1
|
Wu Y, Xiao Y, Ding Y, Ran R, Wei K, Tao S, Mao H, Wang J, Pang S, Shi J, Zhu C, Wan W, Yang Q, Chen C. Colorectal cancer cell-derived exosomal miRNA-372-5p induces immune escape from colorectal cancer via PTEN/AKT/NF-κB/PD-L1 pathway. Int Immunopharmacol 2024; 143:113261. [PMID: 39353381 DOI: 10.1016/j.intimp.2024.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Tumor cells can escape immune surveillance by changing their own escape or expressing abnormal genes and proteins, resulting in unlimited proliferation and invasive growth of cells. These changes are related to microRNAs (miRNAs), which reduce the killing effect of immune cells, devastate the immune response, and interfere with apoptosis through the aberrant expression of relevant miRNAs. In the preliminary phase of this study, miRNAs in clinical plasma exosomes of colorectal cancer patients were differentially analyzed by RNA sequencing technology, and miR-372-5p derived from extracellular vesicles (sEVs) was found to be a key signaling molecule mediating the regulation of macrophages by colorectal cancer (CRC). miRNA-372-5p is upregulated in colorectal cancer patient tissues and serum, as well as colorectal cancer cell lines and their exosomes. Subsequently, we found that macrophages could take up sEV secreted by colorectal cancer cells HCT116, affecting the expression of the immune checkpoint PD-L1, resulting in the generation of a tumor-immunosuppressive microenvironment and suppression of T cell activation in CRC. Gene enrichment mapping and database revealed that miR-372-5p regulates PD-L1 expression in colorectal cancer through the homologous phosphatase-tensin (PTEN)-phosphatidylinositol 3-kinase-protein kinase B (AKT)-nuclear factor-κB (NF-κB) pathway. Further studies confirmed that miRNA-372-5p-treated macrophages co-cultured with T cells affected the regulation of PD-L1 expression through the PTEN/AKT/NF-κB signaling pathway, resulting in decreased CD3+CD8+ T cell activity, decreased cytokine IL-2 and increased IFN-γ. And miRNA-372-5p could down-regulate the expression of PD-L1 in HCT116 through the PTEN/AKT/NF-κB pathway, inhibit tumor cell proliferation and promote apoptosis. Conclusion: Colorectal cancer cell-derived exosome miR-372-5p can be phagocytosed by colorectal cancer and macrophage cells, regulate the expression of PD-L1 in colorectal cancer cells and macrophages by targeting the PTEN/AKT/NF-κB pathway, and induce the immunosuppressive microenvironment of CRC to promote CRC development. This suggests that inhibiting the secretion of HCT116-specific sEV-miR-372-5p or targeting PD-L1 in tumor-associated macrophages could be a novel approach for CRC treatment and possibly a sensitizing approach for CRC anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Yulun Wu
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; Department of Life Sciences, Bengbu Medical University, Anhui 233030, China.
| | - Yuhan Xiao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China.
| | - Yongxing Ding
- The Third the Pople's Hospital of Bengbu, Anhui 233000, China.
| | - Ruorong Ran
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Ke Wei
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Shuang Tao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Huilan Mao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Jing Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Siyan Pang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Jiwen Shi
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Chengle Zhu
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Wenrui Wan
- Department of Biotechnology, Bengbu Medical University, Anhui 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Anhui 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Anhui 233030, China.
| |
Collapse
|
2
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
3
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
5
|
Bao R, Qu H, Li B, Cheng K, Miao Y, Wang J. The role of metabolic reprogramming in immune escape of triple-negative breast cancer. Front Immunol 2024; 15:1424237. [PMID: 39192979 PMCID: PMC11347331 DOI: 10.3389/fimmu.2024.1424237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has become a thorny problem in the treatment of breast cancer because of its high invasiveness, metastasis and recurrence. Although immunotherapy has made important progress in TNBC, immune escape caused by many factors, especially metabolic reprogramming, is still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms responsible for immune escape remain poorly understood. Exploring the mechanism of TNBC immune escape at the metabolic level provides a target and direction for follow-up targeting or immunotherapy. In this review, we focus on the mechanism that TNBC affects immune cells and interstitial cells through hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and changes tumor metabolism and tumor microenvironment. This will help to find new targets and strategies for TNBC immunotherapy.
Collapse
Affiliation(s)
- Ruochen Bao
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Hongtao Qu
- Emergency Department of Yantai Mountain Hospital, Yantai, China
| | - Baifeng Li
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Kai Cheng
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 Medical College of Binzhou Medical University, Yantai, China
| | - Jiangtao Wang
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Guo F, Kong W, Li D, Zhao G, Anwar M, Xia F, Zhang Y, Ma C, Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur J Med Res 2024; 29:357. [PMID: 38970071 PMCID: PMC11225336 DOI: 10.1186/s40001-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND PURPOSE PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weina Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, The People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Feifei Xia
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Yuanming Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, 137 Li Yu Shan South Road, Urumqi, 830054, Xinjiang, China.
| | - Xiumin Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
7
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
8
|
Demirsoy S, Tran H, Liu J, Li Y, Yang S, Aregawi D, Glantz MJ, Jacob NK, Walter V, Schell TD, Olmez I. Targeting Tyro3, Axl, and MerTK Receptor Tyrosine Kinases Significantly Sensitizes Triple-Negative Breast Cancer to CDK4/6 Inhibition. Cancers (Basel) 2024; 16:2253. [PMID: 38927958 PMCID: PMC11202171 DOI: 10.3390/cancers16122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastasis and mortality rates. Given the lack of actionable targets such as ER and HER2, TNBC still remains an unmet therapeutic challenge. Despite harboring high CDK4/6 expression levels, the efficacy of CDK4/6 inhibition in TNBC has been limited due to the emergence of resistance. The resistance to CDK4/6 inhibition is mainly mediated by RB1 inactivation. Since our aim is to overcome resistance to CDK4/6 inhibition, in this study, we primarily used the cell lines that do not express RB1. Following a screening for activated receptor tyrosine kinases (RTKs) upon CDK4/6 inhibition, we identified the TAM (Tyro3, Axl, and MerTK) RTKs as a crucial therapeutic vulnerability in TNBC. We show that targeting the TAM receptors with a novel inhibitor, sitravatinib, significantly sensitizes TNBC to CDK4/6 inhibitors. Upon prolonged HER2 inhibitor treatment, HER2+ breast cancers suppress HER2 expression, physiologically transforming into TNBC-like cells. We further show that the combined treatment is highly effective against drug-resistant HER2+ breast cancer as well. Following quantitative proteomics and RNA-seq data analysis, we extended our study into the immunophenotyping of TNBC. Given the roles of the TAM receptors in promoting the creation of an immunosuppressive tumor microenvironment (TME), we further demonstrate that the combination of CDK4/6 inhibitor abemaciclib and sitravatinib modifies the immune landscape of TNBC to favor immune checkpoint blockade. Overall, our study offers a novel and highly effective combination therapy against TNBC and potentially treatment-resistant HER2+ breast cancer that can be rapidly moved to the clinic.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | - Ha Tran
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Joseph Liu
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Yunzhan Li
- Departments of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA
| | - Shengyu Yang
- Departments of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA
| | - Dawit Aregawi
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | - Michael J. Glantz
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | | | - Vonn Walter
- Departments of Public Health Sciences, Penn State University, Hershey, PA 17033, USA
| | - Todd D. Schell
- Departments of Microbiology and Immunology, Penn State University, Hershey, PA 17033, USA
| | - Inan Olmez
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| |
Collapse
|
9
|
Wu J, Liu N, Chen J, Tao Q, Li Q, Li J, Chen X, Peng C. The Tricarboxylic Acid Cycle Metabolites for Cancer: Friend or Enemy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0351. [PMID: 38867720 PMCID: PMC11168306 DOI: 10.34133/research.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2024] [Indexed: 06/14/2024]
Abstract
The tricarboxylic acid (TCA) cycle is capable of providing sufficient energy for the physiological activities under aerobic conditions. Although tumor metabolic reprogramming places aerobic glycolysis in a dominant position, the TCA cycle remains indispensable for tumor cells as a hub for the metabolic linkage and interconversion of glucose, lipids, and certain amino acids. TCA intermediates such as citrate, α-ketoglutarate, succinate, and fumarate are altered in tumors, and they regulate the tumor metabolism, signal transduction, and immune environment to affect tumorigenesis and tumor progression. This article provides a comprehensive review of the modifications occurring in tumor cells in relation to the intermediates of the TCA cycle, which affects tumor pathogenesis and current therapeutic strategy for therapy through targeting TCA cycle in cancer cells.
Collapse
Affiliation(s)
- Jie Wu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jing Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qiuqiu Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Kuznetsova AB, Kolesova EP, Parodi A, Zamyatnin AA, Egorova VS. Reprogramming Tumor-Associated Macrophage Using Nanocarriers: New Perspectives to Halt Cancer Progression. Pharmaceutics 2024; 16:636. [PMID: 38794298 PMCID: PMC11124960 DOI: 10.3390/pharmaceutics16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer remains a significant challenge for public healthcare systems worldwide. Within the realm of cancer treatment, considerable attention is focused on understanding the tumor microenvironment (TME)-the complex network of non-cancerous elements surrounding the tumor. Among the cells in TME, tumor-associated macrophages (TAMs) play a central role, traditionally categorized as pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Within the TME, M2-like TAMs can create a protective environment conducive to tumor growth and progression. These TAMs secrete a range of factors and molecules that facilitate tumor angiogenesis, increased vascular permeability, chemoresistance, and metastasis. In response to this challenge, efforts are underway to develop adjuvant therapy options aimed at reprogramming TAMs from the M2 to the anti-tumor M1 phenotype. Such reprogramming holds promise for suppressing tumor growth, alleviating chemoresistance, and impeding metastasis. Nanotechnology has enabled the development of nanoformulations that may soon offer healthcare providers the tools to achieve targeted drug delivery, controlled drug release within the TME for TAM reprogramming and reduce drug-related adverse events. In this review, we have synthesized the latest data on TAM polarization in response to TME factors, highlighted the pathological effects of TAMs, and provided insights into existing nanotechnologies aimed at TAM reprogramming and depletion.
Collapse
Affiliation(s)
- Alyona B. Kuznetsova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| | - Ekaterina P. Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vera S. Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| |
Collapse
|
11
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
12
|
Zhao Z, Jin T, Chen B, Dong Q, Liu M, Guo J, Song X, Li Y, Chen T, Han H, Liang H, Gu Y. Multi-omics integration analysis unveils heterogeneity in breast cancer at the individual level. Cell Cycle 2023; 22:2229-2244. [PMID: 37974462 PMCID: PMC10730166 DOI: 10.1080/15384101.2023.2281816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Identifying robust breast cancer subtypes will help to reveal the cancer heterogeneity. However, previous breast cancer subtypes were based on population-level quantitative gene expression, which is affected by batch effects and cannot be applied to individuals. We detected differential gene expression, genomic, and epigenomic alterations to identify driver differential expression at the individual level. The individual driver differential expression reflected the breast cancer patients' heterogeneity and revealed four subtypes. Mesenchymal subtype as the most aggressive subtype harbored deletion and downregulated expression of genes in chromosome 11q23 region. Specifically, silencing of the SDHD gene in 11q23 promoted the invasion and migration of breast cancer cells in vitro by the epithelial-mesenchymal transition. The immunologically hot subtype displayed an immune-hot microenvironment, including high T-cell infiltration and upregulated PD-1 and CTLA4. Luminal and genomic-unstable subtypes showed opposite macrophage polarization, which may be regulated by the ligand-receptor pairs of CD99. The integration of multi-omics data at the individual level provides a powerful framework for elucidating the heterogeneity of breast cancer.
Collapse
Affiliation(s)
- Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoying Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huiming Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haihai Liang
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Karami Z, Mortezaee K, Majidpoor J. Dual anti-PD-(L)1/TGF-β inhibitors in cancer immunotherapy - Updated. Int Immunopharmacol 2023; 122:110648. [PMID: 37459782 DOI: 10.1016/j.intimp.2023.110648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy suffers from tumor resistance and relapse in majority of patients due to the suppressive tumor immune microenvironment (TIME). Advances in the field have brought about development of fusion proteins able to target two signaling simultaneously and to exert maximal anti-cancer immunity. Bispecific inhibitors of transforming growth factor (TGF)-β signaling and programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) are developed to reduce the rate of relapse and to achieve durable anti-cancer therapy. TGF-β is well-known for its immunosuppressive activity, and it takes critical roles in promotion of all tumor hallmarks. Bispecific anti-PD-(L)1/TGF-β inhibitors reinvigorate effector activity of CD8+ T and natural killer (NK) cells, hamper regulatory T cell (Treg) expansion, and increase the density of anti-tumor type 1 macrophages (M1). Responses to the bispecific approach are higher compared with solo anti-PD-(L)1 or TGF-β targeted therapy, and are seemingly more pronounced in human papillomavirus (HPV)+ patients. High expression of PD-L1 or immune-excluded phenotype in a tumor can also be markers of better response to the bispecific strategy. Besides, anti-PD-(L)1/TGF-β inhibitor therapy can be used safely with other therapeutic modalities including vaccination, radiation and chemotherapy.
Collapse
Affiliation(s)
- Zana Karami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
14
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
15
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Charehjoo A, Majidpoor J, Mortezaee K. Indoleamine 2,3-dioxygenase 1 in circumventing checkpoint inhibitor responses: Updated. Int Immunopharmacol 2023; 118:110032. [PMID: 36933494 DOI: 10.1016/j.intimp.2023.110032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Metabolic alterations occur commonly in tumor cells as a way to adapt available energetic sources for their proliferation, survival and resistance. Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular enzyme catalyzing tryptophan degradation into kynurenine. IDO1 expression shows a rise in the stroma of many types of human cancers, and it provides a negative feedback mechanism for cancer evasion from immunosurveillance. Upregulation of IDO1 correlates with cancer aggression, poor prognosis and shortened patient survival. The increased activity of this endogenous checkpoint impairs effector T cell function, increases regulatory T cell (Treg) population and induces immune tolerance, so its inhibition potentiates anti-tumor immune responses and reshapes immunogenic state of tumor microenvironment (TME) presumably through normalizing effector T cell activity. A point is that the expression of this immunoregulatory marker is upregulated after immune checkpoint inhibitor (ICI) therapy, and that it has inducible effect on expression of other checkpoints. These are indicative of the importance of IDO1 as an attractive immunotherapeutic target and rationalizing combination of IDO1 inhibitors with ICI drugs in patients with advanced solid cancers. In this review, we aimed to discuss about the impact of IDO1 on tumor immune ecosystem, and the IDO1-mediated bypass of ICI therapy. The efficacy of IDO1 inhibitor therapy in combination with ICIs in advanced/metastatic solid tumors is also a focus of this paper.
Collapse
Affiliation(s)
- Arian Charehjoo
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
17
|
Mortezaee K, Majidpoor J. Transforming growth factor-β signalling in tumour resistance to the anti-PD-(L)1 therapy: Updated. J Cell Mol Med 2023; 27:311-321. [PMID: 36625080 PMCID: PMC9889687 DOI: 10.1111/jcmm.17666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/19/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Low frequency of durable responses in patients treated with immune checkpoint inhibitors (ICIs) demands for taking complementary strategies in order to boost immune responses against cancer. Transforming growth factor-β (TGF-β) is a multi-tasking cytokine that is frequently expressed in tumours and acts as a critical promoter of tumour hallmarks. TGF-β promotes an immunosuppressive tumour microenvironment (TME) and defines a bypass mechanism to the ICI therapy. A number of cells within the stroma of tumour are influenced from TGF-β activity. There is also evidence of a relation between TGF-β with programmed death-ligand 1 (PD-L1) expression within TME, and it influences the efficacy of anti-programmed death-1 receptor (PD-1) or anti-PD-L1 therapy. Combination of TGF-β inhibitors with anti-PD(L)1 has come to the promising outcomes, and clinical trials are under way in order to use agents with bifunctional capacity and fusion proteins for bonding TGF-β traps with anti-PD-L1 antibodies aiming at reinvigorating immune responses and promoting persistent responses against advanced stage cancers, especially tumours with immunologically cold ecosystem.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research CenterGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
18
|
Shi T, Zhang Y, Wang Y, Song X, Wang H, Zhou X, Liang K, Luo Y, Che K, Wang X, Pan Y, Liu F, Yang J, Liu Q, Yu L, Liu B, Wei J. DKK1 Promotes Tumor Immune Evasion and Impedes Anti-PD-1 Treatment by Inducing Immunosuppressive Macrophages in Gastric Cancer. Cancer Immunol Res 2022; 10:1506-1524. [PMID: 36206576 DOI: 10.1158/2326-6066.cir-22-0218] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/16/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
Abstract
Tumor-associated macrophages (TAM) have key functions in promoting a suppressive tumor immune microenvironment (TIME) and immune evasion, which largely limit treatment effects of immune-checkpoint inhibitors (ICI) in different cancers, including gastric cancer. Dickkopf-1 (DKK1) is associated with tumor progression and has been shown to negatively regulate antitumor immunity, but the impact of DKK1 on the TIME remains incompletely understood. Here, we found that tumoral DKK1 expression is closely associated with worse survival and a suppressive TIME in gastric cancer patients. Results from in vitro coculture assays suggested that DKK1 induces macrophages to become immunosuppressive, thereby inhibiting antitumor responses of CD8+ T cells and natural killer (NK) cells. In vivo DKK1 blockade in syngeneic gastric cancer mouse models reprogramed TAMs to restore the immune activity in the TIME and triggered significant tumor regression. DKK1 blockade also directly reduced the growth of human gastric cancer tumors with high DKK1 expression in a xenograft model. Mechanistically, DKK1 interacted with cytoskeleton-associated protein 4 (CKAP4) on the macrophage surface and activated downstream PI3K-AKT signaling, which contributed to immune suppression. TAM reprogramming by DKK1 blockade also augmented the efficacy of programmed cell death protein-1 (PD-1) blockade in gastric cancer models. Therefore, our study provides novel insights into the role of DKK1 on tumor-intrinsic, innate, and adaptive antitumor immunity modulation and suggests that DKK1 is a promising immunotherapeutic target for enhanced PD-1 blockade therapy in gastric cancer.
Collapse
Affiliation(s)
- Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yipeng Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyu Zhou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaijie Liang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Keying Che
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yunfeng Pan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Pathology Department, Affiliated Drum Tower Hospital to Medical School of Nanjing University, Nanjing, China
| | - Ju Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Cancer Institute of Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Zheng X, Ma H, Wang J, Huang M, Fu D, Qin L, Yin Q. Energy metabolism pathways in breast cancer progression: The reprogramming, crosstalk, and potential therapeutic targets. Transl Oncol 2022; 26:101534. [PMID: 36113343 PMCID: PMC9482139 DOI: 10.1016/j.tranon.2022.101534] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer (BC) is a malignant tumor that seriously endangers health in women. BC, like other cancers, is accompanied by metabolic reprogramming. Among energy metabolism-related pathways, BC exhibits enhanced glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), glutamate metabolism, and fatty acid metabolism activities. These pathways facilitate the proliferation, growth and migration of BC cells. The progression of BC is closely related to the alterations in the activity or expression level of several metabolic enzymes, which are regulated by the intrinsic factors such as the key signaling and transcription factors. The metabolic reprogramming in the progression of BC is attributed to the aberrant expression of the signaling and transcription factors associated with the energy metabolism pathways. Understanding the metabolic mechanisms underlying the development of BC will provide a druggable potential for BC treatment and drug discovery.
Collapse
Affiliation(s)
- Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jingjing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengjiao Huang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Dongliao Fu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ling Qin
- Department of Hematology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
20
|
Furukawa N, Stearns V, Santa-Maria CA, Popel AS. The tumor microenvironment and triple-negative breast cancer aggressiveness: shedding light on mechanisms and targeting. Expert Opin Ther Targets 2022; 26:1041-1056. [PMID: 36657483 PMCID: PMC10189896 DOI: 10.1080/14728222.2022.2170779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In contrast to other breast cancer subtypes, there are currently limited options of targeted therapies for triple-negative breast cancer (TNBC). Immense research has demonstrated that not only cancer cells but also stromal cells and immune cells in the tumor microenvironment (TME) play significant roles in the progression of TNBC. It is thus critical to understand the components of the TME of TNBC and the interactions between the various cell populations. AREAS COVERED The components of the TME of TNBC identified by single-cell technologies are reviewed. Furthermore, the molecular interactions between the cells and the potential therapeutic targets contributing to the progression of TNBC are discussed. EXPERT OPINION Single-cell omics studies have contributed to the classification of cells in the TME and the identification of important cell types involved in the progression and the treatment of the tumor. The interactions between cancer cells and stromal cells/immune cells in the TME have led to the discovery of potential therapeutic targets. Experimental data with spatial and temporal resolution will further boost the understanding of the TME of TNBC.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cesar A. Santa-Maria
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
21
|
Atallah R, Olschewski A, Heinemann A. Succinate at the Crossroad of Metabolism and Angiogenesis: Roles of SDH, HIF1α and SUCNR1. Biomedicines 2022; 10:3089. [PMID: 36551845 PMCID: PMC9775124 DOI: 10.3390/biomedicines10123089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Angiogenesis is an essential process by which new blood vessels develop from existing ones. While adequate angiogenesis is a physiological process during, for example, tissue repair, insufficient and excessive angiogenesis stands on the pathological side. Fine balance between pro- and anti-angiogenic factors in the tissue environment regulates angiogenesis. Identification of these factors and how they function is a pressing topic to develop angiogenesis-targeted therapeutics. During the last decade, exciting data highlighted non-metabolic functions of intermediates of the mitochondrial Krebs cycle including succinate. Among these functions is the contribution of succinate to angiogenesis in various contexts and through different mechanisms. As the concept of targeting metabolism to treat a wide range of diseases is rising, in this review we summarize the mechanisms by which succinate regulates angiogenesis in normal and pathological settings. Gaining a comprehensive insight into how this metabolite functions as an angiogenic signal will provide a useful approach to understand diseases with aberrant or excessive angiogenic background, and may provide strategies to tackle them.
Collapse
Affiliation(s)
- Reham Atallah
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
22
|
Shinohara H, Kobayashi M, Hayashi K, Nogawa D, Asakawa A, Ohata Y, Kubota K, Takahashi H, Yamada M, Tokunaga M, Kinugasa Y, Oda G, Nakagawa T, Onishi I, Kinowaki Y, Kurata M, Ohashi K, Kitagawa M, Yamamoto K. Spatial and Quantitative Analysis of Tumor-Associated Macrophages: Intratumoral CD163-/PD-L1+ TAMs as a Marker of Favorable Clinical Outcomes in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:13235. [PMID: 36362023 PMCID: PMC9656504 DOI: 10.3390/ijms232113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 08/16/2023] Open
Abstract
Tumor-associated macrophages (TAMs) and abnormalities in cancer cells affect cancer progression and response to therapy. TAMs are a major component of the tumor microenvironment (TME) in breast cancer, with their invasion affecting clinical outcomes. Programmed death-ligand 1 (PD-L1), a target of immune checkpoint inhibitors, acts as a suppressive signal for the surrounding immune system; however, its expression and effect on TAMs and the clinical outcome in breast cancer are unknown. In this study, we used high-throughput multiple immunohistochemistry to spatially and quantitatively analyze TAMs. We subjected 81 breast cancer specimens to immunostaining for CD68, CD163, PD-1, PD-L1, CD20, and pan-CK. In both stromal and intratumoral areas, the triple-negative subtype had significantly more CD68/CD163, CD68/PD-L1, and CD163/PD-L1 double-positive cells than the estrogen receptor (ER)/progesterone receptor (PR) subtype. Interestingly, a higher number of CD68+/PD-L1+/CK-/CD163- TAMs in the intratumoral area was correlated with a favorable recurrence rate (p = 0.048). These findings indicated that the specific subpopulation and localization of TAMs in the TME affect clinical outcomes in breast cancer.
Collapse
Affiliation(s)
- Hajime Shinohara
- Department of Gasrointestinal Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Maki Kobayashi
- Molecular Pathology Group, Translational Research Department, Daiichisankyo RD Novare, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Kumiko Hayashi
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Daichi Nogawa
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ayaka Asakawa
- Department of Thoracic Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yae Ohata
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75236 Uppsala, Sweden
| | - Kazuishi Kubota
- Translational Science Department, Daiichi Sankyo, Inc., Basking Ridge, NJ 07920, USA
| | - Hisashi Takahashi
- Molecular Pathology Group, Translational Research Department, Daiichisankyo RD Novare, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Miyuki Yamada
- Molecular Pathology Group, Translational Research Department, Daiichisankyo RD Novare, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Masanori Tokunaga
- Department of Gasrointestinal Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Kinugasa
- Department of Gasrointestinal Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Goshi Oda
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsuyoshi Nakagawa
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Department of Human Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
23
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
24
|
The Role of Hypoxia-Inducible Factor Isoforms in Breast Cancer and Perspectives on Their Inhibition in Therapy. Cancers (Basel) 2022; 14:cancers14184518. [PMID: 36139678 PMCID: PMC9496909 DOI: 10.3390/cancers14184518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In many types of cancers, the activity of the hypoxia-inducible factors enhances hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. As a result of observing these features, HIFs became attractive targets in designing anticancer therapy. The lack of effective breast treatment based on HIFs inhibitors and the elusive role of those factors in this type of cancer raises the concern wheter targeting hypoxia-inducible factors is the right path. Results of the study on breast cancer cell lines suggest the need to consider aspects like HIF-1α versus HIF-2α isoforms inhibition, double versus singular isoform inhibition, different hormone receptors status, metastases, and perhaps different not yet investigated issues. In other words, targeting hypoxia-inducible factors in breast cancers should be preceded by a better understanding of their role in this type of cancer. The aim of this paper is to review the role, functions, and perspectives on hypoxia-inducible factors inhibition in breast cancer. Abstract Hypoxia is a common feature associated with many types of cancer. The activity of the hypoxia-inducible factors (HIFs), the critical element of response and adaptation to hypoxia, enhances cancer hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. The HIF-1α and HIF-2α isoforms show similar regulation characteristics, although they are active in different types of hypoxia and can show different or even opposite effects. Breast cancers present several unique ways of non-canonical hypoxia-inducible factors activity induction, not limited to the hypoxia itself. This review summarizes different effects of HIFs activation in breast cancer, where areas such as metabolism, evasion of the immune response, cell survival and death, angiogenesis, invasion, metastasis, cancer stem cells, and hormone receptors status have been covered. The differences between HIF-1α and HIF-2α activity and their impacts are given special attention. The paper also discusses perspectives on using hypoxia-inducible factors as targets in anticancer therapy, given current knowledge acquired in molecular studies.
Collapse
|
25
|
Epithelial-mesenchymal transition in cancer stemness and heterogeneity: updated. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:193. [PMID: 36071302 DOI: 10.1007/s12032-022-01801-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 10/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) as a trans-differentiation program and a key process in tumor progression is linked positively with increased expansion of cancer stem cells and cells with stem-like properties. This is mediated through modulation of critical tumorigenic events and is positively correlated with hypoxic conditions in tumor microenvironment. The presence of cells eliciting diverse phenotypical states inside tumor is representative of heterogeneity and higher tumor resistance to therapy. In this review, we aimed to discuss about the current understanding toward EMT, stemness, and heterogeneity in tumors of solid organs, their contribution to the key tumorigenic events along with major signaling pathway involved, and, finally, to suggest some strategies to target these critical events.
Collapse
|
26
|
Dhanyamraju PK, Schell TD, Amin S, Robertson GP. Drug-Tolerant Persister Cells in Cancer Therapy Resistance. Cancer Res 2022; 82:2503-2514. [PMID: 35584245 PMCID: PMC9296591 DOI: 10.1158/0008-5472.can-21-3844] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
One of the current stumbling blocks in our fight against cancer is the development of acquired resistance to therapy, which is attributable to approximately 90% of cancer-related deaths. Undercutting this process during treatment could significantly improve cancer management. In many cases, drug resistance is mediated by a drug-tolerant persister (DTP) cell subpopulation present in tumors, often referred to as persister cells. This review provides a summary of currently known persister cell subpopulations and approaches to target them. A specific DTP cell subpopulation with elevated levels of aldehyde dehydrogenase (ALDH) activity has stem cell-like characteristics and a high level of plasticity, enabling them to switch rapidly between high and low ALDH activity. Further studies are required to fully elucidate the functions of ALDH-high DTP cells, how they withstand drug concentrations that kill other cells, and how they rapidly adapt under levels of high cellular stress and eventually lead to more aggressive, recurrent, and drug-resistant cancer. Furthermore, this review addresses the processes used by the ALDH-high persister cell subpopulation to enable cancer progression, the ALDH isoforms important in these processes, interactions of ALDH-high DTPs with the tumor microenvironment, and approaches to therapeutically modulate this subpopulation in order to more effectively manage cancer.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D Schell
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
27
|
Pu Y, Ji Q. Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression. Front Immunol 2022; 13:874589. [PMID: 35592338 PMCID: PMC9110638 DOI: 10.3389/fimmu.2022.874589] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Anti-programmed cell death 1 (PD-1) or anti-PD-ligand (L) 1 drugs, as classic immune checkpoint inhibitors, are considered promising treatment strategies for tumors. In clinical practice, some cancer patients experience drug resistance and disease progression in the process of anti-PD-1/PD-L1 immunotherapy. Tumor-associated macrophages (TAMs) play key roles in regulating PD-1/PD-L1 immunosuppression by inhibiting the recruitment and function of T cells through cytokines, superficial immune checkpoint ligands, and exosomes. There are several therapies available to recover the anticancer efficacy of PD-1/PD-L1 inhibitors by targeting TAMs, including the inhibition of TAM differentiation and re-education of TAM activation. In this review, we will summarize the roles and mechanisms of TAMs in PD-1/PD-L1 blocker resistance. Furthermore, we will discuss the therapies that were designed to deplete TAMs, re-educate TAMs, and intervene with chemokines secreted by TAMs and exosomes from M1 macrophages, providing more potential options to improve the efficacy of PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Yunzhou Pu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Malla R, Padmaraju V, Kundrapu DB. Tumor-associated macrophages: Potential target of natural compounds for management of breast cancer. Life Sci 2022; 301:120572. [PMID: 35489567 DOI: 10.1016/j.lfs.2022.120572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
A large body of experimental research reveals that tumor-associated macrophages (TAMs) are the major immunosuppressor cells in the breast tumor microenvironment (TME). The infiltration of macrophages is correlated with inverse outcomes like disease-free survival and overall survival of cancer patients. They are responsible for heterogeneity, metastasis, and drug resistance. Further, their density in tumor beds is correlated with stage and therapy response. The current review is aimed at summarizing mechanisms and signaling pathways that modulate immune-suppressive phenotype and expansion of TAMs. The review presents an overview of the interdependence of tumor cells and TAMs in TME to promote metastasis, drug resistance and immune suppressive phenotype. This review also presents the potential natural compounds that modulate the immune-suppressive functions of TAMs and their signaling pathways. Finally, this review provides nanotechnology approaches for the targeted delivery of natural products. This review shed light on BC management including clinical studies on the prognostic relevance of TAMs and natural compounds that sensitizes BC.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept. of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 531001, Andhra Pradesh, India; Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 531001, Andhra Pradesh, India.
| | - Vasudevaraju Padmaraju
- Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 531001, Andhra Pradesh, India
| | - Durga Bhavani Kundrapu
- Cancer Biology Laboratory, Dept. of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 531001, Andhra Pradesh, India; Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 531001, Andhra Pradesh, India
| |
Collapse
|
29
|
Vicencio JM, Evans R, Green R, An Z, Deng J, Treacy C, Mustapha R, Monypenny J, Costoya C, Lawler K, Ng K, De-Souza K, Coban O, Gomez V, Clancy J, Chen SH, Chalk A, Wong F, Gordon P, Savage C, Gomes C, Pan T, Alfano G, Dolcetti L, Chan JNE, Flores-Borja F, Barber PR, Weitsman G, Sosnowska D, Capone E, Iacobelli S, Hochhauser D, Hartley JA, Parsons M, Arnold JN, Ameer-Beg S, Quezada SA, Yarden Y, Sala G, Ng T. Osimertinib and anti-HER3 combination therapy engages immune dependent tumor toxicity via STING activation in trans. Cell Death Dis 2022; 13:274. [PMID: 35347108 PMCID: PMC8960767 DOI: 10.1038/s41419-022-04701-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Over the past decade, immunotherapy delivered novel treatments for many cancer types. However, lung cancer still leads cancer mortality, and non-small-cell lung carcinoma patients with mutant EGFR cannot benefit from checkpoint inhibitors due to toxicity, relying only on palliative chemotherapy and the third-generation tyrosine kinase inhibitor (TKI) osimertinib. This new drug extends lifespan by 9-months vs. second-generation TKIs, but unfortunately, cancers relapse due to resistance mechanisms and the lack of antitumor immune responses. Here we explored the combination of osimertinib with anti-HER3 monoclonal antibodies and observed that the immune system contributed to eliminate tumor cells in mice and co-culture experiments using bone marrow-derived macrophages and human PBMCs. Osimertinib led to apoptosis of tumors but simultaneously, it triggered inositol-requiring-enzyme (IRE1α)-dependent HER3 upregulation, increased macrophage infiltration, and activated cGAS in cancer cells to produce cGAMP (detected by a lentivirally transduced STING activity biosensor), transactivating STING in macrophages. We sought to target osimertinib-induced HER3 upregulation with monoclonal antibodies, which engaged Fc receptor-dependent tumor elimination by macrophages, and STING agonists enhanced macrophage-mediated tumor elimination further. Thus, by engaging a tumor non-autonomous mechanism involving cGAS-STING and innate immunity, the combination of osimertinib and anti-HER3 antibodies could improve the limited therapeutic and stratification options for advanced stage lung cancer patients with mutant EGFR.
Collapse
Affiliation(s)
- J M Vicencio
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK.
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
| | - R Evans
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - R Green
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Z An
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - J Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - C Treacy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - R Mustapha
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - J Monypenny
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - C Costoya
- Cancer Immunology Unit, Cancer Institute, University College London, London, UK
| | - K Lawler
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - K Ng
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - K De-Souza
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - O Coban
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - V Gomez
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - J Clancy
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - S H Chen
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - A Chalk
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - F Wong
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - P Gordon
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - C Savage
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - C Gomes
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - T Pan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - G Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - L Dolcetti
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - J N E Chan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - F Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - P R Barber
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - G Weitsman
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - D Sosnowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - E Capone
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | | | - D Hochhauser
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - J A Hartley
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - M Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - J N Arnold
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - S Ameer-Beg
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - S A Quezada
- Cancer Immunology Unit, Cancer Institute, University College London, London, UK
| | - Y Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - G Sala
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - T Ng
- Molecular Oncology Group, Cancer Institute, Paul O'Gorman Building, University College London, London, UK.
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
30
|
Chu J, Hu XC, Li CC, Li TY, Fan HW, Jiang GQ. KLF14 alleviated breast cancer invasion and M2 macrophages polarization through modulating SOCS3/RhoA/Rock/STAT3 signaling. Cell Signal 2022; 92:110242. [PMID: 34998931 DOI: 10.1016/j.cellsig.2022.110242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE To study the functions and underlying network of KLF14 in breast cancer invasion and tumor-associated macrophages (TAMs). METHODS The expressions of gene or protein were assessed by qRT-PCR and western blot assays, respectively. Cell proliferation and invasion were investigated by colony formation, CCK-8 and transwell assays, respectively. Macrophage M2 polarization was identified by flow cytometry assay. The methylation level was tested by methylation Specific PCR (MSP). The molecular relationship between KLF14 and SOCS3 was validated by dual luciferase and ChIP assays. In vivo model was established to confirm effect of KLF14 on tumor growth and metastasis. RESULTS KLF14 was downregulated in breast cancer, and its level was modified by CpG-mediated methylation. Overexpression of KLF14 significantly inhibited the proliferation and invasion of breast cancer in vitro and in vivo. Moreover, KLF14-overexpressing breast cancer cells notably reduced M2 macrophages polarization and it related promoting factor of tumor microenvironment (EGF, TGFβ, MMP9 and VEGF). Mechanistically, KLF14 could positively activate SOCS3 transcription, then blocking the activation of RhoA/Rock/STAT3 signaling. Further rescue experiments identified that either SOCS3 silencing and activation of RhoA/Rock/STAT3 signaling dramatically restrained the regulatory roles of KLF14 overexpression in breast cancer invasion and M2 macrophages polarization. CONCLUSION Collectively, KLF14 suppressed breast cancer cell invasion and M2 macrophage polarization through modulating SOCS3/RhoA/Rock/STAT3 signaling, and these findings would provide a new potential target against breast cancer.
Collapse
Affiliation(s)
- Jian Chu
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China; Department of General Surgery, The First People's Hospital of Yancheng City, Yancheng 224000, Jiangsu Province, China
| | - Xing-Chi Hu
- Department of General Surgery, The First People's Hospital of Yancheng City, Yancheng 224000, Jiangsu Province, China
| | - Chang-Chun Li
- Department of General Surgery, The First People's Hospital of Yancheng City, Yancheng 224000, Jiangsu Province, China
| | - Tang-Ya Li
- Department of General Surgery, The First People's Hospital of Yancheng City, Yancheng 224000, Jiangsu Province, China
| | - Hui-Wen Fan
- Department of General Surgery, The First People's Hospital of Yancheng City, Yancheng 224000, Jiangsu Province, China
| | - Guo-Qin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China.
| |
Collapse
|
31
|
Adhikari S, Guha D, Mohan C, Mukherjee S, Tyler JK, Das C. Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Subcell Biochem 2022; 100:3-65. [PMID: 36301490 PMCID: PMC10760510 DOI: 10.1007/978-3-031-07634-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Deblina Guha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chitra Mohan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
32
|
Mentoor I, Engelbrecht AM, van de Vyver M, van Jaarsveld PJ, Nell T. The paracrine effects of adipocytes on lipid metabolism in doxorubicin-treated triple negative breast cancer cells. Adipocyte 2021; 10:505-523. [PMID: 34812105 PMCID: PMC8632082 DOI: 10.1080/21623945.2021.1979758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipocytes in the breast tumour microenvironment promotes acquired treatment resistance. We used an in vitro adipocyte-conditioned media approach to investigate the direct paracrine effects of adipocyte secretory factors on MDA-MB-231 breast cancer cells treated with doxorubicin to clarify the underlying treatment resistance mechanisms. Cell-viability assays, and Western blots were performed to determine alterations in apoptotic, proliferation and lipid metabolism protein markers. Free fatty acids (FFA) and inflammatory markers in the collected treatment-conditioned media were also quantified. Adipocyte secretory factors increased the cell-viability of doxorubicin-treated cells (p < 0.0001), which did not correspond to apoptosis or proliferation pathways. Adipocyte secretory factors increased the protein expression of hormone-sensitive lipase (p < 0.05) in doxorubicin-treated cells. Adipocyte secretory factors increased the utilization of leptin (p < 0.05) and MCP-1 (p < 0.01) proteins and possibly inhibited release of linoleic acid by doxorubicin-treated cells (treatment-conditioned media FFA profiles). Adipocyte secretory factors induced doxorubicin treatment resistance, by increasing the utilization of inflammatory mediators and inhibiting the release of FFA by doxorubicin-treated cells. This further promotes inflammation and lipid metabolic reprogramming (lipid storage) in the tumour microenvironment, which breast cancer cells use to evade the toxic effects induced by doxorubicin and confers to acquired treatment resistance.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Biomedical Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
33
|
Gorji-Bahri G, Moradtabrizi N, Hashemi A. Uncovering the stability status of the reputed reference genes in breast and hepatic cancer cell lines. PLoS One 2021; 16:e0259669. [PMID: 34752497 PMCID: PMC8577734 DOI: 10.1371/journal.pone.0259669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Accurate and reliable relative gene expression analysis via the Reverse Transcription-quantitative Real Time PCR (RT-qPCR) method strongly depends on employing several stable reference genes as normalizers. Utilization of the reference genes without analyzing their expression stability under each experimental condition causes RT-qPCR analysis error as well as false output. Similar to cancerous tissues, cancer cell lines also exhibit various gene expression profiles. It is crucial to recognize stable reference genes for well-known cancer cell lines to minimize RT-qPCR analysis error. In this study, we showed the expression level and investigated the expression stability of eight common reference genes that are ACTB, YWHAZ, HPRT1, RNA18S, TBP, GAPDH, UBC, and B2M, in two sets of cancerous cell lines. One set contains MCF7, SKBR3, and MDA-MB231 as breast cancer cell lines. Another set includes three hepatic cancer cell lines, including Huh7, HepG2, and PLC-PRF5. Three excel-based softwares comprising geNorm, BestKeeper, and NormFinder, and an online tool, namely RefFinder were used for stability analysis. Although all four algorithms did not show the same stability ranking of nominee genes, the overall results showed B2M and ACTB as the least stable reference genes for the studied breast cancer cell lines. While TBP had the lowest expression stability in the three hepatic cancer cell lines. Moreover, YWHAZ, UBC, and GAPDH showed the highest stability in breast cancer cell lines. Besides that, a panel of five nominees, including ACTB, HPRT1, UBC, YWHAZ, and B2M showed higher stability than others in hepatic cancer cell lines. We believe that our results would help researchers to find and to select the best combination of the reference genes for their own experiments involving the studied breast and hepatic cancer cell lines. To further analyze the reference genes stability for each experimental condition, we suggest researchers to consider the provided stability ranking emphasizing the unstable reference genes.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Moradtabrizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Zhao H, Teng Y, Hao W, Li J, Li Z, Chen Q, Yin C, Yue W. Single-cell analysis revealed that IL4I1 promoted ovarian cancer progression. J Transl Med 2021; 19:454. [PMID: 34717685 PMCID: PMC8557560 DOI: 10.1186/s12967-021-03123-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproducible prognostic classifications. Methods We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epithelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore the roles of IL4I1, an important gene in Riskscore, in OC progression. Results We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of IL4I1 inhibited OC cells proliferation, migration and invasion. Conclusions Our work provide novel insights into our understanding of the heterogeneity among OCs, and would help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03123-7.
Collapse
Affiliation(s)
- Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Yu Teng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Wende Hao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Qi Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
35
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
36
|
Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H, Wang Y, Yang Y, Yu C. Ferroptosis-Strengthened Metabolic and Inflammatory Regulation of Tumor-Associated Macrophages Provokes Potent Tumoricidal Activities. NANO LETTERS 2021; 21:6471-6479. [PMID: 34292757 DOI: 10.1021/acs.nanolett.1c01401] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modulation of tumor-associated macrophages (TAMs) holds promise for cancer treatment, mainly relying on M1 signaling activation and pro-inflammatory promotion. Nevertheless, the antitumor activity is often limited by the anti-inflammatory factors in the tumor microenvironment. Moreover, the metabolic function of TAMs is also critical to tumor progression. However, there are a few strategies that can simultaneously regulate both inflammatory and metabolic functions to achieve safe and potent antitumor activation of TAMs. Herein, we demonstrate that an iron-based metal organic framework nanoparticle and a ferroptosis-inducing agent synergistically induce mitochondrial alternation in TAMs, resulting in a radical metabolic switch from mitochondrial oxidative phosphorylation to glycolysis, which is resistant to anti-inflammatory stimuli challenge. The ferroptosis stress strengthened by the nanoformulation also drives multiple pro-inflammatory signaling pathways, enabling macrophage activation with potent tumoricidal activities. The ferroptosis-strengthened macrophage regulation strategy present in this study paves the way for TAM-centered antitumoral treatment to overcome the limitations of conventional methods.
Collapse
Affiliation(s)
- Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales 2145, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yang Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Khan S, Kim S, Yang YP, Pratx G. High-resolution radioluminescence microscopy of FDG uptake in an engineered 3D tumor-stoma model. Eur J Nucl Med Mol Imaging 2021; 48:3400-3407. [PMID: 33880604 DOI: 10.1007/s00259-021-05364-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The increased glucose metabolism of cancer cells is the basis for 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). However, due to its coarse image resolution, PET is unable to resolve the metabolic role of cancer-associated stroma, which often influences the metabolic reprogramming of a tumor. This study investigates the use of radioluminescence microscopy for imaging FDG uptake in engineered 3D tumor models with high resolution. METHOD Multicellular tumor spheroids (A549 lung adenocarcinoma) were co-cultured with GFP-expressing human umbilical vein endothelial cells (HUVECs) within an artificial extracellular matrix to mimic a tumor and its surrounding stroma. The tumor model was constructed as a 200-μm-thin 3D layer over a transparent CdWO4 scintillator plate to allow high-resolution imaging of the cultured cells. After incubation with FDG, the radioluminescence signal was collected by a highly sensitive widefield microscope. Fluorescence microscopy was performed using the same instrument to localize endothelial and tumor cells. RESULTS Simultaneous and co-localized brightfield, fluorescence, and radioluminescence imaging provided high-resolution information on the distribution of FDG in the engineered tissue. The microvascular stromal compartment as a whole took up a large fraction of the FDG, comparable to the uptake of the tumor spheroids. In vitro gamma counting confirmed that A549 and HUVEC cells were both highly glycolytic with rapid FDG uptake kinetics. Despite the relative thickness of the tissue constructs, an average spatial resolution of 64 ± 4 μm was achieved for imaging FDG. CONCLUSION Our study demonstrates the feasibility of imaging the distribution of FDG uptake in engineered in vitro tumor models. With its high spatial resolution, the method can separately resolve tumor and stromal components. The approach could be extended to more advanced engineered cancer models but also to surgical tissue slices and tumor biopsies.
Collapse
Affiliation(s)
- Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13030401. [PMID: 33499083 PMCID: PMC7865468 DOI: 10.3390/cancers13030401] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Overcoming tumor immunosuppression still represents one ambitious achievement for cancer immunotherapy. Of note, the cytokine TGF-β contributes to immune evasion in multiple cancer types, by feeding the establishment of a tolerogenic environment in the host. Indeed, it fosters the expansion and accumulation of immunosuppressive regulatory cell populations within the tumor microenvironment (TME), where it also activates resident stromal cells and enhances angiogenesis programs. More recently, TGF-β has also turned out as a key metabolic adjuster in tumors orchestrating metabolic pathways in the TME. In this review, we will scrutinize TGF-β-mediated immune and stromal cell crosstalk within the TME, with a primary focus on metabolic programs.
Collapse
|