1
|
Zhu Y, Pei X, Novaj A, Setton J, Bronder D, Derakhshan F, Selenica P, McDermott N, Orman M, Plum S, Subramanyan S, Braverman SH, McMillan B, Sinha S, Ma J, Gazzo A, Khan A, Bakhoum S, Powell SN, Reis-Filho JS, Riaz N. Large-scale copy number alterations are enriched for synthetic viability in BRCA1/BRCA2 tumors. Genome Med 2024; 16:108. [PMID: 39198848 PMCID: PMC11351199 DOI: 10.1186/s13073-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear. METHODS We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher's exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations. RESULTS We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation. CONCLUSIONS This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ardijana Novaj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Bronder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mehmet Orman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarina Plum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shyamal Subramanyan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara H Braverman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Biko McMillan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonali Sinha
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Bonifer C, Hanke W, Mühle J, Löhr F, Becker-Baldus J, Nagel J, Schertler GFX, Müller CE, König GM, Hilger D, Glaubitz C. Structural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy. Chem Sci 2024; 15:12939-12956. [PMID: 39148790 PMCID: PMC11323312 DOI: 10.1039/d4sc01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of Gq proteins by blocking GDP/GTP exchange. The inhibitor binding site of Gq has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR. The resulting data allowed us to identify regions of the inhibitor which show especially pronounced effects upon binding and revealed a generally rigid binding mode in the cis conformation under native-like conditions. The inclusion of the membrane environment allowed us to show a deep penetration of FR into the lipid bilayer illustrating a possible access mode of FR into the cell. Dynamic nuclear polarization (DNP)-enhanced ssNMR was used to observe the structural response of specific segments of the Gα subunit to inhibitor binding. This revealed rigidification of the switch I binding site and an allosteric response in the α5 helix as well as suppression of structural changes induced by nucleotide exchange due to inhibition by FR. Our NMR studies of the FR-G protein complex conducted directly within a native membrane environment provide important insights into the inhibitors access via the lipid membrane, binding mode, and structural allosteric effects.
Collapse
Affiliation(s)
- Christian Bonifer
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Jessica Nagel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gebhard F X Schertler
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg 35037 Marburg Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
3
|
Jang W, Senarath K, Feinberg G, Lu S, Lambert NA. Visualization of endogenous G proteins on endosomes and other organelles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583500. [PMID: 38496652 PMCID: PMC10942389 DOI: 10.1101/2024.03.05.583500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Classical G protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20-30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.
Collapse
|
4
|
Tsisanova E, Nobles M, Sebastian S, Ng KE, Thomas A, Weinstein LS, Munroe PB, Tinker A. The ric-8b protein (resistance to inhibitors of cholinesterase 8b) is key to preserving contractile function in the adult heart. J Biol Chem 2024; 300:107470. [PMID: 38879012 PMCID: PMC11277413 DOI: 10.1016/j.jbc.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 07/09/2024] Open
Abstract
Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the β-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.
Collapse
Affiliation(s)
- Elena Tsisanova
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muriel Nobles
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sonia Sebastian
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Keat-Eng Ng
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Thomas
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Patricia B Munroe
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew Tinker
- Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Solis GP, Koval A, Valnohova J, Kazemzadeh A, Savitsky M, Katanaev VL. Neomorphic Gαo mutations gain interaction with Ric8 proteins in GNAO1 encephalopathies. J Clin Invest 2024; 134:e172057. [PMID: 38874642 PMCID: PMC11291268 DOI: 10.1172/jci172057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G protein Gαo. Of the more than 80 pathogenic mutations, most are single amino acid substitutions spreading across the Gαo sequence. We performed extensive characterization of Gαo mutants, showing abnormal GTP uptake and hydrolysis and deficiencies in binding Gβγ and RGS19. Plasma membrane localization of Gαo was decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerged for the more severe mutants. Pathogenic mutants massively gained interaction with Ric8A and, surprisingly, Ric8B proteins, relocalizing them from cytoplasm to Golgi. Of these 2 mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/Gαo, Gαq, and Gα12/Gα13 subfamilies, and Ric8B solely responsible for Gαs/Gαolf. Ric8 mediates the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through imbalance of the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work uncovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights into other maladies caused by G protein malfunctioning and further genetic diseases.
Collapse
Affiliation(s)
- Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jana Valnohova
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arghavan Kazemzadeh
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Medicine and Life Sciences, Department of Pharmacy and Pharmacology, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
6
|
Roy S, Sinha S, Silas AJ, Ghassemian M, Kufareva I, Ghosh P. Growth factor-dependent phosphorylation of Gα i shapes canonical signaling by G protein-coupled receptors. Sci Signal 2024; 17:eade8041. [PMID: 38833528 PMCID: PMC11328959 DOI: 10.1126/scisignal.ade8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.
Collapse
Affiliation(s)
- Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Ananta James Silas
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| |
Collapse
|
7
|
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 2024; 187:1527-1546.e25. [PMID: 38412860 PMCID: PMC10947893 DOI: 10.1016/j.cell.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Eva Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Janicot R, Maziarz M, Park JC, Luebbers A, Green E, Zhao J, Philibert C, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573921. [PMID: 38260348 PMCID: PMC10802303 DOI: 10.1101/2024.01.02.573921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D. Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
9
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Muñoz-Reyes D, McClelland LJ, Arroyo-Urea S, Sánchez-Yepes S, Sabín J, Pérez-Suárez S, Menendez M, Mansilla A, García-Nafría J, Sprang S, Sanchez-Barrena MJ. The neuronal calcium sensor NCS-1 regulates the phosphorylation state and activity of the Gα chaperone and GEF Ric-8A. eLife 2023; 12:e86151. [PMID: 38018500 PMCID: PMC10732572 DOI: 10.7554/elife.86151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Gα. Our data show that the binding of NCS-1 and Gα to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to casein kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A guanine nucleotide exchange factor (GEF) activity toward Gα when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.
Collapse
Affiliation(s)
- Daniel Muñoz-Reyes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| | - Levi J McClelland
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of ZaragozaZaragozaSpain
| | - Sonia Sánchez-Yepes
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science DevelopmentsSantiago de CompostelaSpain
- Departamento de Física Aplicada, Universidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sara Pérez-Suárez
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| | - Margarita Menendez
- Department of Biological Physical-Chemisty, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
- Ciber of Respiratory Diseases, ISCIIIMadridSpain
| | - Alicia Mansilla
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
- Department of Systems Biology, Universidad de AlcalaMadridSpain
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of ZaragozaZaragozaSpain
| | - Stephen Sprang
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Maria Jose Sanchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| |
Collapse
|
11
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha chaperone and guanine-nucleotide exchange factor RIC-8 regulates cilia morphogenesis in Caenorhabditis elegans sensory neurons. PLoS Genet 2023; 19:e1011015. [PMID: 37910589 PMCID: PMC10642896 DOI: 10.1371/journal.pgen.1011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Gan B, Yu L, Yang H, Jiao H, Pang B, Chen Y, Wang C, Lv R, Hu H, Cao Z, Ren R. Mechanism of agonist-induced activation of the human itch receptor MRGPRX1. PLoS Biol 2023; 21:e3001975. [PMID: 37347749 DOI: 10.1371/journal.pbio.3001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
Mas-related G-protein-coupled receptors X1-X4 (MRGPRX1-X4) are 4 primate-specific receptors that are recently reported to be responsible for many biological processes, including itch sensation, pain transmission, and inflammatory reactions. MRGPRX1 is the first identified human MRGPR, and its expression is restricted to primary sensory neurons. Due to its dual roles in itch and pain signaling pathways, MRGPRX1 has been regarded as a promising target for itch remission and pain inhibition. Here, we reported a cryo-electron microscopy (cryo-EM) structure of Gq-coupled MRGPRX1 in complex with a synthetic agonist compound 16 in an active conformation at an overall resolution of 3.0 Å via a NanoBiT tethering strategy. Compound 16 is a new pain-relieving compound with high potency and selectivity to MRGPRX1 over other MRGPRXs and opioid receptor. MRGPRX1 was revealed to share common structural features of the Gq-mediated receptor activation mechanism of MRGPRX family members, but the variable residues in orthosteric pocket of MRGPRX1 exhibit the unique agonist recognition pattern, potentially facilitating to design MRGPRX1-specific modulators. Together with receptor activation and itch behavior evaluation assays, our study provides a structural snapshot to modify therapeutic molecules for itch relieving and analgesia targeting MRGPRX1.
Collapse
Affiliation(s)
- Bing Gan
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- The Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Haifeng Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| | - Haizhan Jiao
- The Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bin Pang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yian Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Rui Lv
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hongli Hu
- The Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| |
Collapse
|
13
|
Papasergi-Scott MM, Kwarcinski FE, Yu M, Panova O, Ovrutsky AM, Skiniotis G, Tall GG. Structures of Ric-8B in complex with Gα protein folding clients reveal isoform specificity mechanisms. Structure 2023; 31:553-564.e7. [PMID: 36931277 PMCID: PMC10164081 DOI: 10.1016/j.str.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank E Kwarcinski
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann M Ovrutsky
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Van Trigt WK, Kelly KM, Hughes CCW. GNAQ mutations drive port wine birthmark-associated Sturge-Weber syndrome: A review of pathobiology, therapies, and current models. Front Hum Neurosci 2022; 16:1006027. [PMID: 36405075 PMCID: PMC9670321 DOI: 10.3389/fnhum.2022.1006027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Port-wine birthmarks (PWBs) are caused by somatic, mosaic mutations in the G protein guanine nucleotide binding protein alpha subunit q (GNAQ) and are characterized by the formation of dilated, dysfunctional blood vessels in the dermis, eyes, and/or brain. Cutaneous PWBs can be treated by current dermatologic therapy, like laser intervention, to lighten the lesions and diminish nodules that occur in the lesion. Involvement of the eyes and/or brain can result in serious complications and this variation is termed Sturge-Weber syndrome (SWS). Some of the biggest hurdles preventing development of new therapeutics are unanswered questions regarding disease biology and lack of models for drug screening. In this review, we discuss the current understanding of GNAQ signaling, the standard of care for patients, overlap with other GNAQ-associated or phenotypically similar diseases, as well as deficiencies in current in vivo and in vitro vascular malformation models.
Collapse
Affiliation(s)
- William K. Van Trigt
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States,*Correspondence: William K. Van Trigt,
| | - Kristen M. Kelly
- Department of Dermatology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States,Christopher C. W. Hughes,
| |
Collapse
|
15
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
16
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
17
|
Zuo Z, Wang S, Wang Q, Wang D, Wu Q, Xie S, Zou J. Effects of partial replacement of dietary flour meal with seaweed polysaccharides on the resistance to ammonia stress in the intestine of hybrid snakehead (Channa maculatus ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2022; 127:271-279. [PMID: 35753557 DOI: 10.1016/j.fsi.2022.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to evaluate the effects of partial replacement of dietary flour meal with seaweed polysaccharides on survival rate, histology, intestinal oxidative stress levels, and expression of immune-related genes in hybrid snakeheads under acute ammonia stress. Four experimental diets were set: (C) basal diet with 0% of seaweed polysaccharides as the control group, (MR) basal diet with 10% of seaweed polysaccharides, (HR) basal diet with 15% of seaweed polysaccharides, (HF) basal diet with 10% of fish oil. After 60 days of feeding, fish fed with the diet of C group were sampled as the control group, and other fish were exposed to ammonia nitrogen for 48 h. Two concentrations of total ammonia nitrogen (TAN) were used in this study: 120 mg/L TAN (low concentration exposure group), and 1200 mg/L TAN (high concentration exposure group). After exposure to ammonia nitrogen for 48 h, fish were sampled. The results indicated that adding seaweed polysaccharides to the diet could improve the survival rate of hybrid snakeheads under high concentration of ammonia stress. Histopathological analysis demonstrated multiple abnormalities in gills and intestines after exposure to two concentrations of TAN. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and lactate dehydrogenase (LDH) were all increased in the MR group under two concentrations of TAN stress. The mRNA abundance of immune-related genes in fish intestinal tissues was significantly induced or inhibited. These results suggested that partial replacement of dietary flour meal with seaweed polysaccharides improved the ability of hybrid snakeheads to resist ammonia stress.
Collapse
Affiliation(s)
- Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Dongjie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuping Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Sebastian S, Nobles M, Tsisanova E, Ludwig A, Munroe PB, Tinker A. The role of resistance to inhibitors of cholinesterase 8b in the control of heart rate. Physiol Genomics 2021; 53:150-159. [PMID: 33719582 DOI: 10.1152/physiolgenomics.00157.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have assessed the role of ric-b8 in the control of heart rate after the gene was implicated in a recent genome-wide association study of resting heart rate. We developed a novel murine model in which it was possible to conditionally delete ric-8b in the sinoatrial (SA) node after the addition of tamoxifen. Despite this, we were unable to obtain homozygotes and thus studied heterozygotes. Haploinsufficiency of ric-8b in the sinoatrial node induced by the addition of tamoxifen in adult animals leads to mice with a reduced heart rate. However, other electrocardiographic intervals (e.g., PR and QRS) were normal, and there was no apparent arrhythmia such as heart block. The positive chronotropic response to isoprenaline was abrogated, whereas the response to carbachol was unchanged. The pacemaker current If (funny current) has an important role in regulating heart rate, and its function is modulated by both isoprenaline and carbachol. Using a heterologous system expressing HCN4, we show that ric-8b can modulate the HCN4 current. Overexpression of ric-8b led to larger HCN4 currents, whereas silencing ric-8b led to smaller currents. Ric-8b modulates heart rate responses in vivo likely via its actions on the stimulatory G-protein.
Collapse
Affiliation(s)
- Sonia Sebastian
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muriel Nobles
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Elena Tsisanova
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia B Munroe
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew Tinker
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
19
|
Srivastava D, Yadav RP, Inamdar SM, Huang Z, Sokolov M, Boyd K, Artemyev NO. Transducin Partners Outside the Phototransduction Pathway. Front Cell Neurosci 2020; 14:589494. [PMID: 33173469 PMCID: PMC7591391 DOI: 10.3389/fncel.2020.589494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Transducin mediates signal transduction in a classical G protein-coupled receptor (GPCR) phototransduction cascade. Interactions of transducin with the receptor and the effector molecules had been extensively investigated and are currently defined at the atomic level. However, partners and functions of rod transducin α (Gαt 1) and βγ (Gβ1γ1) outside the visual pathway are not well-understood. In particular, light-induced redistribution of rod transducin from the outer segment to the inner segment and synaptic terminal (IS/ST) allows Gαt1 and/or Gβ1γ1 to modulate synaptic transmission from rods to rod bipolar cells (RBCs). Protein-protein interactions underlying this modulation are largely unknown. We discuss known interactors of transducin in the rod IS/ST compartment and potential pathways leading to the synaptic effects of light-dispersed Gαt1 and Gβ1γ1. Furthermore, we show that a prominent non-GPCR guanine nucleotide exchange factor (GEF) and a chaperone of Gα subunits, resistance to inhibitors of cholinesterase 8A (Ric-8A) protein, is expressed throughout the retina including photoreceptor cells. Recent structures of Ric-8A alone and in complexes with Gα subunits have illuminated the structural underpinnings of the Ric-8A activities. We generated a mouse model with conditional knockout of Ric-8A in rods in order to begin defining the functional roles of the protein in rod photoreceptors and the retina. Our analysis suggests that Ric-8A is not an obligate chaperone of Gαt1. Further research is needed to investigate probable roles of Ric-8A as a GEF, trafficking chaperone, or a mediator of the synaptic effects of Gαt1.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhen Huang
- Department of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim Sokolov
- Department of Ophthalmology, Biochemistry and Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
20
|
Nagai MH, Xavier VPS, Gutiyama LM, Machado CF, Reis AH, Donnard ER, Galante PAF, Abreu JG, Festuccia WT, Malnic B. Depletion of Ric-8B leads to reduced mTORC2 activity. PLoS Genet 2020; 16:e1008255. [PMID: 32392211 PMCID: PMC7252638 DOI: 10.1371/journal.pgen.1008255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/27/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
mTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway. Phosphorylation of Akt at Ser473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. Knockdown of the endogenous Ric-8B gene in cultured cell lines leads to reduced phosphorylation levels of Akt (Ser473), further supporting the involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2. Gene inactivation in mice can be used to identify genes that are involved in important biological processes and that may contribute to disease. We used this approach to study the Ric-8B gene, which is highly conserved in mammals, including humans. We found that Ric-8B is essential for embryogenesis and for the proper development of the nervous system. Ric-8B mutant mouse embryos are smaller than their wild type littermates and show neural tube defects at the cranial region. This approach also allowed us to identify the biological pathways that potentially contribute to the observed phenotypes, and uncover a novel role for Ric-8B in the mTORC2 signaling pathway. mTORC2 plays particular important roles in the adult brain, and has been implicated in neurological disorders. Our mutant mice provide a model to study the complex molecular and cellular processes underlying the interplay between Ric-8B and mTORC2 in neuronal function.
Collapse
Affiliation(s)
- Maíra H. Nagai
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alice H. Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa R. Donnard
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Jose G. Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - William T. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Seven AB, Hilger D, Papasergi-Scott MM, Zhang L, Qu Q, Kobilka BK, Tall GG, Skiniotis G. Structures of Gα Proteins in Complex with Their Chaperone Reveal Quality Control Mechanisms. Cell Rep 2020; 30:3699-3709.e6. [PMID: 32126208 PMCID: PMC7192526 DOI: 10.1016/j.celrep.2020.02.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023] Open
Abstract
Many chaperones promote nascent polypeptide folding followed by substrate release through ATP-dependent conformational changes. Here we show cryoEM structures of Gα subunit folding intermediates in complex with full-length Ric-8A, a unique chaperone-client system in which substrate release is facilitated by guanine nucleotide binding to the client G protein. The structures of Ric-8A-Gαi and Ric-8A-Gαq complexes reveal that the chaperone employs its extended C-terminal region to cradle the Ras-like domain of Gα, positioning the Ras core in contact with the Ric-8A core while engaging its switch2 nucleotide binding region. The C-terminal α5 helix of Gα is held away from the Ras-like domain through Ric-8A core domain interactions, which critically depend on recognition of the Gα C terminus by the chaperone. The structures, complemented with biochemical and cellular chaperoning data, support a folding quality control mechanism that ensures proper formation of the C-terminal α5 helix before allowing GTP-gated release of Gα from Ric-8A.
Collapse
Affiliation(s)
- Alpay Burak Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Li Zhang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Srivastava D, Artemyev NO. Ric-8A, a GEF, and a Chaperone for G Protein α-Subunits: Evidence for the Two-Faced Interface. Bioessays 2020; 42:e1900208. [PMID: 31967346 PMCID: PMC7034654 DOI: 10.1002/bies.201900208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Resistance to inhibitors of cholinesterase 8A (Ric-8A) is a prominent non-receptor GEF and a chaperone of G protein α-subunits (Gα). Recent studies shed light on the structure of Ric-8A, providing insights into the mechanisms underlying its interaction with Gα. Ric-8A is composed of a core armadillo-like domain and a flexible C-terminal tail. Interaction of a conserved concave surface of its core domain with the Gα C-terminus appears to mediate formation of the initial Ric-8A/GαGDP intermediate, followed by the formation of a stable nucleotide-free complex. The latter event involves a large-scale dislocation of the Gα α5-helix that produces an extensive primary interface and disrupts the nucleotide-binding site of Gα. The distal portion of the C-terminal tail of Ric-8A forms a smaller secondary interface, which ostensibly binds the switch II region of Gα, facilitating binding of GTP. The two-site Gα interface of Ric-8A is distinct from that of GPCRs, and might have evolved to support the chaperone function of Ric-8A.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Nikolai O. Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
23
|
McClelland LJ, Zhang K, Mou TC, Johnston J, Yates-Hansen C, Li S, Thomas CJ, Doukov TI, Triest S, Wohlkonig A, Tall GG, Steyaert J, Chiu W, Sprang SR. Structure of the G protein chaperone and guanine nucleotide exchange factor Ric-8A bound to Gαi1. Nat Commun 2020; 11:1077. [PMID: 32103024 PMCID: PMC7044438 DOI: 10.1038/s41467-020-14943-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Ric-8A is a cytosolic Guanine Nucleotide exchange Factor (GEF) that activates heterotrimeric G protein alpha subunits (Gα) and serves as an essential Gα chaperone. Mechanisms by which Ric-8A catalyzes these activities, which are stimulated by Casein Kinase II phosphorylation, are unknown. We report the structure of the nanobody-stabilized complex of nucleotide-free Gα bound to phosphorylated Ric-8A at near atomic resolution by cryo-electron microscopy and X-ray crystallography. The mechanism of Ric-8A GEF activity differs considerably from that employed by G protein-coupled receptors at the plasma membrane. Ric-8A engages a specific conformation of Gα at multiple interfaces to form a complex that is stabilized by phosphorylation within a Ric-8A segment that connects two Gα binding sites. The C-terminus of Gα is ejected from its beta sheet core, thereby dismantling the GDP binding site. Ric-8A binds to the exposed Gα beta sheet and switch II to stabilize the nucleotide-free state of Gα.
Collapse
Affiliation(s)
- Levi J McClelland
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Tung-Chung Mou
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jake Johnston
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Cindee Yates-Hansen
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA
| | - Shanshan Li
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Celestine J Thomas
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA
- Regeneron Pharmaceutical, Inc., Tarrytown, NY, USA
| | - Tzanko I Doukov
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94025, USA
| | - Sarah Triest
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Alexandre Wohlkonig
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- Biosciences Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Stephen R Sprang
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
- Graduate Program in Biochemistry and Biophysics, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
24
|
Masuho I, Chavali S, Muntean BS, Skamangas NK, Simonyan K, Patil DN, Kramer GM, Ozelius L, Babu MM, Martemyanov KA. Molecular Deconvolution Platform to Establish Disease Mechanisms by Surveying GPCR Signaling. Cell Rep 2019; 24:557-568.e5. [PMID: 30021154 PMCID: PMC6077248 DOI: 10.1016/j.celrep.2018.06.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/10/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the wealth of genetic information available, mechanisms underlying pathological effects of disease-associated mutations in components of G protein-coupled receptor (GPCR) signaling cascades remain elusive. In this study, we developed a scalable approach for the functional analysis of clinical variants in GPCR pathways along with a complete analytical framework. We applied the strategy to evaluate an extensive set of dystonia-causing mutations in G protein Gαolf. Our quantitative analysis revealed diverse mechanisms by which pathogenic variants disrupt GPCR signaling, leading to a mechanism-based classification of dystonia. In light of significant clinical heterogeneity, the mechanistic analysis of individual disease-associated variants permits tailoring personalized intervention strategies, which makes it superior to the current phenotype-based approach. We propose that the platform developed in this study can be universally applied to evaluate disease mechanisms for conditions associated with genetic variation in all components of GPCR signaling. A scalable platform allows multidimensional analysis of GPCR signaling The approach is applied to dystonia-causing mutations in G protein Gαolf Pathogenic variants in Gαolf disrupt GPCR signaling by diverse mechanisms Mechanism-based disease classification could allow targeted therapies
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Dipak N Patil
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Grant M Kramer
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Laurie Ozelius
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Zeng H, Castillo-Cabrera J, Manser M, Lu B, Yang Z, Strande V, Begue D, Zamponi R, Qiu S, Sigoillot F, Wang Q, Lindeman A, Reece-Hoyes JS, Russ C, Bonenfant D, Jiang X, Wang Y, Cong F. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. eLife 2019; 8:50223. [PMID: 31741433 PMCID: PMC6927754 DOI: 10.7554/elife.50223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses. Cancer is caused by cells growing and dividing uncontrollably as a result of mutations in certain genes. Many human lung cancers have a mutation in the gene that makes the protein EGFR. In healthy cells, EGFR allows a cell to respond to chemical signals that encourage healthy growth. In cancer, the altered EGFR is always on, which allows the cell to rapidly grow without any control, resulting in cancer. One approach to treating these cancers is with drugs that block the activity of mutant EGFR. Although these drugs have been very successful, they do not always succeed in completely treating the cancer. This is because over time the cancer cells can become resistant to the drug and start forming new tumors. One way that this can happen is if random mutations lead to changes in other proteins that make the drug less effective or stop it from accessing the EGFR proteins. However, it is unclear how other proteins in cancer cells affect the response to these EGFR inhibiting drugs. Now, Zeng et al. have used gene editing to systematically remove every protein from human lung cancer cells grown in the laboratory to see how this affects resistance to EGFR inhibitor treatment. This revealed that a number of different proteins could change how cancer cells responded to the drug. For instance, cells lacking the protein RIC8A were more sensitive to EGFR inhibitors and less likely to develop resistance. This is because loss of RIC8A turns down a key cell survival pathway in cancer cells. Whereas, cancer cells lacking the ARIH2 protein were able to produce more proteins that are needed for cancer cell growth, which resulted in them having increased resistance to EGFR inhibitors. The proteins identified in this study could be used to develop new drugs that improve the effectiveness of EGFR inhibitors. Understanding how cancer cells respond to EGFR inhibitor treatment could help determine how likely a patient is to develop resistance to these drugs.
Collapse
Affiliation(s)
- Hao Zeng
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Johnny Castillo-Cabrera
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Mika Manser
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Bo Lu
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Zinger Yang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Vaik Strande
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Begue
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Raffaella Zamponi
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Shumei Qiu
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Frederic Sigoillot
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Qiong Wang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - John S Reece-Hoyes
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Debora Bonenfant
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Xiaomo Jiang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Youzhen Wang
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Feng Cong
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| |
Collapse
|
26
|
Structural underpinnings of Ric8A function as a G-protein α-subunit chaperone and guanine-nucleotide exchange factor. Nat Commun 2019; 10:3084. [PMID: 31300652 PMCID: PMC6625990 DOI: 10.1038/s41467-019-11088-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/21/2019] [Indexed: 02/03/2023] Open
Abstract
Resistance to inhibitors of cholinesterase 8A (Ric8A) is an essential regulator of G protein α-subunits (Gα), acting as a guanine nucleotide exchange factor and a chaperone. We report two crystal structures of Ric8A, one in the apo form and the other in complex with a tagged C-terminal fragment of Gα. These structures reveal two principal domains of Ric8A: an armadillo-fold core and a flexible C-terminal tail. Additionally, they show that the Gα C-terminus binds to a highly-conserved patch on the concave surface of the Ric8A armadillo-domain, with selectivity determinants residing in the Gα sequence. Biochemical analysis shows that the Ric8A C-terminal tail is critical for its stability and function. A model of the Ric8A/Gα complex derived from crosslinking mass spectrometry and molecular dynamics simulations suggests that the Ric8A C-terminal tail helps organize the GTP-binding site of Gα. This study lays the groundwork for understanding Ric8A function at the molecular level. Ric8A regulates G protein α-subunits (Gα) by acting as a guanine nucleotide exchange factor (GEF) and a Gα chaperone. Here, the authors solve the crystal structures of free and Gα fragment bound Ric8A, and provide insights into the structural basis for Ric8A’s GEF and chaperone functions.
Collapse
|
27
|
Zeng B, Mou TC, Doukov TI, Steiner A, Yu W, Papasergi-Scott M, Tall GG, Hagn F, Sprang SR. Structure, Function, and Dynamics of the Gα Binding Domain of Ric-8A. Structure 2019; 27:1137-1147.e5. [PMID: 31155309 DOI: 10.1016/j.str.2019.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
Ric-8A is a 530-amino acid cytoplasmic molecular chaperone and guanine nucleotide exchange factor (GEF) for i, q, and 12/13 classes of heterortrimeric G protein alpha subunits (Gα). We report the 2.2-Å crystal structure of the Ric-8A Gα-binding domain with GEF activity, residues 1-452, and is phosphorylated at Ser435 and Thr440. Residues 1-429 adopt a superhelical fold comprised of Armadillo (ARM) and HEAT repeats, and the C terminus is disordered. One of the phosphorylated residues potentially binds to a basic cluster in an ARM motif. Amino acid sequence conservation and published hydrogen-deuterium exchange data indicate repeats 3 through 6 to be a putative Gα-binding surface. Normal mode modeling of small-angle X-ray scattering data indicates that phosphorylation induces relative rotation between repeats 1-4, 5-6, and 7-9. 2D 1H-15N-TROSY spectra of [2H,15N]-labeled Gαi1 in the presence of R452 reveals chemical shift perturbations of the C terminus and Gαi1 residues involved in nucleotide binding.
Collapse
Affiliation(s)
- Baisen Zeng
- Graduate Program in Biochemistry and Biophysics, University of Montana, Missoula, MT 59812, USA
| | - Tung-Chung Mou
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Tzanko I Doukov
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Andrea Steiner
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Wenxi Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Makaia Papasergi-Scott
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephen R Sprang
- Graduate Program in Biochemistry and Biophysics, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
28
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
29
|
Sokolov M, Yadav RP, Brooks C, Artemyev NO. Chaperones and retinal disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:85-117. [PMID: 30635087 DOI: 10.1016/bs.apcsb.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in protein folding and trafficking are a common cause of photoreceptor degeneration, causing blindness. Photoreceptor cells present an unusual challenge to the protein folding and transport machinery due to the high rate of protein synthesis, trafficking and the renewal of the outer segment, a primary cilium that has been modified into a specialized light-sensing compartment. Phototransduction components, such as rhodopsin and cGMP-phosphodiesterase, and multimeric ciliary transport complexes, such as the BBSome, are hotspots for mutations that disrupt proteostasis and lead to the death of photoreceptors. In this chapter, we review recent studies that advance our understanding of the chaperone and transport machinery of phototransduction proteins.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
30
|
Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M. The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 2018; 145:dev.164269. [PMID: 30297374 DOI: 10.1242/dev.164269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Collapse
Affiliation(s)
- Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Alice Roycroft
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sylvain Marcellini
- Departamento de Biología Cellular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| |
Collapse
|
31
|
Yu W, Yu M, Papasergi-Scott MM, Tall GG. Production of Phosphorylated Ric-8A proteins using protein kinase CK2. Protein Expr Purif 2018; 154:98-103. [PMID: 30290220 DOI: 10.1016/j.pep.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023]
Abstract
Resistance to Inhibitors of Cholinesterase-8 (Ric-8) proteins are molecular chaperones that fold heterotrimeric G protein α subunits shortly after biosynthesis. Ric-8 proteins also act as test tube guanine nucleotide exchange factors (GEF) that promote Gα subunit GDP for GTP exchange. The GEF and chaperoning activities of Ric-8A are regulated by phosphorylation of five serine and threonine residues within protein kinase CK2 consensus sites. The traditional way that Ric-8A proteins have been purified is from Spodoptera frugiperda (Sf9) or Trichoplusia ni (Tni) insect cells. Endogenous insect cell kinases do phosphorylate the critical regulatory sites of recombinant Ric-8A reasonably well, but there is batch-to-batch variability among recombinant Ric-8A preparations. Additionally, insect cell-production of some Ric-8 proteins with phosphosite alanine substitution mutations is proscribed as there seems to be interdependency of multi-site phosphorylation for functional protein production. Here, we present a method to produce wild type and phosphosite mutant Ric-8A proteins that are fully occupied with bound phosphate at each of the regulatory positions. Ric-8A proteins were expressed and purified from E. coli. Purified Ric-8A was phosphorylated in vitro with protein kinase CK2 and then re-isolated to remove kinase. The phosphorylated Ric-8A proteins were ∼99% pure and the completeness of phosphorylation was verified by chromatography, phos-tag SDS-PAGE mobility shifts, immunoblotting using phospho-site specific antibodies, and mass spectrometry analysis. E. coli-produced Ric-8A that was phosphorylated using this method promoted a faster rate of Gα subunit guanine nucleotide exchange than Ric-8A that was variably phosphorylated during production in insect cells.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Fielmich LE, Schmidt R, Dickinson DJ, Goldstein B, Akhmanova A, van den Heuvel S. Optogenetic dissection of mitotic spindle positioning in vivo. eLife 2018; 7:38198. [PMID: 30109984 PMCID: PMC6214656 DOI: 10.7554/elife.38198] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
The position of the mitotic spindle determines the plane of cell cleavage, and thereby daughter cell location, size, and content. Spindle positioning is driven by dynein-mediated pulling forces exerted on astral microtubules, which requires an evolutionarily conserved complex of Gα∙GDP, GPR-1/2Pins/LGN, and LIN-5Mud/NuMA proteins. To examine individual functions of the complex components, we developed a genetic strategy for light-controlled localization of endogenous proteins in C. elegans embryos. By replacing Gα and GPR-1/2 with a light-inducible membrane anchor, we demonstrate that Gα∙GDP, Gα∙GTP, and GPR-1/2 are not required for pulling-force generation. In the absence of Gα and GPR-1/2, cortical recruitment of LIN-5, but not dynein itself, induced high pulling forces. The light-controlled localization of LIN-5 overruled normal cell-cycle and polarity regulation and provided experimental control over the spindle and cell-cleavage plane. Our results define Gα∙GDP–GPR-1/2Pins/LGN as a regulatable membrane anchor, and LIN-5Mud/NuMA as a potent activator of dynein-dependent spindle-positioning forces. A cell about to divide must decide where exactly to cut itself in two. Split right down the middle, and the two daughter cells will be identical; offset the cleavage plane to one side, and the resulting siblings will have different sizes, places and fates. In animals, the splitting of cells is dictated by the location of the spindle, a structure that forms when cable-like microtubules stretch from the cell membrane to attach to the chromosomes. At the membrane, a group of proteins tugs on the microtubules to bring the spindle into the correct position. One of these proteins, dynein, is a motor that uses microtubules as its track to pull the spindle into place. What the other parts of the complex do is still unclear, but a general assumption is that they may be serving as an anchor for dynein. To test this model, Fielmich, Schmidt et al. removed one or more proteins from the complex in the developing embryos of the nematode worm Caenorhabditis elegans. A light-activated system then linked the remaining proteins to the membrane by tying them to an artificial anchor. Two of the proteins in the complex could be replaced with the artificial anchor, but pulling forces were absent when dynein was artificially tied to the membrane. This indicates that the motor being anchored at the edge of the cell is not enough for it to pull on microtubules. Instead, the experiments showed that dynein needs to be activated by another component of the complex, a protein called LIN-5. This suggests that individual proteins in the complex have specialized roles that go beyond simply tethering dynein. In fact, steering where LIN-5 was attached on the membrane helped to control the location of the spindle, and therefore of the cleavage plane. As mammals have a protein similar to LIN-5, dissecting the roles of the components involved in positioning the spindle in C. elegans could help to understand normal and abnormal human development. In addition, these results demonstrate that creating artificial interactions between proteins using light is a powerful technique to study biological processes.
Collapse
Affiliation(s)
- Lars-Eric Fielmich
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Ruben Schmidt
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands.,Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Daniel J Dickinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Bob Goldstein
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
33
|
Himmelreich S, Masuho I, Berry JA, MacMullen C, Skamangas NK, Martemyanov KA, Davis RL. Dopamine Receptor DAMB Signals via Gq to Mediate Forgetting in Drosophila. Cell Rep 2018; 21:2074-2081. [PMID: 29166600 DOI: 10.1016/j.celrep.2017.10.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
Prior studies have shown that aversive olfactory memory is acquired by dopamine acting on a specific receptor, dDA1, expressed by mushroom body neurons. Active forgetting is mediated by dopamine acting on another receptor, Damb, expressed by the same neurons. Surprisingly, prior studies have shown that both receptors stimulate cyclic AMP (cAMP) accumulation, presenting an enigma of how mushroom body neurons distinguish between acquisition and forgetting signals. Here, we surveyed the spectrum of G protein coupling of dDA1 and Damb, and we confirmed that both receptors can couple to Gs to stimulate cAMP synthesis. However, the Damb receptor uniquely activates Gq to mobilize Ca2+ signaling with greater efficiency and dopamine sensitivity. The knockdown of Gαq with RNAi in the mushroom bodies inhibits forgetting but has no effect on acquisition. Our findings identify a Damb/Gq-signaling pathway that stimulates forgetting and resolves the opposing effects of dopamine on acquisition and forgetting.
Collapse
Affiliation(s)
- Sophie Himmelreich
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Jacob A Berry
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Courtney MacMullen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
34
|
Leal JI, Villaseca S, Beyer A, Toro-Tapia G, Torrejón M. Ric-8A, a GEF for heterotrimeric G-proteins, controls cranial neural crest cell polarity during migration. Mech Dev 2018; 154:170-178. [PMID: 30016646 DOI: 10.1016/j.mod.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/23/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is a transient embryonic cell population that migrates extensively during development. Ric-8A, a guanine nucleotide exchange factor (GEF) for different Gα subunits regulates cranial NC (CNC) cell migration in Xenopus through a mechanism that still remains to be elucidated. To properly migrate, CNC cells establish an axis of polarization and undergo morphological changes to generate protrusions at the leading edge and retraction of the cell rear. Here, we aim to study the role of Ric-8A in cell polarity during CNC cell migration by examining whether its signaling affects the localization of GTPase activity in Xenopus CNC using GTPase-based probes in live cells and aPKC and Par3 as polarity markers. We show that the levels of Ric-8A are critical during migration and affect the localization of polarity markers and the subcellular localization of GTPase activity, suggesting that Ric-8A, probably through heterotrimeric G-protein signaling, regulates cell polarity during CNC migration.
Collapse
Affiliation(s)
- Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Soraya Villaseca
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Beyer
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Gabriela Toro-Tapia
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
35
|
Papasergi-Scott MM, Stoveken HM, MacConnachie L, Chan PY, Gabay M, Wong D, Freeman RS, Beg AA, Tall GG. Dual phosphorylation of Ric-8A enhances its ability to mediate G protein α subunit folding and to stimulate guanine nucleotide exchange. Sci Signal 2018; 11:11/532/eaap8113. [PMID: 29844055 DOI: 10.1126/scisignal.aap8113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resistance to inhibitors of cholinesterase-8A (Ric-8A) and Ric-8B are essential biosynthetic chaperones for heterotrimeric G protein α subunits. We provide evidence for the direct regulation of Ric-8A cellular activity by dual phosphorylation. Using proteomics, Western blotting, and mutational analyses, we determined that Ric-8A was constitutively phosphorylated at five serines and threonines by the protein kinase CK2. Phosphorylation of Ser435 and Thr440 in rat Ric-8A (corresponding to Ser436 and Thr441 in human Ric-8A) was required for high-affinity binding to Gα subunits, efficient stimulation of Gα subunit guanine nucleotide exchange, and mediation of Gα subunit folding. The CK2 consensus sites that contain Ser435 and Thr440 are conserved in Ric-8 homologs from worms to mammals. We found that the homologous residues in mouse Ric-8B, Ser468 and Ser473, were also phosphorylated. Mutation of the genomic copy of ric-8 in Caenorhabditis elegans to encode alanine in the homologous sites resulted in characteristic ric-8 reduction-of-function phenotypes that are associated with defective Gq and Gs signaling, including reduced locomotion and defective egg laying. The C. elegans ric-8 phosphorylation site mutant phenotypes were partially rescued by chemical stimulation of Gq signaling. These results indicate that dual phosphorylation represents a critical form of conserved Ric-8 regulation and demonstrate that Ric-8 proteins are needed for effective Gα signaling. The position of the CK2-phosphorylated sites within a structural model of Ric-8A reveals that these sites contribute to a key acidic and negatively charged surface that may be important for its interactions with Gα subunits.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lauren MacConnachie
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pui-Yee Chan
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Meital Gabay
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dorothy Wong
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert S Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
37
|
Kask K, Tikker L, Ruisu K, Lulla S, Oja EM, Meier R, Raid R, Velling T, Tõnissoo T, Pooga M. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles. Dev Neurobiol 2018; 78:374-390. [PMID: 29380551 DOI: 10.1002/dneu.22578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/11/2022]
Abstract
Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018.
Collapse
Affiliation(s)
- Keiu Kask
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Laura Tikker
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014, Helsinki, Finland
| | - Katrin Ruisu
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Sirje Lulla
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Eva-Maria Oja
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Riho Meier
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Teet Velling
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
38
|
Yano H, Provasi D, Cai NS, Filizola M, Ferré S, Javitch JA. Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits G s and G olf. J Biol Chem 2017; 292:19989-19998. [PMID: 29042444 PMCID: PMC5723988 DOI: 10.1074/jbc.m117.800698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/02/2017] [Indexed: 11/06/2022] Open
Abstract
Gαs (Gs) and Gαolf (Golf) are highly homologous G-protein α subunits that activate adenylate cyclase, thereby serving as crucial mediators of intracellular signaling. Because of their dramatically different brain expression patterns, we studied similarities and differences between their activation processes with the aim of comparing their receptor coupling mechanisms. We engineered novel luciferase- and Venus-fused Gα constructs that can be used in bioluminescence resonance energy transfer assays. In conjunction with molecular simulations, these novel biosensors were used to determine receptor activation-induced changes in conformation. Relative movements in Gs were consistent with the crystal structure of β2 adrenergic receptor in complex with Gs Conformational changes in Golf activation are shown to be similar to those in Gs Overall the current study reveals general similarities between Gs and Golf activation at the molecular level and provides a novel set of tools to search for Gs- and Golf-specific receptor pharmacology. In view of the wide functional and pharmacological roles of Gs- and Golf-coupled dopamine D1 receptor and adenosine A2A receptor in the brain and other organs, elucidating their differential structure-function relationships with Gs and Golf might provide new approaches for the treatment of a variety of neuropsychiatric disorders. In particular, these novel biosensors can be used to reveal potentially therapeutic dopamine D1 receptor and adenosine A2A receptor ligands with functionally selective properties between Gs and Golf signaling.
Collapse
Affiliation(s)
- Hideaki Yano
- National Institute on Drug Abuse, Baltimore, Maryland 21224.
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ning Sheng Cai
- National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sergi Ferré
- National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York 10032; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032.
| |
Collapse
|
39
|
Conditional Deletion of Ric-8b in Olfactory Sensory Neurons Leads to Olfactory Impairment. J Neurosci 2017; 37:12202-12213. [PMID: 29118104 DOI: 10.1523/jneurosci.0943-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 11/21/2022] Open
Abstract
The olfactory system can discriminate a vast number of odorants. This ability derives from the existence of a large family of odorant receptors expressed in the cilia of the olfactory sensory neurons. Odorant receptors signal through the olfactory-specific G-protein subunit, Gαolf. Ric-8b, a guanine nucleotide exchange factor, interacts with Gαolf and can amplify odorant receptor signal transduction in vitro To explore the function of Ric-8b in vivo, we generated a tissue specific knock-out mouse by crossing OMP-Cre transgenic mice to Ric-8b floxed mice. We found that olfactory-specific Ric-8b knock-out mice of mixed sex do not express the Gαolf protein in the olfactory epithelium. We also found that in these mice, the mature olfactory sensory neuron layer is reduced, and that olfactory sensory neurons show increased rate of cell death compared with wild-type mice. Finally, behavioral tests showed that the olfactory-specific Ric-8b knock-out mice show an impaired sense of smell, even though their motivation and mobility behaviors remain normal.SIGNIFICANCE STATEMENT Ric-8b is a guanine nucleotide exchange factor (GEF) expressed in the olfactory epithelium and in the striatum. Ric-8b interacts with the olfactory Gαolf subunit, and can amplify odorant signaling through odorant receptors in vitro However, the functional significance of this GEF in the olfactory neurons in vivo remains unknown. We report that deletion of Ric-8b in olfactory sensory neurons prevents stable expression of Gαolf. In addition, we demonstrate that olfactory neurons lacking Ric-8b (and consequently Gαolf) are more susceptible to cell death. Ric-8b conditional knock-out mice display impaired olfactory guided behavior. Our results reveal that Ric-8b is essential for olfactory function, and suggest that it may also be essential for Gαolf-dependent functions in the brain.
Collapse
|
40
|
Ma S, Santhosh D, Kumar T P, Huang Z. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis. Dev Cell 2017; 41:366-381.e4. [PMID: 28535372 DOI: 10.1016/j.devcel.2017.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
Abstract
Intimate communication between neural and vascular cells is critical for normal brain development and function. Germinal matrix (GM), a key primordium for the brain reward circuitry, is unique among brain regions for its distinct pace of angiogenesis and selective vulnerability to hemorrhage during development. A major neonatal condition, GM hemorrhage can lead to cerebral palsy, hydrocephalus, and mental retardation. Here we identify a brain-region-specific neural progenitor-based signaling pathway dedicated to regulating GM vessel development. This pathway consists of cell-surface sphingosine-1-phosphate receptors, an intracellular cascade including Gα co-factor Ric8a and p38 MAPK, and target gene integrin β8, which in turn regulates vascular TGF-β signaling. These findings provide insights into region-specific specialization of neurovascular communication, with special implications for deciphering potent early-life endocrine, as well as potential gut microbiota impacts on brain reward circuitry. They also identify tissue-specific molecular targets for GM hemorrhage intervention.
Collapse
Affiliation(s)
- Shang Ma
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA; Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Devi Santhosh
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA; Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Peeyush Kumar T
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA; Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI53706, USA; Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI53706, USA.
| |
Collapse
|
41
|
Chishiki K, Kamakura S, Hayase J, Sumimoto H. Ric-8A, an activator protein of Gαi, controls mammalian epithelial cell polarity for tight junction assembly and cystogenesis. Genes Cells 2017; 22:293-309. [PMID: 28185378 DOI: 10.1111/gtc.12477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/04/2023]
Abstract
Correct cyst morphogenesis of epithelial cells requires apical-basal polarization, which is partly regulated by mitotic spindle orientation, a process dependent on the heterotrimeric G protein subunit Gαi and its binding protein LGN. Here, we show that in three-dimensional culture of mammalian epithelial Madin-Darby canine kidney (MDCK) cells, the Gαi-activating protein Ric-8A is crucial for orientation of the mitotic spindle and formation of normal cysts that comprise a single layer of polarized cells with their apical surfaces lining an inner lumen. Consistent with the involvement of LGN, cystogenesis can be well organized by ADP-ribosylated Gαi, retaining the ability to interact with LGN, but not by the interaction-defective mutant protein Gαi2 (N150I). In monolayer culture of MDCK cells, functional tight junction (TJ) assembly, a process associated with epithelial cell polarization, is significantly delayed in Ric-8A-depleted cells as well as in Gαi-depleted cells in a mitosis-independent manner. Ric-8A knockdown results in a delayed cortical delivery of Gαi and the apical membrane protein gp135, and an increased formation of intercellular lumens surrounded by membranes rich in Gαi3 and gp135. TJ development also involves LGN and its related protein AGS3. Thus, Ric-8A regulates mammalian epithelial cell polarity for TJ assembly and cystogenesis probably in concert with Gαi and LGN/AGS3.
Collapse
Affiliation(s)
- Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| |
Collapse
|
42
|
Chishiki K, Kamakura S, Hayase J, Yuzawa S, Sumimoto H. Ric-8A-mediated stabilization of the trimeric G protein subunit Gαi is inhibited by pertussis toxin-catalyzed ADP-ribosylation. Biochem Biophys Res Commun 2017; 483:941-945. [PMID: 28082199 DOI: 10.1016/j.bbrc.2017.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
The heterotrimeric G protein subunit Gαi can be activated by G protein-coupled receptors and the cytosolic protein Ric-8A, the latter of which is also known to prevent ubiquitin-dependent degradation of Gαi. Here we show that the amounts of the three Gαi-related proteins Gαi1, Gαi2, and Gαi3, but not that of Gαq, are rapidly decreased by cell treatment with pertussis toxin (PTX). The decrease appears to be due to ADP-ribosylation of Gαi, because PTX treatment does not affect the amount of a mutant Gαi2 carrying alanine substitution for Cys352, the residue that is ADP-ribosylated by the toxin. The presence of endogenous and exogenous Ric-8A increases Gαi stability as shown in cells treated with the protein synthesis inhibitor cycloheximide; however, Ric-8A fails to efficiently stabilize ADP-ribosylated Gαi. The failure agrees with the inability of Ric-8A to bind to ADP-ribosylated Gαi both in vitro and in vivo. Thus PTX appears to exert its pathological effects at least in part by converting Gαi to an unstable ADP-ribosylated form, in addition to the well-known inability of ADP-ribosylated Gαi to transduce signals triggered by G protein-coupled receptors.
Collapse
Affiliation(s)
- Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoru Yuzawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
43
|
Kant R, Zeng B, Thomas CJ, Bothner B, Sprang SR. Ric-8A, a G protein chaperone with nucleotide exchange activity induces long-range secondary structure changes in Gα. eLife 2016; 5. [PMID: 28008853 PMCID: PMC5182059 DOI: 10.7554/elife.19238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
Cytosolic Ric-8A has guanine nucleotide exchange factor (GEF) activity and is a chaperone for several classes of heterotrimeric G protein α subunits in vertebrates. Using Hydrogen-Deuterium Exchange-Mass Spectrometry (HDX-MS) we show that Ric-8A disrupts the secondary structure of the Gα Ras-like domain that girds the guanine nucleotide-binding site, and destabilizes the interface between the Gαi1 Ras and helical domains, allowing domain separation and nucleotide release. These changes are largely reversed upon binding GTP and dissociation of Ric-8A. HDX-MS identifies a potential Gα interaction site in Ric-8A. Alanine scanning reveals residues crucial for GEF activity within that sequence. HDX confirms that, like G protein-coupled receptors (GPCRs), Ric-8A binds the C-terminus of Gα. In contrast to GPCRs, Ric-8A interacts with Switches I and II of Gα and possibly at the Gα domain interface. These extensive interactions provide both allosteric and direct catalysis of GDP unbinding and release and GTP binding. DOI:http://dx.doi.org/10.7554/eLife.19238.001
Collapse
Affiliation(s)
- Ravi Kant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, United States
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States
| | - Celestine J Thomas
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, United States
| | - Stephen R Sprang
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States
| |
Collapse
|
44
|
Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol 2016; 428:3850-68. [PMID: 27515397 DOI: 10.1016/j.jmb.2016.08.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.
Collapse
Affiliation(s)
- Viktoriya Syrovatkina
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kamela O Alegre
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Raja Dey
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
45
|
Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQ(Q209L)-driven melanoma. Oncogenesis 2016; 5:e236. [PMID: 27348266 PMCID: PMC4945744 DOI: 10.1038/oncsis.2016.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 01/19/2023] Open
Abstract
The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11Q209L in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8AFlox/Flox; Rosa-CreER+/− mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQQ209L, but not GNAQWT in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQQ209L cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQQ209L cells or host animals grafted with GNAQQ209L cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQQ209L cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQQ209L-driven tumor progression unless a stable human RIC-8A transgene was used to rescue the floxed Ric-8A alleles. Our work defines two new rational targets that may be developed as potential uveal melanoma therapies through reduction of Gαq/11-Q209L oncoprotein abundance: (1) Ric-8A inhibition and (2) phorbol ester treatment.
Collapse
|
46
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
47
|
Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal 2015; 8:ra123. [PMID: 26628681 DOI: 10.1126/scisignal.aab4068] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) family play key roles in many physiological functions and are extensively exploited pharmacologically to treat diseases. Many of the diverse effects of individual GPCRs on cellular physiology are transduced by heterotrimeric G proteins, which are composed of α, β, and γ subunits. GPCRs interact with and stimulate the binding of guanosine triphosphate (GTP) to the α subunit to initiate signaling. Mammalian genomes encode 16 different G protein α subunits, each one of which has distinct properties. We developed a single-platform, optical strategy to monitor G protein activation in live cells. With this system, we profiled the coupling ability of individual GPCRs for different α subunits, simultaneously quantifying the magnitude of the signal and the rates at which the receptors activated the G proteins. We found that individual receptors engaged multiple G proteins with varying efficacy and kinetics, generating fingerprint-like profiles. Different classes of GPCR ligands, including full and partial agonists, allosteric modulators, and antagonists, distinctly affected these fingerprints to functionally bias GPCR signaling. Finally, we showed that intracellular signaling modulators further altered the G protein-coupling profiles of GPCRs, which suggests that their differential abundance may alter signaling outcomes in a cell-specific manner. These observations suggest that the diversity of the effects of GPCRs on cellular physiology may be determined by their differential engagement of multiple G proteins, coupling to which produces signals with varying signal magnitudes and activation kinetics, properties that may be exploited pharmacologically.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Grant M Kramer
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA. Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Christopher D Jones
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA. Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
48
|
Wu J, Liu Y, Lv W, Yue X, Que Y, Yang N, Zhang Z, Ma Z, Talbot NJ, Wang Z. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Genet Biol 2015; 83:92-102. [PMID: 26341536 DOI: 10.1016/j.fgb.2015.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022]
Abstract
Proteins of the resistance to inhibitors of cholinesterase 8 (Ric8) group act as guanine nucleotide exchange factors (GEFs) and play important roles in regulating G-protein signaling in animals. In filamentous fungi, putative Ric8 orthologs have so far been identified in Magnaporthe oryzae, Neurospora crassa, Aspergillus nidulans and Aspergillus fumigatus. Here, we report the functional investigation of a potential RIC8 ortholog (FgRIC8) in the wheat head blight pathogen Fusarium graminearum. Targeted gene deletion mutants of FgRIC8 exhibited a significant reduction in vegetative growth, conidiation, pigment production as well as deoxynivalenol (DON) biosynthesis. Pathogenicity assays using a point-inoculated spikelet approach showed that the mutants were severely impaired in virulence on flowering wheat heads. Quantitative RT-PCR analysis revealed that genes encoding F. graminearum Gα (FgGpa1 and FgGpa3), Gβ (FgGpb1) and Gγ (FgGpg1) subunits were significantly down-regulated in Fgric8 mutants. Moreover, we showed that FgRic8 physically interacts with both FgGpa1 and FgGpa3, but not FgGpa2, in yeast two-hybrid assays. The intracellular cAMP levels in Fgric8 mutants were significantly decreased compared to the isogenic wild-type strain. Taken together, our results indicate that FgRic8 plays critical roles in fungal development, secondary metabolism and virulence in F. graminearum and may act as a regulator of G protein alpha subunits.
Collapse
Affiliation(s)
- Jinjin Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Yuting Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Wuyun Lv
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Xiaofeng Yue
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Yawei Que
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Nan Yang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, United Kingdom
| | - Zhengyi Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310025, China.
| |
Collapse
|
49
|
Boularan C, Hwang IY, Kamenyeva O, Park C, Harrison K, Huang Z, Kehrl JH. B Lymphocyte-Specific Loss of Ric-8A Results in a Gα Protein Deficit and Severe Humoral Immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2015; 195:2090-102. [PMID: 26232433 DOI: 10.4049/jimmunol.1500523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/06/2015] [Indexed: 01/05/2023]
Abstract
Resistance to inhibitors of cholinesterase 8A (Ric-8A) is a highly evolutionarily conserved cytosolic protein initially identified in Caenorhabditis elegans, where it was assigned a regulatory role in asymmetric cell divisions. It functions as a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13 and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes in embryonic stem cell lines. To test its role in hematopoiesis and B lymphocytes specifically, we generated ric8 (fl/fl) vav1-cre and ric8 (fl/fl) mb1-cre mice. The major hematopoietic cell lineages developed in the ric8 (fl/fl) vav1-cre mice, notwithstanding severe reduction in Gαi2/3, Gαq, and Gα13 proteins. B lymphocyte-specific loss of Ric-8A did not compromise bone marrow B lymphopoiesis, but splenic marginal zone B cell development failed, and B cells underpopulated lymphoid organs. The ric8 (fl/fl) mb1-cre B cells exhibited poor responses to chemokines, abnormal trafficking, improper in situ positioning, and loss of polarity components during B cell differentiation. The ric8 (fl/fl) mb1-cre mice had a severely disrupted lymphoid architecture and poor primary and secondary Ab responses. In B lymphocytes, Ric-8A is essential for normal Gα protein levels and is required for B cell differentiation, trafficking, and Ab responses.
Collapse
Affiliation(s)
- Cedric Boularan
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Olena Kamenyeva
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chung Park
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Zhen Huang
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53706; and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
50
|
Abstract
The G12 family of heterotrimeric G proteins is defined by their α-subunits,
Gα12 and Gα13. These α-subunits
regulate cellular homeostasis, cell migration, and oncogenesis in a
context-specific manner primarily through their interactions with distinct
proteins partners that include diverse effector molecules and scaffold proteins.
With a focus on identifying any other novel regulatory protein(s) that can
directly interact with Gα13, we subjected Gα13
to tandem affinity purification-coupled mass spectrometric analysis. Our results
from such analysis indicate that Gα13 potently interacts with
mammalian Ric-8A. Our mass spectrometric analysis data also indicates that
Ric-8A, which was tandem affinity purified along with Gα13, is
phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion
approach, we have defined that the C-terminus of Gα13 containing
the guanine-ring interaction site is essential and sufficient for its
interaction with Ric-8A. Evaluation of Gα13-specific signaling
pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A
potentiates Gα13-mediated activation of RhoA, Cdc42, and the
downstream p38MAPK. We also establish that the tyrosine phosphorylation of
Ric-8A, thus far unidentified, is potently stimulated by Gα13.
Our results also indicate that the stimulation of tyrosine-phosphorylation of
Ric-8A by Gα13 is partially sensitive to inhibitors of
Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that
Gα13 promotes the translocation of Ric-8A to plasma membrane
and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus,
our results demonstrate for the first time that Gα13 stimulates
the tyrosine phosphorylation of Ric-8A and Gα13-mediated
tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to
plasma membrane.
Collapse
|