1
|
Tymanskyj SR, Escorce A, Karthikeyan S, Ma L. Optogenetic control of receptor-mediated growth cone dynamics in neurons. Mol Biol Cell 2025; 36:br5. [PMID: 39705378 DOI: 10.1091/mbc.e23-07-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1. When expressed in primary neurons, activation of the growth inhibitory PlexA4 receptor induced growth cone collapse, while activation of the growth stimulating TrkA receptor increased growth cone size. Moreover, local activation of either receptor not only elicited the predicted response in light-activated growth cones but also an opposite response in neighboring no-light-exposed growth cones of the same neuron. Finally, this tool was used to reorient growth cones toward or away from the site of light activation and to stimulate local actin polymerization for branch initiation along axonal shafts. These studies demonstrate the use of an optogenetic tool for precise spatial and temporal control of receptor signaling in neurons and support its future application in investigating cellular mechanisms of neuronal development and plasticity.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Althea Escorce
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Siddharth Karthikeyan
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Le Ma
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
2
|
Vecchi JT, Rhomberg M, Allan Guymon C, Hansen MR. Inositol trisphosphate and ryanodine receptor signaling distinctly regulate neurite pathfinding in response to engineered micropatterned surfaces. PLoS One 2024; 19:e0308389. [PMID: 39236043 PMCID: PMC11376539 DOI: 10.1371/journal.pone.0308389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
Micro and nanoscale patterning of surface features and biochemical cues have emerged as tools to precisely direct neurite growth into close proximity with next generation neural prosthesis electrodes. Biophysical cues can exert greater influence on neurite pathfinding compared to the more well studied biochemical cues; yet the signaling events underlying the ability of growth cones to respond to these microfeatures remain obscure. Intracellular Ca2+ signaling plays a critical role in how a growth cone senses and grows in response to various cues (biophysical features, repulsive peptides, chemo-attractive gradients). Here, we investigate the role of inositol triphosphate (IP3) and ryanodine-sensitive receptor (RyR) signaling as sensory neurons (spiral ganglion neurons, SGNs, and dorsal root ganglion neurons, DRGNs) pathfind in response to micropatterned substrates of varied geometries. We find that IP3 and RyR signaling act in the growth cone as they navigate biophysical cues and enable proper guidance to biophysical, chemo-permissive, and chemo-repulsive micropatterns. In response to complex micropatterned geometries, RyR signaling appears to halt growth in response to both topographical features and chemo-repulsive cues. IP3 signaling appears to play a more complex role, as growth cones appear to sense the microfeatures in the presence of xestospongin C but are unable to coordinate turning in response to them. Overall, key Ca2+ signaling elements, IP3 and RyR, are found to be essential for SGNs to pathfind in response to engineered biophysical and biochemical cues. These findings inform efforts to precisely guide neurite regeneration for improved neural prosthesis function, including cochlear implants.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States of America
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States of America
| | - C Allan Guymon
- Department of Chemical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States of America
| |
Collapse
|
3
|
Konno T, Parutto P, Crapart CC, Davì V, Bailey DMD, Awadelkareem MA, Hockings C, Brown AI, Xiang KM, Agrawal A, Chambers JE, Vander Werp MJ, Koning KM, Elfari LM, Steen S, Metzakopian E, Westrate LM, Koslover EF, Avezov E. Endoplasmic reticulum morphology regulation by RTN4 modulates neuronal regeneration by curbing luminal transport. Cell Rep 2024; 43:114357. [PMID: 38955182 DOI: 10.1016/j.celrep.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Cell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca2+, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear. Here, we show that ER membrane-localized reticulon 4 (RTN4/Nogo) is sufficient to impose neurite outgrowth inhibition in human cortical neurons while acting as an ER morphoregulator. Improving ER transport visualization methodologies combined with optogenetic Ca2+ dynamics imaging and in silico modeling, we observed that ER luminal transport is modulated by ER tubule narrowing and dilation, proportional to the amount of RTN4. Excess RTN4 limited ER luminal transport and Ca2+ release, while RTN4 elimination reversed the effects. The described morphoregulatory effect of RTN4 defines the capacity of the ER for peripheral Ca2+ delivery for physiological releases and thus may constitute a mechanism for controlling the (re)generation of neurites.
Collapse
Affiliation(s)
- Tasuku Konno
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Pierre Parutto
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Cécile C Crapart
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Valentina Davì
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | | | - Mosab Ali Awadelkareem
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK; Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Colin Hockings
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Aidan I Brown
- Department of Physics, University of California, San Diego, 9500 Gilman Dr. #0374, La Jolla, CA 92093-0374, USA; Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | | | - Anamika Agrawal
- Department of Physics, University of California, San Diego, 9500 Gilman Dr. #0374, La Jolla, CA 92093-0374, USA
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Molly J Vander Werp
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Katherine M Koning
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Louis Mounir Elfari
- Wellcome-MRC Cambridge Stem Cell Institute Advanced Imaging Facility, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Sam Steen
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Emmanouil Metzakopian
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, 9500 Gilman Dr. #0374, La Jolla, CA 92093-0374, USA.
| | - Edward Avezov
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK.
| |
Collapse
|
4
|
Vecchi JT, Rhomberg M, Guymon CA, Hansen MR. The geometry of photopolymerized topography influences neurite pathfinding by directing growth cone morphology and migration. J Neural Eng 2024; 21:026027. [PMID: 38547528 PMCID: PMC10993768 DOI: 10.1088/1741-2552/ad38dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Objective. Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function.Approach.For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineer precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding and use live imaging to better understand how neurite growth is guided by these cues.Main Results.We find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity is increased by 20%-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made obtuse. Further, we see that dorsal root ganglion neuron growth cones change their morphology and migration to become more elongated within microfeatures. Our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain.Significance.Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growthin vivo.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
5
|
Vecchi JT, Rhomberg M, Guymon CA, Hansen MR. The geometry of photopolymerized topography influences neurite pathfinding by directing growth cone morphology and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555111. [PMID: 37693432 PMCID: PMC10491164 DOI: 10.1101/2023.08.28.555111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cochlear implants (CIs) provide auditory perception to those with profound sensorineural hearing loss: however, the quality of sound perceived by a CI user does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function. For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineered precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding. Additionally, we analyze sensory neurite growth in response to topographically patterned substrates and use live imaging to better understand how neurite growth is guided by these cues. In assessing the ability of neurites to sense and turn in response to topographical cues, we find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity can be increased by 20-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made more obtuse. Further, by using engineered topographies and live imaging of dorsal root ganglion neurons (DRGNs), we see that DRGN growth cones change their morphology and migration to become more elongated within microfeatures. However, our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. This reorientation is likely related to the tension the neurite shaft experiences when the growth cone elongates in the microfeature around a turn. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain. Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess SGN neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growth in vivo.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, USA
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, USA
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, USA
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, USA
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
6
|
Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Bécret J, Belle M, Vougny J, Uthayasuthan S, Ros O, Nicol X. Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat Commun 2023; 14:3809. [PMID: 37369692 PMCID: PMC10300027 DOI: 10.1038/s41467-023-39516-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Second messengers, including cAMP, cGMP and Ca2+ are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca2+ changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals. These guidance molecules activate subcellular-specific second messenger crosstalk, each signaling network controlling distinct axonal morphology changes in vitro and pathfinding decisions in vivo.
Collapse
Affiliation(s)
- Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Vougny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | | | - Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
7
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
8
|
Li X, Shim S, Hardin KR, Vanaja KG, Song H, Levchenko A, Ming GL, Zheng JQ. Signal amplification in growth cone gradient sensing by a double negative feedback loop among PTEN, PI(3,4,5)P 3 and actomyosin. Mol Cell Neurosci 2022; 123:103772. [PMID: 36055521 PMCID: PMC9856701 DOI: 10.1016/j.mcn.2022.103772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023] Open
Abstract
Axon guidance during neural wiring involves a series of precisely controlled chemotactic events by the motile axonal tip, the growth cone. A fundamental question is how neuronal growth cones make directional decisions in response to extremely shallow gradients of guidance cues with exquisite sensitivity. Here we report that nerve growth cones possess a signal amplification mechanism during gradient sensing process. In neuronal growth cones of Xenopus spinal neurons, phosphatidylinositol-3,4,5-trisphosphate (PIP3), an important signaling molecule in chemotaxis, was actively recruited to the up-gradient side in response to an external gradient of brain-derived neurotrophic factor (BDNF), resulting in an intracellular gradient with approximate 30-fold amplification of the input. Furthermore, a reverse gradient of phosphatase and tensin homolog (PTEN) was induced by BDNF within the growth cone and the increased PTEN activity at the down-gradient side is required for the amplification of PIP3 signals. Mechanistically, the establishment of both positive PIP3 and reverse PTEN gradients depends on the filamentous actin network. Together with computational modeling, our results revealed a double negative feedback loop among PTEN, PIP3 and actomyosin for signal amplification, which is essential for gradient sensing of neuronal growth cones in response to diffusible cues.
Collapse
Affiliation(s)
- Xiong Li
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Sangwoo Shim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Katherine R Hardin
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Kiran G Vanaja
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Wang Z, Su L, Wu T, Sun L, Sun Z, Wang Y, Li P, Cui G. Inhibition of MicroRNA-182/183 Cluster Ameliorates Schizophrenia by Activating the Axon Guidance Pathway and Upregulating DCC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9411276. [PMID: 36406766 PMCID: PMC9671740 DOI: 10.1155/2022/9411276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/14/2022] [Indexed: 09/21/2023]
Abstract
Schizophrenia (SZ) is a complex disorder caused by a variety of genetic and environmental factors. Mounting evidence suggests the involvement of microRNAs (miRNAs) in the pathology of SZ. Accordingly, the current study set out to investigate the possible implication of the miR-182/183 cluster, as well as its associated mechanism in the progression of SZ. Firstly, rat models of SZ were established by intraperitoneal injection of MK-801. Moreover, rat primary hippocampal neurons were exposed to MK-801 to simulate injury of hippocampal neurons. The expression of miR-182/183 or its putative target gene DCC was manipulated to examine their effects on SZ in vitro and in vivo. It was found that miR-182 and miR-183 were both highly expressed in peripheral blood of SZ patients and hippocampal tissues of SZ rats. In addition, the miR-182/183 cluster could target DDC and downregulate the expression of DDC. On the other hand, inhibition of the miR-182/183 cluster ameliorated SZ, as evidenced by elevated serum levels of NGF and BDNF, along with reductions in spontaneous activity, serum GFAP levels, and hippocampal neuronal apoptosis. Additionally, DCC was found to activate the axon guiding pathway and influence synaptic activity in hippocampal neurons. Collectively, our findings highlighted that inhibition of the miR-182/183 cluster could potentially attenuate SZ through DCC-dependent activation of the axon guidance pathway. Furthermore, inhibition of the miR-182/183 cluster may represent a potential target for the SZ treatment.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar 161000, China
| | - Lin Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine School of Public Health, Nanchang University, Nanchang 330006, China
| | - Tong Wu
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Lei Sun
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Zhenghai Sun
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Yuchen Wang
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Ping Li
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Guangcheng Cui
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
10
|
Raj V, Jagadish C, Gautam V. Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. BIOPHYSICS REVIEWS 2021; 2:021303. [PMID: 38505122 PMCID: PMC10903502 DOI: 10.1063/5.0043014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 03/21/2024]
Abstract
A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.
Collapse
Affiliation(s)
- Vidur Raj
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Inositol 1,4,5-Trisphosphate Receptor Type 3 Regulates Neuronal Growth Cone Sensitivity to Guidance Signals. iScience 2020; 23:100963. [PMID: 32199289 PMCID: PMC7082556 DOI: 10.1016/j.isci.2020.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/22/2022] Open
Abstract
During neurodevelopment, the growth cone deciphers directional information from extracellular guidance cues presented as shallow concentration gradients via signal amplification. However, it remains unclear how the growth cone controls this amplification process during its navigation through an environment in which basal cue concentrations vary widely. Here, we identified inositol 1,4,5-trisphosphate (IP3) receptor type 3 as a regulator of axonal sensitivity to guidance cues in vitro and in vivo. Growth cones lacking the type 3 subunit are hypersensitive to nerve growth factor (NGF), an IP3-dependent attractive cue, and incapable of turning toward normal concentration ranges of NGF to which wild-type growth cones respond. This is due to globally, but not asymmetrically, activated Ca2+ signaling in the hypersensitive growth cones. Remarkably, lower NGF concentrations can polarize growth cones for turning if IP3 receptor type 3 is deficient. These data suggest a subtype-specific IP3 receptor function in sensitivity adjustment during axon navigation. IP3 receptor type 3 (IP3R3) controls axonal sensitivity to IP3-based guidance cues IP3R3−/− growth cones are not attracted to NGF due to global Ca2+ responses Lower NGF concentrations can polarize IP3R3−/− growth cones for attractive turning NGF knockdown in vivo can revert abnormal trajectory of IP3R3−/− axons
Collapse
|
12
|
Vysokov NV, Silva JP, Lelianova VG, Suckling J, Cassidy J, Blackburn JK, Yankova N, Djamgoz MB, Kozlov SV, Tonevitsky AG, Ushkaryov YA. Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on axonal growth cones. eLife 2018; 7:37935. [PMID: 30457553 PMCID: PMC6245728 DOI: 10.7554/elife.37935] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 11/15/2022] Open
Abstract
A presynaptic adhesion G-protein-coupled receptor, latrophilin-1, and a postsynaptic transmembrane protein, Lasso/teneurin-2, are implicated in trans-synaptic interaction that contributes to synapse formation. Surprisingly, during neuronal development, a substantial proportion of Lasso is released into the intercellular space by regulated proteolysis, potentially precluding its function in synaptogenesis. We found that released Lasso binds to cell-surface latrophilin-1 on axonal growth cones. Using microfluidic devices to create stable gradients of soluble Lasso, we show that it induces axonal attraction, without increasing neurite outgrowth. Using latrophilin-1 knockout in mice, we demonstrate that latrophilin-1 is required for this effect. After binding latrophilin-1, Lasso causes downstream signaling, which leads to an increase in cytosolic calcium and enhanced exocytosis, processes that are known to mediate growth cone steering. These findings reveal a novel mechanism of axonal pathfinding, whereby latrophilin-1 and Lasso mediate both short-range interaction that supports synaptogenesis, and long-range signaling that induces axonal attraction. The brain is a complex mesh of interconnected neurons, with each cell making tens, hundreds, or even thousands of connections. These links can stretch over long distances, and establishing them correctly during development is essential. Developing neurons send out long and thin structures, called axons, to reach distant cells. To guide these growing axons, neurons release molecules that work as traffic signals: some attract axons whilst others repel them, helping the burgeoning structures to twist and turn along their travel paths. When an axon reaches its target cell, the two cells join to each other by forming a structure called a synapse. To make the connection, surface proteins on the axon latch onto matching proteins on the target cell, zipping up the synapse. There are many different types of synapses in the brain, but we only know a few of the surface molecules involved in their creation – not enough to explain synaptic variety. Two of these surface proteins are latrophilin-1, which is produced by the growing axon, and Lasso, which sits on the membrane of the target cell. The two proteins interact strongly, anchoring the axon to the target cell and allowing the synapse to form. However, a previous recent discovery by Vysokov et al. has revealed that an enzyme can also cut Lasso from the membrane of the target cell. The ‘free’ protein can still interact with latrophilin-1, but as it is shed by the target cell, it can no longer serve as an anchor for the synapse. Could it be that free Lasso acts as a traffic signal instead? Here, Vysokov et al. tried to answer this by growing neurons from a part of the brain called the hippocampus in a special labyrinth dish. When free Lasso was gradually introduced in the culture through microscopic channels, it interacted with latrophilin-1 on the surface of the axons. This triggered internal changes that led the axons to add more membrane where they had sensed Lasso, making them grow towards the source of the signal. The results demonstrate that a target cell can both carry and release Lasso, using this duplicitous protein to help attract growing axons as well as anchor them. The work by Vysokov et al. contributes to our knowledge of how neurons normally connect, which could shed light on how this process can go wrong. This may be relevant to understand conditions such as schizophrenia and ADHD, where patients’ brains often show incorrect wiring.
Collapse
Affiliation(s)
- Nickolai V Vysokov
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom.,Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom.,BrainPatch Ltd, London, United Kingdom
| | - John-Paul Silva
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Department of Bioanalytical Sciences, Non-clinical development, UCB-Pharma, Berkshire, United Kingdom
| | - Vera G Lelianova
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jason Suckling
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Thomsons Online Benefits, London, United Kingdom
| | - John Cassidy
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Arix Bioscience, London, United Kingdom
| | - Jennifer K Blackburn
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Natalia Yankova
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Mustafa Ba Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Serguei V Kozlov
- Center for Advanced Preclinical Research, National Cancer Institute, Frederick, United States
| | - Alexander G Tonevitsky
- Higher School of Economics, Moscow, Russia.,Scientific Research Centre Bioclinicum, Moscow, Russia
| | - Yuri A Ushkaryov
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Cyclic Nucleotide Control of Microtubule Dynamics for Axon Guidance. J Neurosci 2017; 36:5636-49. [PMID: 27194341 DOI: 10.1523/jneurosci.3596-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Graded distribution of intracellular second messengers, such as Ca(2+) and cyclic nucleotides, mediates directional cell migration, including axon navigational responses to extracellular guidance cues, in the developing nervous system. Elevated concentrations of cAMP or cGMP on one side of the neuronal growth cone induce its attractive or repulsive turning, respectively. Although effector processes downstream of Ca(2+) have been extensively studied, very little is known about the mechanisms that enable cyclic nucleotides to steer migrating cells. Here, we show that asymmetric cyclic nucleotide signaling across the growth cone mediates axon guidance via modulating microtubule dynamics and membrane organelle transport. In embryonic chick dorsal root ganglion neurons in culture, contact of an extending microtubule with the growth cone leading edge induces localized membrane protrusion at the site of microtubule contact. Such a contact-induced protrusion requires exocytosis of vesicle-associated membrane protein 7 (VAMP7)-positive vesicles that have been transported centrifugally along the microtubule. We found that the two cyclic nucleotides counteractively regulate the frequency of microtubule contacts and targeted delivery of VAMP7 vesicles: cAMP stimulates and cGMP inhibits these events, thereby steering the growth cone in the opposite directions. By contrast, Ca(2+) signals elicit no detectable change in either microtubule contacts or VAMP7 vesicle delivery during Ca(2+)-induced growth cone turning. Our findings clearly demonstrate growth cone steering machinery downstream of cyclic nucleotide signaling and highlight a crucial role of dynamic microtubules in leading-edge protrusion for cell chemotaxis. SIGNIFICANCE STATEMENT Developing neurons can extend long axons toward their postsynaptic targets. The tip of each axon, called the growth cone, recognizes extracellular guidance cues and navigates the axon along the correct path. Here we show that asymmetric cyclic nucleotide signaling across the growth cone mediates axon guidance through localized regulation of microtubule dynamics and resulting recruitment of specific populations of membrane vesicles to the growth cone's leading edge. Remarkably, cAMP stimulates microtubule growth and membrane protrusion, whereas cGMP promotes microtubule retraction and membrane senescence, explaining the opposite directional polarities of growth cone turning induced by these cyclic nucleotides. This study reveals a novel microtubule-based mechanism through which cyclic nucleotides polarize the growth cone steering machinery for bidirectional axon guidance.
Collapse
|
14
|
Myosin Va and Endoplasmic Reticulum Calcium Channel Complex Regulates Membrane Export during Axon Guidance. Cell Rep 2016; 15:1329-44. [DOI: 10.1016/j.celrep.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 03/11/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
|
15
|
Li S, Tuft B, Xu L, Polacco M, Clarke JC, Guymon CA, Hansen MR. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features. J Biomed Mater Res A 2016; 104:2037-48. [PMID: 27062708 DOI: 10.1002/jbm.a.35738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
Micro- and nanoscale surface features have emerged as potential tools to direct neurite growth into close proximity with next generation neural prosthesis electrodes. However, the signaling events underlying the ability of growth cones to respond to topographical features remain largely unknown. Accordingly, this study probes the influence of [Ca(2+) ]i and cyclic nucleotide levels on the ability of neurites from spiral ganglion neurons (SGNs) to precisely track topographical micropatterns. Photopolymerization and photomasking were used to generate micropatterned methacrylate polymer substrates. Dissociated SGN cultures were plated on the micropatterned surfaces. Calcium influx and release from internal stores were manipulated by elevating extracellular K(+) , maintenance in calcium-free media, or bath application of various calcium channel blockers. Cyclic nucleotide activity was increased by application of cpt-cAMP or 8-Br-cGMP. Elevation of [Ca(2+) ]i by treatment of cultures with elevated potassium reduced neurite alignment to physical microfeatures. Maintenance of cultures in Ca(2+) -free medium or treatment with the non-selective voltage-gated calcium channel blocker cadmium or L-type Ca(2+) channel blocker nifedipine did not signficantly alter SGN neurite alignment. By contrast, ryanodine or xestospongin C, which block release of internal calcium stores via ryanodine-sensitive channels or inositol-1,4,5-trisphosphate receptors respectively, each significantly decreased neurite alignment. Cpt-cAMP significantly reduced neurite alignment while 8-Br-cGMP significantly enhanced neurite alignment. Manipulation of [Ca(2+) ]i or cAMP levels significantly disrupts neurite guidance while elevation of cGMP levels increases neurite alignment. The results suggest intracellular signaling pathways similar to those recruited by chemotactic cues are involved in neurite guidance by topographical features. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2037-2048, 2016.
Collapse
Affiliation(s)
- Shufeng Li
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, 52242.,Department of Otolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Bradley Tuft
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, 52242
| | - Linjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, 52242
| | - Marc Polacco
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, 52242
| | - Joseph C Clarke
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, 52242
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, 52242
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, 52242.,Department of Neurosurgery, University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
16
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
18
|
Kuboyama T, Lee YA, Nishiko H, Tohda C. Inhibition of clathrin-mediated endocytosis prevents amyloid β-induced axonal damage. Neurobiol Aging 2015; 36:1808-19. [DOI: 10.1016/j.neurobiolaging.2015.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 01/15/2023]
|
19
|
Akiyama H, Kamiguchi H. Analysis of calcium signals in steering neuronal growth cones in vitro. Methods Mol Biol 2015; 1162:17-27. [PMID: 24838955 DOI: 10.1007/978-1-4939-0777-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Calcium imaging allows us to measure the spatial and temporal changes in intracellular calcium concentration in living cells. Localized calcium elevation often functions as the polarizing signal during guided migration including axon guidance. In this chapter, we describe a protocol to quantitatively monitor the spatiotemporal dynamics of calcium signals in neuronal growth cones in the presence of an extracellular concentration gradient of axon guidance cue.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
20
|
Calcium signaling in axon guidance. Trends Neurosci 2014; 37:424-32. [DOI: 10.1016/j.tins.2014.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023]
|
21
|
Abstract
Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.
Collapse
|
22
|
Inoue T. [Unraveling molecular mechanism of cell migration using novel perturbation tools]. YAKUGAKU ZASSHI 2014; 134:647-54. [PMID: 24790048 DOI: 10.1248/yakushi.14-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complexity in signaling networks is often derived from co-opting particular sets of molecules for multiple operations. Understanding how cells achieve such sophisticated processing using a finite set of molecules within a confined space - what we call the "signaling paradox"- is critical to cell biology and bioengineering as well as the emerging field of synthetic biology. We have recently developed a series of chemical-molecular tools that allow for inducible, quick-onset and specific perturbation of various signaling molecules. The present technique has been employed to unravel several important, previously unresolved questions regarding the regulatory mechanisms of potassium ion channels, the membrane targeting mechanisms of small GTPases and positive feedback machinery in neutrophil migration. Using this novel technique in conjunction with conventional fluorescence imaging and biochemical analysis, we are currently further dissecting intricate signaling networks in living cells. Ultimately, we will generate completely orthogonal machinery in cells to achieve existing, as well as novel, cellular functions. Our synthetic, multidisciplinary approach will elucidate the signaling paradox in cells created by nature.
Collapse
Affiliation(s)
- Takanari Inoue
- Johns Hopkins University, School of Medicine, Department of Cell Biology
| |
Collapse
|
23
|
Huang H, Jiang L, Li S, Deng J, Li Y, Yao J, Li B, Zheng J. Using microfluidic chip to form brain-derived neurotrophic factor concentration gradient for studying neuron axon guidance. BIOMICROFLUIDICS 2014; 8:014108. [PMID: 24660043 PMCID: PMC3945791 DOI: 10.1063/1.4864235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/24/2014] [Indexed: 05/29/2023]
Abstract
Molecular gradients play a significant role in regulating biological and pathological processes. Although conventional gradient-generators have been used for studying chemotaxis and axon guidance, there are still many limitations, including the inability to maintain stable tempo-spatial gradients and the lack of the cell monitoring in a real-time manner. To overcome these shortcomings, microfluidic devices have been developed. In this study, we developed a microfluidic gradient device for regulating neuron axon guidance. A microfluidic device enables the generation of Brain-derived neurotrophic factor (BDNF) gradient profiles in a temporal and spatial manner. We test the effect of the gradient profiles on axon guidance, in the BDNF concentration gradient axon towards the high concentration gradient. This microfluidic gradient device could be used as a powerful tool for cell biology research.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Lili Jiang
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jun Deng
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yan Li
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jie Yao
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Biyuan Li
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Junsong Zheng
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
24
|
Abstract
The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.
Collapse
|
25
|
Akiyama H, Kamiguchi H. Second messenger networks for accurate growth cone guidance. Dev Neurobiol 2013; 75:411-22. [PMID: 24285606 DOI: 10.1002/dneu.22157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
Growth cones are able to navigate over long distances to find their appropriate target by following guidance cues that are often presented to them in the form of an extracellular gradient. These external cues are converted into gradients of specific signaling molecules inside growth cones, while at the same time these internal signals are amplified. The amplified instruction is then used to generate asymmetric changes in the growth cone turning machinery so that one side of the growth cone migrates at a rate faster than the other side, and thus the growth cone turns toward or away from the external cue. This review examines how signal specification and amplification can be achieved inside the growth cone by multiple second messenger signaling pathways activated downstream of guidance cues. These include the calcium ion, cyclic nucleotide, and phosphatidylinositol signaling pathways.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
26
|
Shim S, Zheng JQ, Ming GL. A critical role for STIM1 in filopodial calcium entry and axon guidance. Mol Brain 2013; 6:51. [PMID: 24289807 PMCID: PMC3907062 DOI: 10.1186/1756-6606-6-51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, regulates store-operated Ca2+ entry (SOCE) that is essential for Ca2+ homeostasis in many types of cells. However, if and how STIM1 and SOCE function in nerve growth cones during axon guidance remains to be elucidated. RESULTS We report that STIM1 and transient receptor potential channel 1 (TRPC1)-dependent SOCE operates in Xenopus spinal growth cones to regulate Ca2+ signaling and guidance responses. We found that STIM1 works together with TRPC1 to mediate SOCE within growth cones and filopodia. In particular, STIM1/TRPC1-dependent SOCE was found to mediate oscillatory filopodial Ca2+ transients in the growth cone. Disruption of STIM1 function abolished filopodial Ca2+ transients and impaired Ca2+-dependent attractive responses of Xenopus growth cones to netrin-1. Finally, interference with STIM1 function was found to disrupt midline axon guidance of commissural interneurons in the developing Xenopus spinal cord in vivo. CONCLUSIONS Our data demonstrate that STIM1/TRPC1-dependent SOCE plays an essential role in generating spatiotemporal Ca2+ signals that mediate guidance responses of nerve growth cones.
Collapse
Affiliation(s)
| | - James Q Zheng
- Departments of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30078, USA.
| | | |
Collapse
|
27
|
Loss O, Wu CT, Riccio A, Saiardi A. Modulation of inositol polyphosphate levels regulates neuronal differentiation. Mol Biol Cell 2013; 24:2981-9. [PMID: 23864704 PMCID: PMC3771958 DOI: 10.1091/mbc.e13-04-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The modulation of inositol pentakisphosphate (IP5) and hexakisphosphate (IP6) intracellular levels controls the differentiation and survival of PC12 cells and primary neurons. These mechanisms are controlled by the levels of the protein kinase IP5-2K responsible for the conversion of IP5 into IP6. The binding of neurotrophins to tropomyosin receptor kinase receptors initiates several signaling pathways, including the activation of phospholipase C-γ, which promotes the release of diacylglycerol and inositol 1,4,5-trisphosphate (IP3). In addition to recycling back to inositol, IP3 serves as a precursor for the synthesis of higher phosphorylated inositols, such as inositol 1,3,4,5,6-pentakisphosphate (IP5) and inositol hexakisphosphate (IP6). Previous studies on the effect of neurotrophins on inositol signaling were limited to the analysis of IP3 and its dephosphorylation products. Here we demonstrate that nerve growth factor (NGF) regulates the levels of IP5 and IP6 during PC12 differentiation. Furthermore, both NGF and brain-derived neurotrophic factor alter IP5 and IP6 intracellular ratio in differentiated PC12 cells and primary neurons. Neurotrophins specifically regulate the expression of IP5-2 kinase (IP5-2K), which phosphorylates IP5 into IP6. IP5-2K is rapidly induced after NGF treatment, but its transcriptional levels sharply decrease in fully differentiated PC12 cells. Reduction of IP5-2K protein levels by small interfering RNA has an effect on the early stages of PC12 cell differentiation, whereas fully differentiated cells are not affected. Conversely, perturbation of IP5-2K levels by overexpression suggests that both differentiated PC12 cells and sympathetic neurons require low levels of the enzyme for survival. Therefore maintaining appropriate intracellular levels of inositol polyphosphates is necessary for neuronal survival and differentiation.
Collapse
Affiliation(s)
- Omar Loss
- Cell Biology Unit and Laboratory for Molecular Cell Biology, Medical Research Council, University College London, London WC1E 6BT, United Kingdom Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom Department of Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
28
|
Yamamoto N, López-Bendito G. Shaping brain connections through spontaneous neural activity. Eur J Neurosci 2012; 35:1595-604. [PMID: 22607005 DOI: 10.1111/j.1460-9568.2012.08101.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An overwhelming number of observations demonstrate that neural activity and genetic programs interact to specify the composition and organization of neural circuits during all stages of development. Spontaneous neuronal activities have been documented in several developing neural regions in both invertebrates and vertebrates, and their roles are mostly conserved among species. Among these roles, Ca(2+) spikes and levels of electrical activity have been shown to regulate neurite growth, axon extension and axon branching. Here, we review selected findings concerning the role of spontaneous activity on circuit development.
Collapse
Affiliation(s)
- Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan.
| | | |
Collapse
|
29
|
Tojima T. Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neurosci Res 2012; 73:269-74. [PMID: 22684022 DOI: 10.1016/j.neures.2012.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The formation of precise neuronal networks is critically dependent on the motility of axonal growth cones. Extracellular gradients of guidance cues evoke localized Ca(2+) elevations to attract or repel the growth cone. Recent studies strongly suggest that the polarity of growth cone guidance, with respect to the localization of Ca(2+) signals, is determined by Ca(2+) release from the endoplasmic reticulum (ER) in the following manner: Ca(2+) signals containing ER Ca(2+) release cause growth cone attraction, while Ca(2+) signals without ER Ca(2+) release cause growth cone repulsion. Recent studies have also shown that exocytic and endocytic membrane trafficking can drive growth cone attraction and repulsion, respectively, downstream of Ca(2+) signals. Most likely, these two mechanisms underlie cue-induced axon guidance, in which a localized imbalance between exocytosis and endocytosis dictates bidirectional growth cone steering. In this Update Article, I summarize recent advances in growth cone research and propose that polarized membrane trafficking plays an instructive role to spatially localize steering machineries, such as cytoskeletal components and adhesion molecules.
Collapse
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
30
|
Nakamuta S, Funahashi Y, Namba T, Arimura N, Picciotto MR, Tokumitsu H, Soderling TR, Sakakibara A, Miyata T, Kamiguchi H, Kaibuchi K. Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca2+/Calmodulin-Dependent Protein Kinases. Sci Signal 2011; 4:ra76. [DOI: 10.1126/scisignal.2002011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Goto JI, Mikoshiba K. Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior. THE CEREBELLUM 2011; 10:820-33. [DOI: 10.1007/s12311-011-0270-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K. Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun 2011; 410:754-8. [PMID: 21689634 DOI: 10.1016/j.bbrc.2011.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Spinocerebellar ataxia type 15 (SCA15) is a group of human neurodegenerative disorders characterized by a slowly progressing pure cerebellar ataxia. The inositol 1,4,5-trisphosphate (IP(3)) receptor type 1 (IP(3)R1) is an intracellular IP(3)-induced Ca(2+) release channel that was recently identified as a causative gene for SCA15. In most case studies, a heterozygous deletion of the IP(3)R1 gene was identified. However, one Japanese SCA15 family was found to have a Pro to Leu (P1059L) substitution in IP(3)R1. To investigate the effect of the P1059L mutation, we analyzed the channel properties of the mutant human IP(3)R1 by expressing it in an IP(3)R-deficient B lymphocyte cell line. The P1059L mutant was a functional Ca(2+) release channel with a twofold higher IP(3) binding affinity compared to wild-type IP(3)R1. The cooperative dependence of the Ca(2+) release activity of the mutant on IP(3) concentration was reduced, but both wild-type and mutant receptors produced similar B cell receptor-induced Ca(2+) signals. These results demonstrate that the Ca(2+) release properties of IP(3)R1 are largely unaffected by the P1059L mutation.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Morinaka A, Yamada M, Itofusa R, Funato Y, Yoshimura Y, Nakamura F, Yoshimura T, Kaibuchi K, Goshima Y, Hoshino M, Kamiguchi H, Miki H. Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci Signal 2011; 4:ra26. [PMID: 21521879 DOI: 10.1126/scisignal.2001127] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Semaphorin3A (Sema3A) is a repulsive guidance molecule for axons, which acts by inducing growth cone collapse through phosphorylation of CRMP2 (collapsin response mediator protein 2). Here, we show a role for CRMP2 oxidation and thioredoxin (TRX) in the regulation of CRMP2 phosphorylation and growth cone collapse. Sema3A stimulation generated hydrogen peroxide (H2O2) through MICAL (molecule interacting with CasL) and oxidized CRMP2, enabling it to form a disulfide-linked homodimer through cysteine-504. Oxidized CRMP2 then formed a transient disulfide-linked complex with TRX, which stimulated CRMP2 phosphorylation by glycogen synthase kinase-3, leading to growth cone collapse. We also reconstituted oxidation-dependent phosphorylation of CRMP2 in vitro, using a limited set of purified proteins. Our results not only clarify the importance of H2O2 and CRMP2 oxidation in Sema3A-induced growth cone collapse but also indicate an unappreciated role for TRX in linking CRMP2 oxidation to phosphorylation.
Collapse
Affiliation(s)
- Akifumi Morinaka
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kehoe S, Zhang XF, Boyd D. Composition-property relationships for an experimental composite nerve guidance conduit: evaluating cytotoxicity and initial tensile strength. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:945-959. [PMID: 21369711 DOI: 10.1007/s10856-011-4263-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
The objective of this work was to examine the main (individual), combined (interaction) and second-order (quadratic) effects of: (i) poly(D,L-lactide-co-glycolide) (PLGA), (ii) F127, and (iii) a zinc-silicate based bioactive glass, on the cytotoxicity and ultimate tensile strength of an experimental nerve guidance conduit (NGC). The experimental plan was carried out according to a Box-Behnken design matrix. The effects of each compositional factor were quantified using response surface methodology (RSM) techniques. Linear and quadratic polynomial equations were developed to examine cytotoxicity (after incubation at 3, 7 and 28 days) and initial ultimate tensile strength (UTS(0)). Multiple regression analyses showed that the developed models yielded a good prediction for each response examined. It was observed that the beneficial effects of PLGA and bioactive glass on controlling cytotoxicity appeared greater than that of F127. Furthermore, the experimental conduits (with the exception of CNGC-I and CNGC-K) generally showed superior cytocompatibility when compared with the comparable literature for the clinically used nerve guidance conduit Neurolac(®). In this investigation, optimal compositions for cell viability were obtained for the following composition: PLGA = 18.89 wt%/F127 = 0.52 wt%/glass = 12.71 wt%. The optimization of composition with respect to ultimate tensile strength was also established (desired UTS(0) being based on the properties of the control device Neurolac(®) whose UTS is c.20 MPa). The desired UTS(0) of ≤ 20 MPa was found for the composition: PLGA = 18.63 wt%/F127 = 0.77 wt%/glass = 5.54 wt%. A UTS(0) ≤ 30 MPa was recorded for the composition: PLGA = 18.34 wt%/F127 = 0.62 wt%/glass = 9.83 wt%, such tensile strengths are comparable to, reported values for Neurolac(®). Examination of the composition-property relationships with respect to combining cell viability and UTS(0) indicated preferred compositions in the range 17.97-19.90 wt% PLGA, 0.16-1.13 wt% F127 and between 5.54 and ≤ 20 wt% glass. This research demonstrates the value of a design of experiments approach for the design of novel nerve guidance conduits, and shows that the materials examined may have potential for the repair of peripheral nerve discontinuities.
Collapse
Affiliation(s)
- S Kehoe
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Ave, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
35
|
Fiedler MJ, Nathanson MH. The type I inositol 1,4,5-trisphosphate receptor interacts with protein 4.1N to mediate neurite formation through intracellular Ca waves. Neurosignals 2011; 19:75-85. [PMID: 21389686 PMCID: PMC3124450 DOI: 10.1159/000324507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/25/2011] [Indexed: 01/07/2023] Open
Abstract
Ca2+ waves are an important mechanism for encoding Ca2+ signaling information, but the molecular basis for wave formation and how this regulates neuronal function is not entirely understood. Using nerve growth factor-differentiated PC12 cells as a model system, we investigated the interaction between the type I inositol 1,4,5-trisphosphate receptor (IP3R1) and the cytoskeletal linker, protein 4.1N, to examine the relationship between Ca2+ wave formation and neurite development. This was examined using RNAi and overexpressed dominant negative binding regions of each protein. Confocal microscopy was used to monitor neurite formation and Ca2+ waves. Knockdown of IP3R1 or 4.1N attenuated neurite formation, as did binding regions of IP3R1 and 4.1N, which colocalized with endogenous 4.1N and IP3R1, respectively. Upon stimulation with the IP3-producing agonist carbachol, both RNAi and dominant negative molecules shifted signaling events from waves to homogeneous patterns of Ca2+ release. These findings provide evidence that IP3R1 localization, via protein 4.1N, is necessary for Ca2+ wave formation, which in turn mediates neurite formation.
Collapse
Affiliation(s)
- Michael J Fiedler
- Cell Biology Department, Yale University, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
36
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|
37
|
Hussman JP, Chung RH, Griswold AJ, Jaworski JM, Salyakina D, Ma D, Konidari I, Whitehead PL, Vance JM, Martin ER, Cuccaro ML, Gilbert JR, Haines JL, Pericak-Vance MA. A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism. Mol Autism 2011; 2:1. [PMID: 21247446 PMCID: PMC3035032 DOI: 10.1186/2040-2392-2-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/19/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism. METHODS GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology. RESULTS Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets. CONCLUSIONS As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.
Collapse
Affiliation(s)
| | - Ren-Hua Chung
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - James M Jaworski
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Daria Salyakina
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Deqiong Ma
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ioanna Konidari
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jonathan L Haines
- Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
38
|
Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K. Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J Biol Chem 2010; 285:36081-91. [PMID: 20813840 PMCID: PMC2975230 DOI: 10.1074/jbc.m110.140129] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/01/2010] [Indexed: 02/02/2023] Open
Abstract
The N-terminal ∼220-amino acid region of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channel has been referred to as the suppressor/coupling domain because it is required for both IP(3) binding suppression and IP(3)-induced channel gating. Measurements of IP(3)-induced Ca(2+) fluxes of mutagenized mouse type 1 IP(3)R (IP(3)R1) showed that the residues responsible for IP(3) binding suppression in this domain were not essential for channel opening. On the other hand, a single amino acid substitution of Tyr-167 to alanine completely impaired IP(3)-induced Ca(2+) release without reducing the IP(3) binding activity. The corresponding residue in type 3 IP(3)R (IP(3)R3), Trp-168, was also critical for channel opening. Limited trypsin digestion experiments showed that the trypsin sensitivities of the C-terminal gatekeeper domain differed markedly between the wild-type channel and the Tyr-167 mutant under the optimal conditions for channel opening. These results strongly suggest that the Tyr/Trp residue (Tyr-167 in IP(3)R1 and Trp-168 in IP(3)R3) is critical for the functional coupling between IP(3) binding and channel gating by maintaining the structural integrity of the C-terminal gatekeeper domain at least under activation gating.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites/genetics
- Blotting, Western
- Calcium/metabolism
- Cell Line, Tumor
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Ion Channel Gating/drug effects
- Ion Channel Gating/genetics
- Ion Channel Gating/physiology
- Ligands
- Mice
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Trypsin/metabolism
- Tryptophan/chemistry
- Tryptophan/genetics
- Tryptophan/metabolism
- Tyrosine/chemistry
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Haruka Yamazaki
- From the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
- the Calcium Oscillation Project, Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| | - Jenny Chan
- the Division of Signaling Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario M5G IL7, Canada
| | - Mitsuhiko Ikura
- the Division of Signaling Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario M5G IL7, Canada
| | - Takayuki Michikawa
- From the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
- the Calcium Oscillation Project, Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| | - Katsuhiko Mikoshiba
- From the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
- the Calcium Oscillation Project, Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| |
Collapse
|
39
|
Akiyama H, Kamiguchi H. Phosphatidylinositol 3-kinase facilitates microtubule-dependent membrane transport for neuronal growth cone guidance. J Biol Chem 2010; 285:41740-8. [PMID: 21041312 DOI: 10.1074/jbc.m110.156489] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activity of PI3K is necessary for polarized cell motility. To guide extending axons, environmental cues polarize the growth cone via asymmetric generation of Ca(2+) signals and subsequent intracellular mechanical events, including membrane trafficking and cytoskeletal reorganization. However, it remains unclear how PI3K is involved in such events for axon guidance. Here, we demonstrate that PI3K plays a permissive role in growth cone turning by facilitating microtubule (MT)-dependent membrane transport. Using embryonic chick dorsal root ganglion neurons in culture, attractive axon turning was induced by Ca(2+) elevations on one side of the growth cone by photolyzing caged Ca(2+) or caged inositol 1,4,5-trisphosphate. We show that PI3K activity was required downstream of Ca(2+) signals for growth cone turning. Attractive Ca(2+) signals, generated with caged Ca(2+) or caged inositol 1,4,5-trisphosphate, triggered asymmetric transport of membrane vesicles from the center to the periphery of growth cones in a MT-dependent manner. This centrifugal vesicle transport was abolished by PI3K inhibitors, suggesting that PI3K is involved in growth cone attraction at the level of membrane trafficking. Consistent with this observation, immunocytochemistry showed that PI3K inhibitors reduced MTs in the growth cone peripheral domain. Time-lapse imaging of EB1 on the plus-end of MTs revealed that MT advance into the growth cone peripheral domain was dependent on PI3K activity: inhibition of the PI3K signaling pathway attenuated MT advance, whereas exogenous phosphatidylinositol 3,4,5-trisphosphate, the product of PI3K-catalyzed reactions, promoted MT advance. This study demonstrates the importance of PI3K-dependent membrane trafficking in chemotactic cell migration.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
40
|
Tojima T, Itofusa R, Kamiguchi H. Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 2010; 66:370-7. [PMID: 20471350 DOI: 10.1016/j.neuron.2010.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Asymmetric Ca(2+) elevations across the axonal growth cone mediate its turning responses to attractive and repulsive guidance cues. Here we show that clathrin-mediated endocytosis acts downstream of Ca(2+) signals as driving machinery for growth cone turning. In dorsal root ganglion neurons, the formation of clathrin-coated pits is facilitated asymmetrically across the growth cone by a directionally applied chemorepellent, semaphorin 3A, or by Ca(2+) signals that mediate repulsive guidance. In contrast, coated pit formation remains symmetric in the presence of attractive Ca(2+) signals. Inhibition of clathrin-mediated endocytosis abolishes growth cone repulsion, but not attraction, induced by Ca(2+) or extracellular physiological cues. Furthermore, asymmetric perturbation of the balance of endocytosis and exocytosis in the growth cone is sufficient to initiate its turning toward the side with less endocytosis or more exocytosis. With our previous finding that growth cone attraction involves asymmetric exocytosis, we propose that the balance between membrane addition and removal dictates bidirectional axon guidance.
Collapse
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
41
|
Hines JH, Abu-Rub M, Henley JR. Asymmetric endocytosis and remodeling of beta1-integrin adhesions during growth cone chemorepulsion by MAG. Nat Neurosci 2010; 13:829-37. [PMID: 20512137 DOI: 10.1038/nn.2554] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/15/2010] [Indexed: 12/11/2022]
Abstract
Gradients of chemorepellent factors released from myelin may impair axon pathfinding and neuroregeneration after injury. We found that, analogously to the process of chemotaxis in invasive tumor cells, axonal growth cones of Xenopus spinal neurons modulate the functional distribution of integrin receptors during chemorepulsion induced by myelin-associated glycoprotein (MAG). A focal MAG gradient induced polarized endocytosis and concomitant asymmetric loss of beta(1)-integrin and vinculin-containing adhesions on the repellent side during repulsive turning. Loss of symmetrical beta(1)-integrin function was both necessary and sufficient for chemorepulsion, which required internalization by clathrin-mediated endocytosis. Induction of repulsive Ca(2+) signals was necessary and sufficient for the stimulated rapid endocytosis of beta(1)-integrin. Altogether, these findings identify beta(1)-integrin as an important functional cargo during Ca(2+)-dependent rapid endocytosis stimulated by a diffusible guidance cue. Such dynamic redistribution allows the growth cone to rapidly adjust adhesiveness across its axis, an essential feature for initiating chemotactic turning.
Collapse
Affiliation(s)
- Jacob H Hines
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|