1
|
Kim D, Yoon MS, Lee J, Park SY, Han JS. Effects of phospholipase D1 inhibitory peptide on the growth and metastasis of gastric cancer cells. Mol Cells 2024:100128. [PMID: 39426685 DOI: 10.1016/j.mocell.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Phospholipase D1 (PLD1) contributes to cancer development and progression through its effects on cell proliferation, survival, invasion, metastasis, angiogenesis, drug resistance, and modulation of the tumor microenvironment. Its central role in these processes makes it a promising target for novel cancer treatments aimed at inhibiting its activity and disrupting the signaling pathways it regulates. In this study, we aimed to investigate the effect of PLD1 inhibition on gastric cancer cell growth using a novel peptide inhibitor, TAT-TVTSP. PLD1, which plays a role in cancer progression, catalyzes the conversion of phosphatidylcholine into choline and phosphatidic acid through hydrolysis. To effectively target PLD1 in cells, we engineered TAT-TVTSP by fusing a PLD1-inhibitory peptide (TVTSP) with a cell-penetrating peptide (TAT). We observed that TAT-TVTSP effectively inhibited PLD1 activity in AGS gastric cancer cells. Moreover, TAT-TVTSP significantly inhibited the mammalian target of the rapamycin signaling pathway, including the phosphorylation of key downstream targets such as S6K1, AKT, S473, glycogen synthase kinase-3b, and forkhead box O1. TAT-TVTSP did not induce cell death, but it triggered cell cycle arrest by activating p21 and p27 via AKT phosphorylation. Functional assays revealed that TAT-TVTSP significantly impaired the colony-forming ability of AGS cells, thus inhibiting cell proliferation. Transwell and wound-healing assays revealed that this peptide disrupted the cellular behaviors critical to cancer progression, such as migration and invasion. In vivo, TAT-TVTSP significantly reduced tumor growth in the xenograft model of gastric cancer without any toxicity. Overall, our results suggest that TAT-TVTSP is a novel therapeutic agent for PLD1-mediated cancers.
Collapse
Affiliation(s)
- Dongju Kim
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Junwon Lee
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2024:10.1007/s11010-024-04995-1. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Grants
- 2022YFA1104002 National Key R&D Program of China
- 2022YFA1104002 National Key R&D Program of China
- 2022YFA1104002 National Key R&D Program of China
- 2022YFA1104002 National Key R&D Program of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
5
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Wolf A, Tanguy E, Wang Q, Gasman S, Vitale N. Phospholipase D and cancer metastasis: A focus on exosomes. Adv Biol Regul 2023; 87:100924. [PMID: 36272918 DOI: 10.1016/j.jbior.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 03/01/2023]
Abstract
In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.
Collapse
Affiliation(s)
- Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
9
|
Onallah H, Mannully ST, Davidson B, Reich R. Exosome Secretion and Epithelial-Mesenchymal Transition in Ovarian Cancer Are Regulated by Phospholipase D. Int J Mol Sci 2022; 23:13286. [PMID: 36362078 PMCID: PMC9658871 DOI: 10.3390/ijms232113286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/25/2024] Open
Abstract
Phospholipase D (PLD) isoenzymes participate in a variety of cellular functions that are mostly attributed to phosphatidic acid (PA) synthesis. Dysregulation of PLD regulates tumor progression and metastasis, yet little is known about the underlying mechanism. We previously reported on the expression and clinical role of the PLD isoenzymes PLD1 and PLD2 in tubo-ovarian high-grade serous carcinoma (HGSC). In the present study, we investigated the biological function of PLD1 and PLD2 using the OVCAR-3 and OVCAR-8 HGSC cell lines. KO cell lines for both PLDs were generated using CRISPR/CAS9 technology and assayed for exosome secretion, spheroid formation, migration, invasion and expression of molecules involved in epithelial-mesenchymal transition (EMT) and intracellular signaling. Significant differences between PLD1 and PLD2 KO cells and controls were observed for all the above parameters, supporting an important role for PLD in regulating migration, invasion, metastasis and EMT.
Collapse
Affiliation(s)
- Hadil Onallah
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sheethal Thomas Mannully
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
10
|
Wang HYJ, Huang CY, Wei KC, Hung KC. A mass spectrometry imaging and lipidomic investigation reveals aberrant lipid metabolism in the orthotopic mouse glioma. J Lipid Res 2022; 63:100304. [PMID: 36273646 PMCID: PMC9761856 DOI: 10.1016/j.jlr.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lipids perform multiple biological functions and reflect the physiology and pathology of cells, tissues, and organs. Here, we sought to understand lipid content in relation to tumor pathology by characterizing phospholipids and sphingolipids in the orthotopic mouse glioma using MALDI MS imaging (MSI) and LC-MS/MS. Unsupervised clustering analysis of the MALDI-MSI data segmented the coronal tumoral brain section into 10 histopathologically salient regions. Heterogeneous decrease of the common saturated phosphatidylcholines (PCs) in the tumor was accompanied by the increase of analogous PCs with one or two additional fatty acyl double bonds and increased lyso-PCs. Polyunsaturated fatty acyl-PCs and ether PCs highlighted the striatal tumor margins, whereas the distributions of other PCs differentiated the cortical and striatal tumor parenchyma. We detected a reduction of SM d18:1/18:0 and the heterogeneous mild increase of SM d18:1/16:0 in the tumor, whereas ceramides accumulated only in a small patch deep in the tumoral parenchyma. LC-MS/MS analyses of phospholipids and sphingolipids complemented the MALDI-MSI observation, providing a snapshot of these lipids in the tumor. Finally, the proposed mechanisms responsible for the tumoral lipid changes were contrasted with our interrogation of gene expression in human glioma. Together, these lipidomic results unveil the aberrant and heterogeneous lipid metabolism in mouse glioma where multiple lipid-associated signaling pathways underline the tumor features, promote the survival, growth, proliferation, and invasion of different tumor cell populations, and implicate the management strategy of a multiple-target approach for glioma and related brain malignancies.
Collapse
Affiliation(s)
- Hay-Yan J. Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan,For correspondence: Hay-Yan J. Wang
| | - Chiung-Yin Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan,Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chen Hung
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
11
|
Inhibition of phospholipase D1 induces immunogenic cell death and potentiates cancer immunotherapy in colorectal cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1563-1576. [PMID: 36131027 PMCID: PMC9535023 DOI: 10.1038/s12276-022-00853-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Phospholipase D (PLD) is a potential therapeutic target against cancer. However, the contribution of PLD inhibition to the antitumor response remains unknown. We developed a potent and selective PLD1 inhibitor based on computer-aided drug design. The inhibitor enhanced apoptosis in colorectal cancer (CRC) cells but not in normal colonic cells, and in vitro cardiotoxicity was not observed. The inhibitor downregulated the Wnt/β-catenin signaling pathway and reduced the migration, invasion, and self-renewal capacity of CRC cells. In cancer, therapeutic engagement of immunogenic cell death (ICD) leads to more effective responses by eliciting the antitumor immunity of T cells. The CRC cells treated with the inhibitor showed hallmarks of ICD, including downregulation of “do not eat-me” signals (CD24, CD47, programmed cell death ligand 1 [PD-L1]), upregulation of “eat-me” signal (calreticulin), release of high-mobility group Box 1, and ATP. PLD1 inhibition subsequently enhanced the phagocytosis of cancer cells by macrophages through the surface expression of costimulatory molecules; as a result, the cancer cells were more susceptible to cytotoxic T-cell-mediated killing. Moreover, PLD1 inhibition attenuated colitis-associated CRC and orthotopically injected tumors, probably by controlling multiple pathways, including Wnt signaling, phagocytosis checkpoints, and immune signaling. Furthermore, combination therapy with a PLD1 inhibitor and an anti-PD-L1 antibody further enhanced tumor regression via immune activation in the tumor environment. Collectively, in this study, PLD1 was identified as a critical regulator of the tumor microenvironment in colorectal cancer, suggesting the potential of PLD1 inhibitors for cancer immunotherapy based on ICD and immune activation. PLD1 inhibitors may act as promising immune modulators in antitumor treatment via ICD. A novel drug that can inhibit an enzyme involved in colorectal cancer progression shows promise in trials on mouse models. The phospholipase D1 (PLD1) enzyme reinforces a critical signaling pathway that promotes cancer progression and drug resistance. Using computer-aided drug design, South Korean researchers led by Do Sik Min and Gyoonhee Han at Yonsei University in Incheon and Seoul, respectively, have developed a drug that specifically binds to and inhibits PLD1. In trials, the researchers observed downregulation of PLD1’s associated signaling pathway, and reductions in the ability of colorectal cancer cells to migrate, invade and replicate. The drug suppressed the cancer cells’ “don’t-eat-me” signals and upregulated “eat-me” signals, triggering improved responses from the immune system. The drug was even more effective when used in combination with an immunotherapy agent.
Collapse
|
12
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
13
|
Saito RDF, Andrade LNDS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol 2022; 13:768606. [PMID: 35250970 PMCID: PMC8889569 DOI: 10.3389/fimmu.2022.768606] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Chang YC, Chang PMH, Li CH, Chan MH, Lee YJ, Chen MH, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022; 11:811635. [PMID: 35127525 PMCID: PMC8813753 DOI: 10.3389/fonc.2021.811635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to alkylating agents and radiation may cause damage and apoptosis in cancer cells. Meanwhile, this exposure involves resistance and leads to metabolic reprogramming to benefit cancer cells. At present, the detailed mechanism is still unclear. Based on the profiles of several transcriptomes, we found that the activity of phospholipase D (PLD) and the production of specific metabolites are related to these events. Comparing several particular inhibitors, we determined that phospholipase D1 (PLD1) plays a dominant role over other PLD members. Using the existing metabolomics platform, we demonstrated that lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) are the most critical metabolites, and are highly dependent on aldolase A (ALDOA). We further demonstrated that ALDOA could modulate total PLD enzyme activity and phosphatidic acid products. Particularly after exposure to alkylating agents and radiation, the proliferation of lung cancer cells, autophagy, and DNA repair capabilities are enhanced. The above phenotypes are closely related to the performance of the ALDOA/PLD1 axis. Moreover, we found that ALDOA inhibited PLD2 activity and enzyme function through direct protein–protein interaction (PPI) with PLD2 to enhance PLD1 and additional carcinogenic features. Most importantly, the combination of ALDOA and PLD1 can be used as an independent prognostic factor and is correlated with several clinical parameters in lung cancer. These findings indicate that, based on the PPI status between ALDOA and PLD2, a combination of radiation and/or alkylating agents with regulating ALDOA-PLD1 may be considered as a new lung cancer treatment option.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Michael Hsiao,
| |
Collapse
|
15
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
16
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
17
|
Nagumo Y, Kandori S, Tanuma K, Nitta S, Chihara I, Shiga M, Hoshi A, Negoro H, Kojima T, Mathis BJ, Funakoshi Y, Nishiyama H. PLD1 promotes tumor invasion by regulation of MMP-13 expression via NF-κB signaling in bladder cancer. Cancer Lett 2021; 511:15-25. [PMID: 33945837 DOI: 10.1016/j.canlet.2021.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Invasion of bladder cancer (BC) cells from the mucosa into the muscle layer is canonical for BC progression while phospholipase D isoform 1 (PLD1) is known to mediate development of cancer through phosphatidic acid (PA) production. We therefore used in silico, in vitro and in vivo approaches to detail the effect of PLD1 on BC invasion. In BC patients, higher levels of PLD1 expression were associated with poor prognoses. PLD1 knockdown significantly suppressed cellular invasion by human BC cells and matrix metalloproteinase-13 (MMP-13) was observed to mediate this effect. In our mouse bladder carcinogenesis model, the development of invasive BCs was suppressed by PLD1 knockout and a global transcriptomic analysis in this model indicated MMP-13 as a potential tumor invasion gene with NF-κB (nuclear factor-kB) as its transcriptional regulator. Furthermore, PA administration increased MMP-13 expression in line with NF-κB p65 phosphorylation levels. Collectively, we demonstrate that PLD1 promotes tumor invasion of BC by regulation of MMP-13 expression through the NF-κB signaling pathway and that PLD1 might be a potential therapeutic target to prevent clinical progression in BC patients.
Collapse
Affiliation(s)
- Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan.
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Nitta
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Ichiro Chihara
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Akio Hoshi
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Ibaraki, Japan
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Yao B, Li Y, Chen T, Niu Y, Wang Y, Yang Y, Wei X, Liu Q, Tu K. Hypoxia-induced cofilin 1 promotes hepatocellular carcinoma progression by regulating the PLD1/AKT pathway. Clin Transl Med 2021; 11:e366. [PMID: 33784016 PMCID: PMC7982636 DOI: 10.1002/ctm2.366] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fourth fatal malignant tumour type worldwide. However, the exact molecular mechanism involved in HCC progression remains unclear. METHODS Three pairs of HCC and matched portal vein tumour thrombus (PVTT) tissue samples were analysed by isobaric tags for relative and absolute quantification (iTRAQ) assay to investigate the differentially expressed proteins. Real-time quantitative PCR, immunostaining, and immunoblotting were performed to detect cofilin 1 (CFL1) in HCC and non-tumour tissues. CCK8 and EdU, and Transwell assays, respectively, determined cell proliferation, migration, and invasion of HCC cells. Further, subcutaneous and tail vein injection were performed in nude mice for investigating HCC growth and lung metastasis in vivo. Regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on CFL1 was confirmed by chromatin immunoprecipitation (ChIP) assay. Finally, interaction between CFL1 and phospholipase D1 (PLD1) was studied using immunoprecipitation (IP) assay. RESULTS The iTRAQ analysis identified expression of CFL1 to be significantly upregulated in PVTT than in HCC tissues. Increased expression of CFL1 was closely associated with unfavourable clinical features, and was an independent risk predictor of overall survival in HCC patients. The knockdown of CFL1 inhibited cell growth viability, invasiveness, and epithelial-mesenchymal transformation (EMT) in HCC cells. Furthermore, CFL1 silencing significantly suppressed the growth and lung metastasis of HCC cells in nude mice. Next, HIF-1α directly regulated CFL1 transcription by binding to the hypoxia-responsive element (HRE) in the promoter. Moreover, we disclosed the interaction between CFL1 and PLD1 in HCC cells using IP assay. Mechanistically, CFL1 maintained PLD1 expression by repressing ubiquitin-mediated protein degradation, thereby activating AKT signalling in HCC cells. Notably, the CFL1/PLD1 axis was found mediating the hypoxia-induced activation of the AKT pathway and EMT. CONCLUSION The analysis suggests that hypoxia-induced CFL1 increases the proliferation, migration, invasion, and EMT in HCC by activating the PLD1/AKT pathway.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yazhao Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tianxiang Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yongshen Niu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yufeng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yuanyuan Yang
- Xi'an Jiaotong University Health Science CenterXi'anChina
| | - Xinyu Wei
- Xi'an Jiaotong University Health Science CenterXi'anChina
| | - Qingguang Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Kangsheng Tu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
19
|
Bowling FZ, Frohman MA, Airola MV. Structure and regulation of human phospholipase D. Adv Biol Regul 2021; 79:100783. [PMID: 33495125 DOI: 10.1016/j.jbior.2020.100783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Mammalian phospholipase D (PLD) generates phosphatidic acid, a dynamic lipid secondary messenger involved with a broad spectrum of cellular functions including but not limited to metabolism, migration, and exocytosis. As a promising pharmaceutical target, the biochemical properties of PLD have been well characterized. This has led to the recent crystal structures of human PLD1 and PLD2, the development of PLD specific pharmacological inhibitors, and the identification of cellular regulators of PLD. In this review, we discuss the PLD1 and PLD2 structures, PLD inhibition by small molecules, and the regulation of PLD activity by effector proteins and lipids.
Collapse
Affiliation(s)
- Forrest Z Bowling
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
22
|
Lu Y, Zhou J, Pei R, Li F, Jin J, Jiang L. Expression and clinical significance of phospholipase D1 in de novo acute myeloid leukemia. ACTA ACUST UNITED AC 2020; 25:270-275. [PMID: 32615908 DOI: 10.1080/16078454.2020.1786971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: Phospholipase D (PLD) is known to participate in several aspects of cellular processes including cell mitosis, migration, phagocytosis, and membrane vesicle trafficking. The role of PLD has been investigated in multiple cancers except hematologic malignances. Methods: We enrolled 291 patients with de novo acute myeloid leukemia (AML) and detected PLD1 mRNA expression levels of their bone marrow samples by quantitative real-time PCR (qRT-PCR). Clinical relevance of PLD1 was assessed using Kaplan-Meier analysis, univariate analysis, and multivariate analysis. Results: Compared to healthy donors, AML patients had higher mRNA levels of PLD1, which was significantly associated with FAB classification. Importantly, patients with low levels of PLD1 had impaired overall survival and event-free survival. Moreover, univariate and multivariate analyses confirmed that PLD1 expression was an independent prognostic factor for AML. Conclusion: PLD1 represented a useful diagnostic marker and prognostic factor for AML.
Collapse
Affiliation(s)
- Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China.,Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, People's Republic of China
| | - Jiasi Zhou
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China.,Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, People's Republic of China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China.,Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang University, Hangzhou, People's Republic of China
| | - Lei Jiang
- Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, People's Republic of China
| |
Collapse
|
23
|
Ganesan R, Henkels KM, Shah K, De La Rosa X, Libreros S, Cheemarla NR, Serhan CN, Gomez-Cambronero J. D-series Resolvins activate Phospholipase D in phagocytes during inflammation and resolution. FASEB J 2020; 34:15888-15906. [PMID: 33047359 DOI: 10.1096/fj.201903025rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023]
Abstract
A successful acute inflammatory response results in the elimination of infectious agents by neutrophils and monocytes, followed by resolution and repair through tissue-resident and recruited macrophages. Resolvins (D-series and E-series) are pro-resolving lipid mediators involved in resolution and tissue repair, whose intracellular signaling remains of interest. Here, we report that D-series resolvins (RvD1- RvD5) activate phospholipase D (PLD), a ubiquitously expressed membrane lipase enzyme activity in modulating phagocyte functions. The mechanism for PLD-mediated actions of Resolvin-D5 (RvD5) in polarizing macrophages (M1-like toward M2-like) was found to be two-pronged: (a) RvD5 inhibits post-transcriptional modifications, by miRs and 3'exonucleases that process PLD2 mRNA, thus increasing PLD2 expression and activity; and (b) RvD5 enhances PLD2-S6Kinase signaling required for membrane expansion and efferocytosis. In an in vivo model of second organ reflow injury, we found that RvD5 did not reduce lung neutrophil myeloperoxidase levels in PLD2-/- mice compared to WT and PLD1-/- mice, confirming a novel role of PLD2 as the isoform in RvD5-mediated resolution processes. These results demonstrate that RvD5-PLD2 are attractive targets for therapeutic interventions in vascular inflammation such as ischemia-reperfusion injury and cardiovascular diseases.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA
| | - Krushangi Shah
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA
| | - Xavier De La Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nagarjuna R Cheemarla
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Kang DW, Hwang WC, Noh YN, Park KS, Min DS. Phospholipase D1 inhibition sensitizes glioblastoma to temozolomide and suppresses its tumorigenicity. J Pathol 2020; 252:304-316. [PMID: 32725633 PMCID: PMC7693208 DOI: 10.1002/path.5519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/12/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Resistance of glioblastoma to the chemotherapeutic compound temozolomide is associated with the presence of glioblastoma stem cells in glioblastoma and is a key obstacle for the poor prognosis of glioblastoma. Here, we show that phospholipase D1 is elevated in CD44High glioblastoma stem cells and in glioblastoma, especially recurring glioblastoma. Phospholipase D1 elevation positively correlated with the level of CD44 and poor prognosis in glioblastoma patients. Temozolomide significantly upregulated the expression of phospholipase D1 in the low and moderate CD44 populations of glioblastoma stem cells, but not in the CD44High population in which phospholipase D1 is highly expressed. Phospholipase D1 conferred resistance to temozolomide in CD44High glioblastoma stem cells and increased their self‐renewal capacity and maintenance. Phospholipase D1 expression significantly correlated with levels of temozolomide resistance factors, which were suppressed by microRNA‐320a and ‐4496 induced by phospholipase D1 inhibition. Genetic and pharmacological targeting of phospholipase D1 attenuated glioblastoma stem cell‐derived intracranial tumors of glioblastoma using the microRNAs, and improved survival. Treatment solely with temozolomide produced no benefits on the glioblastoma, whereas in combination, phospholipase D1 inhibition sensitized glioblastoma stem cells to temozolomide and reduced glioblastoma tumorigenesis. Together, these findings indicate that phospholipase D1 inhibition might overcome resistance to temozolomide and represents a potential treatment strategy for glioblastoma. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.,College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Yu Na Noh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Kang Seo Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| |
Collapse
|
25
|
Borel M, Cuvillier O, Magne D, Mebarek S, Brizuela L. Increased phospholipase D activity contributes to tumorigenesis in prostate cancer cell models. Mol Cell Biochem 2020; 473:263-279. [PMID: 32661773 DOI: 10.1007/s11010-020-03827-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/04/2020] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized. Phospholipase D (PLD), an enzyme that hydrolyzes phosphatidylcholine to yield phosphatidic acid, regulates several cellular functions as proliferation, survival, migration or vesicular trafficking. PLD is implicated in numerous diseases such as neurodegenerative, cardiovascular, autoimmune disorders or cancer. Indeed, PLD controls different aspects of oncogenesis including tumor progression and resistance to targeted therapies such as radiotherapy. PLD1 and PLD2 are the only isoforms with catalytic activity involved in cancer. Surprisingly, studies deciphering the role of PLD in the pathophysiology of PCa are scarce. Here we describe the correlation between PLD activity and PLD1 and PLD2 expression in PCa bone metastasis-derived cell lines C4-2B and PC-3. Next, by using PLD pharmacological inhibitors and RNA interference strategy, we validate the implication of PLD1 and PLD2 in cell viability, clonogenicity and proliferation of C4-2B and PC-3 cells and in migration capacity of PC-3 cells. Last, we show an increase in PLD activity as well as PLD2 protein expression during controlled starvation of PC-3 cells, concomitant with an augmentation of its migration capacity. Specifically, upregulation of PLD activity appears to be PKC-independent. Taken together, our results indicate that PLD, and in particular PLD2, could be considered as a potential therapeutic target for the treatment of PCa-derived bone metastasis.
Collapse
Affiliation(s)
- Mathieu Borel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France
| | - Olivier Cuvillier
- Université de Toulouse, UPS, CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale, IPBS, 31077, Toulouse Cedex, France
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France.
| |
Collapse
|
26
|
Barisano D, Frohman MA. Roles for Phospholipase D1 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:77-87. [PMID: 32578172 DOI: 10.1007/978-3-030-43093-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The lipid-modifying signal transduction enzyme phospholipase D (PLD) has been proposed to have roles in oncogenic processes for well-on 30 years, with most of the early literature focused on potential functions for PLD in the biology of the tumor cells themselves. While such roles remain under investigation, evidence has also now been generated to support additional roles for PLD, in particular PLD1, in the tumor microenvironment, including effects on neoangiogenesis, the supply of nutrients, interactions of platelets with circulating cancer cells, the response of the immune system, and exosome biology. Here, we review these lines of investigation, accompanied by a discussion of the limitations of the existing studies and some cautionary notes regarding the study and interpretation of PLD function using model systems.
Collapse
Affiliation(s)
- Daniela Barisano
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Michael A Frohman
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
27
|
Amyotrophic Lateral Sclerosis Modifiers in Drosophila Reveal the Phospholipase D Pathway as a Potential Therapeutic Target. Genetics 2020; 215:747-766. [PMID: 32345615 PMCID: PMC7337071 DOI: 10.1534/genetics.119.302985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder lacking effective treatments. ALS pathology is linked to mutations in several different genes indicating... Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s disease, is a devastating neurodegenerative disorder lacking effective treatments. ALS pathology is linked to mutations in >20 different genes indicating a complex underlying genetic architecture that is effectively unknown. Here, in an attempt to identify genes and pathways for potential therapeutic intervention and explore the genetic circuitry underlying Drosophila models of ALS, we carry out two independent genome-wide screens for modifiers of degenerative phenotypes associated with the expression of transgenic constructs carrying familial ALS-causing alleles of FUS (hFUSR521C) and TDP-43 (hTDP-43M337V). We uncover a complex array of genes affecting either or both of the two strains, and investigate their activities in additional ALS models. Our studies indicate the pathway that governs phospholipase D activity as a major modifier of ALS-related phenotypes, a notion supported by data we generated in mice and others collected in humans.
Collapse
|
28
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H, Xu Y. Phospholipase D as a key modulator of cancer progression. Biol Rev Camb Philos Soc 2020; 95:911-935. [PMID: 32073216 DOI: 10.1111/brv.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.
Collapse
Affiliation(s)
- Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiannan Fan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Abstract
Functions for phospholipase D1 and D2 (PLD1 and PLD2), the canonical isoforms of the PLD superfamily in mammals, have been explored using cell biological and animal disease models for two decades. PLD1 and PLD2, which are activated as a consequence of extracellular signaling events and generate the second messenger signaling lipid phosphatidic acid (PA), have been reported to play roles in settings ranging from platelet activation to the response to cardiac ischemia, viral infection, neurodegenerative disease, and cancer. Of these, the most tractable as therapeutic targets may be thrombotic disease and cancer, as will be discussed here in the context of ongoing efforts to develop small molecule PLD inhibitors.
Collapse
Affiliation(s)
- Christian Salazar
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Michael A Frohman
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
30
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
31
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
32
|
Ramenskaia GV, Melnik EV, Petukhov AE. [Phospholipase D: its role in metabolism processes and disease development]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:84-93. [PMID: 29460838 DOI: 10.18097/pbmc20186401084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase D (PLD) is one of the key enzymes that catalyzes the hydrolysis of cell membrane phospholipids. In this review current knowledge about six human PLD isoforms, their structure and role in physiological and pathological processes is summarized. Comparative analysis of PLD isoforms structure is presented. The mechanism of the hydrolysis and transphosphatidylation performed by PLD is described. The PLD1 and PLD2 role in the pathogenesis of some cancer, infectious, thrombotic and neurodegenerative diseases is analyzed. The prospects of PLD isoform-selective inhibitors development are shown in the context of the clinical usage and the already-existing inhibitors are characterized. Moreover, the formation of phosphatidylethanol (PEth), the alcohol abuse biomarker, as the result of PLD-catalyzed phospholipid transphosphatidylation is considered.
Collapse
Affiliation(s)
- G V Ramenskaia
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - E V Melnik
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - A E Petukhov
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia; Moscow Research and Practical Centre for Narcology, Moscow, Russia
| |
Collapse
|
33
|
Song M, Wang J, Lei J, Peng G, Zhang W, Zhang Y, Yin M, Li J, Liu Y, Wei X, Li X, Li G. Preparation and Evaluation of Liposomes Co-Loaded with Doxorubicin, Phospholipase D Inhibitor 5-Fluoro-2-Indolyl Deschlorohalopemide (FIPI) and D-Alpha Tocopheryl Acid Succinate (α-TOS) for Anti-Metastasis. NANOSCALE RESEARCH LETTERS 2019; 14:138. [PMID: 31001703 PMCID: PMC6473021 DOI: 10.1186/s11671-019-2964-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/01/2019] [Indexed: 05/10/2023]
Abstract
Tumor metastasis has become a key obstacle to cancer treatment, which causes high mortality. Nowadays, it involves multiple complex pathways, and conventional treatments are not effective due to fewer targets. The aims of the present study were to construct a novel liposome delivery system co-loading a specific PLD inhibitor 5-fluoro-2-indolyldes-chlorohalopemide (FIPI) in combination with antitumor drug doxorubicin (DOX) and functional excipient D-alpha tocopheryl acid succinate (α-TOS) for anti-metastasis. In this study, the liposomes containing three components (DFT-Lip) with different physicochemical properties were successfully prepared by film dispersion method combined with pH-gradient method. Physicochemical parameters such as particles size, potential, encapsulation efficiency, stability, and release profiles were investigated. In vitro and in vivo anti-metastasis effectiveness against highly metastatic breast cancer MDA-MB-231 cell line was evaluated. The liposomes showed uniform particle size (approximately 119 nm), high drug encapsulation efficiency (> 90%), slow release characteristics and stability. In vitro anti-tumor cell metastasis study demonstrated DFT-Lip could greatly inhibit motility, migration and invasion of MDA-MB-231 cells compared to other liposomes, predicting a synergistic anti-tumor metastasis effect between FIPI with α-TOS in liposomes. In vivo anti-metastasis study showed that DFT-Lip prevented the initiation and the progression of metastasis of high metastatic breast cancer. These results suggested that the liposomes containing DOX, FIPI, and α-TOS might be a promising strategy for metastatic tumor therapy in clinics.
Collapse
Affiliation(s)
- Maoyuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Jiaxing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jiongxi Lei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Guanghua Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Wenxi Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Mengya Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yajie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xiaomeng Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Guiling Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
34
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
35
|
Wang Z, Cai M, Tay LWR, Zhang F, Wu P, Huynh A, Cao X, Di Paolo G, Peng J, Milewicz DM, Du G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation. FASEB J 2019; 33:6713-6725. [PMID: 30811216 DOI: 10.1096/fj.201800390rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Very little is known about how lipid signaling regulates intima hyperplasia after vascular injury. Herein, we report that deletion and pharmacological inhibition of phospholipase D (PLD)2, which generates the signaling lipid phosphatidic acid (PA), reduced neointimal formation in the mouse carotid artery ligation model. PLD2 deficiency inhibits migration of vascular smooth muscle cells (VSMCs) into the intima in mice as well as migration and formation of membrane ruffles in primary VSMCs. PA specifically binds to the IQ motif-containing guanosine triphosphatase-activating protein 1 (IQGAP1) scaffold protein. The binding between PA and IQGAP is required for the plasma membrane recruitment of IQGAP1. Similar to PLD2 inhibition, knockdown of IQGAP1 blocks ruffle formation and migration in VSMCs, which are rescued by expression of the exogenous IQGAP1 but not the PA binding-deficient mutant. These data reveal that the PLD2-PA-IQGAP1 pathway plays an important role in VSMC migration and injury-induced vascular remodeling, and implicate PLD2 as a candidate target for therapeutic interventions.-Wang, Z., Cai, M., Tay, L. W. R., Zhang, F., Wu, P., Huynh, A., Cao, X., Di Paolo, G., Peng, J., Milewicz, D. M., Du, G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Gastrointestinal Surgery, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anh Huynh
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiumei Cao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; and
| | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
36
|
Abstract
Extracellular vesicles (EVs), and exosomes in particular, were initially considered as "garbage bags" for secretion of undesired cellular components. This view has changed considerably over the last two decades, and exosomes have now emerged as important organelles controlling cell-to-cell signaling. They are present in biological fluids and have important roles in the communication between cells in physiological and pathological processes. They are envisioned for clinical use as carriers of biomarkers, therapeutic targets, and vehicles for drug delivery. Important efforts are being made to characterize the contents of these vesicles and to understand the mechanisms that govern their biogenesis and modes of action. This chapter aims to recapitulate the place given to lipids in our understanding of exosome biology. Besides their structural role and their function as carriers, certain lipids and lipid-modifying enzymes seem to exert privileged functions in this mode of cellular communication. By extension, the use of selective "lipid inhibitors" might turn out to be interesting modulators of exosomal-based cell signaling.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France.,Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France. .,Department of Human Genetics, K. U. Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. Handb Exp Pharmacol 2019; 259:89-113. [PMID: 31541319 DOI: 10.1007/164_2019_216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are key building blocks of biological membranes and are involved in complex signaling processes such as metabolism, proliferation, migration, and apoptosis. Extracellular signaling by growth factors, stress, and nutrients is transmitted through receptors that activate lipid-modifying enzymes such as the phospholipases, sphingosine kinase, or phosphoinositide 3-kinase, which then modify phospholipids, sphingolipids, and phosphoinositides. One such important enzyme is phospholipase D (PLD), which cleaves phosphatidylcholine to yield phosphatidic acid and choline. PLD isoforms have dual role in cells. The first involves maintaining cell membrane integrity and cell signaling, including cell proliferation, migration, cytoskeletal alterations, and invasion through the PLD product PA, and the second involves protein-protein interactions with a variety of binding partners. Increased evidence of elevated PLD expression and activity linked to many pathological conditions, including cancer, neurological and inflammatory diseases, and infection, has motivated the development of dual- and isoform-specific PLD inhibitors. Many of these inhibitors are reported to be efficacious and safe in cells and mouse disease models, suggesting the potential for PLD inhibitors as therapeutics for cancer and other diseases. Current knowledge and ongoing research of PLD signaling networks will help to evolve inhibitors with increased efficacy and safety for clinical studies.
Collapse
|
38
|
Abstract
Phospholipases D (PLDs) catalyze hydrolysis of the diester bond of phospholipids to generate phosphatidic acid and the free lipid headgroup. In mammals, PLD enzymes comprise the intracellular enzymes PLD1 and PLD2 and possibly the proteins encoded by related genes, as well as a class of cell surface and secreted enzymes with structural homology to ectonucleotide phosphatases/phosphodiesterases as typified by autotaxin (ENPP2) that have lysoPLD activities. Genetic and pharmacological loss-of-function approaches implicate these enzymes in intra- and intercellular signaling mediated by the lipid products phosphatidic acid, lysophosphatidic acid, and their metabolites, while the possibility that the water-soluble product of their reactions is biologically relevant has received far less attention. PLD1 and PLD2 are highly selective for phosphatidylcholine (PC), whereas autotaxin has broader substrate specificity for lysophospholipids but by virtue of the high abundance of lysophosphatidylcholine (LPC) in extracellular fluids predominantly hydrolyses this substrate. In all cases, the water-soluble product of these PLD activities is choline. Although choline can be formed de novo by methylation of phosphatidylethanolamine, this activity is absent in most tissues, so mammals are effectively auxotrophic for choline. Dietary consumption of choline in both free and esterified forms is substantial. Choline is necessary for synthesis of the neurotransmitter acetylcholine and of the choline-containing phospholipids PC and sphingomyelin (SM) and also plays a recently appreciated important role as a methyl donor in the pathways of "one-carbon (1C)" metabolism. This review discusses emerging evidence that some of the biological functions of these intra- and extracellular PLD enzymes involve generation of choline with a particular focus on the possibility that these choline and PLD dependent processes are dysregulated in cancer.
Collapse
|
39
|
Functional analysis of mammalian phospholipase D enzymes. Biosci Rep 2018; 38:BSR20181690. [PMID: 30369483 PMCID: PMC6435507 DOI: 10.1042/bsr20181690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylcholine (PC)-specific phospholipase D (PLD) hydrolyzes the phosphodiester bond of the PC to generate phosphatidic acid (PA) and regulates several subcellular functions. Mammalian genomes contain two genes encoding distinct isoforms of PLD in contrast with invertebrate genomes that include a single PLD gene. However, the significance of two genes within a genome encoding the same biochemical activity remains unclear. Recently, loss of function in the only PLD gene in Drosophila was reported to result in reduced PA levels and a PA-dependent collapse of the photoreceptor plasma membrane due to defects in vesicular transport. Phylogenetic analysis reveals that human PLD1 (hPLD1) is evolutionarily closer to dPLD than human PLD2 (hPLD2). In the present study, we expressed hPLD1 and hPLD2 in Drosophila and found that while reconstitution of hPLD1 is able to completely rescue retinal degeneration in a loss of function dPLD mutant, hPLD2 was less effective in its ability to mediate a rescue. Using a newly developed analytical method, we determined the acyl chain composition of PA species produced by each enzyme. While dPLD was able to restore the levels of most PA species in dPLD3.1 cells, hPLD1 and hPLD2 each were unable to restore the levels of a subset of unique species of PA. Finally, we found that in contrast with hPLD2, dPLD and hPLD1 are uniquely distributed to the subplasma membrane region in photoreceptors. In summary, hPLD1 likely represents the ancestral PLD in mammalian genomes while hPLD2 represents neofunctionalization to generate PA at distinct subcellular membranes.
Collapse
|
40
|
Klier M, Gorressen S, Urbahn MA, Barbosa D, Ouwens M, Fischer JW, Elvers M. Enzymatic Activity Is Not Required for Phospholipase D Mediated TNF-α Regulation and Myocardial Healing. Front Physiol 2018; 9:1698. [PMID: 30555342 PMCID: PMC6281985 DOI: 10.3389/fphys.2018.01698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Phospholipase D1 is a regulator of tumor necrosis factor-α expression and release upon LPS-induced sepsis and following myocardial infarction (MI). Lack of PLD1 leads to a reduced TNF-α mediated inflammatory response and to enhanced infarct size with declined cardiac function 21 days after ischemia reperfusion (I/R) injury. Deficiency of both PLD isoforms PLD1 and PLD2 as well as pharmacological inhibition of the enzymatic activity of PLD with the PLD inhibitor FIPI protected mice from arterial thrombosis and ischemic brain infarction. Here we treated mice with the PLD inhibitor FIPI to analyze if pharmacological inhibition of PLD after myocardial ischemia protects mice from cardiac damage. Inhibition of PLD with FIPI leads to reduced migration of inflammatory cells into the infarct border zone 24 h after experimental MI in mice, providing first evidence for immune cell migration to be dependent on the enzymatic activity of PLD. In contrast to PLD1 deficient mice, TNF-α plasma level was not altered after FIPI treatment of mice. Consequently, infarct size and left ventricular (LV) function were comparable between FIPI-treated and control mice 21 days post MI. Moreover, cell survival 24 h post I/R was not altered upon FIPI treatment. Our results indicate that the enzymatic activity of PLD is not responsible for PLD mediated TNF-α signaling and myocardial healing after I/R injury in mice. Furthermore, reduced TNF-α plasma levels in PLD1 deficient mice might be responsible for increased infarct size and impaired cardiac function 21 days post MI.
Collapse
Affiliation(s)
- Meike Klier
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Marc-Andre Urbahn
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - David Barbosa
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany
| | - Margriet Ouwens
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| |
Collapse
|
41
|
Han H, Qi R, Zhou JJ, Ta AP, Yang B, Nakaoka HJ, Seo G, Guan KL, Luo R, Wang W. Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Mol Cell 2018; 72:328-340.e8. [PMID: 30293781 PMCID: PMC6195446 DOI: 10.1016/j.molcel.2018.08.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/04/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
The Hippo pathway plays a crucial role in organ size control and tumor suppression, but its precise regulation is not fully understood. In this study, we discovered that phosphatidic acid (PA)-related lipid signaling is a key regulator of the Hippo pathway. Supplementing PA in various Hippo-activating conditions activates YAP. This PA-related lipid signaling is involved in Rho-mediated YAP activation. Mechanistically, PA directly interacts with Hippo components LATS and NF2 to disrupt LATS-MOB1 complex formation and NF2-mediated LATS membrane translocation and activation, respectively. Inhibition of phospholipase D (PLD)-dependent PA production suppresses YAP oncogenic activities. PLD1 is highly expressed in breast cancer and positively correlates with YAP activation, suggesting their pathological relevance in breast cancer development. Taken together, our study not only reveals a role of PLD-PA lipid signaling in regulating the Hippo pathway but also indicates that the PLD-PA-YAP axis is a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Paul Ta
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hiroki J Nakaoka
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Kandori S, Kojima T, Matsuoka T, Yoshino T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y, Nishiyama H. Phospholipase D2 promotes disease progression of renal cell carcinoma through the induction of angiogenin. Cancer Sci 2018; 109:1865-1875. [PMID: 29660846 PMCID: PMC5989877 DOI: 10.1111/cas.13609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
A hallmark of clear cell renal cell carcinoma (ccRCC) is the presence of intracellular lipid droplets (LD) and it is assumed that phosphatidic acid (PA) produced by phospholipase D (PLD) plays some role in the LD formation. However, little is known about the significance of PLD in ccRCC. In this study, we examined the expression levels of PLD in ccRCC. The classical mammalian isoforms of PLD are PLD1 and PLD2, and the levels of both mRNA were higher at the primary tumor sites than in normal kidney tissues. Similarly, both PLD were significantly abundant in tumor cells as determined by analysis using immunohistochemical staining. Importantly, a higher level of PLD was significantly associated with a higher tumor stage and grade. Because PLD2 knockdown effectively suppressed the cell proliferation and invasion of ccRCC as compared with PLD1 in vitro, we examined the effect of PLD2 in vivo. Notably, shRNA-mediated knockdown of PLD2 suppressed the growth and invasion of tumors in nude mouse xenograft models. Moreover, the higher expression of PLD2 was significantly associated with poorer prognosis in 67 patients. As for genes relating to the tumor invasion of PLD2, we found that angiogenin (ANG) was positively regulated by PLD2. In fact, the expression levels of ANG were elevated in tumor tissues as compared with normal kidney and the inhibition of ANG activity with a neutralizing antibody significantly suppressed tumor invasion. Overall, we revealed for the first time that PLD2-produced PA promoted cell invasion through the expression of ANG in ccRCC cells.
Collapse
Affiliation(s)
- Shuya Kandori
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Takahiro Kojima
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Taeko Matsuoka
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Takayuki Yoshino
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Aiko Sugiyama
- DSK ProjectMedical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Eijiro Nakamura
- DSK ProjectMedical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Toru Shimazui
- Department of UrologyIbaraki Prefectural Central HospitalKasamaJapan
- Faculty of MedicineDepartment of UrologyIbaraki Clinical Education and Training CenterUniversity of TsukubaTsukubaJapan
| | - Yuji Funakoshi
- Department of Physiological ChemistryFaculty of Medicine and Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yasunori Kanaho
- Department of Physiological ChemistryFaculty of Medicine and Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Hiroyuki Nishiyama
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| |
Collapse
|
43
|
Ngo Thai Bich V, Hongu T, Miura Y, Katagiri N, Ohbayashi N, Yamashita-Kanemaru Y, Shibuya A, Funakoshi Y, Kanaho Y. Physiological function of phospholipase D2 in anti-tumor immunity: regulation of CD8 + T lymphocyte proliferation. Sci Rep 2018; 8:6283. [PMID: 29674728 PMCID: PMC5908902 DOI: 10.1038/s41598-018-24512-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Two major phospholipase D (PLD) isozymes in mammals, PLD1 and PLD2, hydrolyze the membrane phospholipid phosphatidylcholine to choline and the lipid messenger phosphatidic acid. Although their roles in cancer cells have been well studied, their functions in tumor microenvironment have not yet been clarified. Here, we demonstrate that PLD2 in cytotoxic CD8+ T cells plays a crucial role in anti-tumor immunity by regulating their cell proliferation. We found that growth of tumors formed by subcutaneously transplanted cancer cells is enhanced in Pld2-knockout mice. Interestingly, this phenotype was found to be at least in part attributable to the ablation of Pld2 from bone marrow cells. The number of CD8+ T cells, which induce cancer cell death, significantly decreased in the tumor produced in Pld2-knockout mice. In addition, CD3/CD28-stimulated proliferation of primary cultured splenic CD8+ T cells is markedly suppressed by Pld2 ablation. Finally, CD3/CD28-dependent activation of Erk1/2 and Ras is inhibited in Pld2-deleted CD8+ T cells. Collectively, these results indicate that PLD2 in CD8+ T cells plays a key role in their proliferation through activation of the Ras/Erk signaling pathway, thereby regulating anti-tumor immunity.
Collapse
Affiliation(s)
- Van Ngo Thai Bich
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Miura
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naohiro Katagiri
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yumi Yamashita-Kanemaru
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba,, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
44
|
Ganesan R, Henkels KM, Wrenshall LE, Kanaho Y, Di Paolo G, Frohman MA, Gomez-Cambronero J. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. J Leukoc Biol 2018; 103:867-883. [PMID: 29656494 DOI: 10.1002/jlb.2a1017-407rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
The uptake of cholesterol carried by low-density lipoprotein (LDL) is tightly controlled in the body. Macrophages are not well suited to counteract the cellular consequences of excess cholesterol leading to their transformation into "foam cells," an early step in vascular plaque formation. We have uncovered and characterized a novel mechanism involving phospholipase D (PLD) in foam cell formation. Utilizing bone marrow-derived macrophages from genetically PLD deficient mice, we demonstrate that PLD2 (but not PLD1)-null macrophages cannot fully phagocytose aggregated oxidized LDL (Agg-Ox-LDL), which was phenocopied with a PLD2-selective inhibitor. We also report a role for PLD2 in coupling Agg-oxLDL phagocytosis with WASP, Grb2, and Actin. Further, the clearance of LDL particles is mediated by both CD36 and PLD2, via mutual dependence on each other. In the absence of PLD2, CD36 does not engage in Agg-Ox-LDL removal and when CD36 is blocked, PLD2 cannot form protein-protein heterocomplexes with WASP or Actin. These results translated into humans using a GEO database of microarray expression data from atheroma plaques versus normal adjacent carotid tissue and observed higher values for NFkB, PLD2 (but not PLD1), WASP, and Grb2 in the atheroma plaques. Human atherectomy specimens confirmed high presence of PLD2 (mRNA and protein) as well as phospho-WASP in diseased arteries. Thus, PLD2 interacts in macrophages with Actin, Grb2, and WASP during phagocytosis of Agg-Ox-LDL in the presence of CD36 during their transformation into "foam cells." Thus, this study provides new molecular targets to counteract vascular plaque formation and atherogenesis.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology/Physiology, Wright State University, Dayton, Ohio, USA
| | - Yasunori Kanaho
- Department of Physiology, University of Tsukuba, Tsukuba, Japan
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Denali Therapeutics Inc., South San Francisco, California, USA
| | - Michael A Frohman
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
45
|
Su Y, Wang P, Shen H, Sun Z, Xu C, Li G, Tong T, Chen J. The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. J Cell Sci 2018; 131:jcs.207217. [PMID: 29420297 DOI: 10.1242/jcs.207217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Senescent cells develop a senescence-associated secretory phenotype (SASP). The factors secreted by cells with a SASP have multiple biological functions that are mediated in an autocrine or paracrine manner. However, the status of the protein kinase D1 (PKD1; also known as PRKD1)-mediated classical protein secretory pathway, from the trans-Golgi network (TGN) to the cell surface, during cellular senescence and its role in the cellular senescence response remain unknown. Here, we show that the activities or quantities of critical components of this pathway, including PKD1, ADP-ribosylation factor 1 (ARF1) and phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), at the TGN are increased in senescent cells. Blocking of this pathway decreases IL-6 and IL-8 (hereafter IL-6/IL-8) secretion and results in IL-6/IL-8 accumulation in SASP-competent senescent cells. Inhibition of this pathway reduces IL-6/IL-8 secretion during Ras oncogene-induced senescence (OIS), retards Ras OIS and alleviates its associated ER stress and autophagy. Finally, targeting of this pathway triggers cell death in SASP factor-producing senescent cells due to the intracellular accumulation of massive amounts of IL-6/IL-8. Taken together, our results unveil the hyperactive state of the protein secretory pathway in SASP-competent senescent cells and its critical functions in mediating SASP factor secretion and the Ras OIS process, as well as in determining the fate of senescent cells.
Collapse
Affiliation(s)
- Yuanyuan Su
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Pengfeng Wang
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Hong Shen
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhaomeng Sun
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Chenzhong Xu
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Guodong Li
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
46
|
Abdulnour REE, Howrylak JA, Tavares AH, Douda DN, Henkels KM, Miller TE, Fredenburgh LE, Baron RM, Gomez-Cambronero J, Levy BD. Phospholipase D isoforms differentially regulate leukocyte responses to acute lung injury. J Leukoc Biol 2018; 103:919-932. [PMID: 29437245 DOI: 10.1002/jlb.3a0617-252rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Phospholipase D (PLD) plays important roles in cellular responses to tissue injury that are critical to acute inflammatory diseases, such as the acute respiratory distress syndrome (ARDS). We investigated the expression of PLD isoforms and related phospholipid phosphatases in patients with ARDS, and their roles in a murine model of self-limited acute lung injury (ALI). Gene expression microarray analysis on whole blood obtained from patients that met clinical criteria for ARDS and clinically matched controls (non-ARDS) demonstrated that PLD1 gene expression was increased in patients with ARDS relative to non-ARDS and correlated with survival. In contrast, PLD2 expression was associated with mortality. In a murine model of self-resolving ALI, lung Pld1 expression increased and Pld2 expression decreased 24 h after intrabronchial acid. Total lung PLD activity was increased 24 h after injury. Pld1-/- mice demonstrated impaired alveolar barrier function and increased tissue injury relative to WT and Pld2-/- , whereas Pld2-/- mice demonstrated increased recruitment of neutrophils and macrophages, and decreased tissue injury. Isoform-specific PLD inhibitors mirrored the results with isoform-specific Pld-KO mice. PLD1 gene expression knockdown in human leukocytes was associated with decreased phagocytosis by neutrophils, whereas reactive oxygen species production and phagocytosis decreased in M2-macrophages. PLD2 gene expression knockdown increased neutrophil and M2-macrophage transmigration, and increased M2-macrophage phagocytosis. These results uncovered selective regulation of PLD isoforms after ALI, and opposing effects of selective isoform knockdown on host responses and tissue injury. These findings support therapeutic strategies targeting specific PLD isoforms for the treatment of ARDS.
Collapse
Affiliation(s)
- Raja-Elie E Abdulnour
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Judie A Howrylak
- Division of Pulmonary Allergy and Critical Care Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Alexander H Tavares
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David N Douda
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Taylor E Miller
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA.,Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Gomez-Cambronero J, Ganesan R. Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function. Methods Mol Biol 2018; 1835:297-314. [PMID: 30109659 DOI: 10.1007/978-1-4939-8672-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phospholipase D (PLD), is a protein that breaks down phospholipids, maintaining structural integrity and remodeling of cellular or intracellular membranes, as well as mediating protein trafficking and cytoskeletal dynamics during cell motility. One of the reaction products of PLD action is phosphatidic acid (PA). PA is a mitogen involved in a large variety of physiological cellular functions, such as cell growth, cell cycle progression, and cell motility. We have chosen as cell models the leukocyte polymorphonuclear neutrophil and the macrophage as examples of cell motility. We provide a three-part method for targeting PLD genetically and pharmacologically to study its role in cell migration. In the first part, we begin with genetically deficient mice PLD1-KO and PLD2-KO. We describe bone marrow neutrophil (BMN) isolation; BMN is labeled fluorescently and can be used for studying tissue-damaging neutrophilia in ischemia-reperfusion injury (IRI). In the second part, we begin also with PLD1-KO and PLD2-KO and prepare bone marrow-derived macrophages (BMDM), first from monocytes and then inducing macrophage differentiation in culture with continuous incubation of cytokines. We use BMDM to find experimentally if PLD woul play a role in cholesterol phagocytosis, which is the first step in atherosclerosis progression. In the third part, we study PLD function in BMN and BMDM with PLD enzyme pharmacological inhibitors instead of genetically deficient mice, to ascertain the particular contributions of isoforms PLD1 and PLD2 on leukocyte function. By using the three-step thorough approach, we could understand the molecular underpinning of PLD in the pathological conditions indicated above, IRI-neutrophilia and atherosclerosis.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA.
| | - Ramya Ganesan
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA
| |
Collapse
|
48
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
49
|
Cho JH, Han JS. Phospholipase D and Its Essential Role in Cancer. Mol Cells 2017; 40:805-813. [PMID: 29145720 PMCID: PMC5712509 DOI: 10.14348/molcells.2017.0241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 11/11/2017] [Indexed: 11/27/2022] Open
Abstract
The role of phospholipase D (PLD) in cancer development and management has been a major area of interest for researchers. The purpose of this mini-review is to explore PLD and its distinct role during chemotherapy including anti-apoptotic function. PLD is an enzyme that belongs to the phospholipase super family and is found in a broad range of organisms such as viruses, yeast, bacteria, animals, and plants. The function and activity of PLD are widely dependent on and regulated by neurotransmitters, hormones, small monomeric GTPases, and lipids. A growing body of research has shown that PLD activity is significantly increased in cancer tissues and cells, indicating that it plays a critical role in signal transduction, cell proliferation, and anti-apoptotic processes. In addition, recent studies show that PLD is a downstream transcriptional target of proteins that contribute to inflammation and carcinogenesis such as Sp1, NFκB, TCF4, ATF-2, NFATc2, and EWS-Fli. Thus, compounds that inhibit expression or activity of PLD in cells can be potentially useful in reducing inflammation and sensitizing resistant cancers during chemotherapy.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 4321,
USA
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
50
|
Roth E, Frohman MA. Proliferative and metastatic roles for Phospholipase D in mouse models of cancer. Adv Biol Regul 2017; 67:134-140. [PMID: 29154090 DOI: 10.1016/j.jbior.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
Phospholipase D (PLD) activity has been proposed to facilitate multiple steps in cancer progression including growth, metabolism, angiogenesis, and mobility. The canonical enzymes PLD1 and PLD2 enact their diverse effects through hydrolyzing the membrane lipid phosphatidylcholine to generate the second messenger and signaling lipid phosphatidic acid (PA). However, the widespread expression of PLD1 and PLD2 in normal tissues and the additional distinct enzymatic mechanisms through which PA can be generated have produced uncertainty regarding the optimal settings in which PLD inhibition might ameliorate cancer. Recent studies in mouse model systems have demonstrated that inhibition or elimination of PLD activity reduces tumor growth and metastasis. One mechanism proposed for this outcome involves proliferative signaling mediated by receptor tyrosine kinases (RTK) and G protein-coupled receptors (GPCR), which is attenuated when downstream PLD signal propagation is suppressed. The reduced proliferative signaling has been reported to be compounded by dysfunctional energetic metabolism in the tumor cells under conditions of nutrient deprivation. Moreover, cancer cells lacking PLD activity display inefficiencies across multiple steps of the metastatic cascade, limiting the tumor's lethal spread. Using PLD isoform knockout mice, recent studies have reported on the net effects of inhibition and ablation in multiple cancer models through examining the role of PLD in the non-tumor cells comprising the stroma and microenvironment. The promising results of such in vivo studies, combined with the apparent low toxicity of highly-specific and potent inhibitors, highlights PLD as an attractive target for therapeutic inhibition in cancer. We discuss here the array of anti-tumor effects produced by PLD inhibition and ablation in cancer models with a focus on animal studies.
Collapse
Affiliation(s)
- Eric Roth
- The Graduate Program in Molecular and Cellular Pharmacology, The Medical Scientist Training Program, and the Department of Pharmacological Sciences, Stony Brook University, New York, 11794, USA.
| | - Michael A Frohman
- The Graduate Program in Molecular and Cellular Pharmacology, The Medical Scientist Training Program, and the Department of Pharmacological Sciences, Stony Brook University, New York, 11794, USA.
| |
Collapse
|