1
|
Schäfer A, Leist SR, Powers JM, Baric RS. Animal models of Long Covid: A hit-and-run disease. Sci Transl Med 2024; 16:eado2104. [PMID: 39536118 DOI: 10.1126/scitranslmed.ado2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) pandemic has caused more than 7 million deaths globally. Despite the presence of infection- and vaccine-induced immunity, SARS-CoV-2 infections remain a major global health concern because of the emergence of SARS-CoV-2 variants that can cause severe acute coronavirus disease 2019 (COVID-19) or enhance Long Covid disease phenotypes. About 5 to 10% of SARS-CoV-2-infected individuals develop Long Covid, which, similar to acute COVID 19, often affects the lung. However, Long Covid can also affect other peripheral organs, especially the brain. The causal relationships between acute disease phenotypes, long-term symptoms, and involvement of multiple organ systems remain elusive, and animal model systems mimicking both acute and post-acute phases are imperative. Here, we review the current state of Long Covid animal models, including current and possible future applications.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Antar AAR, Cox AL. Translating insights into therapies for Long Covid. Sci Transl Med 2024; 16:eado2106. [PMID: 39536116 DOI: 10.1126/scitranslmed.ado2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Collapse
Affiliation(s)
- Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Lee SH, Bonifacio F, Prudente AS, Choi YI, Roh J, Adjafre BL, Park CK, Jung SJ, Cunha TM, Berta T. STING recognition of viral dsDNA by nociceptors mediates pain in mice. Brain Behav Immun 2024; 121:29-42. [PMID: 39025416 DOI: 10.1016/j.bbi.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Pain is often one of the initial indicators of a viral infection, yet our understanding of how viruses induce pain is limited. Immune cells typically recognize viral nucleic acids, which activate viral receptors and signaling, leading to immunity. Interestingly, these viral receptors and signals are also present in nociceptors and are associated with pain. Here, we investigate the response of nociceptors to nucleic acids during viral infections, specifically focusing on the role of the viral signal, Stimulator of Interferon Genes (STING). Our research shows that cytosolic double-stranded DNA (dsDNA) from viruses, like herpes simplex virus 1 (HSV-1), triggers pain responses through STING expression in nociceptors. In addition, STING agonists alone can elicit pain responses. Notably, these responses involve the direct activation of STING in nociceptors through TRPV1. We also provided a proof-of-concept showing that STING and TRPV1 significantly contribute to the mechanical hypersensitivity induced by HSV-1 infection. These findings suggest that STING could be a potential therapeutic target for relieving pain during viral infections.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fabio Bonifacio
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Y I Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Beatriz Lima Adjafre
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
4
|
Henderson AD, Butler-Cole BFC, Tazare J, Tomlinson LA, Marks M, Jit M, Briggs A, Lin LY, Carlile O, Bates C, Parry J, Bacon SCJ, Dillingham I, Dennison WA, Costello RE, Wei Y, Walker AJ, Hulme W, Goldacre B, Mehrkar A, MacKenna B, Herrett E, Eggo RM. Clinical coding of long COVID in primary care 2020-2023 in a cohort of 19 million adults: an OpenSAFELY analysis. EClinicalMedicine 2024; 72:102638. [PMID: 38800803 PMCID: PMC11127160 DOI: 10.1016/j.eclinm.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Long COVID is the patient-coined term for the persistent symptoms of COVID-19 illness for weeks, months or years following the acute infection. There is a large burden of long COVID globally from self-reported data, but the epidemiology, causes and treatments remain poorly understood. Primary care is used to help identify and treat patients with long COVID and therefore Electronic Health Records (EHRs) of past COVID-19 patients could be used to help fill these knowledge gaps. We aimed to describe the incidence and differences in demographic and clinical characteristics in recorded long COVID in primary care records in England. Methods With the approval of NHS England we used routine clinical data from over 19 million adults in England linked to SARS-COV-2 test result, hospitalisation and vaccination data to describe trends in the recording of 16 clinical codes related to long COVID between November 2020 and January 2023. Using OpenSAFELY, we calculated rates per 100,000 person-years and plotted how these changed over time. We compared crude and adjusted (for age, sex, 9 NHS regions of England, and the dominant variant circulating) rates of recorded long COVID in patient records between different key demographic and vaccination characteristics using negative binomial models. Findings We identified a total of 55,465 people recorded to have long COVID over the study period, which included 20,025 diagnoses codes and 35,440 codes for further assessment. The incidence of new long COVID records increased steadily over 2021, and declined over 2022. The overall rate per 100,000 person-years was 177.5 cases in women (95% CI: 175.5-179) and 100.5 in men (99.5-102). The majority of those with a long COVID record did not have a recorded positive SARS-COV-2 test 12 or more weeks before the long COVID record. Interpretation In this descriptive study, EHR recorded long COVID was very low between 2020 and 2023, and incident records of long COVID declined over 2022. Using EHR diagnostic or referral codes unfortunately has major limitations in identifying and ascertaining true cases and timing of long COVID. Funding This research was supported by the National Institute for Health and Care Research (NIHR) (OpenPROMPT: COV-LT2-0073).
Collapse
Affiliation(s)
| | - Ben FC. Butler-Cole
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - John Tazare
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Laurie A. Tomlinson
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Mark Jit
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Andrew Briggs
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Liang-Yu Lin
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Oliver Carlile
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Chris Bates
- TPP, TPP House, 129 Low Lane, Horsforth, Leeds LS18 5PX, UK
| | - John Parry
- TPP, TPP House, 129 Low Lane, Horsforth, Leeds LS18 5PX, UK
| | - Sebastian CJ. Bacon
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - Iain Dillingham
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | | | - Ruth E. Costello
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Yinghui Wei
- Centre for Mathematical Sciences, School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Alex J. Walker
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - William Hulme
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - Ben Goldacre
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - Amir Mehrkar
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - Brian MacKenna
- Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK
| | - Emily Herrett
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Rosalind M. Eggo
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
5
|
Hanani M. Satellite Glial Cells in Human Disease. Cells 2024; 13:566. [PMID: 38607005 PMCID: PMC11011452 DOI: 10.3390/cells13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; ; Tel.: +972-2-5844721
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
6
|
Serafini RA, Frere JJ, tenOever B, Zachariou V. SARS-CoV-2 and Influenza A Virus Induce Longitudinal Transcriptomic Changes in Hamster Spinal Cord Tissue. Spine (Phila Pa 1976) 2024; 49:364-367. [PMID: 37389976 PMCID: PMC10753030 DOI: 10.1097/brs.0000000000004765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Randal A. Serafini
- Friedman Brain Institute & Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pharmacology, Physiology, & Biophysics, Chobanian & Avedisian School of Medicine at Boston University
| | - Justin J. Frere
- Department of Microbiology, NYU Grossman School of Medicine, NY
| | - Benjamin tenOever
- Department of Microbiology, NYU Grossman School of Medicine, NY
- Department of Medicine, NYU Grossman School of Medicine, NY
| | - Venetia Zachariou
- Friedman Brain Institute & Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pharmacology, Physiology, & Biophysics, Chobanian & Avedisian School of Medicine at Boston University
| |
Collapse
|
7
|
Collins CP, Longo DL, Murphy WJ. The immunobiology of SARS-CoV-2 infection and vaccine responses: potential influences of cross-reactive memory responses and aging on efficacy and off-target effects. Front Immunol 2024; 15:1345499. [PMID: 38469293 PMCID: PMC10925677 DOI: 10.3389/fimmu.2024.1345499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.
Collapse
Affiliation(s)
- Craig P. Collins
- Graduate Program in Immunology, University of California (UC) Davis, Davis, CA, United States
| | - Dan L. Longo
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - William J. Murphy
- Departments of Dermatology and Internal Medicine (Hematology/Oncology), University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
8
|
Mali SS, Silva R, Gong Z, Cronce M, Vo U, Vuong C, Moayedi Y, Cox JS, Bautista DM. SARS-CoV-2 papain-like protease activates nociceptors to drive sneeze and pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575114. [PMID: 38260476 PMCID: PMC10802627 DOI: 10.1101/2024.01.10.575114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, triggers symptoms such as sneezing, aches and pain.1 These symptoms are mediated by a subset of sensory neurons, known as nociceptors, that detect noxious stimuli, densely innervate the airway epithelium, and interact with airway resident epithelial and immune cells.2-6 However, the mechanisms by which viral infection activates these neurons to trigger pain and airway reflexes are unknown. Here, we show that the coronavirus papain-like protease (PLpro) directly activates airway-innervating trigeminal and vagal nociceptors in mice and human iPSC-derived nociceptors. PLpro elicits sneezing and acute pain in mice and triggers the release of neuropeptide calcitonin gene-related peptide (CGRP) from airway afferents. We find that PLpro-induced sneeze and pain requires the host TRPA1 ion channel that has been previously demonstrated to mediate pain, cough, and airway inflammation.7-9 Our findings are the first demonstration of a viral product that directly activates sensory neurons to trigger pain and airway reflexes and highlight a new role for PLpro and nociceptors in COVID-19.
Collapse
Affiliation(s)
- Sonali S. Mali
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Ricardo Silva
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Zhongyan Gong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Michael Cronce
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Uyen Vo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Howard Hughes Medical Institute
| | - Cliff Vuong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yalda Moayedi
- Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Diana M. Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
- Howard Hughes Medical Institute
| |
Collapse
|
9
|
Serafini RA, Ramakrishnan A, Shen L, Zachariou V. Desipramine induces anti-inflammatory dorsal root ganglion transcriptional signatures in the murine spared nerve injury model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100153. [PMID: 38549875 PMCID: PMC10973649 DOI: 10.1016/j.ynpai.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/09/2024]
Abstract
Monoamine-targeting antidepressants serve as frontline medications for chronic pain and associated comorbidities. While persistent anti-allodynic properties of antidepressants generally require weeks of treatment, several groups have demonstrated acute analgesic effects within hours of administration, suggesting a role in non-mesocorticolimbic pain processing regions such as the peripheral nervous system. To further explore this possibility, after four weeks of spared nerve injury or sham surgeries, we systemically administered desipramine or saline for an additional three weeks and performed whole transcriptome RNA sequencing on L3-6 dorsal root ganglia. Along with alterations in molecular pathways associated with neuronal activity, we observed a robust immunomodulatory transcriptional signature in the desipramine treated group. Cell subtype deconvolution predicted that these changes were associated with A- and C-fibers. Of note, differentially expressed genes from the dorsal root ganglia of DMI-treated, injured mice were largely unique compared to those from the nucleus accumbens of the same animals. These observations suggest that, under peripheral nerve injury conditions, desipramine induces specific gene expression changes across various regions of the nociceptive circuitry.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| |
Collapse
|
10
|
Martínez-Lavín M, Miguel-Álvarez A. Hypothetical framework for post-COVID 19 condition based on a fibromyalgia pathogenetic model. Clin Rheumatol 2023; 42:3167-3171. [PMID: 37707639 DOI: 10.1007/s10067-023-06743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
There is a clear clinical overlap between fibromyalgia, myalgic encephalomyelitis, and post-COVID 19 condition. Chronic fatigue, cognitive impairment, and widespread pain characterize these 3 syndromes. A steady line of investigation posits fibromyalgia as stress-evoked sympathetically maintained neuropathic pain syndrome and places dorsal root ganglia dysregulation with the ensuing small fiber neuropathy at the epicenter of fibromyalgia pathogenesis. This article discusses emerging evidence suggesting that similar mechanism may operate in post-COVID 19 condition.
Collapse
|
11
|
Usai C, Mateu L, Brander C, Vergara-Alert J, Segalés J. Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Anim (NY) 2023; 52:202-210. [PMID: 37620562 PMCID: PMC10462483 DOI: 10.1038/s41684-023-01231-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
More than 40% of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have experienced persistent or relapsing multi-systemic symptoms months after the onset of coronavirus disease 2019 (COVID-19). This post-COVID-19 condition (PCC) has debilitating effects on the daily life of patients and encompasses a broad spectrum of neurological and neuropsychiatric symptoms including olfactory and gustative impairment, difficulty with concentration and short-term memory, sleep disorders and depression. Animal models have been instrumental to understand acute COVID-19 and validate prophylactic and therapeutic interventions. Similarly, studies post-viral clearance in hamsters, mice and nonhuman primates inoculated with SARS-CoV-2 have been useful to unveil some of the aspects of PCC. Transcriptomic alterations in the central nervous system, persistent activation of immune cells and impaired hippocampal neurogenesis seem to have a critical role in the neurological manifestations observed in animal models infected with SARS-CoV-2. Interestingly, the proinflammatory transcriptomic profile observed in the central nervous system of SARS-CoV-2-inoculated mice partially overlaps with the pathological changes that affect microglia in humans during Alzheimer's disease and aging, suggesting shared mechanisms between these conditions. None of the currently available animal models fully replicates PCC in humans; therefore, multiple models, together with the fine-tuning of experimental conditions, will probably be needed to understand the mechanisms of PCC neurological symptoms. Moreover, given that the intrinsic characteristics of the new variants of concern and the immunological status of individuals might influence PCC manifestations, more studies are needed to explore the role of these factors and their combinations in PCC, adding further complexity to the design of experimental models.
Collapse
Affiliation(s)
- Carla Usai
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Spain
| | - Lourdes Mateu
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la UAB, Bellaterra, Spain.
| |
Collapse
|