1
|
Jin Q, Greenstein JL, Winslow RL. Estimating the probability of early afterdepolarizations and predicting arrhythmic risk associated with long QT syndrome type 1 mutations. Biophys J 2023; 122:4042-4056. [PMID: 37705243 PMCID: PMC10598291 DOI: 10.1016/j.bpj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Early afterdepolarizations (EADs) are action potential (AP) repolarization abnormalities that can trigger lethal arrhythmias. Simulations using biophysically detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias; however, such analyses can pose a huge computational burden. We have previously developed a highly simplified approach in which logistic regression models (LRMs) map parameters of complex cell models to the probability of ectopic beats. Here, we extend this approach to predict the probability of EADs (P(EAD)) as a mechanistic metric of arrhythmic risk. We use the LRM to investigate how changes in parameters of the slow-activating delayed rectifier current (IKs) affect P(EAD) for 17 different long QT syndrome type 1 (LQTS1) mutations. In this LQTS1 clinical arrhythmic risk prediction task, we compared P(EAD) for these 17 mutations with two other recently published model-based arrhythmia risk metrics (AP morphology metric across populations of myocyte models and transmural repolarization prolongation based on a one-dimensional [1D] tissue-level model). These model-based risk metrics yield similar prediction performance; however, each fails to stratify clinical risk for a significant number of the 17 studied LQTS1 mutations. Nevertheless, an interpretable ensemble model using multivariate linear regression built by combining all of these model-based risk metrics successfully predicts the clinical risk of 17 mutations. These results illustrate the potential of computational approaches in arrhythmia risk prediction.
Collapse
Affiliation(s)
- Qingchu Jin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Joseph L Greenstein
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Raimond L Winslow
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
2
|
Membrane pools of phosphatidylinositol-4-phosphate regulate KCNQ1/KCNE1 membrane expression. Commun Biol 2021; 4:1392. [PMID: 34907346 PMCID: PMC8671492 DOI: 10.1038/s42003-021-02909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Plasma membrane phosphatidylinositol 4-phosphate (PI4P) is a precursor of PI(4,5)P2, an important regulator of a large number of ion channels. Although the role of the phospholipid PI(4,5)P2 in stabilizing ion channel function is well established, little is known about the role of phospholipids in channel membrane localization and specifically the role of PI4P in channel function and localization. The phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P. Our data show that inhibition of PI4K and prolonged decrease of levels of plasma membrane PI4P lead to a decrease in the KCNQ1/KCNE1 channel membrane localization and function. In addition, we show that mutations linked to Long QT syndrome that affect channel interactions with phospholipids lead to a decrease in membrane expression. We show that expression of a LQT1-associated C-terminal deletion mutant abolishes PI4Kinase-mediated decrease in membrane expression and rescues membrane expression for phospholipid-targeting mutations. Our results indicate a novel role for PI4P on ion channel regulation. Our data suggest that decreased membrane PI4P availability to the channel, either due to inhibition of PI4K or as consequence of mutations, dramatically inhibits KCNQ1/KCNE1 channel membrane localization and current. Our results may have implications to regulation of other PI4P binding channels.
Collapse
|
3
|
Simons E, Labro A, Saenen J, Nijak A, Sieliwonczyk E, Vandendriessche B, Dąbrowska M, Van Craenenbroeck EM, Schepers D, Van Laer L, Loeys BL, Alaerts M. Molecular autopsy and subsequent functional analysis reveal de novo DSG2 mutation as cause of sudden death. Eur J Med Genet 2021; 64:104322. [PMID: 34438094 DOI: 10.1016/j.ejmg.2021.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
Sudden cardiac death (SCD) is a common cause of death in young adults. In up to 80% of cases a genetic cause is suspected. Next-generation sequencing of candidate genes can reveal the cause of SCD, provide prognostic management, and facilitate pre-symptomatic testing and prevention in relatives. Here we present a proband who experienced SCD in his sleep for which molecular autopsy was performed. We performed a post-mortem genetic analysis of a 49-year-old male who died during sleep after competitive kayaking, using a Cardiomyopathy and Primary Arrhythmia next-generation sequencing panel, each containing 51 candidate genes. Autopsy was not performed. Genetic testing of the proband resulted in missense variants in KCNQ1 (c.1449C > A; p.(Asn483Lys)) and DSG2 (c.2979G > T; p.(Gln993His)), both absent from the gnomAD database. Familial segregation analysis showed de novo occurrence of the DSG2 variant and presence of the KCNQ1 variant in the proband's mother and daughter. KCNQ1 p.(Asn483Lys) was predicted to be pathogenic by MutationTaster. However, none of the KCNQ1 variant carrying family members showed long QTc on ECG or Holter. We further functionally analysed this variant using patch-clamp in a heterologous expression system (Chinese Hamster Ovary (CHO) cells) expressing the KCNQ1 mutant in combination with KCNE1 wild type protein and showed no significant changes in electrophysiological function of Kv7.1. Based on the above evidence, we concluded that the DSG2 p.(Gln993His) variant is the most likely cause of SCD in the presented case, and that there is insufficient evidence that the identified KCNQ1 p.(Asn483Lys) variant would confer risk for SCD in his mother and daughter. Fortunately, the DSG2 variant was not inherited by the proband's two children. This case report indicates the added value of molecular autopsy and the importance of subsequent functional study of variants to inform patients and family members about the risk of variants they might carry.
Collapse
Affiliation(s)
- Eline Simons
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Alain Labro
- Laboratory for Molecular, Cellular and Network Excitability, University of Antwerp, Antwerp, Belgium; Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Johan Saenen
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Aleksandra Nijak
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ewa Sieliwonczyk
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bert Vandendriessche
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Małgorzata Dąbrowska
- Laboratory for Molecular, Cellular and Network Excitability, University of Antwerp, Antwerp, Belgium
| | | | - Dorien Schepers
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Cardiogenetics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
4
|
Rowe MK, Roberts JD. The evolution of gene-guided management of inherited arrhythmia syndromes: Peering beyond monogenic paradigms towards comprehensive genomic risk scores. J Cardiovasc Electrophysiol 2020; 31:2998-3008. [PMID: 32107815 DOI: 10.1111/jce.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Inherited arrhythmia syndromes have traditionally been viewed as monogenic forms of disease whose pathophysiology is driven by a single highly penetrant rare genetic variant. Although an accurate depiction of a proportion of genetic variants, the variable penetrance frequently noted in genotype positive families and the presence of sporadic genotype negative cases have long highlighted a more nuanced truth being operative. Coupled with our more recent recognition that many rare variants implicated in inherited arrhythmia syndromes possess unexpectedly high allele frequencies within the general population, these observations have contributed to the realization that a spectrum of pathogenicity exists among clinically relevant genetic variants. Notably, variable mutation pathogenicity and corresponding variable degrees of penetrance emphasize a limitation of contemporary guidelines, which attempt to dichotomize genetic variants as pathogenic or benign. Recognition of the existence of low and intermediate penetrant variants insufficient to be causative for disease in isolation has served to emphasize the importance of additional genetic, clinical, and environmental factors in the pathogenesis of rare inherited arrhythmia syndromes. Despite being rare, it has also become increasingly evident that common genetic variants play critical roles in both heritable channelopathies and cardiomyopathies and in aggregate may even be the primary drivers in certain instances, such as genotype negative Brugada syndrome. Our growing realization that the genetic substrates of inherited arrhythmia syndromes have intricacies that extend beyond traditionally perceived monogenic paradigms has highlighted a potential value of leveraging more comprehensive genomic risk scores for predicting disease development and arrhythmic risk.
Collapse
Affiliation(s)
- Matthew K Rowe
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Two-stage electro-mechanical coupling of a K V channel in voltage-dependent activation. Nat Commun 2020; 11:676. [PMID: 32015334 PMCID: PMC6997178 DOI: 10.1038/s41467-020-14406-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
In voltage-gated potassium (KV) channels, the voltage-sensing domain (VSD) undergoes sequential activation from the resting state to the intermediate state and activated state to trigger pore opening via electro-mechanical (E-M) coupling. However, the spatial and temporal details underlying E-M coupling remain elusive. Here, utilizing KV7.1's unique two open states, we report a two-stage E-M coupling mechanism in voltage-dependent gating of KV7.1 as triggered by VSD activations to the intermediate and then activated state. When the S4 segment transitions to the intermediate state, the hand-like C-terminus of the VSD-pore linker (S4-S5L) interacts with the pore in the same subunit. When S4 then proceeds to the fully-activated state, the elbow-like hinge between S4 and S4-S5L engages with the pore of the neighboring subunit to activate conductance. This two-stage hand-and-elbow gating mechanism elucidates distinct tissue-specific modulations, pharmacology, and disease pathogenesis of KV7.1, and likely applies to numerous domain-swapped KV channels.
Collapse
|
6
|
Hammami Bomholtz S, Refaat M, Buur Steffensen A, David J, Espinosa K, Nussbaum R, Wojciak J, Hjorth Bentzen B, Scheinman M, Schmitt N. Functional phenotype variations of two novel K
V
7.1 mutations identified in patients with Long QT syndrome. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2020; 43:210-216. [DOI: 10.1111/pace.13870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sofia Hammami Bomholtz
- Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Marwan Refaat
- Department of Internal Medicine, Division of CardiologyAmerican University of Beirut Medical Center Beirut Lebanon
- Department of Biochemistry and Molecular GeneticsAmerican University of Beirut Beirut Lebanon
| | - Annette Buur Steffensen
- Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Jens‐Peter David
- Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Karin Espinosa
- Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Robert Nussbaum
- Department of MedicineUniversity of California, San Francisco San Francisco California
| | - Julianne Wojciak
- Department of MedicineUniversity of California, San Francisco San Francisco California
| | - Bo Hjorth Bentzen
- Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Melvin Scheinman
- Department of MedicineUniversity of California, San Francisco San Francisco California
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical SciencesUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
7
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5475] [Impact Index Per Article: 1095.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Uchida S, Asai Y, Kariya Y, Tsumoto K, Hibino H, Honma M, Abe T, Nin F, Kurata Y, Furutani K, Suzuki H, Kitano H, Inoue R, Kurachi Y. Integrative and theoretical research on the architecture of a biological system and its disorder. J Physiol Sci 2019; 69:433-451. [PMID: 30868372 PMCID: PMC6456489 DOI: 10.1007/s12576-019-00667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
Abstract
An organism stems from assemblies of a variety of cells and proteins. This complex system serves as a unit, and it exhibits highly sophisticated functions in response to exogenous stimuli that change over time. The complete sequencing of the entire human genome has allowed researchers to address the enigmas of life and disease at the gene- or molecular-based level. The consequence of such studies is the rapid accumulation of a multitude of data at multiple levels, ranging from molecules to the whole body, that has necessitated the development of entirely new concepts, tools, and methodologies to analyze and integrate these data. This necessity has given birth to systems biology, an advanced theoretical and practical research framework that has totally changed the directions of not only basic life science but also medicine. During the symposium of the 95th Annual Meeting of The Physiological Society of Japan 2018, five researchers reported on their respective studies on systems biology. The topics included reactions of drugs, ion-transport architecture in an epithelial system, multi-omics in renal disease, cardiac electrophysiological systems, and a software platform for computer simulation. In this review article these authors have summarized recent achievements in the field and discuss next-generation studies on health and disease.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Graduate Schools of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Yoshiyuki Asai
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshiaki Kariya
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kunichika Tsumoto
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, Suita, Japan.,Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan.,Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan. .,AMED-CREST, AMED, Niigata, Japan.
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeshi Abe
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.,AMED-CREST, AMED, Niigata, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California Davis, Davis, 95616, USA
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Shinagawa-ku, Tokyo, 108-0071, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, Suita, Japan. .,Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan.
| |
Collapse
|
9
|
Gray B, Behr ER. New Insights Into the Genetic Basis of Inherited Arrhythmia Syndromes. ACTA ACUST UNITED AC 2018; 9:569-577. [PMID: 27998945 DOI: 10.1161/circgenetics.116.001571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Belinda Gray
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Elijah R Behr
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.).
| |
Collapse
|
10
|
Chen XM, Guo K, Li H, Lu QF, Yang C, Yu Y, Hou JW, Fei YD, Sun J, Wang J, Li YX, Li YG. A novel mutation KCNQ1p.Thr312del is responsible for long QT syndrome type 1. Heart Vessels 2018; 34:177-188. [DOI: 10.1007/s00380-018-1223-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 11/29/2022]
|
11
|
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018; 137:e67-e492. [PMID: 29386200 DOI: 10.1161/cir.0000000000000558] [Citation(s) in RCA: 4566] [Impact Index Per Article: 761.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Hysteretic Dynamics of Multi-Stable Early Afterdepolarisations with Repolarisation Reserve Attenuation: A Potential Dynamical Mechanism for Cardiac Arrhythmias. Sci Rep 2017; 7:10771. [PMID: 28883639 PMCID: PMC5589958 DOI: 10.1038/s41598-017-11355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Some cardiovascular and non-cardiovascular drugs frequently cause excessive prolongation of the cardiac action potential (AP) and lead to the development of early afterdepolarisations (EADs), which trigger lethal ventricular arrhythmias. Combining computer simulations in APs with numerical calculations based on dynamical system theory, we investigated stability changes of APs observed in a paced human ventricular myocyte model by decreasing and/or increasing the rapid (IKr) and slow (IKs) components of delayed rectifying K+ current. Upon reducing IKr, the APs without EADs (no-EAD response) showed gradual prolongation of AP duration (APD), and were annihilated without AP configuration changes due to the occurrence of saddle-node bifurcations. This annihilation caused a transition to an AP with EADs as a new stable steady state. Furthermore, reducing repolarisation currents (repolarisation reserve attenuation) evoked multi-stable states consisting of APs with different APDs, and caused multiple hysteretic dynamics. Depending on initial ion circumstances within ventricular myocytes, these multi-stable AP states might increase the local/global heterogeneity of AP repolarisations in the ventricle. Thus, the EAD-induced arrhythmias with repolarisation reserve attenuation might be attributed to the APD variability caused by multi-stability in cardiac AP dynamics.
Collapse
|
13
|
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017; 135:e146-e603. [PMID: 28122885 PMCID: PMC5408160 DOI: 10.1161/cir.0000000000000485] [Citation(s) in RCA: 6169] [Impact Index Per Article: 881.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Trayanova NA, Chang KC. How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 2016; 594:2483-502. [PMID: 26621489 DOI: 10.1113/jp270532] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023] Open
Abstract
Over the last decade, the state-of-the-art in cardiac computational modelling has progressed rapidly. The electrophysiological function of the heart can now be simulated with a high degree of detail and accuracy, opening the doors for simulation-guided approaches to anti-arrhythmic drug development and patient-specific therapeutic interventions. In this review, we outline the basic methodology for cardiac modelling, which has been developed and validated over decades of research. In addition, we present several recent examples of how computational models of the human heart have been used to address current clinical problems in cardiac electrophysiology. We will explore the use of simulations to improve anti-arrhythmic pacing and defibrillation interventions; to predict optimal sites for clinical ablation procedures; and to aid in the understanding and selection of arrhythmia risk markers. Together, these studies illustrate how the tremendous advances in cardiac modelling are poised to revolutionize medical treatment and prevention of arrhythmia.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kelly C Chang
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
15
|
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2015; 133:e38-360. [PMID: 26673558 DOI: 10.1161/cir.0000000000000350] [Citation(s) in RCA: 3744] [Impact Index Per Article: 416.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Wiśniowska B, Mendyk A, Fijorek K, Polak S. Computer-based prediction of the drug proarrhythmic effect: problems, issues, known and suspected challenges. Europace 2015; 16:724-35. [PMID: 24798962 DOI: 10.1093/europace/euu009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is likely that computer modelling and simulations will become an element of comprehensive cardiac safety testing. Their role would be primarily the integration and the interpretation of previously gathered data. There are still unanswered questions and issues which we list and describe below. They include sources of data used for the development of the models as well as data utilized as input information, which can come from the in vitro studies and the quantitative structure-activity relationship models. The pharmacokinetics of the drugs in question play a crucial role as their active concentration should be considered, yet the question remains where is the right place to assess it. The pharmacodynamic angle includes complications coming from multiple drugs (i.e. active metabolites) acting in parallel as well as the type of interaction with (potentially) multiple affected channels. Once established, the model and the methodology of its use should be further validated, optimistically against individual data reported at the clinical level as the physiological, anatomical, and genetic parameters play a crucial role in the drug-triggered arrhythmia induction. All the abovementioned issues should be at least considered and-hopefully-resolved, to properly utilize the mathematical models for a cardiac safety assessment.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | | | | | | |
Collapse
|
17
|
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2014; 131:e29-322. [PMID: 25520374 DOI: 10.1161/cir.0000000000000152] [Citation(s) in RCA: 4471] [Impact Index Per Article: 447.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Petropoulou E, Jamshidi Y, Behr ER. The genetics of pro-arrhythmic adverse drug reactions. Br J Clin Pharmacol 2014; 77:618-25. [PMID: 23834499 DOI: 10.1111/bcp.12208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia induced by drugs (pro-arrythmia) is an uncommon event, whose occurrence is unpredictable but potentially fatal. The ability of a variety of medications to induce these arrhythmias is a significant problem facing the pharmaceutical industry. Genetic variants have been shown to play a role in adverse events and are also known to influence an individual's optimal drug dose. This review provides an overview of the current understanding of the role of genetic variants in modulating the risk of drug induced arrhythmias.
Collapse
Affiliation(s)
- Evmorfia Petropoulou
- Human Genetics Research Centre, Division of Biomedical Sciences, St George's Hospital Medical School, London, SW17 0RE, UK
| | | | | |
Collapse
|
19
|
O-Uchi J, Rice JJ, Ruwald MH, Parks XX, Ronzier E, Moss AJ, Zareba W, Lopes CM. Impaired IKs channel activation by Ca(2+)-dependent PKC shows correlation with emotion/arousal-triggered events in LQT1. J Mol Cell Cardiol 2014; 79:203-11. [PMID: 25479336 DOI: 10.1016/j.yjmcc.2014.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The most common inherited cardiac arrhythmia, LQT1, is due to IKs potassium channel mutations and is linked to high risk of adrenergic-triggered cardiac events. We recently showed that although exercise-triggered events are very well treated by ß-blockers for these patients, acute arousal-triggered event rate were not significantly reduced after beta-blocker treatment, suggesting that the mechanisms underlying arousal-triggered arrhythmias may be different from those during exercise. IKs is strongly regulated by β-adrenergic receptor (β-AR) signaling, but little is known about the role of α1-AR-mediated regulation. METHODS AND RESULTS Here we show, using a combination of cellular electrophysiology and computational modeling, that IKs phosphorylation and α1-AR regulation via activation of calcium-dependent PKC isoforms (cPKC) may be a key mechanism to control channel voltage-dependent activation and consequently action potential duration (APD) in response to adrenergic-stimulus. We show that simulated mutation-specific combined adrenergic effects (β+α) on APD were strongly correlated to acute stress-triggered cardiac event rate for patients while β-AR effects alone were not. CONCLUSION We were able to show that calcium-dependent PKC signaling is key to normal QT shortening during acute arousal and when impaired, correlates with increased rate of sudden arousal-triggered cardiac events. Our study suggests that the acute α1-AR-cPKC regulation of IKs is important for QT shortening in "fight-or-flight" response and is linked to decreased risk of sudden emotion/arousal-triggered cardiac events in LQT1 patients.
Collapse
Affiliation(s)
- Jin O-Uchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | - J Jeremy Rice
- Functional Genomics and Systems Biology Group, IBM T.J. Watson Research Center, New York, USA
| | - Martin H Ruwald
- Cardiology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | - Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | - Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | - Arthur J Moss
- Cardiology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | - Wojciech Zareba
- Cardiology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York, USA.
| |
Collapse
|
20
|
Spätjens RLHMG, Bébarová M, Seyen SRM, Lentink V, Jongbloed RJ, Arens YHJM, Heijman J, Volders PGA. Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation. Cardiovasc Res 2014; 104:216-25. [PMID: 25139741 DOI: 10.1093/cvr/cvu191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. METHODS AND RESULTS K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during β-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. CONCLUSION K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients.
Collapse
Affiliation(s)
- Roel L H M G Spätjens
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, PO Box 5800, Maastricht 6202 AZ, The Netherlands
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandrine R M Seyen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, PO Box 5800, Maastricht 6202 AZ, The Netherlands
| | - Viola Lentink
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, PO Box 5800, Maastricht 6202 AZ, The Netherlands
| | - Roselie J Jongbloed
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yvonne H J M Arens
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, PO Box 5800, Maastricht 6202 AZ, The Netherlands Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, PO Box 5800, Maastricht 6202 AZ, The Netherlands
| |
Collapse
|
21
|
Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014; 129:e28-e292. [PMID: 24352519 PMCID: PMC5408159 DOI: 10.1161/01.cir.0000441139.02102.80] [Citation(s) in RCA: 3534] [Impact Index Per Article: 353.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Left thoracoscopic sympathectomy for cardiac denervation in patients with life-threatening ventricular arrhythmias. J Thorac Cardiovasc Surg 2014; 147:404-9. [DOI: 10.1016/j.jtcvs.2013.07.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 07/26/2013] [Indexed: 11/21/2022]
|
23
|
Trayanova NA, Boyle PM. Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:209-24. [PMID: 24375958 DOI: 10.1002/wsbm.1256] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/12/2022]
Abstract
Modern cardiovascular research has increasingly recognized that heart models and simulation can help interpret an array of experimental data and dissect important mechanisms and interrelationships, with developments rooted in the iterative interaction between modeling and experimentation. This article reviews the progress made in simulating cardiac electrical behavior at the level of the organ and, specifically, in the development of models of ventricular arrhythmias and fibrillation, as well as their termination (defibrillation). The ability to construct multiscale models of ventricular arrhythmias, representing integrative behavior from the molecule to the entire organ, has enabled mechanistic inquiry into the dynamics of ventricular arrhythmias in the diseased myocardium, in understanding drug-induced proarrhythmia, and in the development of new modalities for defibrillation, to name a few. In this article, we also review the initial use of ventricular models of arrhythmia in personalized diagnosis, treatment planning, and prevention of sudden cardiac death. Implementing individualized cardiac simulations at the patient bedside is poised to become one of the most thrilling examples of computational science and engineering approaches in translational medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
24
|
O-Uchi J, Jhun BS, Hurst S, Bisetto S, Gross P, Chen M, Kettlewell S, Park J, Oyamada H, Smith GL, Murayama T, Sheu SS. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts. Am J Physiol Heart Circ Physiol 2013; 305:H1736-51. [PMID: 24124188 DOI: 10.1152/ajpheart.00094.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.
Collapse
Affiliation(s)
- Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cole AJ, Eskandar E, Mela T, Noebels JL, Gonzalez RG, McGuone D. Case records of the Massachusetts General Hospital. Case 18-2013: a 32-year-old woman with recurrent episodes of altered consciousness. N Engl J Med 2013; 368:2304-12. [PMID: 23758236 DOI: 10.1056/nejmcpc1215969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | |
Collapse
|
26
|
Odening KE, Brunner M. Risk stratification in long QT syndrome: Are we finally getting closer to a mutation-specific assessment of an individual patient’s arrhythmogenic risk? Heart Rhythm 2013; 10:726-7. [DOI: 10.1016/j.hrthm.2013.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 01/06/2023]
|
27
|
Trayanova NA, O'Hara T, Bayer JD, Boyle PM, McDowell KS, Constantino J, Arevalo HJ, Hu Y, Vadakkumpadan F. Computational cardiology: how computer simulations could be used to develop new therapies and advance existing ones. Europace 2013; 14 Suppl 5:v82-v89. [PMID: 23104919 DOI: 10.1093/europace/eus277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the latest developments in computational cardiology. It focuses on the contribution of cardiac modelling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modelling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mahida S, Hogarth AJ, Cowan C, Tayebjee MH, Graham LN, Pepper CB. Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives. J Interv Card Electrophysiol 2013; 37:9-19. [PMID: 23515882 DOI: 10.1007/s10840-013-9779-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
The long QT syndrome (LQTS) is a condition characterized by abnormal prolongation of the QT interval with an associated risk of ventricular arrhythmias and sudden cardiac death. Congenital forms of LQTS arise due to rare and highly penetrant mutations that segregate in a Mendelian fashion. Over the years, multiple mutations in genes encoding ion channels and ion channel binding proteins have been reported to underlie congenital LQTS. Drugs are by far the most common cause of acquired forms of LQTS. Emerging evidence suggests that drug-induced LQTS also has a significant heritable component. However, the genetic substrate underlying drug-induced LQTS is presently largely unknown. In recent years, advances in next-generation sequencing technology and molecular biology techniques have significantly enhanced our ability to identify genetic variants underlying both monogenic diseases and more complex traits. In this review, we discuss the genetic basis of congenital and drug-induced LQTS and focus on future avenues of research in the field. Ultimately, a detailed characterization of the genetic substrate underlying congenital and drug-induced LQTS will enhance risk stratification and potentially result in the development of tailored genotype-based therapies.
Collapse
Affiliation(s)
- Saagar Mahida
- Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK.
| | | | | | | | | | | |
Collapse
|
29
|
In silico cardiac risk assessment in patients with long QT syndrome: type 1: clinical predictability of cardiac models. J Am Coll Cardiol 2013; 60:2182-91. [PMID: 23153844 DOI: 10.1016/j.jacc.2012.07.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The study was designed to assess the ability of computer-simulated electrocardiography parameters to predict clinical outcomes and to risk-stratify patients with long QT syndrome type 1 (LQT1). BACKGROUND Although attempts have been made to correlate mutation-specific ion channel dysfunction with patient phenotype in long QT syndrome, these have been largely unsuccessful. Systems-level computational models can be used to predict consequences of complex changes in channel function to the overall heart rhythm. METHODS A total of 633 LQT1-genotyped subjects with 34 mutations from multinational long QT syndrome registries were studied. Cellular electrophysiology function was determined for the mutations and introduced in a 1-dimensional transmural electrocardiography computer model. The mutation effect on transmural repolarization was determined for each mutation and related to the risk for cardiac events (syncope, aborted cardiac arrest, and sudden cardiac death) among patients. RESULTS Multivariate analysis showed that mutation-specific transmural repolarization prolongation (TRP) was associated with an increased risk for cardiac events (35% per 10-ms increment [p < 0.0001]; ≥upper quartile hazard ratio: 2.80 [p < 0.0001]) and life-threatening events (aborted cardiac arrest/sudden cardiac death: 27% per 10-ms increment [p = 0.03]; ≥upper quartile hazard ratio: 2.24 [p = 0.002]) independently of patients' individual QT interval corrected for heart rate (QTc). Subgroup analysis showed that among patients with mild to moderate QTc duration (<500 ms), the risk associated with TRP was maintained (36% per 10 ms [p < 0.0001]), whereas the patient's individual QTc was not associated with a significant risk increase after adjustment for TRP. CONCLUSIONS These findings suggest that simulated repolarization can be used to predict clinical outcomes and to improve risk stratification in patients with LQT1, with a more pronounced effect among patients with a lower-range QTc, in whom a patient's individual QTc may provide less incremental prognostic information.
Collapse
|
30
|
Aidery P, Kisselbach J, Schweizer PA, Becker R, Katus HA, Thomas D. Impaired ion channel function related to a common KCNQ1 mutation — Implications for risk stratification in long QT syndrome 1. Gene 2012; 511:26-33. [DOI: 10.1016/j.gene.2012.09.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
|
31
|
Trayanova NA. Computational cardiology: the heart of the matter. ISRN CARDIOLOGY 2012; 2012:269680. [PMID: 23213566 PMCID: PMC3505657 DOI: 10.5402/2012/269680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022]
Abstract
This paper reviews the newest developments in computational cardiology. It focuses on the contribution of cardiac modeling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modeling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Hackerman Hall Room 216, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Abstract
During the past few years, the development of effective, empirical technologies for treatment of cardiac arrhythmias has exceeded the pace at which detailed knowledge of the underlying biology has accumulated. As a result, although some clinical arrhythmias can be cured with techniques such as catheter ablation, drug treatment and prediction of the risk of sudden death remain fairly primitive. The identification of key candidate genes for monogenic arrhythmia syndromes shows that to bring basic biology to the clinic is a powerful approach. Increasingly sophisticated experimental models and methods of measurement, including stem cell-based models of human cardiac arrhythmias, are being deployed to study how perturbations in several biologic pathways can result in an arrhythmia-prone heart. The biology of arrhythmia is largely quantifiable, which allows for systematic analysis that could transform treatment strategies that are often still empirical into management based on molecular evidence.
Collapse
Affiliation(s)
- Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
33
|
Nannenberg EA, Sijbrands EJ, Dijksman LM, Alders M, van Tintelen JP, Birnie M, van Langen IM, Wilde AA. Mortality of Inherited Arrhythmia Syndromes. ACTA ACUST UNITED AC 2012; 5:183-9. [DOI: 10.1161/circgenetics.111.961102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
For most arrhythmia syndromes, the risk of sudden cardiac death for asymptomatic mutation carriers is ill defined. Data on the natural history of these diseases, therefore, are essential. The family tree mortality ratio method offers the unique possibility to study the natural history at a time when the disease was not known and patients received no treatment.
Methods and Results—
In 6 inherited arrhythmia syndromes caused by specific mutations, we analyzed all-cause mortality with the family tree mortality ratio method (main outcome measure, standardized mortality ratio [SMR]). In long-QT syndrome (LQTS) type 1, severely increased mortality risk during all years of childhood was observed (1–19 years), in particular during the first 10 years of life (SMR, 2.9; 95% CI, 1.5–5.1). In LQTS type 2, we observed increasing SMRs starting from age 15 years, which just reached significance between age 30 and 39 (SMR, 4.0; 95% CI, 1.1–10.0). In LQTS type 3, the SMR was increased between age 15 and 19 years (SMR, 5.8; 95% CI, 1.2–16.9). In the SCN5A overlap syndrome, excess mortality was observed between age 10 and 59 years, with a peak between 20 and 39 years (SMR, 3.8; 95% CI, 2.5–5.7). In catecholaminergic polymorphic ventricular tachycardia, excess mortality was restricted to ages 20 to 39 years (SMR, 3.0; 95% CI, 1.3–6.0). In Brugada syndrome, excess mortality was observed between age 40 and 59 (SMR, 1.79; 95% CI, 1.2–2.4), particularly in men.
Conclusions—
We identified age ranges during which the mortality risk manifests in an unselected and untreated population, which can guide screening in these families.
Collapse
Affiliation(s)
- Eline A. Nannenberg
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - Eric J.G. Sijbrands
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - Lea M. Dijksman
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - Marielle Alders
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - J. Peter van Tintelen
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - Martijn Birnie
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - Irene M. van Langen
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| | - Arthur A.M. Wilde
- From the Department of Clinical Genetics (E.A.N., M.A.) and Heart Failure Research Center (E.A.N., L.M.D., M.B., A.A.M.W.), Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands (E.J.G.S.); and Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (J.P.T., I.M.L.)
| |
Collapse
|
34
|
Barsheshet A, Goldenberg I, O-Uchi J, Moss AJ, Jons C, Shimizu W, Wilde AA, McNitt S, Peterson DR, Zareba W, Robinson JL, Ackerman MJ, Cypress M, Gray DA, Hofman N, Kanters JK, Kaufman ES, Platonov PG, Qi M, Towbin JA, Vincent GM, Lopes CM. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation 2012; 125:1988-96. [PMID: 22456477 DOI: 10.1161/circulationaha.111.048041] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND β-Adrenergic stimulation is the main trigger for cardiac events in type 1 long-QT syndrome (LQT1). We evaluated a possible association between ion channel response to β-adrenergic stimulation and clinical response to β-blocker therapy according to mutation location. METHODS AND RESULTS The study sample comprised 860 patients with genetically confirmed mutations in the KCNQ1 channel. Patients were categorized into carriers of missense mutations located in the cytoplasmic loops (C loops), membrane-spanning domain, C/N terminus, and nonmissense mutations. There were 27 aborted cardiac arrest and 78 sudden cardiac death events from birth through 40 years of age. After multivariable adjustment for clinical factors, the presence of C-loop mutations was associated with the highest risk for aborted cardiac arrest or sudden cardiac death (hazard ratio versus nonmissense mutations=2.75; 95% confidence interval, 1.29-5.86; P=0.009). β-Blocker therapy was associated with a significantly greater reduction in the risk of aborted cardiac arrest or sudden cardiac death among patients with C-loop mutations than among all other patients (hazard ratio=0.12; 95% confidence interval, 0.02-0.73; P=0.02; and hazard ratio=0.82; 95% confidence interval, 0.31-2.13; P=0.68, respectively; P for interaction=0.04). Cellular expression studies showed that membrane spanning and C-loop mutations produced a similar decrease in current, but only C-loop mutations showed a pronounced reduction in channel activation in response to β-adrenergic stimulation. CONCLUSIONS Patients with C-loop missense mutations in the KCNQ1 channel exhibit a high risk for life-threatening events and derive a pronounced benefit from treatment with β-blockers. Reduced channel activation after sympathetic activation can explain the increased clinical risk and response to therapy in patients with C-loop mutations.
Collapse
Affiliation(s)
- Alon Barsheshet
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|