1
|
Serhan CN, Chiang N, Nshimiyimana R. Low-dose pro-resolving mediators temporally reset the resolution response to microbial inflammation. Mol Med 2024; 30:153. [PMID: 39294573 PMCID: PMC11411770 DOI: 10.1186/s10020-024-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs) promote resolution of inflammation, clear infections and stimulate tissue regeneration. These include resolvins, protectins, and maresins. During self-resolving acute inflammation, SPMs are produced and have key functions activating endogenous resolution response for returning to homeostasis. Herein, we addressed whether infections initiated with ongoing inflammation alter resolution programs, and if low-dose repetitive SPM regimen re-programs the resolution response. METHODS Inflammation was initiated with zymosan (1 mg/mouse) followed by E. coli (105 CFU/mouse) infections carried out in murine peritonitis, and exudates collected at 4-72 h. Leukocytes were enumerated using light microscopy, percentages of PMN, monocytes and macrophages were determined using flow cytometry, and resolution indices calculated. Lipid mediators and SPM profiles were established using mass spectrometry-based metabololipidomics. Repetitive dosing with a SPM panel consisting of RvD1, RvD2, RvD5, MaR1 and RvE2 (0.1 ng/mouse each, i.p.) was given to mice, followed by zymosan challenge. Leukocyte composition, resolution indices and RNA-sequencing were carried out for the repetitive SPM treatments. RESULTS E. coli infections initiated acute inflammation-resolution programs with temporal SPM production in the infectious exudates. Zymosan-induced inflammation prior to E. coli peritonitis shifted exudate resolution indices and delayed E. coli clearance. Lipid mediator metabololipidomics demonstrated that E. coli infection with ongoing zymosan-induced inflammation shifted the time course of exudate SPMs, activating a SPM cluster that included RvD1, RvD5 and MaR1 during the initiation phase of infectious inflammation (0-4 h); RvD5 and MaR1 were present also in the resolution phase (24-48 h). To emulate daily SPM regimens used in humans, a repetitive subthreshold dosing of the SPM panel RvD1, RvD2, RvD5, MaR1 and RvE2 each at 0.1 ng per mouse was administered. This low-dose SPM regimen accelerated exudate PMN clearance following zymosan-induced inflammation, and shortened the resolution interval by > 70%. These low-dose SPMs regulated genes and pathways related to immune response, chemokine clearance and tissue repair, as demonstrated by using RNA-sequencing. CONCLUSIONS Infections encountered during ongoing inflammation in mice reset the resolution mechanisms of inflammation via SPM clusters. Low-dose SPMs activate innate immune responses and pathways towards the resolution response that can be reprogrammed.
Collapse
Affiliation(s)
- Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA.
| | - Nan Chiang
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| | - Robert Nshimiyimana
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Rayes J, Brill A. Hot under the clot: venous thrombogenesis is an inflammatory process. Blood 2024; 144:477-489. [PMID: 38728383 DOI: 10.1182/blood.2023022522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current antithrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the cross talk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Ghodsi A, Hidalgo A, Libreros S. Lipid mediators in neutrophil biology: inflammation, resolution and beyond. Curr Opin Hematol 2024; 31:175-192. [PMID: 38727155 PMCID: PMC11301784 DOI: 10.1097/moh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Acute inflammation is the body's first defense in response to pathogens or injury. Failure to efficiently resolve the inflammatory insult can severely affect tissue homeostasis, leading to chronic inflammation. Neutrophils play a pivotal role in eradicating infectious pathogens, orchestrating the initiation and resolution of acute inflammation, and maintaining physiological functions. The resolution of inflammation is a highly orchestrated biochemical process, partially modulated by a novel class of endogenous lipid mediators known as specialized pro-resolving mediators (SPMs). SPMs mediate their potent bioactions via activating specific cell-surface G protein-coupled receptors (GPCR). RECENT FINDINGS This review focuses on recent advances in understanding the multifaceted functions of SPMs, detailing their roles in expediting neutrophil apoptosis, promoting clearance by macrophages, regulating their excessive infiltration at inflammation sites, orchestrating bone marrow deployment, also enhances neutrophil phagocytosis and tissue repair mechanisms under both physiological and pathological conditions. We also focus on the novel role of SPMs in regulating bone marrow neutrophil functions, differentiation, and highlight open questions about SPMs' functions in neutrophil heterogeneity. SUMMARY SPMs play a pivotal role in mitigating excessive neutrophil infiltration and hyperactivity within pathological milieus, notably in conditions such as sepsis, cardiovascular disease, ischemic events, and cancer. This significant function highlights SPMs as promising therapeutic agents in the management of both acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anita Ghodsi
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| |
Collapse
|
4
|
Leonard J, Kepplinger D, Espina V, Gillevet P, Ke Y, Birukov KG, Doctor A, Hoemann CD. Whole blood coagulation in an ex vivo thrombus is sufficient to induce clot neutrophils to adopt a myeloid-derived suppressor cell signature and shed soluble Lox-1. J Thromb Haemost 2024; 22:1031-1045. [PMID: 38135253 DOI: 10.1016/j.jtha.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, USA
| | - Virginia Espina
- Department of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Pat Gillevet
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Allan Doctor
- Departments of Pediatrics & Bioengineering and Center for Blood Oxygen Transport and Hemostasis, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Caroline D Hoemann
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
5
|
Ma C, Li Y, Tian M, Deng Q, Qin X, Lu H, Gao J, Chen M, Weinstein LS, Zhang M, Bu P, Yang J, Zhang Y, Zhang C, Zhang W. Gsα Regulates Macrophage Foam Cell Formation During Atherosclerosis. Circ Res 2024; 134:e34-e51. [PMID: 38375634 PMCID: PMC10978275 DOI: 10.1161/circresaha.123.323156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPβ phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Chang Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yihui Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mi Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Qiming Deng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoteng Qin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250013, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
6
|
Irún P, Carrera-Lasfuentes P, Sánchez-Luengo M, Belio Ú, Domper-Arnal MJ, Higuera GA, Hawkins M, de la Rosa X, Lanas A. Pharmacokinetics and Changes in Lipid Mediator Profiling after Consumption of Specialized Pro-Resolving Lipid-Mediator-Enriched Marine Oil in Healthy Subjects. Int J Mol Sci 2023; 24:16143. [PMID: 38003333 PMCID: PMC10671020 DOI: 10.3390/ijms242216143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) play a vital role in human health, well-being, and the management of inflammatory diseases. Insufficient intake of omega-3 is linked to disease development. Specialized pro-resolving mediators (SPMs) are derived from omega-3 PUFAs and expedite the resolution of inflammation. They fall into categories known as resolvins, maresins, protectins, and lipoxins. The actions of SPMs in the resolution of inflammation involve restricting neutrophil infiltration, facilitating the removal of apoptotic cells and cellular debris, promoting efferocytosis and phagocytosis, counteracting the production of pro-inflammatory molecules like chemokines and cytokines, and encouraging a pro-resolving macrophage phenotype. This is an experimental pilot study in which ten healthy subjects were enrolled and received a single dose of 6 g of an oral SPM-enriched marine oil emulsion. Peripheral blood was collected at baseline, 3, 6, 9, 12, and 24 h post-administration. Temporal increases in plasma and serum SPM levels were found by using LC-MS/MS lipid profiling. Additionally, we characterized the temporal increases in omega-3 levels and established fundamental pharmacokinetics in both aforementioned matrices. These findings provide substantial evidence of the time-dependent elevation of SPMs, reinforcing the notion that oral supplementation with SPM-enriched products represents a valuable source of essential bioactive SPMs.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
| | - Patricia Carrera-Lasfuentes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Faculty of Health Sciences, Campus Universitario Villanueva de Gállego, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Marta Sánchez-Luengo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Úrsula Belio
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - María José Domper-Arnal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Gustavo A. Higuera
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Malena Hawkins
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Xavier de la Rosa
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Angel Lanas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Campus Plaza San Francisco, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Perucci LO, Vago JP, Miles LA, Sousa LP. Crosstalk between the plasminogen/plasmin system and inflammation resolution. J Thromb Haemost 2023; 21:2666-2678. [PMID: 37495082 PMCID: PMC10792525 DOI: 10.1016/j.jtha.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
The plasminogen/plasmin (Plg/Pla) system, best known for its classical role in thrombolysis, has been recently highlighted as a regulator of other biological processes in mammals, including key steps involved in the resolution of inflammation. Inflammation resolution is a complex process coordinated by different cellular effectors, notably leukocytes, and active mediators, and is initiated shortly after the inflammatory response begins. Once the inflammatory insult is eliminated, an effective and timely engagement of proresolution programs prevents persistent inflammation, thereby avoiding excessive tissue damage, fibrosis, and the development of autoimmunity. Interestingly, recent studies demonstrate that Plg/Pla and their receptor, plasminogen receptor KT (Plg-RKT), regulate key steps in inflammation resolution. The number of studies investigating the involvement of the Plg/Pla system in these and other aspects of inflammation, including degradation of extracellular matrices, immune cell migration, wound healing, and skeletal growth and maintenance, highlights key roles of the Plg/Pla system during physiological and pathologic conditions. Here, we discuss robust evidence in the literature for the emerging roles of the Plg/Pla system in key steps of inflammation resolution. These findings suggest that dysregulation in Plg production and its activation plays a role in the pathogenesis of inflammatory diseases. Elucidating central mechanisms underlying the role of Plg/Pla in key steps of inflammation resolution either in preclinical models of inflammation or in human inflammatory conditions, can provide a rationale for the development of new pharmacologic interventions to promote resolution of inflammation, and open new pathways for the treatment of thromboinflammatory conditions.
Collapse
Affiliation(s)
- Luiza O Perucci
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey A Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Fredman G, Khan S. Specialized pro-resolving mediators enhance the clearance of dead cells. Immunol Rev 2023; 319:151-157. [PMID: 37787174 DOI: 10.1111/imr.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The failure to resolve inflammation underpins to several prevalent diseases, like atherosclerosis, and so identifying ways to boost resolution is unmet clinical needs. The resolution of inflammation is governed by several factors such as specialized pro-resolving mediators (SPMs) that counter-regulate pro-inflammatory pathways and promote tissue repair without compromising host defense. A major function of nearly all SPMs is to enhance the clearance of dead cells or efferocytosis. As such, phagocytes, such as macrophages, are essential cellular players in the resolution of inflammation because of their ability to rapidly and efficiently clear dead cells. This review highlights the role of SPMs in the clearance of apoptotic and necroptotic cells and offers insights into how targeting efferocytosis may provide new treatments for non-resolving diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Sayeed Khan
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
9
|
Chen J, Bai Y, Xue K, Li Z, Zhu Z, Li Q, Yu C, Li B, Shen S, Qiao P, Li C, Luo Y, Qiao H, Dang E, Yin W, Gudjonsson JE, Wang G, Shao S. CREB1-driven CXCR4 hi neutrophils promote skin inflammation in mouse models and human patients. Nat Commun 2023; 14:5894. [PMID: 37736772 PMCID: PMC10516899 DOI: 10.1038/s41467-023-41484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Neutrophils have a pathogenic function in inflammation via releasing pro-inflammatory mediators or neutrophil extracellular traps (NETs). However, their heterogeneity and pro-inflammatory mechanisms remain unclear. Here, we demonstrate that CXCR4hi neutrophils accumulate in the blood and inflamed skin in human psoriasis, and correlate with disease severity. Compared to CXCR4lo neutrophils, CXCR4hi neutrophils have enhanced NETs formation, phagocytic function, neutrophil degranulation, and overexpression of pro-inflammatory cytokines and chemokines in vitro. This is accompanied by a metabolic shift in CXCR4hi neutrophils toward glycolysis and lactate release, thereby promoting vascular permeability and remodeling. CXCR4 expression in neutrophils is dependent on CREB1, a transcription factor activated by TNF and CXCL12, and regulated by de novo synthesis. In vivo, CXCR4hi neutrophil infiltration amplifies skin inflammation, whereas blockade of CXCR4hi neutrophils through CXCR4 or CXCL12 inhibition leads to suppression of immune responses. In this work, our study identifies CREB1 as a critical regulator of CXCR4hi neutrophil development and characterizes the contribution of CXCR4hi neutrophils to vascular remodeling and inflammatory responses in skin.
Collapse
Affiliation(s)
- Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shengxian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
10
|
Tomalka JA, Owings A, Galeas-Pena M, Ziegler CG, Robinson TO, Wichman TG, Laird H, Williams HB, Dhaliwal NS, Everman S, Zafar Y, Shalek AK, Horwitz BH, Ordovas-Montanes J, Glover SC, Gibert Y. Enhanced production of eicosanoids in plasma and activation of DNA damage pathways in PBMCs are correlated with the severity of ancestral COVID-19 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.14.23295549. [PMID: 37745424 PMCID: PMC10516085 DOI: 10.1101/2023.09.14.23295549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Many questions remain unanswered regarding the implication of lipid metabolites in severe SARS-CoV-2 infections. By re-analyzed sequencing data from the nasopharynx of a previously published cohort, we found that alox genes, involved in eicosanoid synthesis, were up-regulated in high WHO score patients, especially in goblet cells. Herein, we aimed to further understand the roles played by eicosanoids during severe SARS-CoV-2 infection. Methods and findings We performed a total fatty acid panel on plasma and bulk RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites revealed that lipid metabolites were increased in SARS-CoV-2 patients including the lipid mediators Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA). AA, EPA and the fatty acids Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA), were positively correlated to WHO disease severity score. Transcriptomic analysis demonstrated that COVID-19 patients can be segregated based on WHO scores. Ontology, KEGG and Reactome analysis identified pathways enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling and, cell cycling pathways. Conclusions Our study offers an association between nasopharynx mucosa eicosanoid genes expression, specific serum inflammatory lipids and, subsequent DNA damage pathways activation in PBMCs to severity of COVID-19 infection.
Collapse
Affiliation(s)
- Jeffrey A. Tomalka
- Dept. of Pathology and Laboratory Medicine. Emory University School of Medicine. Atlanta, GA, USA
| | - Anna Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine. New Orleans, LA, USA
| | - Carly G.K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanya O. Robinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Thomas G. Wichman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Haley B. Williams
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Neha S. Dhaliwal
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven Everman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yousaf Zafar
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Bruce H. Horwitz
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah C. Glover
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine. New Orleans, LA, USA
- Dept. of Cell and Molecular Biology; Cancer Center and Research Institute. University of Mississippi Medical Center. Jackson, MS, USA
| | - Yann Gibert
- Dept. of Cell and Molecular Biology; Cancer Center and Research Institute. University of Mississippi Medical Center. Jackson, MS, USA
| |
Collapse
|
11
|
Libreros S, Nshimiyimana R, Lee B, Serhan CN. Infectious neutrophil deployment is regulated by resolvin D4. Blood 2023; 142:589-606. [PMID: 37295018 PMCID: PMC10447623 DOI: 10.1182/blood.2022019145] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/11/2023] Open
Abstract
Neutrophils reside in the bone marrow (BM), ready for deployment to sites of injury/infection, initiating inflammation and its resolution. Here, we report that distal infections signal to the BM via resolvins to regulate granulopoiesis and BM neutrophil deployment. Emergency granulopoiesis during peritonitis evoked changes in BM resolvin D1 (RvD1) and BM RvD4. We found that leukotriene B4 stimulates neutrophil deployment. RvD1 and RvD4 each limited neutrophilic infiltration to infections, and differently regulated BM myeloid populations: RvD1 increased reparative monocytes, and RvD4 regulated granulocytes. RvD4 disengaged emergency granulopoiesis, prevented excess BM neutrophil deployment, and acted on granulocyte progenitors. RvD4 also stimulated exudate neutrophil, monocyte, and macrophage phagocytosis, and enhanced bacterial clearance. This mediator accelerated both neutrophil apoptosis and clearance by macrophages, thus expediting the resolution phase of inflammation. RvD4 stimulated phosphorylation of ERK1/2 and STAT3 in human BM-aspirate-derived granulocytes. RvD4 in the 1 to 100 nM range stimulated whole-blood neutrophil phagocytosis of Escherichia coli. RvD4 increased BM macrophage efferocytosis of neutrophils. Together, these results demonstrate the novel functions of resolvins in granulopoiesis and neutrophil deployment, contributing to the resolution of infectious inflammation.
Collapse
Affiliation(s)
- Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Brendon Lee
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
13
|
Buchheit T, Huh Y, Breglio A, Bang S, Xu J, Matsuoka Y, Guo R, Bortsov A, Reinecke J, Wehling P, Jun Huang T, Ji RR. Intrathecal administration of conditioned serum from different species resolves Chemotherapy-Induced neuropathic pain in mice via secretory exosomes. Brain Behav Immun 2023; 111:298-311. [PMID: 37150265 PMCID: PMC10363329 DOI: 10.1016/j.bbi.2023.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of chemotherapy for cancer, and has limited effective treatment options. Autologous conditioned serum (ACS) is an effective biologic therapy used by intra-articular injection for patients with osteoarthritis. However, ACS has not been systematically tested in the treatment of peripheral neuropathies such as CIPN. It has been generally assumed that the analgesic effect of this biologic therapy results from augmented concentrations of anti-inflammatory cytokines and growth factors. Here we report that a single intrathecal injection of human conditioned serum (hCS) produced long-lasting inhibition of paclitaxel chemotherapy-induced neuropathic pain (mechanical allodynia) in mice, without causing motor impairment. Strikingly, the analgesic effect of hCS in our experiments was maintained even 8 weeks after the treatment, compared with non-conditioned human serum (hNCS). Furthermore, the hCS transfer-induced pain relief in mice was fully recapitulated by rat or mouse CS transfer to mice of both sexes, indicating cross-species and cross-sex effectiveness. Mechanistically, CS treatment blocked the chemotherapy-induced glial reaction in the spinal cord and improved nerve conduction. Compared to NCS, CS contained significantly higher concentrations of anti-inflammatory and pro-resolving mediators, including IL-1Ra, TIMP-1, TGF-β1, and resolvins D1/D2. Intrathecal injection of anti-TGF-β1 and anti-Il-1Ra antibody transiently reversed the analgesic action of CS. Nanoparticle tracking analysis revealed that rat conditioned serum contained a significantly greater number of exosomes than NCS. Importantly, the removal of exosomes by high-speed centrifugation largely diminished the CS-produced pain relief, suggesting a critical involvement of small vesicles (exosomes) in the beneficial effects of CS. Together, our findings demonstrate that intrathecal CS produces a remarkable resolution of neuropathic pain mediated through a combination of small vesicles/exosomes and neuroimmune/neuroglial modulation.
Collapse
Affiliation(s)
- Thomas Buchheit
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Anesthesiology Service, Durham Veterans Affairs Health Care System, Durham, NC 27705, USA.
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew Breglio
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ran Guo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Peter Wehling
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; ORTHOGEN AG, Düsseldorf, Germany
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Irún P, Gracia R, Piazuelo E, Pardo J, Morte E, Paño JR, Boza J, Carrera-Lasfuentes P, Higuera GA, Lanas A. Serum lipid mediator profiles in COVID-19 patients and lung disease severity: a pilot study. Sci Rep 2023; 13:6497. [PMID: 37081104 PMCID: PMC10118224 DOI: 10.1038/s41598-023-33682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is highly heterogeneous, ranging from asymptomatic to severe and fatal cases. COVID-19 has been characterized by an increase of serum pro-inflammatory cytokine levels which seems to be associated with fatal cases. By contrast, the role of pro-resolving lipid mediators (SPMs), involved in the attenuation of inflammatory responses, has been scarcely investigated, so further studies are needed to understand SPMs metabolism in COVID-19 and other infectious diseases. Our aim was to analyse the lipid mediator metabolome, quantifying pro- and anti-inflammatory serum bioactive lipids by LC-MS/MS in 7 non-infected subjects and 24 COVID-19 patients divided into mild, moderate, and severe groups according to the pulmonary involvement, to better understand the disease outcome and the severity of the pulmonary manifestations. Statistical analysis was performed with the R programming language (R Foundation for Statistical Computing, Vienna, Austria). All COVID-19 patients had increased levels of Prostaglandin E2. Severe patients showed a significant increase versus controls, mild- and moderate-affected patients, expressed as median (interquartile range), in resolvin E1 [112.6 (502.7) vs 0.0 (0.0) pg/ml in the other groups], as well as in maresin 2 [14.5 (7.0) vs 8.1 (4.2), 5.5 (4.3), and 3.0 (4.0) pg/ml, respectively]. Moreover, 14-hydroxy docosahexaenoic acid (14-HDHA) levels were also increased in severe vs control and mild-affected patients [24.7 (38.2) vs 2.4 (2.2) and 3.7 (6.4) ng/mL, respectively]. Resolvin D5 was also significantly elevated in both moderate [15.0 (22.4) pg/ml] and severe patients [24.0 (24.1) pg/ml] versus controls [0.0 (0.0) pg/ml]. These results were confirmed by sparse partial least squares discriminant analysis which highlighted the contribution of these mediators to the separation between each of the groups. In conclusion, the potent inflammatory response to SARS-CoV-2 infection involves not only pro- but also anti-inflammatory lipid mediators that can be quantified in easily accessible serum samples, suggesting the need to perform future research on their generation pathways that will help us to discover new therapeutic targets.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.
| | | | - Elena Piazuelo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS Aragón), Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Julián Pardo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud, Universidad de Zaragoza, Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Elena Morte
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
- Infectious Disease Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - José Ramon Paño
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
- Infectious Disease Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | | | - Patricia Carrera-Lasfuentes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | | | - Angel Lanas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
15
|
Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages. Antioxidants (Basel) 2023; 12:antiox12030711. [PMID: 36978959 PMCID: PMC10045849 DOI: 10.3390/antiox12030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatic fat accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD). Our aim was to determine the plasma levels of oxylipins, free polyunsaturated fatty acids (PUFA) and markers of lipid peroxidation in patients with NAFLD in progressive stages of the pathology. Ninety 40–60-year-old adults diagnosed with metabolic syndrome were distributed in without, mild, moderate or severe NAFLD stages. The free PUFA and oxylipin plasma levels were determined by the UHPLC–MS/MS system. The plasma levels of oxylipins produced by cyclooxygenases, lipoxygenases and cytochrome P450, such as prostaglandin 2α (PGF2α), lipoxinB4 and maresin-1, were higher in severe NAFLD patients, pointing to the coexistence of both inflammation and resolution processes. The plasma levels of the saturated oxylipins 16-hydroxyl-palmitate and 3-hydroxyl-myristate were also higher in the severe NAFLD patients, suggesting a dysregulation of oxidation of fatty acids. The plasma 12-hydroxyl-estearate (12HEST) levels in severe NAFLD were higher than in the other stages, indicating that the hydroxylation of saturated fatty acid produced by reactive oxygen species is more present in this severe stage of NAFLD. The plasma levels of 12HEST and PGF2α are potential candidate biomarkers for diagnosing NAFLD vs. non-NAFLD. In conclusion, the NAFLD progression can be monitored by measuring the plasma levels of free PUFA and oxylipins characterizing the different NAFLD stages or the absence of this disease in metabolic syndrome patients.
Collapse
|
16
|
Kahnt AS, Schebb NH, Steinhilber D. Formation of lipoxins and resolvins in human leukocytes. Prostaglandins Other Lipid Mediat 2023; 166:106726. [PMID: 36878381 DOI: 10.1016/j.prostaglandins.2023.106726] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins are formed by the consecutive action of 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- or 15-lipoxygenases using arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid as substrate. Lipoxins are trihydroxylated oxylipins which are formed from arachidonic and eicosapentaenoic acid. The latter can also be converted to di- and trihydroxylated resolvins of the E series, whereas docosahexaenoic acid is the substrate for the formation of di- and trihydroxylated resolvins of the D series. Here, we summarize the formation of lipoxins and resolvins in leukocytes. From the data published so far, it becomes evident that FLAP is required for the biosynthesis of most of the lipoxins and resolvins. Even in the presence of FLAP, formation of the trihydroxylated SPMs (lipoxins, RvD1-RvD4, RvE1) in leukocytes is very low or undetectable which is obviously due to the extremely low epoxide formation by 5-LO from oxylipins such as 15-H(p)ETE, 18-H(p)EPE or 17-H(p)DHA. As a result, only the dihydroxylated oxylipins (5 S,15S-diHETE, 5 S,15S-diHEPE) and resolvins (RvD5, RvE2, RvE4) can be consistently detected using leukocytes as SPM source. However, the reported levels of these dihydroxylated lipid mediators are still much lower than those of the typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g. 5-HETE), leukotrienes or cyclooxygenase-derived prostaglandins. Since 5-LO expression is mainly restricted to leukocytes these cells are considered as the main source of SPMs. The low formation of trihydroxylated SPMs in leukocytes, the fact that they are hardly detected in biological samples as well as the lack of functional signaling by their receptors make it highly questionable that trihydroxylated SPMs play a role as endogenous mediators in the resolution of inflammation.
Collapse
Affiliation(s)
- Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci 2021; 43:43-55. [PMID: 34776241 DOI: 10.1016/j.tips.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Resolution of inflammation requires proresolving molecular pathways triggered as part of the host response during the inflammatory phase. Adenosine and its receptors, which are collectively called the adenosine system, shape inflammatory cell activity during the active phase of inflammation, leading these immune cells toward a functional repolarization, thus contributing to the onset of resolution. Strategies based on the resolution of inflammation have shaped a new area of pharmacology referred to as 'resolution pharmacology' and in this regard, the adenosine system represents an interesting target to design novel pharmacological tools to 'resolve' the inflammatory process. In this review, we outline the role of the adenosine system in driving the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Jordan PM, Werz O. Specialized pro-resolving mediators: biosynthesis and biological role in bacterial infections. FEBS J 2021; 289:4212-4227. [PMID: 34741578 DOI: 10.1111/febs.16266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/05/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
Acute inflammation caused by bacterial infections is an essential biological defence mechanism of the host in order to neutralize and clear the invaders and to return to homeostasis. Despite its protective function, inflammation may become persistent and uncontrolled, resulting in chronic diseases and tissue destruction as consequence of the unresolved inflammatory process. Therefore, spatiotemporal induction of endogenous inflammation resolution programs that govern bacterial clearance as well as tissue repair and regeneration, are of major importance in order to enable tissues to restore functions. Lipid mediators that are de-novo biosynthesized from polyunsaturated fatty acids (PUFAs) mainly by lipoxygenases and cyclooxygenases, critically regulate the initiation, the maintenance but also the resolution of infectious inflammation and tissue regeneration. The discovery of specialized pro-resolving mediators (SPMs) generated from omega-3 PUFAs stimulated intensive research in inflammation resolution, especially in infectious inflammation elicited by bacteria. SPMs are immunoresolvents that actively terminate inflammation by limiting neutrophil influx, stimulating phagocytosis, bacterial killing and clearance as well as efferocytosis of apoptotic neutrophils and cellular debris by macrophages. Moreover, SPMs prevent collateral tissue damage, promote tissue repair and regeneration and lower antibiotic requirement. Here, we review the biosynthesis of SPMs in bacterial infections and cover specific mechanisms of SPMs that govern the resolution of bacteria-initiated inflammation.
Collapse
Affiliation(s)
- Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
20
|
Arnardottir H, Thul S, Pawelzik SC, Karadimou G, Artiach G, Gallina AL, Mysdotter V, Carracedo M, Tarnawski L, Caravaca AS, Baumgartner R, Ketelhuth DF, Olofsson PS, Paulsson-Berne G, Hansson GK, Bäck M. The resolvin D1 receptor GPR32 transduces inflammation-resolution and atheroprotection. J Clin Invest 2021; 131:142883. [PMID: 34699386 DOI: 10.1172/jci142883] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation is a hallmark of atherosclerosis and results from an imbalance between pro-inflammatory and pro-resolving signaling. The human GPR32 receptor, together with the ALX/FPR2 receptor, transduces biological actions of several pro-resolving mediators that stimulate resolution of inflammation. However, since no murine homologs of the human GPR32 exist, comprehensive in vivo studies are lacking. Using human atherosclerotic lesions from carotid endarterectomies and creating a transgenic mouse model expressing human GPR32 on a Fpr2×apolipoprotein E double KO background (hGPR32myc×Fpr2-/-×Apoe-/-), we investigated the role of GPR32 in atherosclerosis and self-limiting acute inflammation. GPR32 mRNA was reduced in human atherosclerotic lesions and correlated with the immune cell markers ARG1, NOS2 and FOXP3. Atherosclerotic lesions, necrotic core and aortic inflammation were reduced in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice as compared to Fpr2-/-×Apoe-/- non-transgenic littermates. In a zymosan induced peritonitis model, the hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice had reduced inflammation at 4h and enhanced pro-resolving macrophage responses at 24h compared to non-transgenic littermates. The GPR32 agonist aspirin-triggered resolvin D1 (AT-RvD1) regulated leukocyte responses, including enhancing macrophage phagocytosis and intracellular signaling in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice but not in the Fpr2-/-×Apoe-/- non-transgenic littermates. Altogether these results provide the first evidence that GPR32 regulates resolution of inflammation and is atheroprotective in vivo.
Collapse
Affiliation(s)
| | - Silke Thul
- Department of Medicone, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Miguel Carracedo
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Tarnawski
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - April S Caravaca
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Peder S Olofsson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Göran K Hansson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Hartling I, Cremonesi A, Osuna E, Lou PH, Lucchinetti E, Zaugg M, Hersberger M. Quantitative profiling of inflammatory and pro-resolving lipid mediators in human adolescents and mouse plasma using UHPLC-MS/MS. Clin Chem Lab Med 2021; 59:1811-1823. [PMID: 34243224 DOI: 10.1515/cclm-2021-0644] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Lipid mediators are bioactive lipids which help regulate inflammation. We aimed to develop an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify 58 pro-inflammatory and pro-resolving lipid mediators in plasma, determine preliminary reference ranges for adolescents, and investigate how total parenteral nutrition (TPN) containing omega-3 polyunsaturated fatty acid (n-3 PUFA) or n-6 PUFA based lipid emulsions influence lipid mediator concentrations in plasma. METHODS Lipid mediators were extracted from plasma using SPE and measured using UHPLC-MS/MS. EDTA plasma was collected from healthy adolescents between 13 and 17 years of age to determine preliminary reference ranges and from mice given intravenous TPN for seven days containing either an n-3 PUFA or n-6 PUFA based lipid emulsion. RESULTS We successfully quantified 43 lipid mediators in human plasma with good precision and recovery including several leukotrienes, prostaglandins, resolvins, protectins, maresins, and lipoxins. We found that the addition of methanol to human plasma after blood separation reduces post blood draw increases in 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE), 12S-hydroxyeicosatrienoic acid (12S-HETrE), 14-hydroxydocosahexaenoic acid (14-HDHA) and thromboxane B2 (TXB2). Compared to the n-6 PUFA based TPN, the n-3 PUFA based TPN increased specialized pro-resolving mediators such as maresin 1 (MaR1), MaR2, protectin D1 (PD1), PDX, and resolvin D5 (RvD5), and decreased inflammatory lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2). CONCLUSIONS Our method provides an accurate and sensitive quantification of 58 lipid mediators from plasma samples, which we used to establish a preliminary reference range for lipid mediators in plasma samples of adolescents; and to show that n-3 PUFA, compared to n-6 PUFA rich TPN, leads to a less inflammatory lipid mediator profile in mice.
Collapse
Affiliation(s)
- Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ester Osuna
- Human Nutrition Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Phing-How Lou
- Department of Anesthesiology and Pain Medicine, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | | | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Decker C, Sadhu S, Fredman G. Pro-Resolving Ligands Orchestrate Phagocytosis. Front Immunol 2021; 12:660865. [PMID: 34177900 PMCID: PMC8222715 DOI: 10.3389/fimmu.2021.660865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The resolution of inflammation is a tissue protective program that is governed by several factors including specialized pro-resolving mediators (SPMs), proteins, gasses and nucleotides. Pro-resolving mediators activate counterregulatory programs to quell inflammation and promote tissue repair in a manner that does not compromise host defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of inflammation because of their ability to remove debris, microbes and dead cells through processes including phagocytosis and efferocytosis. Emerging evidence suggests that failed resolution of inflammation and defective phagocytosis or efferocytosis underpins several prevalent human diseases. Therefore, understanding factors and mechanisms associated with enhancing these processes is a critical need. SPMs enhance phagocytosis and efferocytosis and this review will highlight mechanisms associated with their actions.
Collapse
Affiliation(s)
- Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
23
|
Ansari J, Gavins FNE. The impact of thrombo-inflammation on the cerebral microcirculation. Microcirculation 2021; 28:e12689. [PMID: 33638262 DOI: 10.1111/micc.12689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
The intertwined processes of thrombosis and inflammation (termed "thrombo-inflammation") are significant drivers of cerebrovascular diseases, and as such, they represent prime targets for drug discovery programs focusing on treatment and management of cerebrovascular diseases. Most cerebrovascular events result from chronic systemic microcirculatory dysfunction due to underlying conditions, for example, hypertension, diabetes mellitus, coronary artery disease, dyslipidemia, and sickle cell disease. Immune cells especially neutrophils play a critical role in the onset and maintenance of neuroinflammatory responses in the microcirculation. Neutrophils have the ability to drive both inflammatory and anti-inflammatory/pro-resolution effects depending on the underlying vascular state (physiological vs. pathological). In this article, we highlight the pathophysiological role of neutrophils in stroke and discuss ongoing pharmacotherapeutic strategies that are focused on identifying potential therapeutic targets for enhancing neuroprotection, mitigating inflammatory pathways, and enabling resolution.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Felicity N E Gavins
- Department of Life Sciences, The Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, Middlesex, UK
| |
Collapse
|
24
|
Ansari J, Senchenkova EY, Vital SA, Al-Yafeai Z, Kaur G, Sparkenbaugh EM, Orr AW, Pawlinski R, Hebbel RP, Granger DN, Kubes P, Gavins FNE. Targeting the AnxA1/Fpr2/ALX pathway regulates neutrophil function, promoting thromboinflammation resolution in sickle cell disease. Blood 2021; 137:1538-1549. [PMID: 33512489 PMCID: PMC7976506 DOI: 10.1182/blood.2020009166] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play a crucial role in the intertwined processes of thrombosis and inflammation. An altered neutrophil phenotype may contribute to inadequate resolution, which is known to be a major pathophysiological contributor of thromboinflammatory conditions such as sickle cell disease (SCD). The endogenous protein annexin A1 (AnxA1) facilitates inflammation resolution via formyl peptide receptors (FPRs). We sought to comprehensively elucidate the functional significance of targeting the neutrophil-dependent AnxA1/FPR2/ALX pathway in SCD. Administration of AnxA1 mimetic peptide AnxA1Ac2-26 ameliorated cerebral thrombotic responses in Sickle transgenic mice via regulation of the FPR2/ALX (a fundamental receptor involved in resolution) pathway. We found direct evidence that neutrophils with SCD phenotype play a key role in contributing to thromboinflammation. In addition, AnxA1Ac2-26 regulated activated SCD neutrophils through protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2) to enable resolution. We present compelling conceptual evidence that targeting the AnxA1/FPR2/ALX pathway may provide new therapeutic possibilities against thromboinflammatory conditions such as SCD.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular and Cellular Physiology
- Department of Neurology, and
| | | | | | - Zaki Al-Yafeai
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | | | - Erica M Sparkenbaugh
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Rafal Pawlinski
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Robert P Hebbel
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | | | - Paul Kubes
- Departments of Physiology and Pharmacology, Microbiology and Immunology and Critical Care Medicine, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; and
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology
- Department of Neurology, and
- Department of Life Sciences, Brunel University London, United Kingdom
| |
Collapse
|
25
|
Heffron SP, Weinstock A, Scolaro B, Chen S, Sansbury BE, Marecki G, Rolling CC, El Bannoudi H, Barrett T, Canary JW, Spite M, Berger JS, Fisher EA. Platelet-conditioned media induces an anti-inflammatory macrophage phenotype through EP4. J Thromb Haemost 2021; 19:562-573. [PMID: 33171016 PMCID: PMC7902474 DOI: 10.1111/jth.15172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Platelets are increasingly recognized as immune cells. As such, they are commonly seen to induce and perpetuate inflammation; however, anti-inflammatory activities are increasingly attributed to them. Atherosclerosis is a chronic inflammatory condition. Similar to other inflammatory conditions, the resolution of atherosclerosis requires a shift in macrophages to an M2 phenotype, enhancing their efferocytosis and cholesterol efflux capabilities. OBJECTIVES To assess the effect of platelets on macrophage phenotype. METHODS In several in vitro models employing murine (RAW264.7 and bone marrow-derived macrophages) and human (THP-1 and monocyte-derived macrophages) cells, we exposed macrophages to media in which non-agonized human platelets were cultured for 60 minutes (platelet-conditioned media [PCM]) and assessed the impact on macrophage phenotype and function. RESULTS Across models, we demonstrated that PCM from healthy humans induced a pro-resolving phenotype in macrophages. This was independent of signal transducer and activator of transcription 6 (STAT6), the prototypical pathway for M2 macrophage polarization. Stimulation of the EP4 receptor on macrophages by prostaglandin E2 present in PCM, is at least partially responsible for altered gene expression and associated function of the macrophages-specifically reduced peroxynitrite production, increased efferocytosis and cholesterol efflux capacity, and increased production of pro-resolving lipid mediators (ie, 15R-LXA4 ). CONCLUSIONS Platelet-conditioned media induces an anti-inflammatory, pro-resolving phenotype in macrophages. Our findings suggest that therapies targeting hemostatic properties of platelets, while not influencing pro-resolving, immune-related activities, could be beneficial for the treatment of atherothrombotic disease.
Collapse
Affiliation(s)
- Sean P. Heffron
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
| | - Ada Weinstock
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Bianca Scolaro
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Shiyu Chen
- NYU Department of Chemistry, New York, NY, USA
| | - Brian E. Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Greg Marecki
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | | | - Hanane El Bannoudi
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Tessa Barrett
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey S. Berger
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
- NYU Langone Health, Department of Surgery, New York University, New York, NY, USA
| | - Edward A. Fisher
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
| |
Collapse
|
26
|
Shakouri SK, Dolati S, Santhakumar J, Thakor AS, Yarani R. Autologous conditioned serum for degenerative diseases and prospects. Growth Factors 2021; 39:59-70. [PMID: 34886733 DOI: 10.1080/08977194.2021.2012467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autologous conditioned serum (ACS) is a blood-derived product that is prepared by the incubation of whole blood with medical-grade glass beads, resulting in serum enrichment in interleukin-1 receptor antagonist (IL-1Ra), anti-inflammatory cytokines (IL-4, IL-10, and IL-13), and high concentrations of growth factors. ACS has shown qualitatively and quantitatively better therapeutic effects than most established pharmacological treatments and surgery for joint diseases given its ability to both target the inflammatory cascade to decrease cartilage destruction as well as improve endogenous repair mechanisms. ACS application is simple and safe with limited adverse effects. This article reviews the role of ACS in degenerative joint disease, in addition to other inflammatory and autoimmune diseases, given its regenerative and immune-modulating properties.
Collapse
Affiliation(s)
- Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jessica Santhakumar
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
27
|
Pedersen TL, Gray IJ, Newman JW. Plasma and serum oxylipin, endocannabinoid, bile acid, steroid, fatty acid and nonsteroidal anti-inflammatory drug quantification in a 96-well plate format. Anal Chim Acta 2021; 1143:189-200. [PMID: 33384117 DOI: 10.1016/j.aca.2020.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
The goal of this research was to develop a high-throughput, cost-effective method for metabolic profiling of lipid mediators and hormones involved in the regulation of inflammation and energy metabolism, along with polyunsaturated fatty acids and common over-the-counter non-steroidal anti-inflammatory drugs (NSAIDs). We describe a 96-well plate protein precipitation and filtration procedure for 50 μL of plasma or serum in the presence of 37 deuterated analogs and 2 instrument internal standards. Data is acquired in two back-to-back UPLC-MS/MS analyses using electrospray ionization with positive/negative switching and scheduled multiple reaction monitoring for the determination of 145 compounds, including oxylipins, endocannabinoids and like compounds, bile acids, glucocorticoids, sex steroids, polyunsaturated fatty acids, and 3 NSAIDs. Intra- and inter-batch variability was <25% for >70% of metabolites above the LOQ in both matrices, but higher inter-batch variability was observed for serum oxylipins and some bile acids. Results for NIST Standard Reference Material 1950, compared favorably with the 20 certified metabolite values covered by this assay, and we provide new data for oxylipins, N-acylethanolamides, glucocorticoids, and 17-hydroxy-progesterone in this material. Application to two independent cohorts of elderly men and women showed the routine detection of 86 metabolites, identified fasting state influences on essential fatty acid-derived oxylipins, N-acylethanolamides and conjugated bile acids, identified rare presence of high and low testosterone levels and the presence of NSAIDs in ∼10% of these populations. The described method appears valuable for investigations in large cohort studies to provide insight into metabolic cross-talk between the array of mediators assessed here.
Collapse
Affiliation(s)
- Theresa L Pedersen
- Dept of Food Science and Technology, University of California at Davis, Davis, CA, USA
| | - Ira J Gray
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service - Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service - Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Dept of Nutrition, University of California Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Kim AS, Conte MS. Specialized pro-resolving lipid mediators in cardiovascular disease, diagnosis, and therapy. Adv Drug Deliv Rev 2020; 159:170-179. [PMID: 32697951 PMCID: PMC10980506 DOI: 10.1016/j.addr.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Persistent inflammation is the key aggravator in many cardiovascular diseases, including atherosclerosis, aneurysm, injury/reperfusion, thrombosis, and neointimal hyperplasia following surgical or percutaneous interventions. Resolution is an active process orchestrated by specialized pro-resolving lipid mediators (SPMs) which tamp down acute inflammatory signals, promote healing and facilitate a return to homeostasis. SPMs are endogenously derived from poly-unsaturated fatty acids, and their biologic activity is mediated via specific G-protein coupled receptor binding. The potency of SPM in regulating the inflammatory response has encouraged investigation into their therapeutic and diagnostic use in cardiovascular pathologies. Herein we describe the translational groundwork which has established the synthesis and interactions of SPM in cardiovascular and hematologic cells, the therapeutic effects of SPM in animal models of cardiovascular disease, and some early technologies that harness and attempt to optimize SPM delivery and "resolution pharmacology". Further studies are required to precisely determine the mechanisms of resolution in the cardiovascular system and to determine the clinical settings in which SPM can be utilized to optimize patient outcomes.
Collapse
Affiliation(s)
- Alexander S Kim
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA.
| |
Collapse
|
29
|
Sousa LP, Pinho V, Teixeira MM. Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID-19? Br J Pharmacol 2020; 177:3898-3904. [PMID: 32557557 PMCID: PMC7323156 DOI: 10.1111/bph.15164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is generally accepted as a component of the host defence system and a protective response in the context of infectious diseases. However, altered inflammatory responses can contribute to disease in infected individuals. Many endogenous mediators that drive the resolution of inflammation are now known. Overall, mediators of resolution tend to decrease inflammatory responses and provide normal or greater ability of the host to deal with infection. In the lung, it seems that pro‐resolution molecules, or strategies that promote their increase, tend to suppress inflammation and lung injury and facilitate control of bacterial or viral burden. Here, we argue that the demonstrated anti‐inflammatory, pro‐resolving, anti‐thrombogenic and anti‐microbial effects of such endogenous mediators of resolution may be useful in the treatment of the late stages of the disease in patients with COVID‐19.
Collapse
Affiliation(s)
- Lirlândia P Sousa
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
30
|
Perry SC, Kalyanaraman C, Tourdot BE, Conrad WS, Akinkugbe O, Freedman JC, Holinstat M, Jacobson MP, Holman TR. 15-Lipoxygenase-1 biosynthesis of 7S,14S-diHDHA implicates 15-lipoxygenase-2 in biosynthesis of resolvin D5. J Lipid Res 2020; 61:1087-1103. [PMID: 32404334 PMCID: PMC7328043 DOI: 10.1194/jlr.ra120000777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1. The oxidation at C14 of DHA by h12-LOX was expected, but the noncanonical reaction of h15-LOX-1 to make over 80% 7S,14S-diHDHA was larger than expected. Results of computer modeling suggested that the alcohol on C7 of 7S-HDHA hydrogen bonds with the backbone carbonyl of Ile399, forcing the hydrogen abstraction from C12 to oxygenate on C14 but not C17. This result raised questions regarding the synthesis of RvD5. Strikingly, we found that h15-LOX-2 oxygenates 7S-HDHA almost exclusively at C17, forming RvD5 with faster kinetics than does h15-LOX-1. The presence of h15-LOX-2 in neutrophils and macrophages suggests that it may have a greater role in biosynthesizing SPMs than previously thought. We also determined that the reactions of h5-LOX with 14(S)-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-DHA and 17(S)-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-DHA are kinetically slow compared with DHA, suggesting that these reactions may be minor biosynthetic routes in vivo. Additionally, we show that 7S,14S-diHDHA and RvD5 have anti-aggregation properties with platelets at low micromolar potencies, which could directly regulate clot resolution.
Collapse
Affiliation(s)
- Steven C Perry
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94143
| | - Benjamin E Tourdot
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - William S Conrad
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Oluwayomi Akinkugbe
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - John Cody Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94143
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064. mailto:
| |
Collapse
|
31
|
Avanoǧlu Güler A, Rossi FW, Bellando-Randone S, Prevete N, Tufan A, Manetti M, de Paulis A, Matucci-Cerinic M. The Role of Endogenous Eicosapentaenoic Acid and Docosahexaenoic Acid-Derived Resolvins in Systemic Sclerosis. Front Immunol 2020; 11:1249. [PMID: 32636845 PMCID: PMC7318896 DOI: 10.3389/fimmu.2020.01249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Resolvins, the member of specialized pro-resolving mediators, are produced from omega-3 polyunsaturated fatty acids as a response to an acute inflammatory process in that termination and resolution of inflammation. In the acute inflammation, these lipid mediators limit polymorphonuclear cells infiltration, proinflammatory cytokine production; promote efferocytosis, and regulate several cell types being important roles in innate and adaptive immunity. Any dysregulation or defect of the resolution phase result in prolonged, persistent inflammation and eventually fibrosis. Resolvins are implicated in the development of various chronic autoimmune diseases. Systemic sclerosis (SSc) is a very complicated, chronic autoimmune disorder proceeding with vasculopathy, inflammation, and fibrosis. Dysregulation of innate and adaptive immunity is another important contributing factor in the pathogenesis of SSc. In this review, we will focus on the different roles of this new family of lipid mediators, characterized by the ability to prevent the spread of inflammation and its chronicity in various ways and how they can control the development of fibrotic diseases like SSc.
Collapse
Affiliation(s)
- Aslıhan Avanoǧlu Güler
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Francesca Wanda Rossi
- Department of Internal Medicine, Clinical Immunology and Rheumatology, University of Naples Federico II, Naples, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Nella Prevete
- Department of Internal Medicine, Clinical Immunology and Rheumatology, University of Naples Federico II, Naples, Italy
| | - Abdurrahman Tufan
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Amato de Paulis
- Department of Internal Medicine, Clinical Immunology and Rheumatology, University of Naples Federico II, Naples, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| |
Collapse
|
32
|
Tavares LP, Negreiros-Lima GL, Lima KM, E Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159:105030. [PMID: 32562817 DOI: 10.1016/j.phrs.2020.105030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.
Collapse
Affiliation(s)
- Luciana P Tavares
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA..
| | - Graziele L Negreiros-Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Kátia M Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Patrícia M R E Silva
- Inflammation Laboratory, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Vanessa Pinho
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Department of Morphology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Mauro M Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Lirlândia P Sousa
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| |
Collapse
|
33
|
Nagatake T, Kunisawa J. Emerging roles of metabolites of ω3 and ω6 essential fatty acids in the control of intestinal inflammation. Int Immunol 2020; 31:569-577. [PMID: 30722032 PMCID: PMC6736389 DOI: 10.1093/intimm/dxy086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is continuously exposed to the external environment, which contains numerous non-self antigens, including food materials and commensal micro-organisms. For the maintenance of mucosal homeostasis, the intestinal epithelial layer and mucosal immune system simultaneously provide the first line of defense against pathogens and are tightly regulated to prevent their induction of inflammatory responses to non-pathogenic antigens. Defects in mucosal homeostasis lead to the development of inflammatory and associated intestinal diseases, such as Crohn’s disease, ulcerative colitis, food allergy and colorectal cancer. The recent discovery of novel dietary ω3 and ω6 lipid-derived metabolites—such as resolvin, protectin, maresin, 17,18-epoxy-eicosatetraenoic acid and microbe-dependent 10-hydroxy-cis-12-octadecenoic acid—and their potent biologic effects on the regulation of inflammation have initiated a new era of nutritional immunology. In this review, we update our understanding of the role of lipid metabolites in intestinal inflammation.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan.,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
34
|
Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood 2020; 134:1458-1468. [PMID: 31300403 DOI: 10.1182/blood.2018886317] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state. Moreover, RvD4 promoted the biosynthesis of other D-series resolvins involved in facilitating resolution of inflammation. Neutrophils from RvD4-treated mice were less susceptible to an ionomycin-induced release of neutrophil extracellular traps (NETs), a meshwork of decondensed chromatin lined with histones and neutrophil proteins critical for DVT development. These results suggest that delivery of SPMs, specifically RvD4, modulates the severity of thrombo-inflammatory disease in vivo and improves thrombus resolution.
Collapse
|
35
|
Shirokova L, Noskov S, Gorokhova V, Reinecke J, Shirokova K. Intra-Articular Injections of a Whole Blood Clot Secretome, Autologous Conditioned Serum, Have Superior Clinical and Biochemical Efficacy Over Platelet-Rich Plasma and Induce Rejuvenation-Associated Changes of Joint Metabolism: A Prospective, Controlled Open-Label Clinical Study in Chronic Knee Osteoarthritis. Rejuvenation Res 2020; 23:401-410. [PMID: 31847701 DOI: 10.1089/rej.2019.2263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis is a frequent, age-associated disease affecting >10% of world's population over 60 years of age. This study intended to compare intra-articular whole blood clot secretome (autologous conditioned serum [ACS], recently re-named blood clot secretome [BCS]) to platelet-rich plasma (PRP) in knee osteoarthritis (OA). A clinical, nonrandomized open-label comparison of ACS versus PRP in knee OA with subclinical or moderate synovitis symptomology was performed. One hundred and twenty-three patients with knee OA, Kellgren and Lawrence grade II-III, were each treated with six i.a. injections of ACS or PRP. The clinical efficacy was measured by visual analog scale and Western Ontario and McMaster Universities Arthritis Index (WOMAC) score. The biochemical effects measured include synovial fluid (SF) viscosity, cytokines interleukin (IL)-1Ra and IL-1b, radical footprint NO3, and conjugated dienes (CDs). At the 3-month follow-up, clinical efficacy of ACS was significant in all groups, versus PRP. PRP had significant versus baseline efficacy in subclinical, but not in moderate, synovitis cases. ACS was more effective than PRP regarding all analytical parameters. It induced endogenous IL-1Ra expression, downregulated IL-1b, and improved SF viscosity. ACS reduced-significantly stronger than PRP-the concentration of CDs-interpreted as reactive oxygen species footprints-and NO3-interpreted as nitric oxide footprint-in SF. ACS displayed significant efficacy in all groups, which was clinically and biochemically superior to PRP. ACS appears to improve i.a. homeostasis. Strength of this open clinical study is the combination of clinical and biochemical data.
Collapse
Affiliation(s)
- Larisa Shirokova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | - Sergey Noskov
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | - Victoria Gorokhova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | | | - Ksenia Shirokova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| |
Collapse
|
36
|
Fredman G. Next-Gen Inflammation Resolution. Circ Res 2020; 126:91-93. [PMID: 31895654 DOI: 10.1161/circresaha.119.316248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gabrielle Fredman
- From the Department of Molecular and Cellular Physiology, Albany Medical College, NY
| |
Collapse
|
37
|
Souza PR, Marques RM, Gomez EA, Colas RA, De Matteis R, Zak A, Patel M, Collier DJ, Dalli J. Enriched Marine Oil Supplements Increase Peripheral Blood Specialized Pro-Resolving Mediators Concentrations and Reprogram Host Immune Responses: A Randomized Double-Blind Placebo-Controlled Study. Circ Res 2019; 126:75-90. [PMID: 31829100 DOI: 10.1161/circresaha.119.315506] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Specialized pro-resolving mediators (SPM-lipoxins, resolvins, protectins, and maresins) are produced via the enzymatic conversion of essential fatty acids, including the omega-3 fatty acids docosahexaenoic acid and n-3 docosapentaenoic acid. These mediators exert potent leukocyte directed actions and control vascular inflammation. Supplementation of animals and humans with essential fatty acids, in particular omega-3 fatty acids, exerts protective actions reducing vascular and systemic inflammation. Of note, the mechanism(s) activated by these supplements in exerting their protective actions remain poorly understood. OBJECTIVE Given that essential fatty acids are precursors in the biosynthesises of SPM, the aim of the present study was to establish the relationship between supplementation and peripheral SPM concentrations. We also investigated the relationship between changes in plasma SPM concentrations and peripheral blood platelet and leukocyte responses. METHODS AND RESULTS Healthy volunteers were enrolled in a double-blinded, placebo-controlled, crossover study, and peripheral blood was collected at baseline, 2, 4, 6, and 24 hours post administration of placebo or one of 3 doses of an enriched marine oil supplement. Assessment of plasma SPM concentrations using lipid mediator profiling demonstrated a time- and dose-dependent increase in peripheral blood SPM concentration. Supplementation also led to a regulation of peripheral blood cell responses. Here we found a dose-dependent increase in neutrophil and monocyte phagocytosis of bacteria and a decrease in the diurnal activation of leukocytes and platelets, as measured by a reduction in adhesion molecule expression. In addition, transcriptomic analysis of peripheral blood cells demonstrated a marked change in transcript levels of immune and metabolic genes 24 hours post supplementation when compared with placebo. CONCLUSIONS Together, these findings demonstrate that supplementation with an enriched marine oil leads to an increase in peripheral blood SPM concentrations and reprograms peripheral blood cells, indicating a role for SPM in mediating the immune-directed actions of this supplement. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT03347006.
Collapse
Affiliation(s)
- Patricia R Souza
- From the Barts and The London School of Medicine and Dentistry (P.R.S., R.M.M., E.A.G., R.A.C., R.D.M., J.D.), Charterhouse Square, Queen Mary University of London, UK
| | - Raquel M Marques
- From the Barts and The London School of Medicine and Dentistry (P.R.S., R.M.M., E.A.G., R.A.C., R.D.M., J.D.), Charterhouse Square, Queen Mary University of London, UK
| | - Esteban A Gomez
- From the Barts and The London School of Medicine and Dentistry (P.R.S., R.M.M., E.A.G., R.A.C., R.D.M., J.D.), Charterhouse Square, Queen Mary University of London, UK
| | - Romain A Colas
- From the Barts and The London School of Medicine and Dentistry (P.R.S., R.M.M., E.A.G., R.A.C., R.D.M., J.D.), Charterhouse Square, Queen Mary University of London, UK
| | - Roberta De Matteis
- From the Barts and The London School of Medicine and Dentistry (P.R.S., R.M.M., E.A.G., R.A.C., R.D.M., J.D.), Charterhouse Square, Queen Mary University of London, UK
| | - Anne Zak
- Clinical Research Centre & the NIHR Biomedical Research Centre at Barts (A.Z., M.P., D.J.C.), Charterhouse Square, Queen Mary University of London, UK
| | - Mital Patel
- Clinical Research Centre & the NIHR Biomedical Research Centre at Barts (A.Z., M.P., D.J.C.), Charterhouse Square, Queen Mary University of London, UK
| | - David J Collier
- Clinical Research Centre & the NIHR Biomedical Research Centre at Barts (A.Z., M.P., D.J.C.), Charterhouse Square, Queen Mary University of London, UK.,William Harvey Research Institute, Barts Clinical Trials Unit (CTU), Wolfson Institute of Preventive Medicine (D.J.C.), Charterhouse Square, Queen Mary University of London, UK
| | - Jesmond Dalli
- From the Barts and The London School of Medicine and Dentistry (P.R.S., R.M.M., E.A.G., R.A.C., R.D.M., J.D.), Charterhouse Square, Queen Mary University of London, UK.,Centre for Inflammation and Therapeutic Innovation (J.D.), Charterhouse Square, Queen Mary University of London, UK
| |
Collapse
|
38
|
Chiang N, Libreros S, Norris PC, de la Rosa X, Serhan CN. Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J Clin Invest 2019; 129:5294-5311. [PMID: 31657786 PMCID: PMC6877300 DOI: 10.1172/jci129448] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Resolution of acute inflammation is an active process orchestrated by endogenous mediators and mechanisms pivotal in host defense and homeostasis. The macrophage mediator in resolving inflammation, maresin 1 (MaR1), is a potent immunoresolvent, stimulating resolution of acute inflammation and organ protection. Using an unbiased screening of greater than 200 GPCRs, we identified MaR1 as a stereoselective activator for human leucine-rich repeat containing G protein-coupled receptor 6 (LGR6), expressed in phagocytes. MaR1 specificity for recombinant human LGR6 activation was established using reporter cells expressing LGR6 and functional impedance sensing. MaR1-specific binding to LGR6 was confirmed using 3H-labeled MaR1. With human and mouse phagocytes, MaR1 (0.01-10 nM) enhanced phagocytosis, efferocytosis, and phosphorylation of a panel of proteins including the ERK and cAMP response element-binding protein. These MaR1 actions were significantly amplified with LGR6 overexpression and diminished by gene silencing in phagocytes. Thus, we provide evidence for MaR1 as an endogenous activator of human LGR6 and a novel role of LGR6 in stimulating MaR1's key proresolving functions of phagocytes.
Collapse
|
39
|
Fussbroich D, Kohnle C, Schwenger T, Driessler C, Dücker RP, Eickmeier O, Gottwald G, Jerkic SP, Zielen S, Kreyenberg H, Beermann C, Chiocchetti AG, Schubert R. A combination of LCPUFAs regulates the expression of miRNA-146a-5p in a murine asthma model and human alveolar cells. Prostaglandins Other Lipid Mediat 2019; 147:106378. [PMID: 31698144 DOI: 10.1016/j.prostaglandins.2019.106378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND LCPUFAs are suggestive of having beneficial effects on inflammatory diseases such as asthma. However, little is known about the modulative capacity of omega-(n)-3 and n-6 LCPUFAs within the epigenetic regulation of inflammatory processes. OBJECTIVE The aim of this study was to investigate whether a specific combined LCPUFA supplementation restores disease-dysregulated miRNA-profiles in asthmatic mice. In addition, we determined the effect of the LCPUFA supplementation on the interaction of the most regulated miRNA expression and oxygenase activity in vitro. METHODS Sequencing of miRNA was performed by NGS from lung tissue of asthmatic and control mice with normal diet, as well as of LCPUFA supplemented asthmatic mice. Network analysis and evaluation of the biological targets of the miRNAs were performed by DIANA- miRPath v.3 webserver software, TargetScanMouse 7.2, and tool String v.10, respectively. Expression of hsa-miRNA-146a-5p and activity of COX-2 and 5-LO in LCPUFA-treated A549 cells were assessed by qPCR and flow cytometry, respectively. RESULTS In total, 62 miRNAs were dysregulated significantly in murine allergic asthma. The LCPUFA combination restored 21 of these dysregulated miRNAs, of which eight (mmu-miR-146a-5p, -30a-3p, -139-5p, -669p-5p, -145a-5p, -669a-5p, -342-3p and -15b-5p) were even normalized compared to the control levels. Interestingly, six of the eight rescued miRNAs are functionally implicated in TGF-β signaling, ECM-receptor interaction and fatty acid biosynthesis. Furthermore, in vitro experiments demonstrated that upregulation of hsa-miRNA-146a-5p is accompanied by a reduction of COX-2 and 5-LO activity. Moreover, transfection experiments revealed that LCPUFAs inhibit 5-LO activity in the presence and absence of anti-miR-146a-5p. CONCLUSION Our results demonstrate the modulative capacity of LCPUFAs on dysregulated miRNA expression in asthma. In addition, we pointed out the high regulative potential of LCPUFAs on 5-LO regulation and provided evidence that miR-146a partly controls the regulation of 5-LO.
Collapse
Affiliation(s)
- D Fussbroich
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany; Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany; Faculty of Biological Sciences, Goethe University Frankfurt/Main, Max-von-Laue-Straße 9, Frankfurt/Main, Germany.
| | - C Kohnle
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - T Schwenger
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany
| | - C Driessler
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - R P Dücker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - O Eickmeier
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - G Gottwald
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - S P Jerkic
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - S Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - H Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - C Beermann
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany
| | - A G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - R Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| |
Collapse
|
40
|
Zhou Y, Lei J, Xie Q, Wu L, Jin S, Guo B, Wang X, Yan G, Zhang Q, Zhao H, Zhang J, Zhang X, Wang J, Gu J, Liu X, Ye D, Miao H, Serhan CN, Li Y. Fibrinogen-like protein 2 controls sepsis catabasis by interacting with resolvin Dp5. SCIENCE ADVANCES 2019; 5:eaax0629. [PMID: 31763448 PMCID: PMC6853772 DOI: 10.1126/sciadv.aax0629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms that drive programmed resolution of inflammation remain elusive. Here, we report the temporal regulation of soluble (s) and transmembrane (m) fibrinogen-like protein 2 (Fgl2) during inflammation and show that both sFgl2 and mFgl2 correlate with the outcome. The expression and ectodomain shedding of Fgl2 are respectively promoted by miR-466l and metalloproteinases (ADAM10 and ADAM17) during inflammation resolution. Deficiency of Fgl2 enhances polymorphonuclear neutrophil (PMN) infiltration but impairs macrophage (MΦ) maturation and phagocytosis and inhibits the production of n-3 docosapentaenoic acid-derived resolvin 5 (RvDp5). In contrast, administration of sFgl2 blunts PMN infiltration as well as promotes PMN apoptosis and RvDp5 biosynthesis. By activating ALX/FPR2, RvDp5 enhances sFgl2 secretion via ADAM17 and synergistically accelerates resolution of inflammation. These results uncover a previously unknown endogenous programmed mechanism by which Fgl2 regulates resolution of inflammation and shed new light on clinical sepsis treatments.
Collapse
Affiliation(s)
- Yu Zhou
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Juan Lei
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qichao Xie
- Department of Oncology, Third Affiliated Hospital, Chongqing Medical University, Chongqing 401120, China
| | - Lei Wu
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province 325027, China
| | - Bo Guo
- Maternal and Child Health Research Institute, Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xiang Wang
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guifang Yan
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qi Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Huakan Zhao
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiangang Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiao Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jingchun Wang
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiaqi Gu
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province 325027, China
| | - Xiaoli Liu
- Family Planning Department, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Transformative Medicine Building, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
41
|
Norris PC, Libreros S, Serhan CN. Resolution metabolomes activated by hypoxic environment. SCIENCE ADVANCES 2019; 5:eaax4895. [PMID: 31681846 PMCID: PMC6810174 DOI: 10.1126/sciadv.aax4895] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/14/2019] [Indexed: 05/02/2023]
Abstract
Targeting hypoxia-sensitive pathways in immune cells is of interest in treating diseases. Here, we demonstrate that physiologic hypoxia (1% O2), as encountered in bone marrow and spleen, accelerates human M2 macrophage efferocytosis of apoptotic-neutrophils and senescent erythrocytes via lipolysis-dependent biosynthesis of specialized pro-resolving mediators (SPMs), i.e. resolvins, protectins, maresins and lipoxin. SPM-production was enhanced via hypoxia in M2 macrophages interacting with neutrophils and erythrocytes enabling structural elucidation of a novel eicosapentaenoic acid (EPA)-derived resolvin, resolvin E4 (RvE4) that stimulates efferocytosis of senescent erythrocytes and more potently than aspirin in mouse hemorrhagic exudates. In hypoxia, glycolysis inhibition enhanced neutrophil RvE4-SPM biosynthesis. Human macrophage-erythrocyte co-incubations in physiologic hypoxia produced RvE4-SPM from erythrocyte stores of omega-3 fatty acids. These results indicate that hypoxic environments, including bone marrow and spleen as well as sites of inflammation, activate SPM-biosynthetic circuits that in turn stimulate resolution and clearance of senescent erythrocytes and apoptotic neutrophils.
Collapse
|
42
|
Serhan CN, de la Rosa X, Jouvene C. Novel mediators and mechanisms in the resolution of infectious inflammation: evidence for vagus regulation. J Intern Med 2019; 286:240-258. [PMID: 30565762 DOI: 10.1111/joim.12871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive chronic inflammation is linked to many diseases and considered a stress factor in humans (Robbins Pathologic Basis of Disease. Philadelphia: W.B. Saunders Co., 1999, Proc Natl Acad Sci USA, 2008, 105: 17949, Immunity, 44, 2016, 44: 463, N Engl J Med, 2011, 364: 656). Today, the resolution of inflammation is widely recognized as a cellular biochemically active process involving biosynthesis of a novel superfamily of endogenous chemical signals coined specialized pro-resolving mediators (SPMs; Nature, 2014, 510:92). Herein, we review recent evidence, indicating a role for the vagus nerve and vagotomy in the regulation of lipid mediators. Vagotomy reduces pro-resolving mediators, including the lipoxins, resolvins, protectins and maresins, delaying resolution in mouse peritonitis. Vagotomy also delays resolution of Escherichia coli infection in mice. Specifically, right vagus regulates peritoneal Group 3 innate lymphoid cell (ILC-3) number and peritoneal macrophage responses with lipid mediator profile signatures with elevated pro-inflammatory eicosanoids and reduced resolvins, including the novel protective immunoresolvent agonist protectin conjugate in tissue regeneration1 (PCTR1). Acetylcholine upregulates PCTR biosynthesis, and administration of PCTR1 to vagotomized mice restores tissue resolution and host responses to E. coli infections. Results obtained with human vagus ex vivo indicate that vagus can produce both pro-inflammatory eicosanoids, such as prostaglandins and leukotrienes, as well as the SPM. Electrical stimulation of human vagus in vitro reduces both prostaglandins and leukotrienes and enhances resolvins and the other SPM. These results elucidate a host protective mechanism mediated by vagus stimulation of SPM that includes resolvins and PCTR1 to regulate myeloid antimicrobial functions and resolution of infection. Moreover, they define a new pro-resolution of inflammation reflex operative in mice and human tissue that involves a vagus SPM circuit.
Collapse
Affiliation(s)
- C N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - X de la Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Jouvene
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Abstract
Knowledge of how the joint functions as an integrated unit in health and disease requires an understanding of the stromal cells populating the joint mesenchyme, including fibroblasts, tissue-resident macrophages and endothelial cells. Knowledge of the physiological and pathological mechanisms that involve joint mesenchymal stromal cells has begun to cast new light on why joint inflammation persists. The shared embryological origins of fibroblasts and endothelial cells might shape the behaviour of these cell types in diseased adult tissues. Cells of mesenchymal origin sustain inflammation in the synovial membrane and tendons by various mechanisms, and the important contribution of newly discovered fibroblast subtypes and their associated crosstalk with endothelial cells, tissue-resident macrophages and leukocytes is beginning to emerge. Knowledge of these mechanisms should help to shape the future therapeutic landscape and emphasizes the requirement for new strategies to address the pathogenic stroma and associated crosstalk between leukocytes and cells of mesenchymal origin.
Collapse
|
44
|
Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron 2019; 100:1292-1311. [PMID: 30571942 DOI: 10.1016/j.neuron.2018.11.009] [Citation(s) in RCA: 481] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
The previous decade has seen a rapid increase in microglial studies on pain, with a unique focus on microgliosis in the spinal cord after nerve injury and neuropathic pain. Numerous signaling molecules are altered in microglia and contribute to the pathogenesis of pain. Here, we discuss how microglial signaling regulates spinal cord synaptic plasticity in acute and chronic pain conditions with different degrees and variations of microgliosis. We highlight that microglial mediators such as pro- and anti-inflammatory cytokines are powerful neuromodulators that regulate synaptic transmission and pain via neuron-glial interactions. We also reveal an emerging role of microglia in the resolution of pain, in part via specialized pro-resolving mediators including resolvins, protectins, and maresins. We also discuss a possible role of microglia in chronic itch.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yawar J Qadri
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Transformative Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Luo X, Gu Y, Tao X, Serhan CN, Ji RR. Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male But Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy. Front Pharmacol 2019; 10:745. [PMID: 31333464 PMCID: PMC6624779 DOI: 10.3389/fphar.2019.00745] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Earlier studies have demonstrated that essential fatty acid-derived specialized pro-resolving mediators (SPMs) promote the resolution of inflammation and pain. However, the potential analgesic actions of SPMs in chemotherapy-induced peripheral neuropathy (CIPN) are not known. Recent results also showed sex dimorphism in immune cell signaling in neuropathic pain. Here, we evaluated the analgesic actions of D-series resolvins (RvD1, RvD2, RvD3, RvD4, and RvD5) on a CIPN in male and female mice. Paclitaxel (PTX, 2 mg/kg), given on days 0, 2, 4, and 6, produced robust mechanical allodynia in both sexes at 2 weeks. Intrathecal injection of RvD1 and RvD2 (100 ng, i.t.) at 2 weeks reversed PTX-induced mechanical allodynia in both sexes, whereas RvD3 and RvD4 (100 ng, i.t.) had no apparent effects on either sex. Interestingly, RvD5 (100 ng, i.t.) only reduced mechanical allodynia in male mice but not in female mice. Notably, PTX-induced mechanical allodynia was fully developed in Trpv1 or Trpa1 knockout mice, showing no sex differences. Also, intrathecal RvD5 reduced mechanical allodynia in male mice lacking Trpv1 or Trpa1, whereas female mice with Trpv1 or Trpa1 deficiency had no response to RvD5. Finally, RvD5-induced male-specific analgesia was also confirmed in an inflammatory pain condition. Formalin-induced second phase pain (licking and flinching) was reduced by intrathecal RvD5 in male but not female mice. These findings identified RvD5 as the first SPM that shows sex dimorphism in pain regulation. Moreover, these results suggest that specific resolvins may be used to treat CIPN, a rising health concern in cancer survivors.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States.,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
46
|
Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1458. [PMID: 31218817 DOI: 10.1002/wsbm.1458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
47
|
Ishihara T, Yoshida M, Arita M. Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. Int Immunol 2019; 31:559-567. [DOI: 10.1093/intimm/dxz001] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
AbstractOmega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid, display a wide range of beneficial effects in humans and animals. Many of the biological functions of PUFAs are mediated via bioactive metabolites produced by fatty acid oxygenases such as cyclooxygenases, lipoxygenases and cytochrome P450 monooxygenases. Liquid chromatography–tandem mass spectrometry-based mediator lipidomics revealed a series of novel bioactive lipid mediators derived from omega-3 PUFAs. Here, we describe recent advances on omega-3 PUFA-derived mediators, mainly focusing on their enzymatic oxygenation pathway, and their biological functions in controlling inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Mio Yoshida
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
48
|
Norris PC, Skulas-Ray AC, Riley I, Richter CK, Kris-Etherton PM, Jensen GL, Serhan CN, Maddipati KR. Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation. Sci Rep 2018; 8:18050. [PMID: 30575798 PMCID: PMC6303400 DOI: 10.1038/s41598-018-36679-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. We identified specific clusters of SPM in human plasma and serum using LC-MS/MS based lipid mediator (LM) metabololipidomics in two separate laboratories for inter-laboratory validation. The human plasma cluster consisted of resolvin (Rv)E1, RvD1, lipoxin (LX)B4, 18-HEPE, and 17-HDHA, and the human serum cluster consisted of RvE1, RvD1, AT-LXA4, 18-HEPE, and 17-HDHA. Human plasma and serum SPM clusters were increased after ω-3 supplementation (triglyceride dietary supplements or prescription ethyl esters) and low dose intravenous lipopolysaccharide (LPS) challenge. These results were corroborated by parallel determinations with the same coded samples in a second, separate laboratory using essentially identical metabololipidomic operational parameters. In these healthy subjects, two ω-3 supplementation protocols (Study A and Study B) temporally increased the SPM cluster throughout the endotoxin-challenge time course. Study A and Study B were randomized and Study B also had a crossover design with placebo and endotoxin challenge. Endotoxin challenge temporally regulated lipid mediator production in human serum, where pro-inflammatory eicosanoid (prostaglandins and thromboxane) concentrations peaked by 8 hours post-endotoxin and SPMs such as resolvins and lipoxins initially decreased by 2 h and were then elevated at 24 hours. In healthy adults given ω-3 supplementation, the plasma concentration of the SPM cluster (RvE1, RvD1, LXB4, 18-HEPE, and 17-HDHA) peaked at two hours post endotoxin challenge. These results from two separate laboratories with the same samples provide evidence for temporal production of specific pro-resolving mediators with ω-3 supplementation that together support the role of SPM in vivo in inflammation-resolution in humans.
Collapse
Affiliation(s)
- Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ann C Skulas-Ray
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ian Riley
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Chesney K Richter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gordon L Jensen
- Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
49
|
Conte MS, Desai TA, Wu B, Schaller M, Werlin E. Pro-resolving lipid mediators in vascular disease. J Clin Invest 2018; 128:3727-3735. [PMID: 30168805 PMCID: PMC6118638 DOI: 10.1172/jci97947] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unresolved inflammation is central to the pathophysiology of commonly occurring vascular diseases such as atherosclerosis, aneurysm, and deep vein thrombosis - conditions that are responsible for considerable morbidity and mortality. Surgical or catheter-based procedures performed on affected blood vessels induce acute-on-chronic inflammatory responses. The resolution of vascular inflammation is an important driver of vessel wall remodeling and functional recovery in these clinical settings. Specialized pro-resolving lipid mediators (SPMs) derived from omega-3 polyunsaturated fatty acids orchestrate key cellular processes driving resolution and a return to homeostasis. The identification of their potent effects in classic animal models of sterile inflammation triggered interest in their vascular properties. Recent studies have demonstrated that SPMs are locally synthesized in vascular tissues, have direct effects on vascular cells and their interactions with leukocytes, and play a protective role in the injury response. Early translational work has established the potential for SPMs as vascular therapeutics, and as candidate biomarkers in vascular disease. Further investigations are needed to understand the molecular and cellular mechanisms of resolution in the vasculature, to improve tools for clinical measurement, and to better define the potential for "resolution therapeutics" in vascular patients.
Collapse
Affiliation(s)
- Michael S. Conte
- Division of Vascular and Endovascular Surgery, Department of Surgery, and Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
| | - Bian Wu
- Division of Vascular and Endovascular Surgery, Department of Surgery, and Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Melinda Schaller
- Division of Vascular and Endovascular Surgery, Department of Surgery, and Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Evan Werlin
- Division of Vascular and Endovascular Surgery, Department of Surgery, and Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
50
|
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128:2657-2669. [PMID: 29757195 DOI: 10.1172/jci97943] [Citation(s) in RCA: 829] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Countless times each day, the acute inflammatory response protects us from invading microbes, injuries, and insults from within, as in surgery-induced tissue injury. These challenges go unnoticed because they are self-limited and naturally resolve without progressing to chronic inflammation. Peripheral blood markers of inflammation are present in many common diseases, including inflammatory bowel disease, cardiovascular disease, neurodegenerative disease, and cancer. While acute inflammation is protective, excessive swarming of neutrophils amplifies collateral tissue damage and inflammation. Hence, understanding the mechanisms that control the resolution of acute inflammation provides insight into preventing and treating inflammatory diseases in multiple organs. This Review focuses on the resolution phase of inflammation with identification of specialized pro-resolving mediators (SPMs) that involve three separate biosynthetic and potent mediator families, which are defined using the first quantitative resolution indices to score this vital process. These are the resolvins, protectins, and maresins: bioactive metabolomes that each stimulate self-limited innate responses, enhance innate microbial killing and clearance, and are organ-protective. We briefly address biosynthesis of SPMs and their activation of endogenous resolution programs as terrain for new therapeutic approaches that are not, by definition, immunosuppressive, but rather new immunoresolvent therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|