative analyses lack airway epithelial cells. Furthermore, large-scale transcriptomic T cell studies have not identified the regulatory effects of most non-coding risk variants in asthma GWAS, indicating there could be additional cell types harboring these "missing regulatory effects". Given that airway epithelial cells are the first line of defense against rhinovirus, we hypothesized they could be mediators of genetic susceptibility to asthma. Here we integrate GWAS data with transcriptomic datasets of airway epithelial cells subject to stimuli that could induce activation states relevant to asthma. We demonstrate that epithelial cultures infected with rhinovirus significantly upregulate childhood-onset asthma-associated genes. We show that this upregulation occurs specifically in non-ciliated epithelial cells. This enrichment for genes in asthma risk loci, or 'asthma heritability enrichment' is also significant for epithelial genes upregulated with influenza infection, but not with SARS-CoV-2 infection or cytokine activation. Additionally, cells from patients with asthma showed a stronger heritability enrichment compared to cells from healthy individuals. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.
Collapse
|
40
|
Qin Z, Chen Y, Wang Y, Xu Y, Liu T, Mu Q, Huang C. Immunometabolism in the pathogenesis of asthma. Immunology 2024; 171:1-17. [PMID: 37652466 DOI: 10.1111/imm.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterised by chronic airway inflammation. A variety of immune cells such as eosinophils, mast cells, T lymphocytes, neutrophils and airway epithelial cells are involved in the airway inflammation and airway hyperresponsiveness in asthma pathogenesis, resulting in extensive and variable reversible expiratory airflow limitation. However, the precise molecular mechanisms underlying the allergic immune responses, particularly immunometabolism, remains unclear. Studies have detected enhanced oxidative stress, and abnormal metabolic progresses of glycolysis, fatty acid and amino acid in various immune cells, inducing dysregulation of innate and adaptive immune responses in asthma pathogenesis. Immunometabolism mechanisms contain multiple signalling pathways, providing novel therapy targets for asthma. This review summarises the current knowledge on immunometabolism reprogramming in asthma pathogenesis, as well as potential therapy strategies.
Collapse
Affiliation(s)
- Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yujuan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yue Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yeyang Xu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Mu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
41
|
Herrera-De La Mata S, Ramírez-Suástegui C, Mistry H, Castañeda-Castro FE, Kyyaly MA, Simon H, Liang S, Lau L, Barber C, Mondal M, Zhang H, Arshad SH, Kurukulaaratchy RJ, Vijayanand P, Seumois G. Cytotoxic CD4 + tissue-resident memory T cells are associated with asthma severity. MED 2023; 4:875-897.e8. [PMID: 37865091 PMCID: PMC10964988 DOI: 10.1016/j.medj.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING This research was funded by the NIH.
Collapse
Affiliation(s)
| | | | - Heena Mistry
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | | | - Mohammad A Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
42
|
Narsale A, Almanza F, Tran T, Lam B, Seo D, Vu A, Long SA, Cooney L, Serti E, Davies JD. Th2 cell clonal expansion at diagnosis in human type 1 diabetes. Clin Immunol 2023; 257:109829. [PMID: 37907122 DOI: 10.1016/j.clim.2023.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Soon after diagnosis with type 1 diabetes (T1D), many patients experience a period of partial remission. A longer partial remission is associated with a better response to treatment, but the mechanism is not known. The frequency of CD4+CD25+CD127hi (127-hi) cells, a cell subset with an anti-inflammatory Th2 bias, correlates positively with length of partial remission. The purpose of this study was to further characterize the nature of the Th2 bias in 127-hi cells. Single cell RNA sequencing paired with TCR sequencing of sorted 127-hi memory cells identifies clonally expanded Th2 clusters in 127-hi cells from T1D, but not from healthy donors. The Th2 clusters express GATA3, GATA3-AS1, PTGDR2, IL17RB, IL4R and IL9R. The existence of 127-hi Th2 cell clonal expansion in T1D suggests that disease factors may induce clonal expansion of 127-hi Th2 cells that prolong partial remission and delay disease progression.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Francisco Almanza
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Theo Tran
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Breanna Lam
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - David Seo
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Alisa Vu
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - S Alice Long
- Benaroya Research Institute, 1201 9(th) Ave, Seattle, WA 98101, USA.
| | | | | | - Joanna D Davies
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| |
Collapse
|
43
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
45
|
Lewis SA, Sutherland A, Soldevila F, Westernberg L, Aoki M, Frazier A, Maiche S, Erlewyn-Lajeunesse M, Arshad H, Leonard S, Laubach S, Dantzer JA, Wood RA, Sette A, Seumois G, Vijayanand P, Peters B. Identification of cow milk epitopes to characterize and quantify disease-specific T cells in allergic children. J Allergy Clin Immunol 2023; 152:1196-1209. [PMID: 37604312 PMCID: PMC10846667 DOI: 10.1016/j.jaci.2023.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Cow milk (CM) allergy is the most prevalent food allergy in young children in the United States and Great Britain. Current diagnostic tests are either unreliable (IgE test and skin prick test) or resource-intensive with risks (food challenges). OBJECTIVE We sought to determine whether allergen-specific T cells in CM-allergic (CMA) patients have a distinct quality and/or quantity that could potentially be used as a diagnostic marker. METHODS Using PBMCs from 147 food-allergic pediatric subjects, we mapped T-cell responses to a set of reactive epitopes in CM that we compiled in a peptide pool. This pool induced cytokine responses in in vitro cultured cells distinguishing subjects with CMA from subjects without CMA. We further used the pool to isolate and characterize antigen-specific CD4 memory T cells using flow cytometry and single-cell RNA/TCR sequencing assays. RESULTS We detected significant changes in the transcriptional program and clonality of CM antigen-specific (CM+) T cells elicited by the pool in subjects with CMA versus subjects without CMA ex vivo. CM+ T cells from subjects with CMA had increased percentages of FOXP3+ cells over FOXP3- cells. FOXP3+ cells are often equated with regulatory T cells that have suppressive activity, but CM+ FOXP3+ cells from subjects with CMA showed significant expression of interferon-responsive genes and dysregulated chemokine receptor expression compared with subjects without CMA, suggesting that these are not conventional regulatory T cells. The CM+ FOXP3+ cells were also more clonally expanded than the FOXP3- population. We were further able to use surface markers (CD25, CD127, and CCR7) in combination with our peptide pool stimulation to quantify these CM+ FOXP3+ cells by a simple flow-cytometry assay. We show increased percentages of CM+ CD127-CD25+ cells from subjects with CMA in an independent cohort, which could be used for diagnostic purposes. Looking specifically for TH2 cells normally associated with allergic diseases, we found a small population of clonally expanded CM+ cells that were significantly increased in subjects with CMA and that had high expression of TH2 cytokines and pathogenic TH2/T follicular helper markers. CONCLUSIONS Overall, these findings suggest that there are several differences in the phenotypes of CM+ T cells with CM allergy and that the increase in CM+ FOXP3+ cells is a potential diagnostic marker of an allergic state. Such markers have promising applications in monitoring natural disease outgrowth and/or the efficacy of immunotherapy that will need to be validated in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Minori Aoki
- La Jolla Institute for Immunology, San Diego, Calif
| | | | | | - Mich Erlewyn-Lajeunesse
- University Hospital Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Hasan Arshad
- University Hospital Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stephanie Leonard
- Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, Calif
| | - Susan Laubach
- Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, Calif
| | - Jennifer A Dantzer
- Division of Allergy and Immunology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert A Wood
- Division of Allergy and Immunology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Alessandro Sette
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif
| | | | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif
| | - Bjoern Peters
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif.
| |
Collapse
|
46
|
Melén E, Lambrecht BN, Lloyd CM, Rothenberg ME, Kabashima K, Luciani F, Coquet JM, Ober C, Nawijn MC, Platts-Mills T, von Mutius E. A conversation on allergy: recognizing the past and looking to the future. Immunol Cell Biol 2023; 101:936-946. [PMID: 37688499 DOI: 10.1111/imcb.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Allergy is an ever-evolving group of disorders, which includes asthma, atopic dermatitis, rhinitis and food allergies and that currently affects over 1 billion people worldwide. This group of disorders has exploded in incidence since around the start of the 20th century, implying that genetics is not solely responsible for its development but that environmental factors have an important role. Here, Fabio Luciani and Jonathan Coquet, in their role as editors at Immunology & Cell Biology, asked nine prominent researchers in the field of allergy to define the term 'allergy', discuss the role of genetics and the environment, nominate the most important discoveries of the past decade and describe the best strategies to combat allergy at the population level going forward.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Clare M Lloyd
- National Heart & Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabio Luciani
- UNSW Sydney, School of Medical Sciences, Kirby Institute, Sydney, NSW, Australia
| | - Jonathan M Coquet
- Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC Research Institute, Groningen, The Netherlands
| | | | - Erika von Mutius
- Ludwig Maximilians University Munich, Institute of Asthma and Allergy Prevention at Helmholtz Centre Munich, Munich, Germany
| |
Collapse
|
47
|
Suga K, Kiuchi M, Kageyama T, Kokubo K, Tanaka S, Iwata A, Suzuki K, Hirahara K, Nakajima H. Single-cell RNA sequencing of peripheral blood mononuclear cells from Kimura disease patient successfully treated with dupilumab. Allergol Int 2023; 72:610-613. [PMID: 37349231 DOI: 10.1016/j.alit.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan.
| |
Collapse
|
48
|
Li Z, Wang X, Zhang W, Yang W, Xu B, Hu W. Excretory/Secretory Products from Schistosoma japonicum Eggs Alleviate Ovalbumin-Induced Allergic Airway Inflammation. PLoS Negl Trop Dis 2023; 17:e0011625. [PMID: 37788409 PMCID: PMC10547495 DOI: 10.1371/journal.pntd.0011625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION Excretory/secretory products (ESPs) derived from helminths have been reported to effectively control allergic inflammation, which have better therapeutic prospects than live parasite infections. However, it remains unknown whether ESPs from schistosome eggs can protect against allergies, despite reports alleging that schistosome infection could alleviate disordered allergic inflammation. METHOD In the present study, we investigated the protective effects of ESPs from Schistosoma japonicum eggs (ESP-SJE) on asthmatic inflammation. Firstly, we successfully established an allergic airway inflammation model in mice by alum-adjuvanted ovalbumin (OVA) sensitization and challenge. ESP-SJE were administered intraperitoneally on days -1 and 13 (before sensitization), on day 20 (before challenge), and on days 21-24 (challenge phase). RESULTS The results showed that ESP-SJE treatment significantly reduced the infiltration of inflammatory cells, especially eosinophils into the lung tissue, inhibited the production of the total and OVA-specific IgE during OVA-sensitized and -challenged phases, respectively, and suppressed the secretion of Th2-type inflammatory cytokines (IL-4). Additionally, ESP-SJE treatment significantly upregulated the regulatory T cells (Tregs) in the lung tissue during OVA challenge. Furthermore, using liquid chromatography-mass spectrometry analysis and Treg induction experiments in vitro, we might identify nine potential therapeutic proteins against allergic inflammation in ESP-SJE. The targets of these candidate proteins included glutathione S-transferase, egg protein CP422 precursor, tubulin alpha-2/alpha-4 chain, actin-2, T-complex protein 1 subunit beta, histone H₄, whey acidic protein core region, and molecular chaperone HtpG. CONCLUSION Taken together, the results discussed herein demonstrated that ESP-SJE could significantly alleviate OVA-induced asthmatic inflammation in a murine model, which might be mediated by the upregulation of Treg in lung tissues that may be induced by the potential modulatory proteins. Therefore, potential proteins in ESP-SJE might be the best candidates to be tested for therapeutic application of asthma, thus pointing out to a possible new therapy for allergic airway inflammation.
Collapse
Affiliation(s)
- Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, P. R. China
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Xiaoling Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
49
|
Suhrkamp I, Scheffold A, Heine G. T-cell subsets in allergy and tolerance induction. Eur J Immunol 2023; 53:e2249983. [PMID: 37489248 DOI: 10.1002/eji.202249983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Antigen-specific T lymphocytes are the central regulators of tolerance versus immune pathology against otherwise innocuous antigens and key targets of antigen-specific immune therapy. Recent advances in the understanding of T cells in tolerance and allergy resulted from improved technologies to directly characterize allergen-specific T cells by multiparameter flow cytometry or single-cell sequencing. This unravelled phenotypically and functionally distinct populations, such as Type 2a T helper cells (Th2a), follicular Th cells (Tfh), regulatory T cells (Treg), Type 1 regulatory T cells (Tr1), and follicular T regulatory cells. Here we will discuss the role of the different Th-cell subsets in the healthy state, during sensitization and development of allergy, and in tolerance induction by allergen immunotherapy (AIT). To date, the mechanisms of AIT as the only causal treatment of allergy are not completely understood. The analyses of allergen-specific T cells directly ex vivo during AIT support the concept of specific-Th2(a) cell deletion rather than an expansion of allergen-specific Tr1 or Treg cells as underlying mechanism.
Collapse
Affiliation(s)
- Ina Suhrkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guido Heine
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
50
|
Pajulas A, Fu Y, Cheung CCL, Chu M, Cannon A, Alakhras N, Zhang J, Ulrich BJ, Nelson AS, Zhou B, Kaplan MH. Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation. Mucosal Immunol 2023; 16:432-445. [PMID: 37172907 PMCID: PMC10482122 DOI: 10.1016/j.mucimm.2023.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Allergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Nada Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|