1
|
Tong X, Tang R, Xu J, Wang W, Du Q, Shi S, Yu X. Cancer type-specific adverse events of immune checkpoint inhibitors: A systematic review and meta-analysis. Heliyon 2025; 11:e41597. [PMID: 39866435 PMCID: PMC11757769 DOI: 10.1016/j.heliyon.2024.e41597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Background The distribution of adverse events (AEs) triggered by immune checkpoint inhibitors (ICIs) across different cancer types has never been demonstrated. Methods Randomised controlled trials exclusively assessing ICI monotherapy in cohorts of over 100 patients were considered. Our primary outcome was a comprehensive summary of the distribution of all-grade treatment-related adverse events (TRAEs) as well as serious TRAEs (CTCAE grade 3 or higher) across different malignancies. The study is registered with PROSPERO CRD42023387934. Findings 75 trials that enrolled over 100 patients were included. While investigating the incidence of each TRAE across various cancers, we found special linkages existed between certain TRAEs and particular cancer types. In anti-PD-1 monotherapy group, melanoma patients experienced the most frequent fatigue (31.1 %, 95 % CI 29.7%-32.5 %); the incidences of severe pneumonitis and other respiratory disorders were highest in Hodgkin lymphoma (4.1 %, 95 % CI 1.5%-8.6 %; 4.1 %, 95 % CI 1.5%-8.6 %, respectively). Among individuals undergoing single-agent anti-PD-L1, higher frequency of all-grade pruritus occurred in 19.0 % of renal cell carcinoma (RCC) patients (95 % CI 15.2%-23.2 %), and the highest probability of developing other severe musculoskeletal disorders was observed in patients with RCC (6.2 %, 95 % CI 4.0%-9.0 %). In anti-CTLA-4 monotherapy, the incidences of both all-grade and severe diarrhea occurred most frequently in prostate cancer patients (41.9 %, 95 % CI 37.9%-47.9; 14.8 %, 95 % CI 11.5%-18.7 %, respectively). Interpretation This is the first comprehensive study addressing the distribution of various TRAEs across cancer types. Our research emphasizes the significance of considering cancer-specific TRAEs when using ICIs for treatment.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Xu Q, Hu J, Wang Y, Wang Z. The role of tumor types in immune-related adverse events. Clin Transl Oncol 2024:10.1007/s12094-024-03798-6. [PMID: 39738878 DOI: 10.1007/s12094-024-03798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block inhibitors of T cell activation and function. With the widespread use of ICIs in cancer therapy, immune-related adverse events (irAEs) have gradually emerged as urgent clinical issues. Tumors not only exhibit high heterogeneity, and their response to ICIs varies, with "hot" tumors showing better anti-tumor effects but also a higher susceptibility to irAEs. The manifestation of irAEs displays a tumor-heterogeneous pattern, correlating with the tumor type in terms of the affected organs, incidence, median onset time, and severity. Understanding the mechanisms underlying the pathogenic patterns of irAEs can provide novel insights into the prevention and management of irAEs, guide the development of biomarkers, and contribute to a deeper understanding of the toxicological characteristics of ICIs. In this review, we explore the impact of tumor type on the therapeutic efficacy of ICIs and further elucidate how these tumor types influence the occurrence of irAEs. Finally, we assess key candidate biomarkers and their relevance to proposed irAE mechanisms. This paper also outlines management strategies for patients with various types of tumors, based on their disease patterns.
Collapse
Affiliation(s)
- Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| |
Collapse
|
3
|
Watanabe S, Kikuchi T. Does Autoimmune Response Against Surfactant Protein Cause Interstitial Lung Disease? Am J Respir Crit Care Med 2024; 210:864-866. [PMID: 38843086 PMCID: PMC11506892 DOI: 10.1164/rccm.202404-0866ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases Niigata University Graduate School of Medical and Dental Sciences Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases Niigata University Graduate School of Medical and Dental Sciences Niigata, Japan
| |
Collapse
|
4
|
Wyss N, Berner F, Walter V, Jochum AK, Purde MT, Abdou MT, Sinnberg T, Hofmeister K, Pop OT, Hasan Ali O, Bauer J, Cheng HW, Lütge M, Klümper N, Diem S, Kosaloglu-Yalcin Z, Zhang Y, Sellmer L, Macek B, Karbach J, König D, Läubli H, Zender L, Meyer BS, Driessen C, Schürch CM, Jochum W, Amaral T, Heinzerling L, Cozzio A, Hegazy AN, Schneider T, Brutsche MH, Sette A, Lenz TL, Walz J, Rammensee HG, Früh M, Jäger E, Becher B, Tufman A, Nuñez N, Joerger M, Flatz L. Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. Am J Respir Crit Care Med 2024; 210:919-930. [PMID: 38626354 DOI: 10.1164/rccm.202311-2136oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Immune checkpoint inhibitor (ICI)-related pneumonitis is a serious autoimmune event affecting as many as 20% of patients with non-small-cell lung cancer (NSCLC), yet the factors underpinning its development in some patients and not others are poorly understood. Objectives: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. Methods: The study cohort consisted of patients with NSCLC who provided blood samples before and during ICI treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T-cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with NSCLC and patients with melanoma. Measurements and Main Results: Across both cohorts, patients in whom pneumonitis developed had higher pretreatment levels of immunoglobulin G autoantibodies targeting surfactant protein (SP)-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ IFN-γ-positive SP-B-specific T cells and expanding T-cell clonotypes recognizing this protein, accompanied by a proinflammatory serum proteomic profile. Conclusions: Our data suggest that the cooccurrence of SP-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pretreatment levels of these antibodies may represent a potential biomarker for an increased risk of developing pneumonitis, and on-treatment levels may provide a diagnostic aid.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tübingen
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Omar Hasan Ali
- Institute of Immunobiology
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jens Bauer
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Peptide-based Immunotherapy, Institute of Immunology, University Hospital Tübingen, and
| | | | | | - Niklas Klümper
- Institute for Experimental Oncology
- Center for Integrated Oncology Cologne/Bonn, and
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Zeynep Kosaloglu-Yalcin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California
| | - Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Laura Sellmer
- Department of Medicine V, University Hospital, and
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Boris Macek
- Quantitative Proteomics, Interfaculty Institute of Cell Biology, Faculty of Science
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - David König
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lars Zender
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, University of Tübingen, Tübingen, Germany
- German Cancer Research Consortium, partner site Tübingen, German Cancer Research Center, Heidelberg, Germany
| | - Britta S Meyer
- Research Unit Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | | | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | | | | | - Lucie Heinzerling
- Department of Dermatology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Ahmed N Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Tino Schneider
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin H Brutsche
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Tobias L Lenz
- Research Unit Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Juliane Walz
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Peptide-based Immunotherapy, Institute of Immunology, University Hospital Tübingen, and
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium and German Cancer Research Center, partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Institute of Immunology
- German Cancer Consortium and German Cancer Research Center, partner site Tübingen, Tübingen, Germany
| | - Martin Früh
- Department of Oncology and Hematology
- Department of Oncology, University of Bern, Bern, Switzerland
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; and
| | - Amanda Tufman
- Department of Medicine V, University Hospital, and
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Nicolas Nuñez
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba y Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | | | - Lukas Flatz
- Institute of Immunobiology
- Department of Dermatology, and
- Department of Dermatology, University Hospital Tübingen
| |
Collapse
|
5
|
Yu W, Wang K, He Y, Shang Y, Hu X, Deng X, Zhao L, Ma X, Mu X, Li R, Gao Z. The potential role of lung microbiota and lauroylcarnitine in T-cell activation associated with checkpoint inhibitor pneumonitis. EBioMedicine 2024; 106:105267. [PMID: 39098109 PMCID: PMC11334825 DOI: 10.1016/j.ebiom.2024.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Checkpoint inhibitor pneumonitis (CIP) is a potentially fatal adverse event characterized by new pulmonary infiltrates in cancer patients receiving immune checkpoint inhibitor therapy. This study aims to explore the interplay between lung microbiota, dysregulated metabolites, and host immunity in CIP. METHODS We recruited thirteen hospitalized CIP patients, eleven idiopathic pulmonary fibrosis (IPF) patients, and ten new-onset non-small cell lung cancer patients. Bronchoalveolar lavage fluid samples were collected for 16S rRNA gene sequencing. The percentages of immune cells were determined using manual counting and flow cytometry. Interactions among microbiota, metabolites, and lymphocytes were analyzed using cultured mouse splenocytes and human T cells. FINDINGS Proteobacteria emerged as the dominant phylum, notably abundant in both the CIP and IPF groups. Vibrio, Halomonas, Mangrovibacter, and Salinivibrio were the predominant microbiota because of their discriminative abundance patterns. Vibrio (r = 0.72, P-adj = 0.007) and Halomonas (r = 0.65, P-adj = 0.023) demonstrated strong correlations with lymphocytes. Vibrio metschnikovii and Mangrovibacter plantisponsors were more abundant in the CIP group than in the IPF group. Lauroylcarnitine, a key intermediary metabolite co-occurring with the predominant microbiota, exhibited a potent effect on cytokine secretion by mouse and human T cells, notably enhancing IFN-γ and TNF-α production from CD4 and CD8 cells in vitro. INTERPRETATION Lauroylcarnitine, co-occurring with the predominant lung microbiota in CIP, could activate T cells in vitro. These findings suggest potential involvement of lung microbiota and acylcarnitine metabolism dysregulation in the pathogenesis of CIP. FUNDING This work was supported by Peking University People's Hospital Scientific Research Development Funds (RDJ2022-15) and Provincial Key Clinical Specialty Capacity Building Project 2020 (Department of the Respiratory Medicine).
Collapse
Affiliation(s)
- Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Ying Shang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoyi Hu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Xinwei Deng
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Xinlin Mu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
6
|
Suijkerbuijk KPM, van Eijs MJM, van Wijk F, Eggermont AMM. Clinical and translational attributes of immune-related adverse events. NATURE CANCER 2024; 5:557-571. [PMID: 38360861 DOI: 10.1038/s43018-024-00730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
With immune checkpoint inhibitors (ICIs) becoming the mainstay of treatment for many cancers, managing their immune-related adverse events (irAEs) has become an important part of oncological care. This Review covers the clinical presentation of irAEs and crucial aspects of reversibility, fatality and long-term sequelae, with special attention to irAEs in specific patient populations, such as those with autoimmune diseases. In addition, the genetic basis of irAEs, along with cellular and humoral responses to ICI therapy, are discussed. Detrimental effects of empirically used high-dose steroids and second-line immunosuppression, including impaired ICI effectiveness, call for more tailored irAE-treatment strategies. We discuss open therapeutic challenges and propose potential avenues to accelerate personalized management strategies and optimize outcomes.
Collapse
Affiliation(s)
- Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Mick J M van Eijs
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Alexander M M Eggermont
- University Medical Center Utrecht and Princess Máxima Center, Utrecht, the Netherlands
- Comprehensive Cancer Center Munich of the Technical University of Munich and the Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
7
|
Lin X, Xie M, Yao J, Ma X, Qin L, Zhang X, Song J, Bao X, Zhang X, Zhang Y, Liu Y, Han W, Liang Y, Jing Y, Xue X. Immune-related adverse events in non-small cell lung cancer: Occurrence, mechanisms and therapeutic strategies. Clin Transl Med 2024; 14:e1613. [PMID: 38451000 PMCID: PMC10918746 DOI: 10.1002/ctm2.1613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has heralded a transformative era in the therapeutic landscape of non-small cell lung cancer (NSCLC). While ICIs have demonstrated clinical efficacy in a portion of patients with NSCLC, these treatments concurrently precipitate a spectrum of immune-related adverse events (irAEs), encompassing mild to severe manifestations, collectively posing a risk of significant organ damage. Consequently, there exists an imperative to augment our comprehension of the pathophysiological underpinnings of irAEs and to formulate more efficacious preventive and ameliorative strategies. In this comprehensive review, we delineate the clinical presentation of organ-specific irAEs in patients with NSCLC and provide an in-depth analysis of recent advancements in understanding the mechanisms driving ICI-induced toxicity. Furthermore, we discuss potential strategies and targets for ameliorating these irAEs. Ultimately, this review aims to furnish valuable insights to guide further research endeavours in the context of irAEs in NSCLC patients.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Mei Xie
- Department of Respiratory and Critical CareChinese PLA General HospitalBeijingChina
| | - Jie Yao
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Xidong Ma
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Lin Qin
- Department of Endoscopic Diagnosis and TreatmentTuberculosis and Thoracic Tumor InstituteBeijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Xu‐Mei Zhang
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Jialin Song
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| | - Xinyu Bao
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| | - Xin Zhang
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| | - Yinguang Zhang
- Department of Thoracic SurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yiming Liu
- Department of Thoracic SurgeryChinese PLA General HospitalBeijingChina
| | - Wenya Han
- Department of Respiratory and Critical CareTaihe HospitalHubei University of MedicineShiyanChina
| | - Yiran Liang
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Ying Jing
- Center for Intelligent MedicineGreater Bay Area Institute of Precision Medicine (Guangzhou)School of Life SciencesFudan UniversityGuangzhouGuangdongChina
| | - Xinying Xue
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| |
Collapse
|
8
|
Soussan S, Pupier G, Cremer I, Joubert PE, Sautès-Fridman C, Fridman W, Sibéril S. Unraveling the complex interplay between anti-tumor immune response and autoimmunity mediated by B cells and autoantibodies in the era of anti-checkpoint monoclonal antibody therapies. Front Immunol 2024; 15:1343020. [PMID: 38318190 PMCID: PMC10838986 DOI: 10.3389/fimmu.2024.1343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Roetman JJ, Erwin MM, Rudloff MW, Favret NR, Detrés Román CR, Apostolova MKI, Murray KA, Lee TF, Lee YA, Philip M. Tumor-Reactive CD8+ T Cells Enter a TCF1+PD-1- Dysfunctional State. Cancer Immunol Res 2023; 11:1630-1641. [PMID: 37844197 PMCID: PMC10841346 DOI: 10.1158/2326-6066.cir-22-0939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
T cells recognize several types of antigens in tumors, including aberrantly expressed, nonmutated proteins, which are therefore shared with normal tissue and referred to as self/shared-antigens (SSA), and mutated proteins or oncogenic viral proteins, which are referred to as tumor-specific antigens (TSA). Immunotherapies such as immune checkpoint blockade (ICB) can activate T-cell responses against TSA, leading to tumor control, and also against SSA, causing immune-related adverse events (irAE). To improve anti-TSA immunity while limiting anti-SSA autoreactivity, we need to understand how tumor-specific CD8+ T cells (TST) and SSA-specific CD8+ T (SST) cells differentiate in response to cognate antigens during tumorigenesis. Therefore, we developed a genetic cancer mouse model in which we can track TST and SST differentiation longitudinally as liver cancers develop. We found that both TST and SST lost effector function over time, but while TST persisted long term and had a dysfunctional/exhausted phenotype (including expression of PD1, CD39, and TOX), SST exited cell cycle prematurely and disappeared from liver lesions. However, SST persisted in spleens in a dysfunctional TCF1+PD-1- state: unable to produce effector cytokines or proliferate in response to ICB targeting PD-1 or PD-L1. Thus, our studies identify a dysfunctional T-cell state occupied by T cells reactive to SSA: a TCF1+PD-1- state lacking in effector function, demonstrating that the type/specificity of tumor antigen may determine tumor-reactive T-cell differentiation.
Collapse
Affiliation(s)
- Jessica J. Roetman
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megan M. Erwin
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael W. Rudloff
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Natalie R. Favret
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos R. Detrés Román
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Minna K. I. Apostolova
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kristen A. Murray
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Lichtensteiger C, Koblischke M, Berner F, Jochum AK, Sinnberg T, Balciunaite B, Purde MT, Walter V, Abdou MT, Hofmeister K, Kohler P, Vernazza P, Albrich WC, Kahlert CR, Zoufaly A, Traugott MT, Kern L, Pietsch U, Kleger GR, Filipovic M, Kneilling M, Cozzio A, Pop O, Bomze D, Bergthaler A, Hasan Ali O, Aberle J, Flatz L. Autoreactive T cells targeting type II pneumocyte antigens in COVID-19 convalescent patients. J Autoimmun 2023; 140:103118. [PMID: 37826919 DOI: 10.1016/j.jaut.2023.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The role of autoreactive T cells on the course of Coronavirus disease-19 (COVID-19) remains elusive. Type II pneumocytes represent the main target cells of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autoimmune responses against antigens highly expressed in type II pneumocytes may influence the severity of COVID-19 disease. OBJECTIVE The aim of this study was to investigate autoreactive T cell responses against self-antigens highly expressed in type II pneumocytes in the blood of COVID-19 patients with severe and non-severe disease. METHODS We collected blood samples of COVID-19 patients with varying degrees of disease severity and of pre-pandemic controls. T cell stimulation assays with peptide pools of type II pneumocyte antigens were performed in two independent cohorts to analyze the autoimmune T cell responses in patients with non-severe and severe COVID-19 disease. Target cell lysis assays were performed with lung cancer cell lines to determine the extent of cell killing by type II PAA-specific T cells. RESULTS We identified autoreactive T cell responses against four recently described self-antigens highly expressed in type II pneumocytes, known as surfactant protein A, surfactant protein B, surfactant protein C and napsin A, in the blood of COVID-19 patients. These antigens were termed type II pneumocyte-associated antigens (type II PAAs). We found that patients with non-severe COVID-19 disease showed a significantly higher frequency of type II PAA-specific autoreactive T cells in the blood when compared to severely ill patients. The presence of high frequencies of type II PAA-specific T cells in the blood of non-severe COVID-19 patients was independent of their age. We also found that napsin A-specific T cells from convalescent COVID-19 patients could kill lung cancer cells, demonstrating the functional and cytotoxic role of these T cells. CONCLUSIONS Our data suggest that autoreactive type II PAA-specific T cells have a protective role in SARS-CoV-2 infections and the presence of high frequencies of these autoreactive T cells indicates effective viral control in COVID-19 patients. Type II-PAA-specific T cells may therefore promote the killing of infected type II pneumocytes and viral clearance.
Collapse
Affiliation(s)
| | | | - Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ann-Kristin Jochum
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Insitute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Tobias Sinnberg
- Department of Dermatology, Eberhard Karls University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University Hospital Tübingen, Tübingen, Germany
| | - Beatrice Balciunaite
- Department of Dermatology, Eberhard Karls University Hospital Tübingen, Tübingen, Germany
| | - Mette-Triin Purde
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Vincent Walter
- Department of Dermatology, Eberhard Karls University Hospital Tübingen, Tübingen, Germany
| | - Marie-Therese Abdou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Kathrin Hofmeister
- Department of Dermatology, Eberhard Karls University Hospital Tübingen, Tübingen, Germany
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Pietro Vernazza
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexander Zoufaly
- Department of Medicine IV, Clinic Favoriten, Vienna Healthcare Group, Vienna, Austria; Faculty of Medicine, Sigmund Freud University Vienna, Austria
| | - Marianna T Traugott
- Department of Medicine IV, Clinic Favoriten, Vienna Healthcare Group, Vienna, Austria
| | - Lukas Kern
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Urs Pietsch
- Surgical Intensive Care Unit, Division of Anaesthesiology, Intensive Care, Rescue and Pain Medicine, Kantonsspital St. Gallen, Switzerland
| | - Gian-Reto Kleger
- Division of Intensive Care Medicine, Kantonsspital St. Gallen, Switzerland
| | - Miodrag Filipovic
- Surgical Intensive Care Unit, Division of Anaesthesiology, Intensive Care, Rescue and Pain Medicine, Kantonsspital St. Gallen, Switzerland
| | - Manfred Kneilling
- Department of Dermatology, Eberhard Karls University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University Hospital Tübingen, Tübingen, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Germany
| | - Antonio Cozzio
- Department of Dermatology, Venereology and Allergology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Oltin Pop
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Bomze
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Sackler Faculty of Medicine, Tel Aviv University; Tel Aviv, Israel
| | - Andreas Bergthaler
- Institute for Hygiene and Applied Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Vienna, Austria
| | - Omar Hasan Ali
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Judith Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, Eberhard Karls University Hospital Tübingen, Tübingen, Germany; Department of Dermatology, Venereology and Allergology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
11
|
Zheng Y, Liu Q, Goronzy JJ, Weyand CM. Immune aging - A mechanism in autoimmune disease. Semin Immunol 2023; 69:101814. [PMID: 37542986 PMCID: PMC10663095 DOI: 10.1016/j.smim.2023.101814] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Qingxiang Liu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jorg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Blum SM, Rouhani SJ, Sullivan RJ. Effects of immune-related adverse events (irAEs) and their treatment on antitumor immune responses. Immunol Rev 2023; 318:167-178. [PMID: 37578634 DOI: 10.1111/imr.13262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are potentially life-saving cancer therapies that can trigger immune-related adverse events (irAEs). irAEs can impact any organ and range in their presentation from mild side effects to life-threatening complications. The relationship between irAEs and antitumor immune responses is nuanced and may depend on the irAE organ, the tumor histology, and the patient. While some irAEs likely represent an immune response against antigens shared between tumor cells and healthy tissues, other irAEs may be entirely unrelated to antitumor immune responses. Clinical observations suggest that low-grade irAEs have a positive association with responses to ICIs, but the correlation between severe irAEs and clinical benefit is less clear. Currently, severe irAEs are typically treated by interrupting or permanently discontinuing ICI treatment and administering empirically selected systemic immunosuppressive agents. However, these interventions could potentially diminish the antitumor effects of ICIs. Efforts to understand the mechanistic relationship between irAEs and the tumor microenvironment have yielded meaningful insights and nominated therapeutic targets for irAE management that may preserve or even boost ICI efficacy. We explore the clinical and molecular relationship between irAEs and antitumor immunity as well as the role that irAE treatments may play in shaping antitumor immune responses.
Collapse
Affiliation(s)
- Steven M Blum
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sherin J Rouhani
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Berner F, Flatz L. Autoimmunity in immune checkpoint inhibitor-induced immune-related adverse events: A focus on autoimmune skin toxicity and pneumonitis. Immunol Rev 2023; 318:37-50. [PMID: 37548043 DOI: 10.1111/imr.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. However, their use is frequently associated with immune-related adverse events (irAEs) potentially affecting any organ. The mechanisms mediating such irAEs remain poorly understood and biomarkers to predict the development of irAEs are lacking. Growing evidence shows the importance of self-antigens in mediating irAEs during ICI therapy, in particular the well-described melanocyte differentiation antigens in melanoma patients. This review will focus on two novel classes of self-antigens involved in mediating autoimmune skin toxicity and pneumonitis in non-small cell lung cancer patients treated with immunotherapy. T cells specific for these self-antigens are thought to not only mediate irAEs but are thought to simultaneously mediate anti-tumor responses and are therefore associated with both autoimmune toxicity and response to ICI therapy. We further discuss emerging cellular and proteomic immune signatures of irAEs that may serve as biomarkers to help predict which patients are at higher risk of developing these irAEs. The determination of new tumor antigens involved in ICI therapy and the identification of related biomarkers brings us a step forward in the mechanistic understanding of ICIs and will help to monitor patients at higher risk of developing irAEs. Lastly, we discuss the current challenges in collecting research samples for the study of ICI-related mechanisms and in distinguishing between immune signatures of response and those of irAEs.
Collapse
Affiliation(s)
- Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
- Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
14
|
Ostmeyer J, Park JY, von Itzstein MS, Hsiehchen D, Fattah F, Gwin M, Catalan R, Khan S, Raj P, Wakeland EK, Xie Y, Gerber DE. T-cell tolerant fraction as a predictor of immune-related adverse events. J Immunother Cancer 2023; 11:e006437. [PMID: 37580069 PMCID: PMC10432621 DOI: 10.1136/jitc-2022-006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapies may cause unpredictable and potentially severe autoimmune toxicities termed immune-related adverse events (irAEs). Because T cells mediate ICI effects, T cell profiling may provide insight into the risk of irAEs. Here we evaluate a novel metric-the T-cell tolerant fraction-as a predictor of future irAEs. METHODS We examined T-cell receptor beta (TRB) locus sequencing from baseline pretreatment samples from an institutional registry and previously published studies. For each patient, we used TRB sequences to calculate the T-cell tolerant fraction, which was then assessed as a predictor of future irAEs (classified as Common Terminology Criteria for Adverse Event grade 0-1 vs grade ≥2). We then compared the tolerant fraction to TRB clonality and diversity. Finally, the tolerant fraction was assessed on (1) T cells enriched against napsin A, a potential autoantigen of irAEs; (2) thymic versus peripheral blood T cells; and (3) TRBs specific for various infections and autoimmune diseases. RESULTS A total of 77 patients with cancer (22 from an institutional registry and 55 from published studies) receiving ICI therapy (43 CTLA4, 19 PD1/PDL1, 15 combination CTLA4+PD1/PDL1) were included in the study. The tolerant fraction was significantly lower in cases with clinically significant irAEs (p<0.001) and had an area under the receiver operating curve (AUC) of 0.79. The tolerant fraction was lower for each ICI treatment category, reaching statistical significance for CTLA4 (p<0.001) and demonstrating non-significant trends for PD1/PDL1 (p=0.21) and combination ICI (p=0.18). The tolerant fraction for T cells enriched against napsin A was lower than other samples. The tolerant fraction was also lower in thymic versus peripheral blood samples, and lower in some (multiple sclerosis) but not other (type 1 diabetes) autoimmune diseases. In our study cohort, TRB clonality had an AUC of 0.62, and TRB diversity had an AUC of 0.60 for predicting irAEs. CONCLUSIONS Among patients receiving ICI, the baseline T-cell tolerant fraction may serve as a predictor of clinically significant irAEs.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Y Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mitchell S von Itzstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David Hsiehchen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Farjana Fattah
- Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Gwin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rodrigo Catalan
- Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shaheen Khan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Xie
- Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Gerber
- Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Shen L, Brown JR, Johnston SA, Altan M, Sykes KF. Predicting response and toxicity to immune checkpoint inhibitors in lung cancer using antibodies to frameshift neoantigens. J Transl Med 2023; 21:338. [PMID: 37217961 DOI: 10.1186/s12967-023-04172-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE To evaluate a new class of blood-based biomarkers, anti-frameshift peptide antibodies, for predicting both tumor responses and adverse immune events to immune checkpoint inhibitor (ICI) therapies in advanced lung cancer patients. EXPERIMENTAL DESIGN Serum samples were obtained from 74 lung cancer patients prior to palliative PD-(L)1 therapies with subsequently recorded tumor responses and immune adverse events (irAEs). Pretreatment samples were assayed on microarrays of frameshift peptides (FSPs), representing ~ 375,000 variant peptides that tumor cells can be informatically predicted to produce from translated mRNA processing errors. Serum-antibodies specifically recognizing these ligands were measured. Binding activities preferentially associated with best-response and adverse-event outcomes were determined. These antibody bound FSPs were used in iterative resampling analyses to develop predictive models of tumor response and immune toxicity. RESULTS Lung cancer serum samples were classified based on predictive models of ICI treatment outcomes. Disease progression was predicted pretreatment with ~ 98% accuracy in the full cohort of all response categories, though ~ 30% of the samples were indeterminate. This model was built with a heterogeneous sample cohort from patients that (i) would show either clear response or stable outcomes, (ii) would be administered either single or combination therapies and (iii) were diagnosed with different lung cancer subtypes. Removing the stable disease, combination therapy or SCLC groups from model building increased the proportion of samples classified while performance remained high. Informatic analyses showed that several of the FSPs in the all-response model mapped to translations of variant mRNAs from the same genes. In the predictive model for treatment toxicities, binding to irAE-associated FSPs provided 90% accuracy pretreatment, with no indeterminates. Several of the classifying FSPs displayed sequence similarity to self-proteins. CONCLUSIONS Anti-FSP antibodies may serve as biomarkers for predicting ICI outcomes when tested against ligands corresponding to mRNA-error derived FSPs. Model performances suggest this approach might provide a single test to predict treatment response to ICI and identify patients at high risk for immunotherapy toxicities.
Collapse
Affiliation(s)
- Luhui Shen
- Calviri, Inc, 850 N 5th St., Phoenix, AZ, 85004, USA
| | | | | | - Mehmet Altan
- MD Anderson Cancer Center, Department of Thoracic-Head & Neck Medical Oncology, Division of Cancer Medicine, Houston, TX, USA
| | | |
Collapse
|
16
|
Les I, Martínez M, Pérez-Francisco I, Cabero M, Teijeira L, Arrazubi V, Torrego N, Campillo-Calatayud A, Elejalde I, Kochan G, Escors D. Predictive Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Events. Cancers (Basel) 2023; 15:1629. [PMID: 36900420 PMCID: PMC10000735 DOI: 10.3390/cancers15051629] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) are antagonists of inhibitory receptors in the immune system, such as the cytotoxic T-lymphocyte-associated antigen-4, the programmed cell death protein-1 and its ligand PD-L1, and they are increasingly used in cancer treatment. By blocking certain suppressive pathways, ICIs promote T-cell activation and antitumor activity but may induce so-called immune-related adverse events (irAEs), which mimic traditional autoimmune disorders. With the approval of more ICIs, irAE prediction has become a key factor in improving patient survival and quality of life. Several biomarkers have been described as potential irAE predictors, some of them are already available for clinical use and others are under development; examples include circulating blood cell counts and ratios, T-cell expansion and diversification, cytokines, autoantibodies and autoantigens, serum and other biological fluid proteins, human leucocyte antigen genotypes, genetic variations and gene profiles, microRNAs, and the gastrointestinal microbiome. Nevertheless, it is difficult to generalize the application of irAE biomarkers based on the current evidence because most studies have been retrospective, time-limited and restricted to a specific type of cancer, irAE or ICI. Long-term prospective cohorts and real-life studies are needed to assess the predictive capacity of different potential irAE biomarkers, regardless of the ICI type, organ involved or cancer site.
Collapse
Affiliation(s)
- Iñigo Les
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Mireia Martínez
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Inés Pérez-Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Cabero
- Clinical Trials Platform, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Nuria Torrego
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Ana Campillo-Calatayud
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Iñaki Elejalde
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| |
Collapse
|
17
|
Nuñez NG, Berner F, Friebel E, Unger S, Wyss N, Gomez JM, Purde MT, Niederer R, Porsch M, Lichtensteiger C, Kramer R, Erdmann M, Schmitt C, Heinzerling L, Abdou MT, Karbach J, Schadendorf D, Zimmer L, Ugurel S, Klümper N, Hölzel M, Power L, Kreutmair S, Capone M, Madonna G, Cevhertas L, Heider A, Amaral T, Hasan Ali O, Bomze D, Dimitriou F, Diem S, Ascierto PA, Dummer R, Jäger E, Driessen C, Levesque MP, van de Veen W, Joerger M, Früh M, Becher B, Flatz L. Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors. MED 2023; 4:113-129.e7. [PMID: 36693381 DOI: 10.1016/j.medj.2022.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are among the most promising treatment options for melanoma and non-small cell lung cancer (NSCLC). While ICIs can induce effective anti-tumor responses, they may also drive serious immune-related adverse events (irAEs). Identifying biomarkers to predict which patients will suffer from irAEs would enable more accurate clinical risk-benefit analysis for ICI treatment and may also shed light on common or distinct mechanisms underpinning treatment success and irAEs. METHODS In this prospective multi-center study, we combined a multi-omics approach including unbiased single-cell profiling of over 300 peripheral blood mononuclear cell (PBMC) samples and high-throughput proteomics analysis of over 500 serum samples to characterize the systemic immune compartment of patients with melanoma or NSCLC before and during treatment with ICIs. FINDINGS When we combined the parameters obtained from the multi-omics profiling of patient blood and serum, we identified potential predictive biomarkers for ICI-induced irAEs. Specifically, an early increase in CXCL9/CXCL10/CXCL11 and interferon-γ (IFN-γ) 1 to 2 weeks after the start of therapy are likely indicators of heightened risk of developing irAEs. In addition, an early expansion of Ki-67+ regulatory T cells (Tregs) and Ki-67+ CD8+ T cells is also likely to be associated with increased risk of irAEs. CONCLUSIONS We suggest that the combination of these cellular and proteomic biomarkers may help to predict which patients are likely to benefit most from ICI therapy and those requiring intensive monitoring for irAEs. FUNDING This work was primarily funded by the European Research Council, the Swiss National Science Foundation, the Swiss Cancer League, and the Forschungsförderung of the Kantonsspital St. Gallen.
Collapse
Affiliation(s)
- Nicolas Gonzalo Nuñez
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fiamma Berner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Wyss
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Julia Martinez Gomez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mette-Triin Purde
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Rebekka Niederer
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Maximilian Porsch
- Department of Radiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christa Lichtensteiger
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Rafaela Kramer
- Department of Dermatology, Uniklinikum Erlangen, Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, Uniklinikum Erlangen, Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Christina Schmitt
- Department of Dermatology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology, Uniklinikum Erlangen, Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany; Department of Dermatology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marie-Therese Abdou
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Niklas Klümper
- Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany; Center for Integrated Oncology Cologne/Bonn, University Hospital Bonn, Bonn, Germany; Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany; Center for Integrated Oncology Cologne/Bonn, University Hospital Bonn, Bonn, Germany
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mariaelena Capone
- Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Teresa Amaral
- Skin Cancer Center, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany; iFIT Cluster of Excellence (EXC 2180), University of Tübingen, Tübingen, Germany
| | - Omar Hasan Ali
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - David Bomze
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Diem
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Christoph Driessen
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mitchell Paul Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin Früh
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Lukas Flatz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Universitäts-Hautklinik, University of Tübingen, 72016 Tübingen, Germany.
| |
Collapse
|
18
|
Artificial Intelligence-Assisted Transcriptomic Analysis to Advance Cancer Immunotherapy. J Clin Med 2023; 12:jcm12041279. [PMID: 36835813 PMCID: PMC9968102 DOI: 10.3390/jcm12041279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The emergence of immunotherapy has dramatically changed the cancer treatment paradigm and generated tremendous promise in precision medicine. However, cancer immunotherapy is greatly limited by its low response rates and immune-related adverse events. Transcriptomics technology is a promising tool for deciphering the molecular underpinnings of immunotherapy response and therapeutic toxicity. In particular, applying single-cell RNA-seq (scRNA-seq) has deepened our understanding of tumor heterogeneity and the microenvironment, providing powerful help for developing new immunotherapy strategies. Artificial intelligence (AI) technology in transcriptome analysis meets the need for efficient handling and robust results. Specifically, it further extends the application scope of transcriptomic technologies in cancer research. AI-assisted transcriptomic analysis has performed well in exploring the underlying mechanisms of drug resistance and immunotherapy toxicity and predicting therapeutic response, with profound significance in cancer treatment. In this review, we summarized emerging AI-assisted transcriptomic technologies. We then highlighted new insights into cancer immunotherapy based on AI-assisted transcriptomic analysis, focusing on tumor heterogeneity, the tumor microenvironment, immune-related adverse event pathogenesis, drug resistance, and new target discovery. This review summarizes solid evidence for immunotherapy research, which might help the cancer research community overcome the challenges faced by immunotherapy.
Collapse
|
19
|
Wlosik J, Fattori S, Rochigneux P, Goncalves A, Olive D, Chretien AS. Immune biology of NSCLC revealed by single-cell technologies: implications for the development of biomarkers in patients treated with immunotherapy. Semin Immunopathol 2023; 45:29-41. [PMID: 36414693 PMCID: PMC9974692 DOI: 10.1007/s00281-022-00973-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
First-line immunotherapy in non-small-cell lung cancer largely improved patients' survival. PD-L1 testing is required before immune checkpoint inhibitor initiation. However, this biomarker fails to accurately predict patients' response. On the other hand, immunotherapy exposes patients to immune-related toxicity, the mechanisms of which are still unclear. Hence, there is an unmet need to develop clinically approved predictive biomarkers to better select patients who will benefit the most from immune checkpoint inhibitors and improve risk management. Single-cell technologies provide unprecedented insight into the tumor and its microenvironment, leading to the discovery of immune cells involved in immune checkpoint inhibitor response or toxicity. In this review, we will underscore the potential of the single-cell approach to identify candidate biomarkers improving non-small-cell lung cancer patients' care.
Collapse
Affiliation(s)
- J Wlosik
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France. .,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France.
| | - S Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France.,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France
| | - P Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France.,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France.,Department of Medical Oncology, Inserm U1068, Aix-Marseille University UM105, CNRS UMR7258, Institute Paoli-Calmettes, 13009, Marseille, France
| | - A Goncalves
- Department of Medical Oncology, Inserm U1068, Aix-Marseille University UM105, CNRS UMR7258, Institute Paoli-Calmettes, 13009, Marseille, France.,Team Cell Polarity, Cell Signaling and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Inserm U1068UM 105, 13009, Marseille, France
| | - D Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France.,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France
| | - A S Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France. .,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France.
| |
Collapse
|