1
|
Yang B, Pei J, Lu C, Wang Y, Shen M, Qin X, Huang Y, Yang X, Zhao X, Ma S, Song Z, Liang Y, Wang H, Wang J. RNF144A promotes antiviral responses by modulating STING ubiquitination. EMBO Rep 2023; 24:e57528. [PMID: 37955227 PMCID: PMC10702816 DOI: 10.15252/embr.202357528] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Stimulator of interferon (IFN) genes (STING, also named MITA, ERIS, MPYS, or TMEM173) plays an essential role in DNA virus- or cytosolic DNA-triggered innate immune responses. Here, we demonstrate that the RING-in-between RING (RBR) E3 ubiquitin ligase family member RING-finger protein (RNF) 144A interacts with STING and promotes its K6-linked ubiquitination at K236, thereby enhancing STING translocation from the ER to the Golgi and downstream signaling pathways. The K236R mutant of STING displays reduced activity in promoting innate immune signal transduction. Overexpression of RNF144A upregulates HSV-1- or cytosolic DNA-induced immune responses, while knockdown of RNF144A expression has the opposite effect. In addition, Rnf144a-deficient cells exhibit impaired DNA virus- or cytosolic DNA-triggered signaling, and RNF144A protects mice from DNA virus infection. In contrast, RNF144A does not affect RNA virus- or cytosolic RNA-triggered innate immune responses. Taken together, our findings identify a new positive regulator of DNA virus- or cytosolic DNA-triggered signaling pathways and a critical ubiquitination site important for fully functional STING during antiviral responses.
Collapse
Affiliation(s)
- Bo Yang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Jinyong Pei
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Chen Lu
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yi Wang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Mengyang Shen
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xiao Qin
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yulu Huang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xi Yang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xin Zhao
- Department of Laboratory MedicineThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Shujun Ma
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Zhishan Song
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
- Ping Yuan LaboratoryXinxiangChina
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
2
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
3
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|
4
|
Yang EJ, Park JH, Cho HJ, Hwang JA, Woo SH, Park CH, Kim SY, Park JT, Park SC, Hwang D, Lee YS. Co-inhibition of ATM and ROCK synergistically improves cell proliferation in replicative senescence by activating FOXM1 and E2F1. Commun Biol 2022; 5:702. [PMID: 35835838 PMCID: PMC9283421 DOI: 10.1038/s42003-022-03658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
The multifaceted nature of senescent cell cycle arrest necessitates the targeting of multiple factors arresting or promoting the cell cycle. We report that co-inhibition of ATM and ROCK by KU-60019 and Y-27632, respectively, synergistically increases the proliferation of human diploid fibroblasts undergoing replicative senescence through activation of the transcription factors E2F1 and FOXM1. Time-course transcriptome analysis identified FOXM1 and E2F1 as crucial factors promoting proliferation. Co-inhibition of the kinases ATM and ROCK first promotes the G2/M transition via FOXM1 activation, leading to accumulation of cells undergoing the G1/S transition via E2F1 activation. The combination of both inhibitors increased this effect more significantly than either inhibitor alone, suggesting synergism. Our results demonstrate a FOXM1- and E2F1-mediated molecular pathway enhancing cell cycle progression in cells with proliferative potential under replicative senescence conditions, and treatment with the inhibitors can be tested for senomorphic effect in vivo.
Collapse
Affiliation(s)
- Eun Jae Yang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyun-Ji Cho
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeong-A Hwang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung-Hwa Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Chi Hyun Park
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, 05029, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sang Chul Park
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61469, Republic of Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
5
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
6
|
Yan J, Chen Y, Wu Q, Shao L, Zhou X. Expression of sphingosine‑1‑phosphate receptor 2 is correlated with migration and invasion of human colon cancer cells: A preliminary clinical study. Oncol Lett 2022; 24:241. [PMID: 35720474 PMCID: PMC9185157 DOI: 10.3892/ol.2022.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive phospholipid that serves as a potent mediator of cell proliferation, differentiation and apoptosis by binding to S1P receptors (S1PRs). S1P signalling is involved in the pathogenesis of numerous types of disease, including cancer. To the best of our knowledge, however, little is known about the expression patterns of S1PRs and their role in human colorectal cancer (CRC) cell migration and invasion. The aim of the present study was to investigate the role of S1P signalling in the metastasis of colon cancer cells and the expression of S1PRs in patients with CRC. The protein and mRNA expression levels of S1PRs and sphingosine kinases (SPHKs) in 55 patients with CRC were detected by western blotting (WB), immunohistochemical (IHC) analysis and reverse transcription-quantitative PCR. The levels of S1P in serum from patients and healthy individuals were quantified by ELISA. S1PRs antagonists JTE013, FTY720 and S1PR2-small interfering (si)RNA were used to determine the role of S1PR2 in human CRC LOVO and SW480 cell lines. Migration and invasion assays were performed for functional analysis. The levels of S1P in serum were significantly increased in patients with CRC compared with healthy individuals. The relative mRNA expression levels of S1PR2 were significantly downregulated in tumour compared with normal tissue, whereas S1PR1 and SPHK1 were upregulated. WB showed that 58% (32/55 cases) of patients presented downregulated S1PR2 protein expression. IHC analysis indicated that expression of S1PR2 was lower in tumour than in normal tissue in 65.5% (36/55 cases) of patients. Exogenous addition of S1P promoted migration and invasion in the different cell types. S1P stimulated the migration and invasion of SW480 cells. The inhibition of S1PR2 by JTE013 or S1PR2-siRNA significantly promoted the migration and invasion of SW480 cells, while FTY720 reversed these effects. The present study indicated that expression levels of S1PRs, particularly S1PR2, were associated with migration and invasion of CRC cells. The present findings revealed a novel mechanism by which S1P inhibited tumour cell migration and invasion via a S1PR2-dependent pathway, suggesting that S1PR2 may be a therapeutic target for treatment of colon cancer.
Collapse
Affiliation(s)
- Junjun Yan
- Department of Gastroenterology, The First People's Hospital of Jiujiang, Jiujiang, Jiangxi 332000, P.R. China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology (MUST), Taipa, Macau 999078, P.R. China
| | - Le Shao
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Xiqiao Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
7
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
8
|
Sphingosine 1-Phosphate Receptor 5 (S1P5) Deficiency Promotes Proliferation and Immortalization of Mouse Embryonic Fibroblasts. Cancers (Basel) 2022; 14:cancers14071661. [PMID: 35406433 PMCID: PMC8996878 DOI: 10.3390/cancers14071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Sphingosine 1-phosphate (S1P) is a lipid metabolite involved in cell proliferation, survival or migration. S1P is a ligand for five high-affinity G protein-coupled receptors (S1P1-5), which differ in their tissue distribution, and the specific effects of S1P depend on the suite of S1P receptor subtypes expressed. To date, information regarding the role of S1P5 in cell proliferation is limited and ambiguous. Our results suggest that, unlike other S1P receptors, the S1P5 receptor has an anti-proliferative function. We found that S1P5 deficiency promotes cell immortalization and proliferation by controlling the spatial activation of ERK. Abstract Sphingosine 1-phosphate (S1P), a bioactive lipid, interacts with five widely expressed G protein-coupled receptors (S1P1-5), regulating a variety of downstream signaling pathways with overlapping but also opposing functions. To date, data regarding the role of S1P5 in cell proliferation are ambiguous, and its role in controlling the growth of untransformed cells remains to be fully elucidated. In this study, we examined the effects of S1P5 deficiency on mouse embryonic fibroblasts (MEFs). Our results indicate that lack of S1P5 expression profoundly affects cell morphology and proliferation. First, S1P5 deficiency reduces cellular senescence and promotes MEF immortalization. Second, it decreases cell size and leads to cell elongation, which is accompanied by decreased cell spreading and migration. Third, it increases proliferation rate, a phenotype rescued by the reintroduction of exogenous S1P5. Mechanistically, S1P5 promotes the activation of FAK, controlling cell spreading and adhesion while the anti-proliferative function of the S1P/S1P5 signaling is associated with reduced nuclear accumulation of activated ERK. Our results suggest that S1P5 opposes the growth-promoting function of S1P1-3 through spatial control of ERK activation and provides new insights into the anti-proliferative function of S1P5.
Collapse
|
9
|
Sphingosine-1-phosphate transporter spinster homolog 2 is essential for iron-regulated metastasis of hepatocellular carcinoma. Mol Ther 2022; 30:703-713. [PMID: 34547466 PMCID: PMC8821935 DOI: 10.1016/j.ymthe.2021.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Iron dyshomeostasis is associated with hepatocellular carcinoma (HCC) development. However, the role of iron in HCC metastasis is unknown. This study aimed to elucidate the underlying mechanisms of iron's enhancement activity on HCC metastasis. In addition to the HCC cell lines and clinical samples in vitro, iron-deficient (ID) mouse models were generated using iron-free diet and transferrin receptor protein knockout, followed by administration of HCC tumors through either orthotopic or ectopic route. Clinical metastatic HCC samples showed significant ID status, accompanied by overexpression of sphingosine-1-phosphate transporter spinster homolog 2 (SPNS2). Mechanistically, ID increased SPNS2 expression, leading to HCC metastasis in both cell cultures and mouse models. ID not only altered the anti-tumor immunity, which was indicated by phenotypes of lymphatic subsets in the liver and lung of tumor-bearing mice, but also promoted HCC metastasis in a cancer cell autonomous manner through the SPNS2. Since germline knockout of globe SPNS2 showed significantly reduced HCC metastasis, we further developed hepatic-targeting recombinant adeno-associated virus vectors to knockdown SPNS2 expression and to inhibit iron-regulated HCC metastasis. Our observation indicates the role of iron in HCC pulmonary metastasis and suggests SPNS2 as a potential therapeutic target for the prevention of HCC pulmonary metastasis.
Collapse
|
10
|
Wang J, Goren I, Yang B, Lin S, Li J, Elias M, Fiocchi C, Rieder F. Review article: the sphingosine 1 phosphate/sphingosine 1 phosphate receptor axis - a unique therapeutic target in inflammatory bowel disease. Aliment Pharmacol Ther 2022; 55:277-291. [PMID: 34932238 PMCID: PMC8766911 DOI: 10.1111/apt.16741] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/03/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ozanimod, a high selective sphingosine 1 phosphate (S1P) receptor (S1PR) 1/5 modulator was approved by the Food and Drug Administration for the treatment of adult patients with moderately to severely active ulcerative colitis. Additional S1PR modulators are being tested in clinical development programmes for both ulcerative colitis and Crohn's disease. AIM To provide an overview of advances in understanding S1PRs biology and summarise preclinical and clinical investigations of S1P receptor modulators in chronic inflammatory disease with special emphasis on inflammatory bowel diseases (IBD). METHODS We performed a narrative review using PubMed and ClinicalTrials.gov. RESULTS Through S1PRs, S1P regulates multiple cellular processes, including proliferation, migration, survival, and vascular barrier integrity. The S1PRs function of regulating lymphocyte trafficking is well known, but new functions of S1PRs expand our knowledge of S1PRs biology. Several S1PR modulators are in clinical development for both ulcerative colitis and Crohn's disease and have shown promise in phase II and III studies with ozanimod now being approved for ulcerative colitis. CONCLUSIONS S1P receptor modulators constitute a novel, promising, safe, and convenient strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, Henan Province, China,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Bo Yang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic Foundation, Cleveland, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
11
|
Gray N, Limberg MM, Bräuer AU, Raap U. Novel functions of S1P in chronic itchy and inflammatory skin diseases. J Eur Acad Dermatol Venereol 2021; 36:365-372. [PMID: 34679239 DOI: 10.1111/jdv.17764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
S1P is a pleotropic sphingolipid signalling molecule that acts through binding to five high-affinity G-protein coupled receptors. S1P-signaling affects cell fate in a multitude of ways, e.g. influencing cell differentiation, proliferation, and apoptosis, as well as playing an important role in immune cell trafficking. Though many effects of S1P-signaling in the human body have been discovered, the full range of functions is yet to be understood. For inflammatory skin diseases such as atopic dermatitis and psoriasis, evidence is emerging that dysfunction and imbalance of the S1P-axis is a contributing factor. Multiple studies investigating the efficacy of S1PR modulators in alleviating the severity and symptoms of skin conditions in various animal models and human clinical trials have shown promising results and validated the interest in the S1P-axis as a potential therapeutic target. Even though the involvement of S1P-signalling in inflammatory skin diseases still requires further clarification, the implications of the recent findings may prompt expansion of research to additional skin conditions and more S1P-axis modulatory pharmaceuticals.
Collapse
Affiliation(s)
- N Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - M M Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - A U Bräuer
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - U Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Matos GS, Madeira JB, Fernandes CM, Dasilva D, Masuda CA, Del Poeta M, Montero-Lomelí M. Regulation of sphingolipid synthesis by the G1/S transcription factor Swi4. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158983. [PMID: 34062255 PMCID: PMC8512607 DOI: 10.1016/j.bbalip.2021.158983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
SBF (Swi4/Swi6 Binding Factor) complex is a crucial regulator of G1/S transition in Saccharomyces cerevisiae. Here, we show that SBF complex is required for myriocin resistance, an inhibitor of sphingolipid synthesis. This phenotype was not shared with MBF complex mutants nor with deletion of the Swi4p downstream targets, CLN1/CLN2. Based on data mining results, we selected putative Swi4p targets related to sphingolipid metabolism and studied their gene transcription as well as metabolite levels during progression of the cell cycle. Genes which encode key enzymes for the synthesis of long chain bases (LCBs) and ceramides were periodically transcribed during the mitotic cell cycle, having a peak at G1/S, and required SWI4 for full transcription at this stage. In addition, HPLC-MS/MS data indicated that swi4Δ cells have decreased levels of sphingolipids during progression of the cell cycle, particularly, dihydrosphingosine (DHS), C24-phytoceramides and C24-inositolphosphoryl ceramide (IPC) while it had increased levels of mannosylinositol phosphorylceramide (MIPC). Furthermore, we demonstrated that both inhibition of de novo sphingolipid synthesis by myriocin or SWI4 deletion caused partial arrest at the G2/M phase. Importantly, our lipidomic data demonstrated that the sphingolipid profile of WT cells treated with myriocin resembled that of swi4Δ cells, with lower levels of DHS, IPC and higher levels of MIPC. Taken together, these results show that SBF complex plays an essential role in the regulation of sphingolipid homeostasis, which reflects in the correct progression through the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Gabriel S Matos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana B Madeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Deveney Dasilva
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, NY, USA; MicroRid Technologies Inc., Dix Hills, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
| | - Monica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Hong H, Yoon B, Ghil S. Interactions between lysophosphatidylinositol receptor GPR55 and sphingosine-1-phosphate receptor S1P 5 in live cells. Biochem Biophys Res Commun 2021; 570:53-59. [PMID: 34271437 DOI: 10.1016/j.bbrc.2021.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023]
Abstract
Lysophosphatidylinositol (LPI) and sphingosine-1-phosphate (S1P) are bioactive lipids implicated in various cellular events including proliferation, migration, and cancer progression. LPI and S1P act as ligands for G-protein coupled GPR55 and S1P receptors, respectively, and activate specific signaling pathways. Both receptors are highly expressed in various cancer tissues and associated with tumor progression. However, physical and functional crosstalk between the two receptors has not been elucidated to date. Bioluminescence resonance energy transfer (BRET) experiments in the current study showed that S1P5 strongly and specifically interacts with GPR55. We observed co-internalization of both receptors upon agonist stimulation. Notably, activation of one receptor induced co-internalization of the partner receptor. Next, we examined functional crosstalk of the two receptors. Interestingly, while activation of the individual receptors augmented cell proliferation, ERK phosphorylation and cancer-associated gene expression in HCT116 cells, co-activation of both receptors inhibited these stimulatory effects. Our collective findings indicate that GPR55 and S1P5 form a heterodimer and their co-activation attenuates the stimulatory activity of each receptor on colon cancer progression.
Collapse
Affiliation(s)
- Hahoon Hong
- Department of Life Science, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Byoungsu Yoon
- Department of Life Science, Kyonggi University, Suwon, 16227, Republic of Korea.
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
14
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
15
|
Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI. Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers (Basel) 2021; 13:1898. [PMID: 33920887 PMCID: PMC8071327 DOI: 10.3390/cancers13081898] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipid metabolites have emerged as critical players in the regulation of various physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas sphingosine-1-phosphate (S1P) promotes cell proliferation and survival. Here, we present an overview of sphingolipid metabolism and the compartmentalization of various sphingolipid metabolites. In addition, the sphingolipid rheostat, a fine metabolic balance between ceramide and S1P, is discussed. Sphingosine kinase (SphK) catalyzes the synthesis of S1P from sphingosine and modulates several cellular processes and is found to be essentially involved in various pathophysiological conditions. The regulation and biological functions of SphK isoforms are discussed. The functions of S1P, along with its receptors, are further highlighted. The up-regulation of SphK is observed in various cancer types and is also linked to radio- and chemoresistance and poor prognosis in cancer patients. Implications of the SphK/S1P signaling axis in human pathologies and its inhibition are discussed in detail. Overall, this review highlights current findings on the SphK/S1P signaling axis from multiple angles, including their functional role, mechanism of activation, involvement in various human malignancies, and inhibitor molecules that may be used in cancer therapy.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| |
Collapse
|
16
|
Grbčić P, Sedić M. Sphingosine 1-Phosphate Signaling and Metabolism in Chemoprevention and Chemoresistance in Colon Cancer. Molecules 2020; 25:E2436. [PMID: 32456134 PMCID: PMC7287727 DOI: 10.3390/molecules25102436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is the leading cause of cancer-related deaths worldwide. Despite advances in prevention and treatment modalities for CRC, rapidly developing resistance to chemotherapy limits its effectiveness. For that reason, it is important to better understand the mechanisms that undergird the process of chemoresistance to enable design of novel anticancer agents specifically targeting malignant properties of cancer cells. Over recent decades, bioactive sphingolipid species have come under the spotlight for their recognized role in cancer development and progression, and the evidence has surfaced to support their role as regulators of anti-cancer drug resistance. Colon cancer is characterized by a shift in sphingolipid balance that favors the production and accumulation of oncogenic species such as sphingosine 1-phosphate (S1P). S1P is known to govern the processes that facilitate cancer cell growth and progression including proliferation, survival, migration, invasion and inflammation. In this review paper, we will give a comprehensive overview of current literature findings on the molecular mechanisms by which S1P turnover, transport and signaling via receptor-dependent and independent pathways shape colon cancer cell behavior and influence treatment outcome in colon cancer. Combining available modulators of S1P metabolism and signaling with standard chemotherapy drugs could provide a rational approach to achieve enhanced therapeutic response, diminish chemoresistance development and improve the survival outcome in CRC patients.
Collapse
Affiliation(s)
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| |
Collapse
|
17
|
Bocheńska K, Gabig-Cimińska M. Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules 2020; 25:E1130. [PMID: 32138315 PMCID: PMC7179243 DOI: 10.3390/molecules25051130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs), which have structural and biological responsibilities in the human epidermis, are importantly involved in the maintenance of the skin barrier and regulate cellular processes, such as the proliferation, differentiation and apoptosis of keratinocytes (KCs). As many dermatologic diseases, including psoriasis (PsO), intricately characterized by perturbations in these cellular processes, are associated with altered composition and unbalanced metabolism of epidermal SLs, more education to precisely determine the role of SLs, especially in the pathogenesis of skin disorders, is needed. PsO is caused by a complex interplay between skin barrier disruption, immune dysregulation, host genetics and environmental triggers. The contribution of particular cellular compartments and organelles in SL metabolism, a process related to dysfunction of lysosomes in PsO, seems to have a significant impact on lysosomal signalling linked to a modulation of the immune-mediated inflammation accompanying this dermatosis and is not fully understood. It is also worth noting that a prominent skin disorder, such as PsO, has diminished levels of the main epidermal SL ceramide (Cer), reflecting altered SL metabolism, that may contribute not only to pathogenesis but also to disease severity and/or progression. This review provides a brief synopsis of the implications of SLs in PsO, aims to elucidate the roles of these molecules in complex cellular processes deregulated in diseased skin tissue and highlights the need for increased research in the field. The significance of SLs as structural and signalling molecules and their actions in inflammation, in which these components are factors responsible for vascular endothelium abnormalities in the development of PsO, are discussed.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80–822 Gdańsk, Poland
| |
Collapse
|
18
|
White-Gilbertson S, Lu P, Norris JS, Voelkel-Johnson C. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis. J Lipid Res 2019; 60:1225-1235. [PMID: 30988134 DOI: 10.1194/jlr.m092247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation treatment failure or relapse after initial response to chemotherapy presents significant clinical challenges in cancer patients. Escape from initial courses of treatment can involve reactivation of embryonic developmental stages, with the formation of polynuclear giant cancer cells (PGCCs). This strategy of dedifferentiation can insulate cancer cells from a variety of treatments and allows a residual subpopulation to reestablish tumors after treatment. Using radiation or docetaxel chemotherapy, we generated PGCCs from prostate cancer cells. Here, we show that expression of acid ceramidase (ASAH1), an enzyme in the sphingolipid pathway linked to therapy resistance and poor outcomes, is elevated in PGCCs. Targeting ASAH1 with shRNA or treatment with the ASAH1 inhibitor, LCL-521, did not impair the formation of PGCCs, but prevented the formation of PGCC progeny that arise through an asymmetric cell division called neosis. Similar results were obtained in lung cancer cells that had been exposed to radiation or cisplatin chemotherapy as stressors. In summary, our data suggest that endoreplication occurs independent of ASAH1 while neosis is ASAH1-dependent in both prostate and lung cancer cells. Because ASAH1 knockout is embryonic lethal but not deleterious to adult animals, targeting this enzyme has the potential to be highly specific to cells undergoing the dedifferentiation process to escape cancer treatments. Pharmacological inhibition of ASAH1 is a potentially powerful strategy to eliminate cells that could otherwise serve as seed populations for recurrence.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
19
|
Talmont F, Moulédous L, Baranger M, Gomez-Brouchet A, Zajac JM, Deffaud C, Cuvillier O, Hatzoglou A. Development and characterization of sphingosine 1-phosphate receptor 1 monoclonal antibody suitable for cell imaging and biochemical studies of endogenous receptors. PLoS One 2019; 14:e0213203. [PMID: 30845158 PMCID: PMC6405204 DOI: 10.1371/journal.pone.0213203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022] Open
Abstract
Although sphingosine-1-phosphate receptor 1 (S1P1) has been shown to trigger several S1P targeted functions such as immune cell trafficking, cell proliferation, migration, or angiogenesis, tools that allow the accurate detection of endogenous S1P1 localization and trafficking remain to be obtained and validated. In this study, we developed and characterized a novel monoclonal S1P1 antibody. Mice were immunized with S1P1 produced in the yeast Pichia pastoris and nine hybridoma clones producing monoclonal antibodies were created. Using different technical approaches including Western blot, immunoprecipitation and immunocytochemistry, we show that a selected clone, hereinafter referred to as 2B9, recognizes human and mouse S1P1 in various cell lineages. The interaction between 2B9 and S1P1 is specific over receptor subtypes, as the antibody does not binds to S1P2 or S1P5 receptors. Using cell-imaging methods, we demonstrate that 2B9 binds to an epitope located at the intracellular domain of S1P1; reveals cytosolic and membrane localization of the endogenous S1P1; and receptor internalization upon S1P or FTY720-P stimulation. Finally, loss of 2B9 signal upon knockdown of endogenous S1P1 by specific small interference RNAs further confirms its specificity. 2B9 was also able to detect S1P1 in human kidney and spinal cord tissue by immunohistochemistry. Altogether, our results suggest that 2B9 could be a useful tool to detect, quantify or localize low amounts of endogenous S1P1 in various physiological and pathological processes.
Collapse
Affiliation(s)
- Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Anne Gomez-Brouchet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Service d'anatomie et cytologie pathologiques, IUCT Oncopole, Toulouse, France
| | - Jean-Marie Zajac
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anastassia Hatzoglou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
20
|
Spiegel S, Maczis MA, Maceyka M, Milstien S. New insights into functions of the sphingosine-1-phosphate transporter SPNS2. J Lipid Res 2019; 60:484-489. [PMID: 30655317 DOI: 10.1194/jlr.s091959] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive signaling molecule that regulates many physiological processes important for development, epithelial and endothelial barrier integrity, and the immune system, as well as for pathologies, such as autoimmune diseases, cancer, and metastasis. Most of the well-known actions of S1P are mediated by five specific G protein-coupled receptors located on the plasma membrane. Because S1P is synthesized intracellularly by two sphingosine kinase isoenzymes, we have proposed the paradigm of inside-out signaling by S1P, suggesting that S1P must be exported out of cells to interact with its receptors. While several transporters of S1P have previously been identified, spinster homologue 2 (SPNS2), a member of the large family of non-ATP-dependent organic ion transporters, has recently attracted much attention as an S1P transporter. Here, we discuss recent advances in understanding the physiological actions of SPNS2 in regulating levels of S1P and the S1P gradient that exists between the high circulating concentrations of S1P and low tissue levels that control lymphocyte trafficking. Special emphasis is on the functions of SPNS2 in inflammatory and autoimmune diseases and its recently discovered unexpected importance in metastasis.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
21
|
Shen Y, Zhao S, Wang S, Pan X, Zhang Y, Xu J, Jiang Y, Li H, Zhang Q, Gao J, Yang Q, Zhou Y, Jiang S, Yang H, Zhang Z, Zhang R, Li J, Zhou D. S1P/S1PR3 axis promotes aerobic glycolysis by YAP/c-MYC/PGAM1 axis in osteosarcoma. EBioMedicine 2018; 40:210-223. [PMID: 30587459 PMCID: PMC6412077 DOI: 10.1016/j.ebiom.2018.12.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant tumor mainly occurring in young people. Due to the limited effective therapeutic strategies, OS patients cannot achieve further survival improvement. G-protein-coupled receptors (GPCRs) constitute the largest family of cell membrane receptors and consequently hold the significant promise for tumor imaging and targeted therapy. We aimed to explore the biological functions of Sphingosine 1-phosphate receptor 3 (S1PR3), one of the members of GPCRs family, in OS and the possibility of S1PR3 as an effective target for the treatment of osteosarcoma. Methods The quantitative real time PCR (qRT-PCR) and western blotting were used to analyze the mRNA and protein expressions. Cell counting kit-8 (CCK8), colony formation assay and cell apoptosis assay were performed to test the cellular proliferation in vitro. Subcutaneous xenograft mouse model was generated to evaluate the functions of S1PR3 in vivo. RNA sequencing was used to compare gene expression patterns between S1PR3-knockdown and control MNNG-HOS cells. In addition, metabolic alternations in OS cells were monitored by XF96 metabolic flux analyzer. Co-immunoprecipitation (Co-IP) assay was used to explore the interaction between Yes-associated protein (YAP) and c-MYC. Chromatin immunoprecipitation was used to investigate the binding capability of PGAM1 and YAP or c-MYC. Moreover, the activities of promoter were determined by the luciferase reporter assay. Findings S1PR3 and its specific ligand Sphingosine 1-phosphate (S1P) were found elevated in OS, and the higher expression of S1PR3 was correlated with the poor survival rate. Moreover, our study has proved that the S1P/S1PR3 axis play roles in proliferation promotion, apoptosis inhibition, and aerobic glycolysis promotion of osteosarcoma cells. Mechanistically, the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted the nuclear translocation of YAP, which contributed to the formation of the YAP–c-MYC complex and enhanced transcription of the important glycolysis enzyme PGAM1. Moreover, the S1PR3 antagonist TY52156 exhibited in vitro and in vivo synergistic inhibitory effects with methotrexate on OS cell growth. Interpretation Our study unveiled a role of S1P, a bioactive phospholipid, in glucose metabolism reprogram through interaction with its receptor S1PR3. Targeting S1P/S1PR3 axis might serve as a potential therapeutic target for patients with OS. Fund This research was supported by National Natural Science Foundation of China (81472445 and 81672587).
Collapse
Affiliation(s)
- Yifei Shen
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Shujie Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Shenyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaohui Pan
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Yunkun Zhang
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Jingwen Xu
- Department of Nutrition, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Haibo Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Qiang Zhang
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Jianbo Gao
- Department of Nutrition, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Zhou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China..
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dong Zhou
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
22
|
Pharmacological Inhibition of Serine Palmitoyl Transferase and Sphingosine Kinase-1/-2 Inhibits Merkel Cell Carcinoma Cell Proliferation. J Invest Dermatol 2018; 139:807-817. [PMID: 30399362 DOI: 10.1016/j.jid.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.
Collapse
|
23
|
Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang D, Wang J, Du G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther 2018; 195:85-99. [PMID: 30347210 DOI: 10.1016/j.pharmthera.2018.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate (S1P), play many important roles in cellular activities. Ceramide and sphingosine inhibit cell proliferation and induce cell apoptosis while S1P has the opposite effect. Maintaining a metabolic balance of sphingolipids is essential for growth and development of cells. Sphingosine kinase (SPHK) is an important regulator for keeping this balance. It controls the level of S1P and plays important roles in proliferation, migration, and invasion of cancer cells and tumor angiogenesis. There are two isoenzymes of sphingosine kinase, SPHK1 and SPHK2. SPHK1 is ubiquitously expressed in most cancers where it promotes survival and proliferation, while SPHK2 is restricted to only certain tissues and its functions are not well characterized. SPHK1 is currently considered as a novel target for the treatment of cancers. Targeting SPHK1 would provide new strategies for cancer treatment and improve the prognosis of cancer patients. Here we review and summarize the current research findings on the SPHK1-S1P axis in cancer from many aspects including structure, expression, regulation, mechanism, and potential inhibitors.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
24
|
Liu L, Zhai C, Pan Y, Zhu Y, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am J Physiol Lung Cell Mol Physiol 2018; 315:L609-L621. [PMID: 29999407 DOI: 10.1152/ajplung.00554.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid, has been shown to be elevated in the airways of individuals with asthma and modulates the airway smooth muscle cell (ASMC) functions, yet its underlying molecular mechanisms are not completely understood. The aim of the present study is to address this issue. S1P induced yes-associated protein (YAP) dephosphorylation and nuclear localization via the S1PR2/3/Rho-associated protein kinase (ROCK) pathway, and this in turn increased forkhead box M1 (FOXM1) and cyclin D1 expression leading to ASMC proliferation, migration, and contraction. Pretreatment of cells with S1PR2 antagonist JTE013, S1PR3 antagonist CAY10444, or ROCK inhibitor Y27632 blocked S1P-induced alterations of YAP, FOXM1, cyclin D1, and ASMC proliferation, migration, and contraction. In addition, prior silencing of YAP or FOXM1 with siRNA reversed the effect of S1P on ASMC functions. Taken together, our study indicates that S1P stimulates ASMC proliferation, migration, and contraction by binding to S1PR2/3 and modulating ROCK/YAP/FOXM1 axis and suggests that targeting this pathway might have potential value in the management of asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| |
Collapse
|
25
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
26
|
Cuvillier O, Hatzoglou A. [Sphingosine 1-phosphate as a new regulator of mitosis]. Med Sci (Paris) 2018; 34:112-114. [PMID: 29451476 DOI: 10.1051/medsci/20183402003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Olivier Cuvillier
- Institut de pharmacologie et de biologie structurale, université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Anastassia Hatzoglou
- Institut de pharmacologie et de biologie structurale, université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| |
Collapse
|
27
|
Abstract
Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure-function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P-S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 957, Charleston, South Carolina 29425, USA
| |
Collapse
|
28
|
Cuvillier O, Hatzoglou A. Sphingosine 1-Phosphate signaling controls mitosis. Oncotarget 2017; 8:114414-114415. [PMID: 29383084 PMCID: PMC5777696 DOI: 10.18632/oncotarget.22310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, IPBS,Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anastassia Hatzoglou
- Institut de Pharmacologie et de Biologie Structurale, IPBS,Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
29
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|