1
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Zhang L, Jia X, Zhang Z, Yu T, Geng Z, Yuan L. ceRNA Network Analysis Reveals Potential Key miRNAs and Target Genes in COVID-19-Related Chronic Obstructive Pulmonary Disease. Appl Biochem Biotechnol 2024; 196:4303-4316. [PMID: 37947947 DOI: 10.1007/s12010-023-04773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The continued spread of SARS-CoV-2 has presented unprecedented obstacles to the worldwide public health system. Especially, individuals with chronic obstructive pulmonary disease (COPD) are at a heightened risk of contracting SARS-CoV-2 infection due to their pre-existing respiratory symptoms that are not well-managed. However, the viral mechanism of affecting the expression of host genes, COPD progression, and prognosis is not clear yet.This study integrated the differential expression information of COPD patients and then calculated the correlation between mRNAs and miRNAs to construct a COPD-specific ceRNA network. The DEGs of individuals with SARS-CoV-2 infection and anticipated miRNAs and their targets were analyzed in 9 SARS-CoV-2 sequences from different geographic locations. Furthermore, combining the experimentally validated miRNAs and genes, the regulatory miRNA-mRNA relationships were identified. All the regulatory relationships were integrated into the COPD-specific network and the network modules were explored to get insight into the functional mechanism of SARS-CoV-2 infection in COPD patients.A higher proportion of DEGs compete with the same miRNA suggesting a higher expression of genes in the COPD-specific ceRNA network. Hsa-miR-21-3p is the largest connected point in the network, but the proportion of genes upregulated by hsa-miR-21-3p is low (P = 0.1406). This indicates that the regulatory relationship of competitive inhibition has little effect on has-miR-21, and the high expression pattern is a poor prognostic factor in COPD. Hsa-miR-15a-5p is the most significant miRNA with the highest proportion of DEGs. And ANXA2P3 is the only gene in the COPD ceRNA network that interferes with hsa-miR-15a-5p. In addition, we found that has-miR-1184- and has-miR-99-cored modules were significant, and genes ZDHHC18, PCGF3, and KIAA0319L interacting with them were all associated with COPD prognosis, and high expression of these genes could lead to poor prognosis in COPD.The key regulators such as miR-21, miR-15a, ANXA2P3, ZDHHC18, PCGF3, and KIAA0319L can be used as prognostic biomarkers for early intervention in COPD with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Respiratory and Critical Care, The First Hospital of Hebei Medical University, No.89, Donggang Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Xiaodong Jia
- Joint Laboratory of Translational Medicine, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng City, 252000, China
| | - Zhipeng Zhang
- Respiratory Medicine, Jiyang District People's Hospital, No.9, Xinyuan Street, Jiyang District, Jinan, 251400, Shandong Province, China
| | - Tong Yu
- Department of Respiratory and Critical Care Medicine, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng City, 252000, China
| | - Zhangyan Geng
- Department of Geriatrics, First Hospital of Hebei Medical University, No.89, Donggang Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Lindong Yuan
- Department of Respiratory and Critical Care Medicine, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng City, 252000, China.
| |
Collapse
|
3
|
Ayibieke A, Wajima T, Kano S, Chatterjee NS, Hamabata T. The colonization factor CS6 of enterotoxigenic Escherichia coli contributes to host cell invasion. Microb Pathog 2024; 190:106636. [PMID: 38556103 DOI: 10.1016/j.micpath.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.
Collapse
Affiliation(s)
- Alafate Ayibieke
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takeaki Wajima
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Kano
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Takashi Hamabata
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Wu Y, Li K, Li M, Pu X, Guo Y. Attention Mechanism-Based Graph Neural Network Model for Effective Activity Prediction of SARS-CoV-2 Main Protease Inhibitors: Application to Drug Repurposing as Potential COVID-19 Therapy. J Chem Inf Model 2023; 63:7011-7031. [PMID: 37960886 DOI: 10.1021/acs.jcim.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Compared to de novo drug discovery, drug repurposing provides a time-efficient way to treat coronavirus disease 19 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 main protease (Mpro) has been proved to be an attractive drug target due to its pivotal involvement in viral replication and transcription. Here, we present a graph neural network-based deep-learning (DL) strategy to prioritize the existing drugs for their potential therapeutic effects against SARS-CoV-2 Mpro. Mpro inhibitors were represented as molecular graphs ready for graph attention network (GAT) and graph isomorphism network (GIN) modeling for predicting the inhibitory activities. The result shows that the GAT model outperforms the GIN and other competitive models and yields satisfactory predictions for unseen Mpro inhibitors, confirming its robustness and generalization. The attention mechanism of GAT enables to capture the dominant substructures and thus to realize the interpretability of the model. Finally, we applied the optimal GAT model in conjunction with molecular docking simulations to screen the Drug Repurposing Hub (DRH) database. As a result, 18 drug hits with best consensus prediction scores and binding affinity values were identified as the potential therapeutics against COVID-19. Both the extensive literature searching and evaluations on adsorption, distribution, metabolism, excretion, and toxicity (ADMET) illustrate the premium drug-likeness and pharmacokinetic properties of the drug candidates. Overall, our work not only provides an effective GAT-based DL prediction tool for inhibitory activity of SARS-CoV-2 Mpro inhibitors but also provides theoretical guidelines for drug discovery in the COVID-19 treatment.
Collapse
Affiliation(s)
- Yanling Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kun Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Ayoub MA. Hijacking of GPCRs and RTKs by pathogens. Cell Signal 2023:110802. [PMID: 37437829 DOI: 10.1016/j.cellsig.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
7
|
Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH, Liu FT, Lai MMC, Ling P, Wu CL, Shiau AL. Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 2023; 30:14. [PMID: 36823664 PMCID: PMC9948428 DOI: 10.1186/s12929-023-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the β-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.
Collapse
Affiliation(s)
- Mei-Lin Yang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chung-Teng Wang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Hao-Earn Chong
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Nai-Hui Chung
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chia-Hsing Leu
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Fu-Tong Liu
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Michael M. C. Lai
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pin Ling
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan.
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan. .,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.
| |
Collapse
|
8
|
Sánchez MF, Dietz MS, Müller U, Weghuber J, Gatterdam K, Wieneke R, Heilemann M, Lanzerstorfer P, Tampé R. Dynamic in Situ Confinement Triggers Ligand-Free Neuropeptide Receptor Signaling. NANO LETTERS 2022; 22:8363-8371. [PMID: 36219818 PMCID: PMC9614963 DOI: 10.1021/acs.nanolett.2c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.
Collapse
Affiliation(s)
- M. Florencia Sánchez
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Marina S. Dietz
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- FFoQSI
- Austrian Competence Centre for Feed and Food Quality, Safety &
Innovation, FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria
| | - Karl Gatterdam
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Ralph Wieneke
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Peter Lanzerstorfer
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Robert Tampé
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
9
|
Certad G. Is Cryptosporidium a hijacker able to drive cancer cell proliferation? Food Waterborne Parasitol 2022; 27:e00153. [PMID: 35498550 PMCID: PMC9044164 DOI: 10.1016/j.fawpar.2022.e00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological mechanisms of Cryptosporidium infection are multifactorial and not completely understood. Some advances achieved recently revealed that the infection by Cryptosporidium parvum induces cytoskeleton remodeling and actin reorganization through the implication of several intracellular signals involving, for example, PI3K, Src, Cdc42 and GTPases. It has also been reported that the infection by C. parvum leads to the activation of NF-κβ, known to induce anti-apoptotic mechanisms and to transmit oncogenic signals to epithelial cells. Despite the growing evidence about the hijacking of cellular pathways, potentially being involved in cancer onset, this information has rarely been linked to the tumorigenic potential of the parasite. However, several evidences support an association between Cryptosporidium infection and the development of digestive neoplasia. To explore the dynamics of Cryptosporidium infection, an animal model of cryptosporidiosis using corticoid dexamethasone-treated adult SCID (severe combined immunodeficiency) mice, orally infected with C. parvum or Cryptosporidium muris oocysts was implemented. C. parvum-infected animals developed digestive adenocarcinoma. When mechanisms involved in this neoplastic process were explored, the pivotal role of the Wnt pathway together with the alteration of the cytoskeleton was confirmed. Recently, a microarray assay allowed the detection of cancer-promoting genes and pathways highly up regulated in the group of C. parvum infected animals when compared to non-infected controls. Moreover, different human cases/control studies reported significant higher prevalence of Cryptosporidium infection among patients with recently diagnosed colon cancer before any treatment when compared to the control group (patients without colon neoplasia but with persistent digestive symptoms). These results suggest that Cryptosporidium is a potential oncogenic agent involved in cancer development beyond the usual suspects. If Cryptosporidium is able to hijack signal transduction, then is very likely that this contributes to transformation of its host cell. More research in the field is required in order to identify mechanisms and molecular factors involved in this process and to develop effective treatment interventions.
Collapse
|
10
|
Abstract
Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Collapse
|
11
|
Toviwek B, Phuangsawai O, Konsue A, Hannongbua S, Riley J, Mutter N, Anderson M, Webster L, Hallyburton I, Read KD, Gleeson MP. Preparation, biological & cheminformatics-based assessment of N 2,N 4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorg Med Chem 2021; 46:116348. [PMID: 34479064 DOI: 10.1016/j.bmc.2021.116348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Oraphan Phuangsawai
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Adchatawut Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jennifer Riley
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mark Anderson
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Lauren Webster
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
12
|
Al-Saleem J, Granet R, Ramakrishnan S, Ciancetta NA, Saveson C, Gessner C, Zhou Q. Knowledge Graph-Based Approaches to Drug Repurposing for COVID-19. J Chem Inf Model 2021; 61:4058-4067. [PMID: 34297570 PMCID: PMC8340579 DOI: 10.1021/acs.jcim.1c00642] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic has motivated researchers all over the world in trying to find effective drugs and therapeutics for treating this disease. To save time, much effort has focused on repurposing drugs known for treating other diseases than COVID-19. To support these drug repurposing efforts, we built the CAS Biomedical Knowledge Graph and identified 1350 small molecules as potentially repurposable drugs that target host proteins and disease processes involved in COVID-19. A computer algorithm-driven drug-ranking method was developed to prioritize those identified small molecules. The top 50 molecules were analyzed according to their molecular functions and included 11 drugs in clinical trials for treating COVID-19 and new candidates that may be of interest for clinical investigation. The CAS Biomedical Knowledge Graph provides researchers an opportunity to accelerate innovation and streamline the investigative process not just for COVID-19 but also in many other diseases.
Collapse
Affiliation(s)
- Jacob Al-Saleem
- CAS, A division of the American Chemical Society,
Columbus, Ohio 43202, United States
| | - Roger Granet
- CAS, A division of the American Chemical Society,
Columbus, Ohio 43202, United States
| | | | - Natalie A. Ciancetta
- CAS, A division of the American Chemical Society,
Columbus, Ohio 43202, United States
| | - Catherine Saveson
- CAS, A division of the American Chemical Society,
Columbus, Ohio 43202, United States
| | - Chris Gessner
- CAS, A division of the American Chemical Society,
Columbus, Ohio 43202, United States
| | - Qiongqiong Zhou
- CAS, A division of the American Chemical Society,
Columbus, Ohio 43202, United States
| |
Collapse
|
13
|
Yadav M, Chauhan NS. Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. J Appl Microbiol 2020; 130:1425-1441. [PMID: 33022786 DOI: 10.1111/jam.14883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host-microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host-microbe interaction and successful commensalism to institute a human gut microbiome.
Collapse
Affiliation(s)
- M Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - N S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
14
|
Recognition of Candida albicans and Role of Innate Type 17 Immunity in Oral Candidiasis. Microorganisms 2020; 8:microorganisms8091340. [PMID: 32887412 PMCID: PMC7563233 DOI: 10.3390/microorganisms8091340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus considered to be a common member of the human microflora. Similar to some other opportunistic microbes, C. albicans can invade and benefit from its host when the immune status of that host is weakened. Most often this happens to immunocompromised individuals, leading to the infection of oral and vaginal mucosae or the systemic spread of the pathogen throughout the entire body. Oropharyngeal candidiasis (OPC) occurs in up to 90 percent of patients with acquired immunodeficiency syndrome (AIDS), making it the most frequent opportunistic infection for this group. Upon first signs of fungal invasion, a range of host signaling activates in order to eliminate the threat. Epithelial and myeloid type cells detect C. albicans mainly through receptor tyrosine kinases and pattern-recognition receptors. This review provides an overview of downstream signaling resulting in an adequate immune response through the activation of various transcription factors. The study discusses recent advances in research of the interleukin-17 (IL-17) producing innate cells, including natural T helper 17 (nTh17) cells, γδ T cells, invariant natural killer T (iNKT) cells and type 3 innate lymphoid cells (ILC3) that are involved in response to oral C. albicans infections.
Collapse
|
15
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
16
|
Khan MAAK, Sany MRU, Islam MS, Islam ABMMK. Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19. Front Genet 2020; 11:765. [PMID: 32765592 PMCID: PMC7381279 DOI: 10.3389/fgene.2020.00765] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
A detailed understanding of the molecular mechanism of SARS-CoV-2 pathogenesis is still elusive, and there is a need to address its deadly nature and to design effective therapeutics. Here, we present a study that elucidates the interplay between the SARS-CoV and SARS-CoV-2 viruses' and host's miRNAs, an epigenetic regulator, as a mode of pathogenesis; and we explored how the SARS-CoV and SARS-CoV-2 infections differ in terms of their miRNA-mediated interactions with the host and the implications this has in terms of disease complexity. We have utilized computational approaches to predict potential host and viral miRNAs and their possible roles in different important functional pathways. We have identified several putative host antiviral miRNAs that can target the SARS viruses and also predicted SARS viruses-encoded miRNAs targeting host genes. In silico predicted targets were also integrated with SARS-infected human cell microarray and RNA-seq gene expression data. A comparison between the host miRNA binding profiles on 67 different SARS-CoV-2 genomes from 24 different countries with respective country's normalized death count surprisingly uncovered some miRNA clusters, which are associated with increased death rates. We have found that induced cellular miRNAs can be both a boon and a bane to the host immunity, as they have possible roles in neutralizing the viral threat; conversely, they can also function as proviral factors. On the other hand, from over representation analysis, our study revealed that although both SARS-CoV and SARS-CoV-2 viral miRNAs could target broad immune-signaling pathways; only some of the SARS-CoV-2 miRNAs are found to uniquely target some immune-signaling pathways, such as autophagy, IFN-I signaling, etc., which might suggest their immune-escape mechanisms for prolonged latency inside some hosts without any symptoms of COVID-19. Furthermore, SARS-CoV-2 can modulate several important cellular pathways that might lead to the increased anomalies in patients with comorbidities like cardiovascular diseases, diabetes, breathing complications, etc. This might suggest that miRNAs can be a key epigenetic modulator behind the overcomplications amongst the COVID-19 patients. Our results support that miRNAs of host and SARS-CoV-2 can indeed play a role in the pathogenesis which can be further concluded with more experiments. These results will also be useful in designing RNA therapeutics to alleviate the complications from COVID-19.
Collapse
Affiliation(s)
| | - Md Rabi Us Sany
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Md Shafiqul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
17
|
de Boer ECW, van Gils JM, van Gils MJ. Ephrin-Eph signaling usage by a variety of viruses. Pharmacol Res 2020; 159:105038. [PMID: 32565311 DOI: 10.1016/j.phrs.2020.105038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
Ephrin-Eph signaling is a receptor tyrosine kinase signaling pathway involved in a variety of cellular mechanisms, of which many are related to the adhesion or migration of cells. Both the Eph receptor and ephrin ligand are abundantly present on a wide variety of cell types, and strongly evolutionary conserved. This review provides an overview of how 18 genetically diverse viruses utilize the Eph receptor (Eph), ephrin ligand (ephrin) or ephrin-Eph signaling to their advantage in their viral life cycle. Both Ephs and ephrins have been shown to serve as entry receptors for a variety of viruses, via both membrane fusion and endocytosis. Ephs and ephrins are also involved in viral transmission by vectors, associated with viral replication or persistence and lastly to neurological damage caused by viral infection. Although therapeutic opportunities targeting Ephs or ephrins do not seem feasible yet, the current research does propose two models for the viral usage of ephrin-Eph signaling. Firstly, the viral entry model, in which membrane molecules are used for viral entry, leading to cells being used for replication or as a transporter. Secondly, the advantageous expression ephrin-Eph signaling model, where viruses adapt the expression of Ephs or ephrins to change cell-cell interaction to their advantage. These models can guide future research questions on the usage of Ephs or ephrins by viruses and therapeutic opportunities.
Collapse
Affiliation(s)
- Esther C W de Boer
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Brannon JR, Dunigan TL, Beebout CJ, Ross T, Wiebe MA, Reynolds WS, Hadjifrangiskou M. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat Commun 2020; 11:2803. [PMID: 32499566 PMCID: PMC7272400 DOI: 10.1038/s41467-020-16627-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Host-associated reservoirs account for the majority of recurrent and oftentimes recalcitrant infections. Previous studies established that uropathogenic E. coli - the primary cause of urinary tract infections (UTIs) - can adhere to vaginal epithelial cells preceding UTI. Here, we demonstrate that diverse urinary E. coli isolates not only adhere to, but also invade vaginal cells. Intracellular colonization of the vaginal epithelium is detected in acute and chronic murine UTI models indicating the ability of E. coli to reside in the vagina following UTI. Conversely, in a vaginal colonization model, E. coli are detected inside vaginal cells and the urinary tract, indicating that vaginal colonization can seed the bladder. More critically, bacteria are identified inside vaginal cells from clinical samples from women with a history of recurrent UTI. These findings suggest that E. coli can establish a vaginal intracellular reservoir, where it may reside safely from extracellular stressors prior to causing an ascending infection.
Collapse
Affiliation(s)
- John R Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
| | - Taryn L Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Michelle A Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | | | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
- Department of Urology, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Epidermal Growth Factor Receptor and Transforming Growth Factor β Signaling Pathways Cooperate To Mediate Chlamydia Pathogenesis. Infect Immun 2020; 88:IAI.00819-19. [PMID: 31964750 DOI: 10.1128/iai.00819-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Human genital Chlamydia infection is a major public health concern due to the serious reproductive system complications. Chlamydia binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). Chlamydia also upregulates transforming growth factor beta (TGF-β) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown. We hypothesized that the EGFR and TGF-β signaling pathways cooperate during chlamydial infection for optimal inclusion development and stable EMT induction. The results revealed that Chlamydia upregulated TGF-β expression as early as 6 h postinfection of epithelial cells and stimulated both the EGFR and TGF-β signaling pathways. Inhibition of either the EGFR or TGF-βR1 signaling substantially reduced inclusion development; however, the combined inhibition of both EGFR and TGF-βR1 signaling reduced inclusions by over 90% and prevented EMT induction. Importantly, EGFR inhibition suppressed TGF-β expression, and an inhibitory thrombospondin-1 (Tsp1)-based peptide inhibited chlamydia-induced EMT, revealing a major source of active TGF-β during infection. Finally, TGF-βR signaling inhibition suppressed the expression of transforming acidic coiled-coil protein-3 (TACC3), which stabilizes EGFR signaling, suggesting reciprocal regulation between TGF-β and EGFR signaling during chlamydial infection. Thus, RTK-mediated host invasion by chlamydia upregulated TGF-β expression and signaling, which cooperated with other cellular signaling cascades and cytoskeletal remodeling to support optimal inclusion development and EMT induction. This finding may provide new targets for chlamydial disease biomarkers and prevention.
Collapse
|
20
|
Chen WC, Simanjuntak Y, Chu LW, Ping YH, Lee YL, Lin YL, Li WS. Benzenesulfonamide Derivatives as Calcium/Calmodulin-Dependent Protein Kinase Inhibitors and Antiviral Agents against Dengue and Zika Virus Infections. J Med Chem 2020; 63:1313-1327. [PMID: 31972088 DOI: 10.1021/acs.jmedchem.9b01779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Emerging and resurging mosquito-borne flaviviruses are an important public health challenge. The increased prevalence of dengue virus (DENV) infection has had a significant socioeconomic impact on epidemic countries. The recent outbreak of Zika virus (ZIKV) has created an international public health emergency because ZIKV infection has been linked to congenital defects and Guillain-Barré syndrome. To develop potentially prophylactic antiviral drugs for combating these acute infectious diseases, we have targeted the host calcium/calmodulin-dependent kinase II (CaMKII) for inhibition. By using CaMKII structure-guided inhibitor design, we generated four families of benzenesulfonamide (BSA) derivatives for SAR analysis. Among these substances, N-(4-cycloheptyl-4-oxobutyl)-4-methoxy-N-phenylbenzenesulfonamide (9) showed superior properties as a lead CaMKII inhibitor and antiviral agent. BSA 9 inhibited CaMKII activity with an IC50 value of 0.79 μM and displayed EC50 values of 1.52 μM and 1.91 μM against DENV and ZIKV infections of human neuronal BE(2)C cells, respectively. Notably, 9 significantly reduced the viremia level and increased animal survival time in mouse-challenge models.
Collapse
Affiliation(s)
- Wei-Chia Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan.,Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Yogy Simanjuntak
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Li-Wei Chu
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Reseach Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yueh-Hsin Ping
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Department and Institute of Pharmacology , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan.,Genomic Research Center , Academia Sinica , Taipei 11529 , Taiwan
| | - Wen-Shan Li
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan.,Doctoral Degree Program in Marine Biotechnology , National Sun Yat-Sen University , Kaohsiung 80424 , Taiwan.,Ph.D Program in Biotechnology Research and Development , Taipei Medical University , Taipei 11031 , Taiwan.,Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 80708 , Taiwan
| |
Collapse
|
21
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
22
|
Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:81-122. [DOI: 10.1016/bs.ircmb.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
microRNAs Tune Oxidative Stress in Cancer Therapeutic Tolerance and Resistance. Int J Mol Sci 2019; 20:ijms20236094. [PMID: 31816897 PMCID: PMC6928693 DOI: 10.3390/ijms20236094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Relapsed disease following first-line therapy remains one of the central problems in cancer management, including chemotherapy, radiotherapy, growth factor receptor-based targeted therapy, and immune checkpoint-based immunotherapy. Cancer cells develop therapeutic resistance through both intrinsic and extrinsic mechanisms including cellular heterogeneity, drug tolerance, bypassing alternative signaling pathways, as well as the acquisition of new genetic mutations. Reactive oxygen species (ROSs) are byproducts originated from cellular oxidative metabolism. Recent discoveries have shown that a disabled antioxidant program leads to therapeutic resistance in several types of cancers. ROSs are finely tuned by dysregulated microRNAs, and vice versa. However, mechanisms of a crosstalk between ROSs and microRNAs in regulating therapeutic resistance are not clear. Here, we summarize how the microRNA-ROS network modulates cancer therapeutic tolerance and resistance and direct new vulnerable targets against drug tolerance and resistance for future applications.
Collapse
|