1
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Chen J, Huang Y, Tang H, Qiao X, Sima X, Guo W. A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation. Biomed Mater 2024; 19:045007. [PMID: 38756029 DOI: 10.1088/1748-605x/ad475c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.
Collapse
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yibing Huang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Huilin Tang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangchen Qiao
- Chengdu Guardental Technology Limited Corporation, Chengdu 610041, People's Republic of China
| | - Xiutian Sima
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 610041, People's Republic of China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 610041, People's Republic of China
| |
Collapse
|
3
|
Park HJ, Hoffman JR, Brown ME, Bheri S, Brazhkina O, Son YH, Davis ME. Knockdown of deleterious miRNA in progenitor cell-derived small extracellular vesicles enhances tissue repair in myocardial infarction. SCIENCE ADVANCES 2023; 9:eabo4616. [PMID: 36867699 PMCID: PMC9984177 DOI: 10.1126/sciadv.abo4616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Small extracellular vesicles (sEVs) play a critical role in cardiac cell therapy by delivering molecular cargo and mediating cellular signaling. Among sEV cargo molecule types, microRNA (miRNA) is particularly potent and highly heterogeneous. However, not all miRNAs in sEV are beneficial. Two previous studies using computational modeling identified miR-192-5p and miR-432-5p as potentially deleterious in cardiac function and repair. Here, we show that knocking down miR-192-5p and miR-432-5p in cardiac c-kit+ cell (CPC)-derived sEVs enhances the therapeutic capabilities of sEVs in vitro and in a rat in vivo model of cardiac ischemia reperfusion. miR-192-5p- and miR-432-5p-depleted CPC-sEVs enhance cardiac function by reducing fibrosis and necrotic inflammatory responses. miR-192-5p-depleted CPC-sEVs also enhance mesenchymal stromal cell-like cell mobilization. Knocking down deleterious miRNAs from sEV could be a promising therapeutic strategy for treatment of chronic myocardial infarction.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Jessica R. Hoffman
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Milton E. Brown
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Young Hoon Son
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Wang X, Ma Y, Chen J, Liu Y, Liu G, Wang P, Wang B, Taketo MM, Bellido T, Tu X. A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis. Bioact Mater 2023; 21:110-128. [PMID: 36093329 PMCID: PMC9411072 DOI: 10.1016/j.bioactmat.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cell source is the key to decellularized matrix (DM) strategy. This study compared 3 cell types, osteocytes with/without dominant active Wnt/β-catenin signaling (daCO and WTO) and bone marrow stromal cells (BMSCs) for their DMs in bone repair. Decellularization removes all organelles and >95% DNA, and retained >74% collagen and >71% GAG, maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM. DM produced higher cell survival rate (90%) and higher proliferative activity. In vitro, daCO-DM induces more and longer stress fibers in BMSCs, conducive to cell adhesion, spreading, and osteogenic differentiation. 8-wk after implantation of the critical-sized parietal bone defect model, daCO-DM formed tight structures, composed of a large number of densely-arranged type-I collagen under polarized light microscope, which is similar to and integrated with host bone. BV/TV (>54%) was 1.5, 2.9, and 3.5 times of WTO-DM, BMSC-DM, and none-DM groups, and N.Ob/T.Ar (3.2 × 102/mm2) was 1.7, 2.9, and 3.3 times. At 4-wk, daCO-DM induced osteoclastogenesis, 2.3 times higher than WTO-DM; but BMSC-DM or none-DM didn't. daCO-DM increased the expression of RANKL and MCSF, Vegfa and Angpt1, and Ngf in BMSCs, which contributes to osteoclastogenesis, angiogenesis, and neurogenesis, respectively. daCO-DM promoted H-type vessel formation and nerve markers β3-tubulin and NeuN expression. Conclusion: daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects. These features are expected to achieve the effect of autologous bone transplantation, suitable for transformation application. Decellularized matrix of osteocytes with dominant-active β-catenin (daCO-DM) promotes osteogenesis for regenerative repair. daCO-DM induces BMSCs to form stress fibers, conducive to cell adhesion, spreading, and differentiation towards osteoblasts. daCO-DM-induced osteoblasts have strong activity secreting dense and orderly-arranged type I collagen as host bone’s. daCO-DM induces BMSCs to express pre-osteoclastogenic cytokine RANKL and MCSF for osteoclastogenesis of marrow monocytes. daCO-DM enhances BMSCs to express angiogenic Vegfa and Angpt1, and neurogenic Ngf potentially for neurovascularization.
Collapse
Affiliation(s)
- Xiaofang Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yufei Ma
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Chen
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujiao Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Guangliang Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Pengtao Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Corresponding author. Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Biagi D, Fantozzi ET, Campos-Oliveira JC, Naghetini MV, Ribeiro AF, Rodrigues S, Ogusuku I, Vanderlinde R, Christie MLA, Mello DB, de Carvalho ACC, Valadares M, Cruvinel E, Dariolli R. In Situ Maturated Early-Stage Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improve Cardiac Function by Enhancing Segmental Contraction in Infarcted Rats. J Pers Med 2021; 11:jpm11050374. [PMID: 34064343 PMCID: PMC8147857 DOI: 10.3390/jpm11050374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
The scant ability of cardiomyocytes to proliferate makes heart regeneration one of the biggest challenges of science. Current therapies do not contemplate heart re-muscularization. In this scenario, stem cell-based approaches have been proposed to overcome this lack of regeneration. We hypothesize that early-stage hiPSC-derived cardiomyocytes (hiPSC-CMs) could enhance the cardiac function of rats after myocardial infarction (MI). Animals were subjected to the permanent occlusion of the left ventricle (LV) anterior descending coronary artery (LAD). Seven days after MI, early-stage hiPSC-CMs were injected intramyocardially. Rats were subjected to echocardiography pre-and post-treatment. Thirty days after the injections were administered, treated rats displayed 6.2% human cardiac grafts, which were characterized molecularly. Left ventricle ejection fraction (LVEF) was improved by 7.8% in cell-injected rats, while placebo controls showed an 18.2% deterioration. Additionally, cell-treated rats displayed a 92% and 56% increase in radial and circumferential strains, respectively. Human cardiac grafts maturate in situ, preserving proliferation with 10% Ki67 and 3% PHH3 positive nuclei. Grafts were perfused by host vasculature with no evidence for immune rejection nor ectopic tissue formations. Our findings support the use of early-stage hiPSC-CMs as an alternative therapy to treat MI. The next steps of preclinical development include efficacy studies in large animals on the path to clinical-grade regenerative therapy targeting human patients.
Collapse
Affiliation(s)
- Diogo Biagi
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Evelyn Thais Fantozzi
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Julliana Carvalho Campos-Oliveira
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Marcus Vinicius Naghetini
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Antonio Fernando Ribeiro
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Sirlene Rodrigues
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Isabella Ogusuku
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Rubia Vanderlinde
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Michelle Lopes Araújo Christie
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.L.A.C.); (D.B.M.); (A.C.C.d.C.)
| | - Debora Bastos Mello
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.L.A.C.); (D.B.M.); (A.C.C.d.C.)
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.L.A.C.); (D.B.M.); (A.C.C.d.C.)
| | - Marcos Valadares
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Estela Cruvinel
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Rafael Dariolli
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
6
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
7
|
Fang Y, Xu Y, Wang R, Hu L, Guo D, Xue F, Guo W, Zhang D, Hu J, Li Y, Zhang W, Zhang M. Recent advances on the roles of LncRNAs in cardiovascular disease. J Cell Mol Med 2020; 24:12246-12257. [PMID: 32969576 PMCID: PMC7686979 DOI: 10.1111/jcmm.15880] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are a main cause of mortality whose prevalence continues to increase worldwide. Long non-coding RNAs (lncRNAs) regulate a variety of biological processes by modifying and regulating transcription of coding genes, directly binding to proteins and even coding proteins themselves. LncRNAs play key roles in the occurrence and development of myocardial infarction, heart failure, myocardial hypertrophy, arrhythmias and other pathological processes that significantly affect the prognosis and survival of patients with cardiovascular diseases. We here review the latest research on lncRNAs in cardiovascular diseases as a basis to formulate future research on prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Whittaker TE, Nagelkerke A, Nele V, Kauscher U, Stevens MM. Experimental artefacts can lead to misattribution of bioactivity from soluble mesenchymal stem cell paracrine factors to extracellular vesicles. J Extracell Vesicles 2020; 9:1807674. [PMID: 32944192 PMCID: PMC7480412 DOI: 10.1080/20013078.2020.1807674] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been demonstrated that some commonly used Extracellular Vesicle (EV) isolation techniques can lead to substantial contamination with non-EV factors. Whilst it has been established that this impacts the identification of biomarkers, the impact on apparent EV bioactivity has not been explored. Extracellular vesicles have been implicated as critical mediators of therapeutic human mesenchymal stem cell (hMSC) paracrine signalling. Isolated hMSC-EVs have been used to treat multiple in vitro and in vivo models of tissue damage. However, the relative contributions of EVs and non-EV factors have not been directly compared. The dependence of hMSC paracrine signalling on EVs was first established by ultrafiltration of hMSC-conditioned medium to deplete EVs, which led to a loss of signalling activity. Here, we show that this method also causes depletion of non-EV factors, and that when this is prevented proangiogenic signalling activity is fully restored in vitro. Subsequently, we used size-exclusion chromatography (SEC) to separate EVs and soluble proteins to directly and quantitatively compare their relative contributions to signalling. Non-EV factors were found to be necessary and sufficient for the stimulation of angiogenesis and wound healing in vitro. EVs in isolation were found to be capable of potentiating signalling only when isolated by a low-purity method, or when used at comparatively high concentrations. These results indicate a potential for contaminating soluble factors to artefactually increase the apparent bioactivity of EV isolates and could have implications for future studies on the biological roles of EVs.
Collapse
Affiliation(s)
- Thomas E Whittaker
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Anika Nagelkerke
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Valeria Nele
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Ulrike Kauscher
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
9
|
Watanabe J, Sakai K, Urata Y, Toyama N, Nakamichi E, Hibi H. Extracellular Vesicles of Stem Cells to Prevent BRONJ. J Dent Res 2020; 99:552-560. [PMID: 32119600 DOI: 10.1177/0022034520906793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), several tens to hundreds of nanometers in size, are vesicles secreted by cells for intercellular communication. EVs released from mesenchymal stem cells (MSC-EVs) have the potential to treat multiple diseases. This study aimed to determine the effects of MSC-EVs on bisphosphonate-related osteonecrosis of the jaw (BRONJ), whose pathogenesis and treatment are not yet established. To this end, zoledronic acid (ZOL) was administered to bone marrow cells and fibroblasts in vitro. In vivo, a BRONJ model was produced by administering ZOL to rats and extracting teeth. Each MSC-EV-treated and nontreated group was compared histologically and molecularly. In vitro, the nontreated group showed an increased number of β-galactosidase-positive cells and expression of senescence-associated genes p21, pRB and senescence-related inflammatory cytokines. Conversely, MSC-EV administration decreased the number of senescent cells and expression levels of p21, pRB and inflammatory cytokines. In vivo, in the nontreated group, the socket was partially uncovered by the oral epithelium, leaving an exposed bone. Conversely, in the MSC-EV-treated group, the socket was healed. Besides, in the nontreated group, β-galactosidase-positive cells existed in the socket and colocalized with the CD90 and periostin-positive cells. However, there were few β-galactosidase-positive cells in the MSC-EV-treated group. Furthermore, gene expression of stem cell markers Bmi1 and Hmga2 and the vascular endothelial marker VEGF was significantly increased in the MSC-EV-treated group, compared with that in the nontreated group. These results indicate that MSC-EVs prevent ZOL-induced senescence in stem cells, osteoblasts, and fibroblasts and reduce inflammatory cytokines. Furthermore, administration of MSC-EVs prevented senescence of cells involved in wound healing and the spread of chronic inflammation around senescent cells, thereby promoting angiogenesis and bone regeneration and preventing BRONJ.
Collapse
Affiliation(s)
- J Watanabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Urata
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - N Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - E Nakamichi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Mahzoon S, Townsend JM, Lam TN, Sjoelund V, Detamore MS. Effects of a Bioactive SPPEPS Peptide on Chondrogenic Differentiation of Mesenchymal Stem Cells. Ann Biomed Eng 2019; 47:2308-2321. [PMID: 31218487 DOI: 10.1007/s10439-019-02306-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
A synthetic 'chondroinductive' biomaterial that could induce chondrogenesis without the need for growth factors, extracellular matrix, or pre-seeded cells could revolutionize orthopedic regenerative medicine. The objective of the current study was thus to introduce a synthetic SPPEPS peptide and evaluate its ability to induce chondrogenic differentiation. In the current study, dissolving a synthetic chondroinductive peptide candidate (100 ng/mL SPPEPS) in the culture medium of rat bone marrow-derived mesenchymal stem cells (rBMSCs) elevated collagen type II gene expression compared to the negative control (no growth factor or peptide in the cell culture medium) after 3 days. In addition, proteomic analyses indicated similarities in pathways and protein profiles between the positive control (10 ng/mL TGF-β3) and peptide group (100 ng/mL SPPEPS), affirming the potential of the peptide for chondroinductivity. Incorporating the SPPEPS peptide in combination with the RGD peptide in pentenoate-functionalized hyaluronic acid (PHA) hydrogels elevated the collagen type II gene expression of the rBMSCs cultured on top of the hydrogels compared to using either peptide alone. The evidence suggests that SPPEPS may be a chondroinductive peptide, which may be enhanced in combination with an adhesion peptide.
Collapse
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA
| | - Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Thi N Lam
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Virginie Sjoelund
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
11
|
Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:249-257. [DOI: 10.1089/ten.teb.2018.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
12
|
Oron U. Photobiomodulation Therapy of Cells in the Bone Marrow: A Novel Therapeutic Approach in Cell Therapy and Regenerative Medicine. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:1-3. [DOI: 10.1089/photob.2018.4543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uri Oron
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Jara Avaca M, Gruh I. Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:117-146. [PMID: 29218360 DOI: 10.1007/10_2017_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineered cardiac tissue might enable novel therapeutic strategies for the human heart in a number of acquired and congenital diseases. With recent advances in stem cell technologies, namely the availability of pluripotent stem cells, the generation of potentially autologous tissue grafts has become a realistic option. Nevertheless, a number of limitations still have to be addressed before clinical application of engineered cardiac tissue based on human stem cells can be realized. We summarize current progress and pending challenges regarding the optimal cell source, cardiomyogenic lineage specification, purification, safety of genetic cell engineering, and genomic stability. Cardiac cells should be combined with clinical grade scaffold materials for generation of functional myocardial tissue in vitro. Scale-up to clinically relevant dimensions is mandatory, and tissue vascularization is most probably required both for preclinical in vivo testing in suitable large animal models and for clinical application. Graphical Abstract.
Collapse
Affiliation(s)
- Monica Jara Avaca
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Vascular and Transplantation Surgery (HTTG), Hannover Medical School (MHH) & Cluster of Excellence REBIRTH, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Vascular and Transplantation Surgery (HTTG), Hannover Medical School (MHH) & Cluster of Excellence REBIRTH, Hannover, Germany.
| |
Collapse
|
14
|
Ain QU, Woo YS, Chung JY, Kim YH. Regeneration of Anti-Hypoxic Myocardial Cells by Transduction of Mesenchymal Stem Cell-Derived Exosomes Containing Tat-Metallothionein Fusion Proteins. Macromol Res 2018. [DOI: 10.1007/s13233-018-6101-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Elbaz-Greener G, Sud M, Tzuman O, Leitman M, Vered Z, Ben-Dov N, Oron U, Blatt A. Adjunctive laser-stimulated stem-cells therapy to primary reperfusion in acute myocardial infarction in humans: Safety and feasibility study. J Interv Cardiol 2018; 31:711-716. [DOI: 10.1111/joic.12539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gabby Elbaz-Greener
- Cardiology Division; Assaf Harofeh Medical Center; Zerifin Israel
- Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel
- Schulich Heart Centre, Division of Cardiology, Sunnybrook Health Sciences Centre; University of Toronto; Toronto Ontario Canada
| | - Maneesh Sud
- Schulich Heart Centre, Division of Cardiology, Sunnybrook Health Sciences Centre; University of Toronto; Toronto Ontario Canada
| | - Oran Tzuman
- Cardiology Division; Assaf Harofeh Medical Center; Zerifin Israel
- Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel
| | - Marina Leitman
- Cardiology Division; Assaf Harofeh Medical Center; Zerifin Israel
- Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel
| | - Zvi Vered
- Cardiology Division; Assaf Harofeh Medical Center; Zerifin Israel
- Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel
| | - Nissan Ben-Dov
- Cardiology Department; Lady Davis Carmel Medical Centre; Haifa Israel
| | - Uri Oron
- Faculty of Life Sciences; Department of Zoology; Tel-Aviv University; Tel-Aviv Israel
| | - Alex Blatt
- Cardiology Division; Assaf Harofeh Medical Center; Zerifin Israel
- Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel
| |
Collapse
|
16
|
Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, Hua B, Xu J, Li J, Bi C, Guo S, Yang F, Han Z, Li Y, Yan G, Yu Y, Bao Z, Yu M, Li F, Tian Y, Pan Z, Yang B. The Long Noncoding RNA CAREL Controls Cardiac Regeneration. J Am Coll Cardiol 2018; 72:534-550. [PMID: 30056829 DOI: 10.1016/j.jacc.2018.04.085] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adult mammalian heart loses regeneration ability following ischemic injury due to the loss of cardiomyocyte mitosis. However, the molecular mechanisms underlying the post-mitotic nature of cardiomyocytes remain largely unknown. OBJECTIVES The purpose of this study was to define the essential role of long noncoding ribonucleic acids (lncRNAs) in heart regeneration during postnatal and adult injury. METHODS Myh6-driving cardiomyocyte-specific lncRNA-CAREL transgenic mice and adenovirus-mediated in vivo silencing of endogenous CAREL were used in this study. The effect of CAREL on cardiomyocyte replication and heart regeneration after apical resection or myocardial infarction was assessed by detecting mitosis and cytokinesis. RESULTS An lncRNA CAREL was found significantly up-regulated in cardiomyocytes from neonatal mice (P7) in parallel with loss of regenerative capacity. Cardiac-specific overexpression of CAREL in mice reduced cardiomyocyte division and proliferation and blunted neonatal heart regeneration after injury. Conversely, silencing of CAREL in vivo markedly promoted cardiac regeneration and improved heart functions after myocardial infarction in neonatal and adult mice. CAREL acted as a competing endogenous ribonucleic acid for miR-296 to derepress the expression of Trp53inp1 and Itm2a, the target genes of miR-296. Consistently, overexpression of miR-296 significantly increased cardiomyocyte replication and cardiac regeneration after injury. Decline of cardiac regenerative ability in CAREL transgenic mice was also rescued by miR-296. A short fragment containing the conserved sequence of CAREL reduced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes as the full-length CAREL. CONCLUSIONS LncRNA CAREL regulates cardiomyocyte proliferation and heart regeneration in postnatal and adult heart after injury by acting as a competing endogenous ribonucleic acid on miR-296 that targets Trp53inp1 and Itm2a.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China; Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China.
| | - Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bingjie Hua
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Juan Xu
- Department of Bioinformatics, Harbin Medical University, Harbin, China
| | - Jiamin Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chongwei Bi
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuyuan Guo
- Department of Cardiology at the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenbo Han
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengyi Bao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meixi Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ye Tian
- Department of Cardiology at the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Ma R, Liang J, Huang W, Guo L, Cai W, Wang L, Paul C, Yang HT, Kim HW, Wang Y. Electrical Stimulation Enhances Cardiac Differentiation of Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy. Antioxid Redox Signal 2018; 28:371-384. [PMID: 27903111 PMCID: PMC5770128 DOI: 10.1089/ars.2016.6766] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Electrical stimulation (EleS) can promote cardiac differentiation, but the underlying mechanism is not well known. This study investigated the effect of EleS on cardiomyocyte (CM) differentiation of human induced pluripotent stem cells (hiPSCs) and evaluated the therapeutic effects for the treatment of myocardial infarction (MI). RESULTS Cardiac differentiation of hiPSCs was induced with EleS after embryoid body formation. Spontaneously beating hiPSCs were observed as early at 2 days when treated with EleS compared with control treatment. The cardiac differentiation efficiency of hiPSCs was significantly enhanced by EleS. In addition, the functional maturation of hiPSC-CMs under EleS was confirmed by calcium indicators, intracellular Ca2+ levels, and expression of structural genes. Mechanistically, EleS mediated cardiac differentiation of hiPSCs through activation of Ca2+/PKC/ERK pathways, as revealed by RNA sequencing, quantitative polymerase chain reaction, and Western blotting. After transplantation in immunodeficient MI mice, EleS-preconditioned hiPSC-derived cells significantly improved cardiac function and attenuated expansion of infarct size. The preconditioned hiPSC-derived CMs were functionally integrated with the host heart. INNOVATION We show EleS as an efficacious time-saving approach for CM generation. The global RNA profiling shows that EleS can accelerate cardiac differentiation of hiPSCs through activation of multiple pathways. The cardiac-mimetic electrical signals will provide a novel approach to generate functional CMs and facilitate cardiac tissue engineering for successful heart regeneration. CONCLUSION EleS can enhance efficiency of cardiac differentiation in hiPSCs and promote CM maturation. The EleS-preconditioned CMs emerge as a promising approach for clinical application in MI treatment. Antioxid. Redox Signal. 28, 371-384.
Collapse
Affiliation(s)
- Ruilian Ma
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jialiang Liang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Wei Huang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Linlin Guo
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Wenfeng Cai
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Lei Wang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Christian Paul
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Huang-Tian Yang
- 2 Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai, China
| | - Ha Won Kim
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Yigang Wang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
18
|
Brunette I, Roberts CJ, Vidal F, Harissi-Dagher M, Lachaine J, Sheardown H, Durr GM, Proulx S, Griffith M. Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res 2017; 59:97-130. [DOI: 10.1016/j.preteyeres.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
|
19
|
Haga H, Yan IK, Borrelli DA, Matsuda A, Parasramka M, Shukla N, Lee DD, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transpl 2017; 23:791-803. [PMID: 28407355 PMCID: PMC5495137 DOI: 10.1002/lt.24770] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/01/2017] [Indexed: 12/20/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD.
Collapse
Affiliation(s)
- Hiroaki Haga
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - Irene K. Yan
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - David A. Borrelli
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - Akiko Matsuda
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - Mansi Parasramka
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - Neha Shukla
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - David D. Lee
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology; Mayo Clinic; Jacksonville Florida
| |
Collapse
|
20
|
Dariolli R, Naghetini MV, Marques EF, Takimura CK, Jensen LS, Kiers B, Tsutsui JM, Mathias W, Lemos Neto PA, Krieger JE. Allogeneic pASC transplantation in humanized pigs attenuates cardiac remodeling post-myocardial infarction. PLoS One 2017; 12:e0176412. [PMID: 28448588 PMCID: PMC5407644 DOI: 10.1371/journal.pone.0176412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cell therapy repair strategies using adult mesenchymal stromal cells have shown promising evidence to prevent cardiac deterioration in rodents even in the absence of robust differentiation of the cells into cardiomyocytes. We tested whether increasing doses of porcine adipose-tissue derived mesenchymal stem cells (pASCs) increase cardiac tissue perfusion in pigs post-myocardial infarction (MI) receiving angiotensin-converting-enzyme inhibitor (ACE inhibitors) and Beta-blockers similarly to patients. Female pigs were subjected to MI induction by sponge permanent occlusion of left circumflex coronary artery (LCx) generating approximately 10% of injured LV area with minimum hemodynamic impact. We assessed tissue perfusion by real time myocardial perfusion echocardiography (RTMPE) using commercial microbubbles before and following pASCs treatment. Four weeks after the occlusion of the left circumflex artery, we transplanted placebo or pASCs (1, 2 and 4x106 cells/Kg BW) into the myocardium. The highest dose of pASCs increased myocardial vessel number and blood flow in the border (56% and 3.7-fold, respectively) and in the remote area (54% and 3.9-fold, respectively) while the non-perfused scar area decreased (up to 38%). We also found an increase of immature collagen fibers, although the increase in total tissue collagen and types I and III was similar in all groups. Our results provide evidence that pASCs-induced stimulation of tissue perfusion and accumulation of immature collagen fibers attenuates adverse remodeling post-MI beyond the normal beneficial effects associated with ACE inhibition and beta-blockade.
Collapse
Affiliation(s)
- Rafael Dariolli
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus V. Naghetini
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Euclydes F. Marques
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Celso K. Takimura
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Leonardo S. Jensen
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Bianca Kiers
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Jeane M. Tsutsui
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Mathias
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Pedro A. Lemos Neto
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Jose E. Krieger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Ma H, Wang L, Liu J, Qian L. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction. Methods Mol Biol 2017; 1521:69-88. [PMID: 27910042 DOI: 10.1007/978-1-4939-6588-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds great promise as a novel therapy for the treatment of heart failure, a common and morbid disease that is usually caused by irreversible loss of functional cardiomyocytes (CMs). Recently, we and others showed that in a murine model of acute myocardial infarction, delivery of three transcription factors, Gata4, Mef2c, and Tbx5 converted endogenous cardiac fibroblasts into functional iCMs. These iCMs integrated electrically and mechanically with surrounding myocardium, resulting in a reduction in scar size and an improvement in heart function. Our findings suggest that iCM reprogramming may be a means of regenerating functional CMs in vivo for patients with heart disease. However, because relatively little is known about the factors that regulate iCM reprogramming, the applicability of iCM reprogramming is currently limited to the experimental settings in which it has been attempted. Specific hurdles include the relatively low conversion rate of iCMs and the need for reprogramming to occur in the context of acute injury. Therefore, before this treatment can become a viable therapy for human heart disease, the optimal condition for efficient iCM generation must be determined. Here, we provide a detailed protocol for both in vitro and in vivo iCM generation that has been optimized so far in our lab. We hope that this protocol will lay a foundation for future further improvement of iCM generation and provide a platform for mechanistic studies.
Collapse
Affiliation(s)
- Hong Ma
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, 3340B Medical Bioresearch Building, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, 3340B Medical Bioresearch Building, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, 3340B Medical Bioresearch Building, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, 3340B Medical Bioresearch Building, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Xue C, Ren H, Zhu H, Gu X, Guo Q, Zhou Y, Huang J, Wang S, Zha G, Gu J, Yang Y, Gu Y, Gu X. Bone marrow mesenchymal stem cell-derived acellular matrix-coated chitosan/silk scaffolds for neural tissue regeneration. J Mater Chem B 2017; 5:1246-1257. [DOI: 10.1039/c6tb02959k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel tissue engineered nerve graft (TENG) was used for the first time to bridge a 60 mm long nerve gap in a dog sciatic nerve and achieved satisfactory results.
Collapse
|
23
|
Zhu K, Liu D, Lai H, Li J, Wang C. Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J Thorac Dis 2016; 8:E918-E927. [PMID: 27747027 DOI: 10.21037/jtd.2016.08.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) families have been found to be powerful regulators in a wide variety of diseases, which enables the possible use of miRNAs in therapeutic strategies for cardiac repair after ischemic heart disease. This review provides some general insights into miRNAs modulation for development of current molecular and cellular therapeutics in cardiac repair, including endogenous regeneration, endogenous repair, stem cells transplantation, and reprogramming. We also review the delivery strategies for miRNAs modulation, and briefly summarize the current bench and clinical efforts that are being made to explore miRNAs as the future therapeutic target.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Dingqian Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| |
Collapse
|
24
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
25
|
Gelmi A, Cieslar‐Pobuda A, de Muinck E, Los M, Rafat M, Jager EWH. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1471-80. [PMID: 27126086 DOI: 10.1002/adhm.201600307] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 12/25/2022]
Abstract
The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.
Collapse
Affiliation(s)
- Amy Gelmi
- Department of Physics, Chemistry and Biology Linköping University 581 83 Linköping Sweden
| | - Artur Cieslar‐Pobuda
- Department of Clinical and Experimental Medicine Division of Cell Biology Linköping University Hospital 581 85 Linköping Sweden
| | - Ebo de Muinck
- Department of Cardiology Linköping University Hospital 581 85 Linköping Sweden
- Faculty of Medicine and Health Sciences Division of Cardiovascular Medicine 581 85 Linköping Sweden
| | - Marek Los
- Department of Clinical and Experimental Medicine Division of Cell Biology Linköping University Hospital 581 85 Linköping Sweden
| | - Mehrdad Rafat
- Department of Biomedical Engineering Linkoping University 581 85 Linköping Sweden
| | - Edwin W. H. Jager
- Department of Physics, Chemistry and Biology Linköping University 581 83 Linköping Sweden
| |
Collapse
|
26
|
Ma H, Liu J, Qian L. Fat for fostering: Regenerating injured heart using local adipose tissue. EBioMedicine 2016; 7:25-6. [PMID: 27322455 PMCID: PMC4909638 DOI: 10.1016/j.ebiom.2016.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/28/2023] Open
Affiliation(s)
- Hong Ma
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
27
|
Jones AR, Edwards DH, Cummins MJ, Williams AJ, George CH. A Systemized Approach to Investigate Ca(2+) Synchronization in Clusters of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes. Front Cell Dev Biol 2016; 3:89. [PMID: 26793710 DOI: 10.3389/fcell.2015.00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/20/2015] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM) are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB) vs. "on plate" culture on spontaneous activity and regional Ca(2+) synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca(2+) spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca(2+) synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (>2 weeks). The maintenance of all spontaneously active IPS-CM clusters under "on plate" culture conditions promoted the progressive reduction in regional Ca(2+) synchronization and the loss of spontaneous Ca(2+) spiking. Raising the extracellular [Ca(2+)] surrounding these quiescent IPS-CM clusters from ~0.4 to 1.8 mM unmasked discrete behaviors typified by either (a) long-lasting Ca(2+) elevation that returned to baseline or (b) persistent, large-amplitude Ca(2+) oscillations around an increased cytoplasmic [Ca(2+)]. The different responses of IPS-CM to elevated extracellular [Ca(2+)] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation.
Collapse
Affiliation(s)
- Aled R Jones
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - David H Edwards
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - Michael J Cummins
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - Alan J Williams
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - Christopher H George
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| |
Collapse
|
28
|
Puckert C, Gelmi A, Ljunggren MK, Rafat M, Jager EWH. Optimisation of conductive polymer biomaterials for cardiac progenitor cells. RSC Adv 2016. [DOI: 10.1039/c6ra11682e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characterisation of biomaterials for cardiac tissue engineering applications is vital for the development of effective treatments for the repair of cardiac function.
Collapse
Affiliation(s)
- C. Puckert
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| | - A. Gelmi
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| | - M. K. Ljunggren
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85
- Sweden
| | - M. Rafat
- Department of Biomedical Engineering
- Linköping University
- Linköping 581 85
- Sweden
| | - E. W. H. Jager
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| |
Collapse
|
29
|
Hinkel R, Ball HL, DiMaio JM, Shrivastava S, Thatcher JE, Singh AN, Sun X, Faskerti G, Olson EN, Kupatt C, Bock-Marquette I. C-terminal variable AGES domain of Thymosin β4: the molecule's primary contribution in support of post-ischemic cardiac function and repair. J Mol Cell Cardiol 2015; 87:113-25. [PMID: 26255251 DOI: 10.1016/j.yjmcc.2015.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/12/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Abstract
Repairing defective cardiac cells is important towards improving heart function. Due to the frequency and severity of ischemic heart disease, management of patients featuring this type of cardiac failure receives significant interest. Previously we discovered that Thymosin β4 (TB4), a 43 amino-acid secreted actin sequestering peptide, is beneficial for myocardial cell survival and coronary re-growth after infarction in adult mammals. Considering the regenerative potential of full-length TB4 in the heart, and that minimal structural variations alter TB4's influence on actin assembly and cell movement, we investigated how various TB4 domains affect cardiac cell behavior and post-ischemic mammalian heart function. We synthesized 17 domain combinations of full-length TB4 and analyzed their impact on embryonic cardiac cells in vitro, and after cardiac infarction in vivo. We discovered the domains of TB4 affect cardiac cell behavior distinctly. We revealed TB4 specific C-terminal tetrapeptide, AGES, increases embryonic cardiac cell migration and myocyte beating in culture, and improves adult mammalian heart function following ischemia. Investigating the molecular background and mechanism we discovered systemic injection of AGES enhances early myocyte survival by activating Akt-mediated signaling mechanisms, increases coronary vessel growth and inhibits inflammation in mice and pigs. Biodistribution analyses revealed cardiomyocytes uptake AGES efficiently in vitro and in vivo projecting a potential independent clinical utilization for the tetrapeptide. Our comprehensive domain investigations also suggest, preservation and/or restoration of cardiomyocyte communication is a target of TB4 and AGES, and critical to improve post-ischemic heart function in pigs. In summary, we identified the C-terminal four amino-acid variable end of TB4 as the essential and responsible domain for the molecule's full benefits in the hypoxic heart. Additionally, we introduced AGES as a novel, systemically applicable drug candidate to aid cardiac infarction in adult mammals.
Collapse
Affiliation(s)
- Rabea Hinkel
- Internal Medicine I, University Clinic Grosshadern, Munich 81377, Germany
| | - Haydn L Ball
- Protein Chemistry Technology Center University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - J Michael DiMaio
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Santwana Shrivastava
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey E Thatcher
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ajay N Singh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabor Faskerti
- University of Pecs, Faculty of Medicine, Szentagothai Research Centre, Pecs 7624, Hungary
| | - Eric N Olson
- Department of Molecular Biology University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christian Kupatt
- Internal Medicine I, University Clinic Grosshadern, Munich 81377, Germany
| | - Ildiko Bock-Marquette
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; University of Pecs, Faculty of Medicine, Szentagothai Research Centre, Pecs 7624, Hungary.
| |
Collapse
|
30
|
Vu TD, Pal SN, Ti LK, Martinez EC, Rufaihah AJ, Ling LH, Lee CN, Richards AM, Kofidis T. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: a translational approach: Vu and Pal "Myocardial Repair: PRP, Hydrogel and Supplements". Biomaterials 2015; 45:27-35. [PMID: 25662492 DOI: 10.1016/j.biomaterials.2014.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
AIMS Cell-based myocardial restoration has not penetrated broad clinical practice yet due to poor cell retention and survival rates. In this study, we attempt a translational, large-scale restorative but minimally invasive approach in the pig, aiming at both structurally stabilizing the left ventricular (LV) wall and enhancing function following ischemic injury. METHODS AND RESULTS A myocardial infarction (MI) was created by permanent ligation of left circumflex coronary artery through a small lateral thoracotomy. Thirty-six Yorkshire pigs were randomized to receive transthoracic intramyocardial injection into both infarct and border zone areas with different compounds: 1) Hyaluronic acid-based hydrogel; 2) autologous platelet-rich plasma (PRP); 3) ascorbic acid-enriched hydrogel (50 mg/L), combined with IV ibuprofen (25 mg/kg) and allopurinol (25 mg/kg) (cocktail group); 4) PRP and cocktail (full-compound); or 5) saline (control). The latter two groups received daily oral ibuprofen (25 mg/kg) for 7 days and allopurinol (25 mg/kg) for 30 days, postoperatively. Hemodynamic and echocardiographic studies were carried out at baseline, immediately after infarction and at end-point. Eight weeks after MI, the full-compound group had better LV fractional area change, ejection fraction and smaller LV dimensions than the control group. Also, dp/dtmax was significantly higher in the full-compound group when the heart rate increased from 100 bpm to 160bpm in stress tests. Blood vessel density was higher in the full-compound group, compared to the other treatment groups. CONCLUSIONS A combination of PRP, anti-oxidant and anti-inflammatory factors with intramyocardial injection of hydrogel has the potential to structurally and functionally improve the injured heart muscle while attenuating adverse cardiac remodeling after acute myocardial infarction.
Collapse
Affiliation(s)
- Thang Duc Vu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shripad N Pal
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lian-Kah Ti
- Department of Anesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eliana C Martinez
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Abdul Jalil Rufaihah
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lieng H Ling
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen-Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Health System, Singapore
| | - Arthur Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Health System, Singapore.
| |
Collapse
|
31
|
SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2014; 4:129-142. [PMID: 25533636 PMCID: PMC4297875 DOI: 10.1016/j.stemcr.2014.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023] Open
Abstract
When pluripotency factors are removed, embryonic stem cells (ESCs) undergo spontaneous differentiation, which, among other lineages, also gives rise to cardiac sublineages, including chamber cardiomyocytes and pacemaker cells. Such heterogeneity complicates the use of ESC-derived heart cells in therapeutic and diagnostic applications. We sought to direct ESCs to differentiate specifically into cardiac pacemaker cells by overexpressing a transcription factor critical for embryonic patterning of the native cardiac pacemaker (the sinoatrial node). Overexpression of SHOX2 during ESC differentiation upregulated the pacemaker gene program, resulting in enhanced automaticity in vitro and induced biological pacing upon transplantation in vivo. The accentuated automaticity is accompanied by temporally evolving changes in the effectors and regulators of Wnt signaling. Our findings provide a strategy for enriching the cardiac pacemaker cell population from ESCs. SHOX2 accentuates the molecular profile of pacemaker cells in differentiating ESCs SHOX2 increases the frequency and rate of spontaneously active cardiac derivatives SHOX2-overexpressing EBs function as biopacemakers when transplanted in vivo Wnt signaling underlies SHOX2-mediated pacemaker cell specification
Collapse
|
32
|
Oron U, Tuby H, Maltz L, Sagi-Assif O, Abu-Hamed R, Yaakobi T, Doenyas-Barak K, Efrati S. Autologous bone-marrow stem cells stimulation reverses post-ischemic-reperfusion kidney injury in rats. Am J Nephrol 2014; 40:425-33. [PMID: 25413586 DOI: 10.1159/000368721] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of the present study was to investigate the possible beneficial effects of LLLT application to stem cells in the bone marrow (BM), on the kidneys of rats that had undergone acute ischemia-reperfusion injury (IRI). METHODS Injury to the kidneys was induced by the excision of the left kidney and 60 min of IRI to the right kidney in each rat. Rats were then divided randomly into 2 groups: non-laser-treated and laser-treated. LLLT was applied to the BM 10 min and 24 h post-IRI and rats were sacrificed 4 days post-IRI. Blood was collected before the sacrifice and the kidney processed for histology. RESULTS Histological evaluation of kidney sections revealed the restored structural integrity of the renal tubules, and a significant reduction of 66% of pathological score in the laser-treated rats as compared to the non-laser-treated ones. C-kit positive cell density in kidneys post-IRI and laser-treatment was (p = 0.05) 2.4-fold higher compared to that of the non-laser treated group. Creatinine, blood urea nitrogen, and cystatin-C levels were significantly 55, 48, and 25% lower respectively in the laser-treated rats as compared to non-treated ones. CONCLUSION LLLT application to the BM causes induction of stem cells, which subsequently migrate and home in on the injured kidney. Consequently, a significant reduction in pathological features and improved kidney function post-IRI are evident. The results demonstrate a novel approach in cell-based therapy for acute ischemic injured kidneys.
Collapse
Affiliation(s)
- Uri Oron
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
de Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Tarso Camillo de Carvalho P, Antunes DE, Bocalini DS, Ferreira Tucci PJ, Silva JA. Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci 2014; 30:217-23. [PMID: 25192841 DOI: 10.1007/s10103-014-1646-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 08/28/2014] [Indexed: 01/02/2023]
Abstract
Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.
Collapse
|
34
|
Zogbi C, Saturi de Carvalho AET, Nakamuta JS, Caceres VDM, Prando S, Giorgi MCP, Rochitte CE, Meneghetti JC, Krieger JE. Early postnatal rat ventricle resection leads to long-term preserved cardiac function despite tissue hypoperfusion. Physiol Rep 2014; 2:2/8/e12115. [PMID: 25168870 PMCID: PMC4246584 DOI: 10.14814/phy2.12115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One‐day‐old mice display a brief capacity for heart regeneration after apex resection. We sought to examine this response in a different model and to determine the impact of this early process on long‐term tissue perfusion and overall cardiac function in response to stress. Apical resection of postnatal rats at day 1 (P1) and 7 (P7) rendered 18 ± 1.0% and 16 ± 1.3% loss of cardiac area estimated by magnetic resonance imaging (MRI), respectively (P > 0.05). P1 was associated with evidence of cardiac neoformation as indicated by Troponin I and Connexin 43 expression at 21 days postresection, while in the P7 group mainly scar tissue replacement ensued. Interestingly, there was an apparent lack of uniform alignment of newly formed cells in P1, and we detected cardiac tissue hypoperfusion for both groups at 21 and 60 days postresection using SPECT scanning. Direct basal cardiac function at 60 days, when the early lesion is undetectable, was preserved in all groups, whereas under hemodynamic stress the degree of change on LVDEP, Stroke Volume and Stroke Work indicated diminished overall cardiac function in P7 (P < 0.05). Furthermore, the End‐Diastolic Pressure–Volume relationship and increased interstitial collagen deposition in P7 is consistent with increased chamber stiffness. Taken together, we provide evidence that early cardiac repair response to apex resection in rats also leads to cardiomyocyte neoformation and is associated to long‐term preservation of cardiac function despite tissue hypoperfusion. We provide evidence that 1‐day‐old rats display early repair capacity after apex resection and this response is lost in 1‐week‐old animals similarly described for mice. The repair response is associated with long‐term preservation of overall cardiac function, despite the fact that repair is incomplete and there is tissue hypoperfusion at 21 and 60 day post injury.
Collapse
Affiliation(s)
- Camila Zogbi
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Juliana S Nakamuta
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Viviane de M Caceres
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Silvana Prando
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Maria C P Giorgi
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Carlos E Rochitte
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jose C Meneghetti
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jose E Krieger
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
35
|
Dariolli R, Takimura CK, Campos CA, Lemos PA, Krieger JE. Development of a closed-artery catheter-based myocardial infarction in pigs using sponge and lidocaine hydrochloride infusion to prevent irreversible ventricular fibrillation. Physiol Rep 2014; 2:2/8/e12121. [PMID: 25168871 PMCID: PMC4246577 DOI: 10.14814/phy2.12121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The objectives of this study were to develop a robust, homogeneous, viable and inexpensive model of closed‐artery catheter‐based model of myocardial infarction (MI) in pigs without major cardiac dysfunction. Suitable animal models that mimic human cardiovascular conditions are of paramount importance to understand the effects of novel therapeutic strategies to improve tissue perfusion and prevent cardiac deterioration post‐MI. Pigs (N = 21, BW = 17 ± 1 kg) receiving continuous iv lidocaine hydrochloride were subjected to percutaneous intracoronary implant of foam sponge into the proximal left circumflex coronary artery. Intraprocedure mortality was 23.8%. ST segment elevation and increased serum Troponin T and CK‐MB were documented in all animals. Thirty days after occlusion, echocardiography (95% IC [9.3–12.4%]) and anatomopathological (95% CI [9.3–12.6%]) analyses confirmed a significant and reproducible MI. Taken together, we provide evidence for a suitable closed‐artery catheter‐based method to produce MI in pigs accompanied by tissue hypoperfusion and absence of overt heart failure. We provide evidence that an inexpensive and easily available material can be used to produce a robust and homogenous percutaneous closed‐artery model of MI in pigs, when associated with lidocaine hydrochloride use. Thirty days after occlusion, anatomopathological (95% IC [9.3–12.6%]) analyses confirmed a significant and reproducible MI accompanied by hypoperfusion and absence of overt heart failure.
Collapse
Affiliation(s)
- Rafael Dariolli
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Celso K Takimura
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos A Campos
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Pedro A Lemos
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - José E Krieger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
36
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Girão-Silva T, Bassaneze V, Campos LCG, Barauna VG, Dallan LAO, Krieger JE, Miyakawa AA. Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. Biomed Eng Online 2014; 13:54. [PMID: 24885410 PMCID: PMC4012171 DOI: 10.1186/1475-925x-13-54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background We and others have previously demonstrated that adipose-derived stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to be associated with pleiotropic factors due to a complex interplay between the transplanted ASCs and the microenvironment in the absence of cell transdifferentiation. In the present work, we tested the hypothesis that mechanical stretch per se could change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence post-MI outcomes. Methods Human ASCs were obtained from patients undergoing liposuction procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell 4000 system. Protein and gene expression were evaluated to identify cardiovascular cell markers. Culture medium was analyzed to determine cell releasing factors, and contraction potential was also evaluated. Results Mechanical stretch, which is associated with extracellular signal-regulated kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction ability. In addition, these cells demonstrated a profound ability to secrete an array of cytokines. These two properties of human ASCs were not influenced by mechanical stretch. Conclusions Altogether, our findings demonstrate that hASCs secrete an array of cytokines and display contraction ability even in the absence of induction of cardiovascular cell markers or the loss of mesenchymal surface markers when exposed to mechanical stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes and deserve to be further explored under the controlled influence of other microenvironment components associated with myocardial infarction, such as tissue hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) - University of São Paulo School of Medicine, Avenue Dr, Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil.
| | | |
Collapse
|
38
|
Sabin K, Kikyo N. Microvesicles as mediators of tissue regeneration. Transl Res 2014; 163:286-95. [PMID: 24231336 PMCID: PMC3976717 DOI: 10.1016/j.trsl.2013.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The use of stem cells in the treatment of various diseases and injuries has received increasing interest during the past decade. Injected stem cells, such as mesenchymal stem cells, stimulate tissue repair largely through the secretion of soluble factors that regulate various processes of tissue regeneration, including inflammatory responses, apoptosis, host cell proliferation, and angiogenesis. Recently, it has become apparent that stem cells also use membranous small vesicles, collectively called microvesicles, to repair damaged tissues. Microvesicles are released by many types of cells and exist in almost all types of body fluids. They serve as a vehicle to transfer protein, messenger RNA, and micro RNA to distant cells, altering the gene expression, proliferation, and differentiation of the recipient cells. Although animal models and in vitro studies have suggested promising applications for microvesicles-based regeneration therapy, its effectiveness and feasibility in clinical medicine remain to be established. Further studies of the basic mechanisms responsible for microvesicle-mediated tissue regeneration could lead to novel approaches in regenerative medicine.
Collapse
Affiliation(s)
- Keith Sabin
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minn
| | - Nobuaki Kikyo
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
39
|
Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 2014; 306:C621-33. [DOI: 10.1152/ajpcell.00228.2013] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microvesicles represent a newly identified mechanism of intercellular communication. Two different types of microvesicles have been identified: membrane-derived vesicles (EVs) and exosomes. EVs originate by direct budding from the plasma membrane, while exosomes arise from ectocytosis of multivesicular bodies. Recent attention has focused on the capacity of EVs to alter the phenotype of neighboring cells to make them resemble EV-producing cells. Stem cells are an abundant source of EVs, and the interaction between stem cells and the microenvironment (i.e., stem cell niche) plays a critical role in determining stem cell phenotype. The stem cell niche hypothesis predicts that stem cell number is limited by the availability of niches releasing the necessary signals for self-renewal and survival, and the niche thus provides a mechanism for controlling and limiting stem cell numbers. EVs may play a fundamental role in this context by transferring genetic information between cells. EVs can transfer mRNA and microRNA to target cells, both of which may be involved in the change in target-cell phenotype towards that of EV-producing cells. The exchange of genetic information may be bidirectional, and EV-mediated transfer of genetic information after tissue damage may reprogram stem cells to acquire the phenotypic features of the injured tissue cells. In addition, stem cell-derived EVs may induce the de-differentiation of cells that survive injury by promoting their reentry into the cell cycle and subsequently increasing the possibility of tissue regeneration.
Collapse
Affiliation(s)
- Giuseppina Turturici
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Rosaria Tinnirello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Gabriella Sconzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Fabiana Geraci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 2014; 35:3986-98. [PMID: 24508080 DOI: 10.1016/j.biomaterials.2014.01.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/08/2014] [Indexed: 02/03/2023]
Abstract
The ability to restore heart function by replacement of diseased myocardium is one of the great challenges in biomaterials and regenerative medicine. Brown adipose derived stem cells (BADSCs) present a new source of cardiomyocytes to regenerate the myocardium after infarction. In this study, we explored an injectable tissue engineering strategy to repair damaged myocardium, in which chitosan hydrogels were investigated as a carrier for BADSCs. In vitro, the effect and mechanism of chitosan components on the cardiac differentiation of BADSCs were investigated. In vivo, BADSCs carrying double-fusion reporter gene (firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)) were transplanted into infarcted rat hearts with or without chitosan hydrogel. Multi-techniques were used to assess the effects of treatments. We observed that chitosan components significantly enhanced cardiac differentiation of BADSCs, which was assessed by percentages of cTnT(+) cells and expression of cardiac-specific markers, including GATA-4, Nkx2.5, Myl7, Myh6, cTnI, and Cacna1a. Treatment with collagen synthesis inhibitors, cis-4-hydroxy-D-proline (CIS), significantly inhibited the chitosan-enhanced cardiac differentiation, indicating that the enhanced collagen synthesis by chitosan accounts for its promotive role in cardiac differentiation of BADSCs. Longitudinal in vivo bioluminescence imaging and histological staining revealed that chitosan enhanced the survival of engrafted BADSCs and significantly increased the differentiation rate of BADSCs into cardiomyocytes in vivo. Furthermore, BADSCs delivered by chitosan hydrogel prevented adverse matrix remodeling, increased angiogenesis, and preserved heart function. These results suggested that the injectable cardiac tissue engineering based on chitosan hydrogel and BADSCs is a useful strategy for myocardium regeneration.
Collapse
|
41
|
Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Gu X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014; 35:2253-63. [DOI: 10.1016/j.biomaterials.2013.11.087] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/28/2013] [Indexed: 12/25/2022]
|
42
|
|
43
|
Abstract
Heart disease affects millions worldwide and is a progressive condition involving loss of cardiomyocytes. The human heart has limited endogenous regenerative capacity and is thus an important target for novel regenerative medicine approaches. Although cell-based regenerative therapies hold promise, cellular reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the mammalian heart, may be an attractive alternative strategy for regenerating cardiac muscle. Recent advances leveraging years of developmental biology point to the feasibility of generating de novo cardiomyocyte-like cells from terminally differentiated nonmyocytes in the heart in situ after ischemic damage. Here, we review the progress in cardiac reprogramming methods and consider the opportunities and challenges that lie ahead in refining this technology for regenerative medicine.
Collapse
Affiliation(s)
- Li Qian
- From the McAllister Heart Institute, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill
| | | |
Collapse
|
44
|
|
45
|
Burdick JA, Mauck RL, Gorman JH, Gorman RC. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 2013; 5:176ps4. [PMID: 23486777 DOI: 10.1126/scitranslmed.3003997] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acellular biomaterials can stimulate the local environment to repair tissues without the regulatory and scientific challenges of cell-based therapies. A greater understanding of the mechanisms of such endogenous tissue repair is furthering the design and application of these biomaterials. We discuss recent progress in acellular materials for tissue repair, using cartilage and cardiac tissues as examples of applications with substantial intrinsic hurdles, but where human translation is now occurring.
Collapse
Affiliation(s)
- Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
46
|
Wang Z, Wu HJ, Fine D, Schmulen J, Hu Y, Godin B, Zhang JXJ, Liu X. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. LAB ON A CHIP 2013; 13:2879-82. [PMID: 23743667 PMCID: PMC3740541 DOI: 10.1039/c3lc41343h] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We fabricated a microfluidic device consisting of ciliated micropillars, forming a porous silicon nanowire-on-micropillar structure. We demonstrated that the prototype device can preferentially trap exosome-like lipid vesicles, while simultaneously filtering out proteins and cell debris. Trapped lipid vesicles can be recovered intact by dissolving the porous nanowires in PBS buffer.
Collapse
Affiliation(s)
- Zongxing Wang
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Hung-jen Wu
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Daniel Fine
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Jeffrey Schmulen
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Ye Hu
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Biana Godin
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - John X. J. Zhang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Xuewu Liu
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| |
Collapse
|
47
|
Seeger FH, Zeiher AM, Dimmeler S. MicroRNAs in Stem Cell Function and Regenerative Therapy of the Heart. Arterioscler Thromb Vasc Biol 2013; 33:1739-46. [DOI: 10.1161/atvbaha.113.300138] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs are small noncoding RNAs that posttranscriptionally control gene expression by targeting mRNAs. Distinct microRNAs regulate stem and progenitor cell functions, thereby modulating cell survival and homing or controlling differentiation and maturation. Experimental studies additionally show that microRNAs regulate endogenous repair and might potentially be useful to enhance the regeneration of the heart. This review summarizes the current studies that address the use of microRNAs to either improve cellular therapies or that might be targeted for enhancing endogenous tissue repair and regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Florian H. Seeger
- From the Department of Cardiology, Internal Medicine III (F.H.S., A.M.Z.) and Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (S.D.), Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas M. Zeiher
- From the Department of Cardiology, Internal Medicine III (F.H.S., A.M.Z.) and Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (S.D.), Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Department of Cardiology, Internal Medicine III (F.H.S., A.M.Z.) and Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (S.D.), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
48
|
Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:516-28. [PMID: 23651329 DOI: 10.1089/ten.teb.2012.0672] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and have been widely used in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes, and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production, and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functionalities. Biomaterials have been modified in their properties and surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | | | | | | |
Collapse
|
49
|
Dariolli R, Bassaneze V, Nakamuta JS, Omae SV, Campos LCG, Krieger JE. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation. PLoS One 2013; 8:e67939. [PMID: 23874472 PMCID: PMC3706624 DOI: 10.1371/journal.pone.0067939] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/23/2013] [Indexed: 01/06/2023] Open
Abstract
We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs) can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs) with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90-95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29(+); CD90(+); CD44(+); CD140b(+); CD105(+); and negative markers CD31(-); CD34(-); CD45(-) and SLA-DR(-); n = 3). Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells) and cumulative population doubling increased constantly until Passage 10 (P10) in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining). Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.
Collapse
Affiliation(s)
- Rafael Dariolli
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Vinicius Bassaneze
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | | | - Samantha Vieira Omae
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | | | - Jose E. Krieger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
50
|
|