1
|
Chen Q, Xiang M, Gao Z, Lvu F, Sun Z, Wang Y, Shi X, Xu J, Wang J, Liang J. The role of B-cell ferroptosis in the pathogenesis of systemic lupus erythematosus. Clin Immunol 2023; 256:109778. [PMID: 37730009 DOI: 10.1016/j.clim.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the dysregulation of B cell subpopulation and function. Recent studies have suggested a potential role of ferroptosis, an iron-dependent form of regulated cell death, in the pathogenesis of SLE. Here, we demonstrate that B-cell ferroptosis occurs both in lupus patients and MRL/lpr mice. Treatment with liproxstatin-1, a potent ferroptosis inhibitor, could reduce autoantibody production, improve renal damage, and alleviate lupus symptoms in vivo. Furthermore, our results suggest that ferroptosis may regulate B cell differentiation and plasma cell formation, indicating a potential mechanism for its involvement in SLE. Taken together, targeting ferroptosis in B cells may be a promising therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Qian Chen
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Fan Lvu
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Zhan Sun
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China.
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China.
| |
Collapse
|
2
|
Arbitman L, Furie R, Vashistha H. B cell-targeted therapies in systemic lupus erythematosus. J Autoimmun 2022; 132:102873. [PMID: 35963808 DOI: 10.1016/j.jaut.2022.102873] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology that primarily affects women of childbearing age. There is no disease more heterogeneous than SLE as patients experience a myriad of manifestations and unpredictable periods of heightened disease activity. This heterogeneity not only makes it difficult for treatment decisions and prognostication, but has made drug development quite challenging. Despite these challenges, belimumab, voclosporin, and anifromulab, approved by the United States Food and Drug Administration (FDA) to treat SLE or lupus nephritis (LN), enhanced our armamentarium of traditional therapies, such as hydroxychloroquine, corticosteroids, and immunosuppressives. However, there remains a dire need to develop therapies that offer greater efficacy and safety. Patients with SLE produce excessive amounts of autoantibodies and cytokines that result in inflammation and organ damage. While a considerable number of potential drug development targets exist, there has been much attention focused on B cells. Strategies have included direct B cell killing, modulation of B cell function, inhibition of molecules essential to B cell growth and survival, and acceleration of autoantibody clearance, to name just a few. In this article, we review SLE clinical trials evaluating experimental agents that target B cells or plasma cells.
Collapse
Affiliation(s)
- Leah Arbitman
- Harpur College of Arts and Sciences, Binghamton University, Binghamton, NY, USA
| | - Richard Furie
- Division of Rheumatology Northwell Health and Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Himanshu Vashistha
- Division of Rheumatology, Department of Medicine, Northwell Health, Great Neck, NY, USA.
| |
Collapse
|
3
|
An evaluation of sleep habits and childhood-onset systemic lupus erythematosus. Clin Rheumatol 2022; 41:2831-2837. [PMID: 35639260 DOI: 10.1007/s10067-022-06225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease, known for its heterogeneous clinical presentation. Although it is rarer in children, a more severe clinical course can be seen than in adults. It is known that sleep has physiological and developmental importance in children, and there are many studies on sleep quality in adult SLE patients. The aims of this study are to evaluate the sleep habits of children and adolescents with SLE and to compare them with their healthy peers. METHODS The study included 48 children and adolescents with SLE and 64 healthy peers as a control group. The Children's Sleep Habits Questionnaire was used to evaluate the sleep characteristics of children. RESULTS The age and gender of the children were similar across groups. The bedtime resistance and night waking scores of SLE patients were significantly higher than those of the control group. Total sleep score was higher in patients with SLE than in the control group, but there was no significant difference (47.13±7.63 vs 44.61±8.17; p=0.051). Similarly, the rate of sleep disorders in the patient group (75%) was higher than that of the control group (61%), though the differences were not statistically significant (p = 0.156). There was no correlation between disease severity and sleep problems. CONCLUSION This research demonstrated that sleep disorders tend to increase in children and adolescents with SLE. Therefore, clinicians should pay attention to sleep disorders during the follow-up sessions of children and adolescents with SLE. Key Points • Sleep disorders tend to increase in children and adolescents with SLE. • Disease severity is not associated with sleep problems.
Collapse
|
4
|
Afrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, Parnell GP, Swaminathan S. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. J Autoimmun 2021; 127:102781. [PMID: 34952359 DOI: 10.1016/j.jaut.2021.102781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms through which Epstein-Barr virus (EBV) may contribute to Systemic Lupus Erythematosus (SLE) pathogenesis, we interrogated SLE genetic risk loci for signatures of EBV infection. We first compared the gene expression profile of SLE risk genes across 459 different cell/tissue types. EBV-infected B cells (LCLs) had the strongest representation of highly expressed SLE risk genes. By determining an SLE risk allele effect on gene expression (expression quantitative trait loci, eQTL) in LCLs and 16 other immune cell types, we identified 79 SLE risk locus:gene pairs putatively interacting with EBV infection. A total of 10 SLE risk genes from this list (CD40, LYST, JAZF1, IRF5, BLK, IKZF2, IL12RB2, FAM167A, PTPRC and SLC15A) were targeted by the EBV transcription factor, EBNA2, differentially expressed between LCLs and B cells, and the majority were also associated with EBV DNA copy number, and expression level of EBV encoded genes. Our final gene network model based on these genes is suggestive of a nexus involving SLE risk loci and EBV latency III and B cell proliferation signalling pathways. Collectively, our findings provide further evidence to support the interaction between SLE risk loci and EBV infection that is in part mediated by EBNA2. This interplay may increase the tendency towards EBV lytic switching dependent on the presence of SLE risk alleles. These results support further investigation into targeting EBV as a therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Ali Afrasiabi
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Thomas Keane
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Lawrence T C Ong
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Nicole Louise Fewings
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David Richmond Booth
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Grant Peter Parnell
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Biomedical Informatics and Digital Health, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Sanjay Swaminathan
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Melki I, Allaeys I, Tessandier N, Lévesque T, Cloutier N, Laroche A, Vernoux N, Becker Y, Benk-Fortin H, Zufferey A, Rollet-Labelle E, Pouliot M, Poirier G, Patey N, Belleannee C, Soulet D, McKenzie SE, Brisson A, Tremblay ME, Lood C, Fortin PR, Boilard E. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci Transl Med 2021; 13:13/581/eaav5928. [PMID: 33597264 DOI: 10.1126/scitranslmed.aav5928] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bβ3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE.
Collapse
Affiliation(s)
- Imene Melki
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Nicolas Tessandier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Tania Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Nathalie Cloutier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Audrée Laroche
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Nathalie Vernoux
- Axe Neurosciences du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Yann Becker
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Hadrien Benk-Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Anne Zufferey
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Emmanuelle Rollet-Labelle
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Marc Pouliot
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Guy Poirier
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Natacha Patey
- Centre Hospitalier Universitaire de Sainte-Justine, Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Clemence Belleannee
- Department of Obstetrics, Gynecology and Reproduction, Centre hospitalier universitaire de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Denis Soulet
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Steven E McKenzie
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alain Brisson
- UMR-CBMN CNRS-Université de Bordeaux-IPB, Pessac 33600, France
| | - Marie-Eve Tremblay
- Axe Neurosciences du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Paul R Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada. .,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada.,Division of Rheumatology, Department of Medicine, Centre hospitalier universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada. .,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
6
|
Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 2021; 146:155640. [PMID: 34252872 DOI: 10.1016/j.cyto.2021.155640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Chemokines are a group of cytokines with low molecular weight that principally direct chemotaxis of target cells. They have prominent roles in the pathogenesis systemic lupus erythematosus (SLE) and related complications particularly lupus nephritis. These molecules not only induce autoimmune responses in the organs of patients, but also can amplify the induced inflammatory responses. Although chemokine family has at least 46 identified members, the role of a number of these molecules have been more clarified in SLE patients or animal models of this disorder. In the current paper, we review the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Shahir
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Melki I, Allaeys I, Tessandier N, Mailhot B, Cloutier N, Campbell RA, Rowley JW, Salem D, Zufferey A, Laroche A, Lévesque T, Patey N, Rauch J, Lood C, Droit A, McKenzie SE, Machlus KR, Rondina MT, Lacroix S, Fortin PR, Boilard E. FcγRIIA expression accelerates nephritis and increases platelet activation in systemic lupus erythematosus. Blood 2020; 136:2933-2945. [PMID: 33331924 PMCID: PMC7751357 DOI: 10.1182/blood.2020004974] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.
Collapse
Affiliation(s)
- Imene Melki
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Tessandier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Benoit Mailhot
- Département de Médecine Moléculaire, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Axe Neurosciences, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Nathalie Cloutier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Robert A Campbell
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, UT
| | - Jesse W Rowley
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, UT
| | - David Salem
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anne Zufferey
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Tania Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Natalie Patey
- Centre Hospitalier Universitaire de Sainte-Justine, Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montreal, Montreal, QC, Canada
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA
| | - Arnaud Droit
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Steven E McKenzie
- Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, PA
| | - Kellie R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Matthew T Rondina
- Axe Neurosciences, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, UT
- Department of Internal Medicine-Geriatric Research Education and Clinical Center (GRECC), George E. Wahlen Veterans Affairs Medical Center (VAMC), Salt Lake City, UT
| | - Steve Lacroix
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Paul R Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Caster DJ, Powell DW. Utilization of Biomarkers in Lupus Nephritis. Adv Chronic Kidney Dis 2019; 26:351-359. [PMID: 31733719 DOI: 10.1053/j.ackd.2019.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) occurs in up to 60% of SLE patients, and is a leading cause of disability and death. Current treatment of LN consists of a combination of high dose corticosteroids that non-specifically decrease inflammation and cytotoxic medications that reduce auto-antibody production. That combination of therapy is associated with significant side effects while remission rates remain inadequate. Since the introduction of biologics into the pharmacological armamentarium, there has been hope for less toxic and more effective therapies for LN. Unfortunately, after multiple clinical trials, no biologic has improved efficacy over standard of care therapies for LN. This is likely, in part, due to disease heterogeneity. The utilization of biomarkers in LN may provide a way to stratify patients and guide therapeutic options. In this review, we summarize traditional and novel LN biomarkers and discuss how they may be used to diagnose, stratify, and guide therapy in patients with LN, bringing precision medicine to the forefront of LN therapy.
Collapse
|
9
|
Aghdashi M, Salami S, Nezhadisalami A. Evaluation of the serum β2 Microglobulin level in patients with systemic lupus erythematosus and its correlation with disease activity. Biomedicine (Taipei) 2019; 9:16. [PMID: 31453797 PMCID: PMC6711321 DOI: 10.1051/bmdcn/2019090316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/09/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Designation of disease activity is serious for the management of systemic lupus erythematosus (SLE). Serum level of β2 microglobulin (β2M) may be associated with illness activity in SLE disease. Since the role of β2M for assessing of illness activity in SLE is not completely clear, the current study aimed to discern evaluation of β2M in patients with SLE and its correlation with sickness activity. MATERIALS AND METHODS In this case-control study, 50 patients with SLE disease and 25 healthy individuals were selected in Imam Khomeini Hospital in central of Urmia. Blood samples were collected safely from patients, serum was removed, and β2M measured using an ELISA method. The results for other parameters including C reactive protein, C3, C4, anti dsDNA and erythrocyte sedimentation rate were obtained from patients' medical record. Data analyzed using appropriate statistical tests including Mann-Whitney U test, Independent f-test, Kruskal-Wallis, and Spearman used for analysis of data. RESULTS In the current study, a significant difference was seen between two groups in terms of β2M (p < 0.001). Remarkable correlation was seen between the level of β2M with disease activity (p < 0.001). Furthermore, there are significant relevancy between the level of β2M with 24-hour urine protein, ESR, disease activity score, and CRP (p < 0.05). CONCLUSION The results revealed that serum amount of β2M in SLE patients is higher compared to healthy ones, which is significantly correlated to score of illness activity, CRP, and ESR in patients with SLE disease. Hence β2M might be an excellent serological marker helping the prediction of sickness activity and inflammation in SLE patients.
Collapse
Affiliation(s)
| | - Simak Salami
-
Shahid Beheshti University of Medical Sciences Tehran Iran
| | | |
Collapse
|
10
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
11
|
Caster DJ, Merchant ML, Klein JB, Powell DW. Precision medicine in lupus nephritis: can biomarkers get us there? Transl Res 2018; 201:26-39. [PMID: 30179587 PMCID: PMC6415919 DOI: 10.1016/j.trsl.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/08/2023]
Abstract
Patients with systemic lupus erythematosus frequently develop lupus nephritis (LN), a condition that can lead to end-stage kidney disease. Multiple serum and urine biomarkers for LN have been proposed in recent years, yet none have become incorporated into clinical use. The majority of studies have been single center with significant variability in cohorts, assays, and sample storage, leading to inconclusive results. It has become clear that no single biomarker is likely to be sufficient to diagnose LN, identify flares, and define the response to therapy and prognosis. A more likely scenario is a panel of urine, serum, tissue, and genetic biomarkers. In this review, we summarize traditional and novel biomarkers and discuss how they may be utilized in order to bring precision medicine to clinical practice in LN.
Collapse
Affiliation(s)
- Dawn J Caster
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky.
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jon B Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - David W Powell
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
12
|
Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 2018; 41:153-164. [PMID: 30276444 DOI: 10.1007/s00281-018-0712-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.
Collapse
|
13
|
Parodis I, Söder F, Faustini F, Kasza Z, Samuelsson I, Zickert A, Svenungsson E, van Vollenhoven RF, Malmström V, Wermeling F, Gunnarsson I. Rituximab-mediated late-onset neutropenia in systemic lupus erythematosus – distinct roles of BAFF and APRIL. Lupus 2018; 27:1470-1478. [DOI: 10.1177/0961203318777116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Rituximab-mediated late-onset neutropenia (LON) has been described in various diseases. We investigated its occurrence, consequences and contributing factors in patients with systemic lupus erythematosus (SLE). Methods Rituximab-treated patients from the Karolinska University Hospital ( n = 107) were surveyed. LON was defined as an absolute neutrophil count <1500 cells/μl, occurring four weeks to two years following rituximab treatment, or later during sustained B-cell depletion. Serum levels of B-cell-related cytokines and growth factors of the myeloid lineage were determined using enzyme-linked immunosorbent assay. Results Thirty-two patients (29.9%) developed LON after a median time of 201.5 days. Thirteen patients were admitted to the hospital; 10 due to fever. Three patients developed critical conditions. BAFF levels increased from baseline (median: 0.62 ng/ml) to the post-treatment evaluation (median: 1.16 ng/ml; p < 0.001); post-treatment levels were higher in the LON group ( p = 0.021). APRIL levels were higher in the LON group both at baseline (median: 1.54 versus 1.15 ng/ml; p = 0.027) and post-treatment (median: 2.39 versus 1.11 ng/ml; p = 0.011). IL-6 and GM-CSF levels decreased in the non-LON group ( p < 0.001), but not in LON patients. High baseline disease activity predicted LON development (OR: 4.1; 95% CI: 1.1–15.2 for SLEDAI-2K > 8). No association with neutropenia prior to rituximab treatment was documented. Conclusion Post-rituximab LON was a common complication. Although the phenomenon was predominantly self-limiting, several patients developed severe conditions. Distinct roles of BAFF and APRIL are implicated: BAFF may contribute to LON development, whereas high APRIL levels may be predictive. Rituximab-treated SLE patients should be monitored for neutrophil counts, fever and infections.
Collapse
Affiliation(s)
- I Parodis
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - F Söder
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - F Faustini
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Z Kasza
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - I Samuelsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Zickert
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - E Svenungsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - R F van Vollenhoven
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - V Malmström
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - F Wermeling
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - I Gunnarsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Seliga A, Lee MH, Fernandes NC, Zuluaga-Ramirez V, Didukh M, Persidsky Y, Potula R, Gallucci S, Sriram U. Kallikrein-Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation. Front Immunol 2018; 9:156. [PMID: 29456540 PMCID: PMC5801412 DOI: 10.3389/fimmu.2018.00156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
The Kallikrein–Kinin System (KKS), comprised of kallikreins (klks), bradykinins (BKs) angiotensin-converting enzyme (ACE), and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand), R848 (TLR7 ligand), or recombinant IFN-α to induce interferon-stimulated genes (ISGs) and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein), or captopril (an ACE inhibitor). BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice), and in human PBMCs, especially the induction of Irf7 gene (p < 0.05), the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs). BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10), the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2), suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.
Collapse
Affiliation(s)
- Alecia Seliga
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Michael Hweemoon Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Marta Didukh
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Laurent L, Le Fur A, Le Bloas R, Néel M, Mary C, Moreau A, Poirier N, Vanhove B, Fakhouri F. Prevention of lupus nephritis development in NZB/NZW mice by selective blockade of CD28. Eur J Immunol 2017. [DOI: 10.1002/eji.201746923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laetitia Laurent
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
| | - Awena Le Fur
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
- Department of nephrology and immunology; Centre Hospitalier Universitaire; Nantes France
| | - Rozenn Le Bloas
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
| | - Mélanie Néel
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
| | - Caroline Mary
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
- OSE Immunotherapeutics; Nantes France
| | - Anne Moreau
- Department of pathology; Centre Hospitalier Universitaire; Nantes France
| | - Nicolas Poirier
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
- OSE Immunotherapeutics; Nantes France
| | - Bernard Vanhove
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
- OSE Immunotherapeutics; Nantes France
| | - Fadi Fakhouri
- INSERM UMR 1064; Nantes France
- Institut de Transplantation Urologie Néphrologie (ITUN); Université de Nantes; Nantes France
- Department of nephrology and immunology; Centre Hospitalier Universitaire; Nantes France
| |
Collapse
|
16
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
17
|
Bravo-Barrera J, Kourilovitch M, Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel) 2017; 6:antib6010004. [PMID: 31548520 PMCID: PMC6698875 DOI: 10.3390/antib6010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a network of extracellular fibers, compounds of chromatin, neutrophil DNA and histones, which are covered with antimicrobial enzymes with granular components. Autophagy and the production of reactive oxygen species (ROS) by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are essential in the formation of NETs. There is increasing evidence that suggests that autoantibodies against beta-2-glycoprotein-1 (B2GP1) induce NETs and enhance thrombosis. Past research on new mechanisms of thrombosis formation in antiphospholipid syndrome (APS) has elucidated the pharmacokinetics of the most common medication in the treatment of the disease.
Collapse
Affiliation(s)
- Jessica Bravo-Barrera
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Department of Hematology and Hemostasis, CDB, Hospital Clinic, Villaroel 170, 08036 Barcelona, Catalonia, Spain.
| | - Maria Kourilovitch
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Faculty of Medicine and Health Science, Doctorate Programme "Medicine and Translational Research", Barcelona University, Casanova, 143, 08036 Barcelona, Catalonia, Spain.
| | - Claudio Galarza-Maldonado
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Department of Investigation (DIUC-Dirección de Investigación de Universidad de Cuenca), Cuenca State University, Av. 12 de Abril y Agustin Cueva, Cuenca, Ecuador.
| |
Collapse
|
18
|
Pawaria S, Sharma S, Baum R, Nündel K, Busto P, Gravallese EM, Fitzgerald KA, Marshak-Rothstein A. Taking the STING out of TLR-driven autoimmune diseases: good, bad, or indifferent? J Leukoc Biol 2016; 101:121-126. [PMID: 27531928 DOI: 10.1189/jlb.3mr0316-115r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 01/24/2023] Open
Abstract
Both endosomal and cytosolic-nucleic acid-sensing receptors can detect endogenous ligands and promote autoimmunity and autoinflammation. These responses involve a complex interplay among and between the cytosolic and endosomal sensors involving both hematopoietic and radioresistant cells. Cytosolic sensors directly promote inflammatory responses through the production of type I IFNs and proinflammatory cytokines. Inflammation-associated tissue damage can further promote autoimmune responses indirectly, as receptor-mediated internalization of the resulting cell debris can activate endosomal Toll-like receptors (TLR). Both endosomal and cytosolic receptors can also negatively regulate inflammatory responses. A better understanding of the factors and pathways that promote and constrain autoimmune diseases will have important implications for the development of agonists and antagonists that modulate these pathways.
Collapse
Affiliation(s)
- Sudesh Pawaria
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shruti Sharma
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rebecca Baum
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kerstin Nündel
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Patricia Busto
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Katherine A Fitzgerald
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; .,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Chung WS, Lin CL, Kao CH. Association of systemic lupus erythematosus and sleep disorders: a nationwide population-based cohort study. Lupus 2015; 25:382-8. [PMID: 26585071 DOI: 10.1177/0961203315617843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022]
Abstract
Objective Using a population-based cohort study, we investigated whether sleep disorders (SDs) increase the risk of systemic lupus erythematosus (SLE). Patients and methods We identified patients with SDs and a control cohort from 1998–2001 by using the Taiwan Longitudinal Health Insurance Database 2000. Two controls for each patient with an SD were selected and randomly frequency-matched according to age, gender, and index year. The follow-up person–years were estimated for the patients from the index date to SLE diagnosis, loss to follow-up, or the end of 31 December 2011. We used the Cox proportional hazards models to evaluate how SDs influence the risk of SLE after adjustments for demographic factors and comorbidities. Results A total of 144,396 subjects (48,132 SD cases and 96,264 controls) were followed for 1,477,055 person–years. The patients with SDs displayed higher incidence density rate of developing SLE than did the controls (1.03 vs 0.46 per 10,000 person–years). After adjustment for covariates, the patients with SDs exhibited a 2.20-fold higher adjusted hazard ratio (aHR) of developing SLE than the controls (95% confidence interval (CI) = 1.44–3.36). Women exhibited a greater prevalence of SDs and SLE compared to men. Patients with SDs aged 49 years and younger exhibited a significantly increased risk of SLE compared to the controls (aHR=2.30, 95% CI = 1.33–3.98). Patients with SDs living in urban areas exhibited a significantly increased risk of SLE. Conclusion This large population-based cohort study revealed that SDs increase the risk of SLE development.
Collapse
Affiliation(s)
- W-S Chung
- Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - C-L Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - C-H Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, Doria A. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 2015; 240:1019-28. [PMID: 26142116 DOI: 10.1177/1535370215593826] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell-cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte-macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Felipe L de Oliveira
- Coimbra Group Fellowship for Latin American Professors, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-902, Brazil Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Mariele Gatto
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Nicola Bassi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Anna Ghirardello
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| |
Collapse
|
21
|
Abstract
Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies.
Collapse
|
22
|
Immunopathology of systemic lupus erythematosus. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc Natl Acad Sci U S A 2014; 111:15741-5. [PMID: 25331893 DOI: 10.1073/pnas.1412009111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are many transmembrane receptor-like proteins whose ligands have not been identified. A strategy for finding ligands when little is known about their tissue source is to screen each extracellular protein individually expressed in an array format by using a sensitive functional readout. Taking this approach, we have screened a large collection (3,191 proteins) of extracellular proteins for their ability to activate signaling of an orphan receptor, leukocyte tyrosine kinase (LTK). Only two related secreted factors, FAM150A and FAM150B (family with sequence similarity 150 member A and member B), stimulated LTK phosphorylation. FAM150A binds LTK extracellular domain with high affinity (K(D) = 28 pM). FAM150A stimulates LTK phosphorylation in a ligand-dependent manner. This strategy provides an efficient approach for identifying functional ligands for other orphan receptors.
Collapse
|
24
|
The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J Immunol Res 2014; 2014:368274. [PMID: 24804269 PMCID: PMC3996305 DOI: 10.1155/2014/368274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
Autoantibodies directed to chromatin components date back to the discovery of the LE cell and the LE cell phenomenon circa 1950, and subsequent evidence that major components of that reaction were chromatin components and histones in particular. Over time, immunoassays ranging from ELISA and line immunoassays to more modern bead-based assays incorporated histone and DNA mixtures, purified histones, and purified nucleosomes leading to a more thorough understanding of the genesis and pathogenetic relationships of antibodies to chromatin components in systemic lupus erythematosus and other autoimmune conditions. More recently, interest has focussed on other components of chromatin such as high mobility group (HMG) proteins both as targets of B cell responses and pro-inflammatory mediators. This review will focus on immunoassays that utilize chromatin components, their clinical relationships, and newer evidence implicating HMG proteins and DNA neutrophil extracellular traps (NETs) as important players in systemic autoimmune rheumatic diseases.
Collapse
|
25
|
Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet 2014; 59:178-88. [PMID: 24430577 DOI: 10.1038/jhg.2013.140] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/13/2022]
Abstract
Changes of the DNA methylation at the interspersed repetitive sequences can occur in various conditions including cancer as well as autoimmune diseases. We previously reported the hypomethylation of LINE-1 and HERV-E in the lymphocytes of systemic lupus erythematosus (SLE) patients. As neutrophils are another important cell type contributing to SLE pathogenesis, in this study, we evaluated the methylation levels and patterns for LINE-1, ALU, HERV-E and HERV-K in the neutrophils from SLE patients compared with the healthy controls. We observed that the methylation levels, especially for LINE-1, in the neutrophils from SLE patients were significantly lower than the healthy controls (P-value < 0.0001). Interestingly, this hypomethylation was not correlated with the activity of the disease. Furthermore, the methylation levels and patterns for Alu, HERV-E and HERV-K in the neutrophils from the SLE patients were not significantly different from the healthy controls. In addition, we further investigated whether there were any correlations between the intragenic LINE-1 and differential expressions of the neutrophils from the SLE patients using public arrays data. The upregulated genes in the neutrophils from the SLE patients were significantly associated with the genes containing LINE-1s compared with the healthy controls (P-value GSE27427 = 7.74 × 10(-3); odds ratio (OR) = 1.28). Interestingly, this association was mainly found among genes with antisense LINE-1s (P-value GSE27427 = 6.22 × 10(-3); OR = 1.38). Bioinformatics data suggest that LINE-1 hypomethylation may affect expression of the genes that may contribute to the pathogenesis of SLE. However, additional functional studies of these proposed genes are warranted to prove this hypothesis.
Collapse
|
26
|
Campbell AM, Kashgarian M, Shlomchik MJ. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 2013; 4:157ra141. [PMID: 23100627 DOI: 10.1126/scitranslmed.3004801] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self nucleic acids. The source of autoantigen that drives disease onset and progression is unclear. A candidate source of autoantigen is the neutrophil extracellular trap (NET), which releases nucleic acids into the extracellular environment, generating a structure composed of DNA coated with antimicrobial proteins. On the basis of in vitro and patient correlative studies, several groups have suggested that NETs may provide lupus autoantigens. The observation that NET release (NETosis) relies on activity of the phagocyte NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox2) in neutrophils of both humans and mice provided a genetic strategy to test this hypothesis in vivo. Therefore, we crossed an X-linked nox2 null allele onto the lupus-prone MRL.Fas(lpr) genetic background and assessed immune activation, autoantibody generation, and SLE pathology. Counter to the prevailing hypothesis, Nox2-deficient lupus-prone mice had markedly exacerbated lupus, including increased spleen weight, increased renal disease, and elevated and altered autoantibody profiles. Moreover, heterozygous female mice, which have Nox2 deficiency in 50% of neutrophils, also had exacerbated lupus and altered autoantibody patterns, suggesting that failure to undergo normal Nox2-dependent cell death may result in release of immunogenic self-constituents that stimulate lupus. Our results indicate that NETosis does not contribute to SLE in vivo; instead, Nox2 acts to inhibit disease pathogenesis, making this enzyme an important target for further study and a candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Allison M Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | |
Collapse
|
27
|
Wakefield D, Di Girolamo N, Thurau S, Wildner G, McCluskey P. Scleritis: Immunopathogenesis and molecular basis for therapy. Prog Retin Eye Res 2013; 35:44-62. [PMID: 23454614 DOI: 10.1016/j.preteyeres.2013.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 02/10/2013] [Accepted: 02/15/2013] [Indexed: 12/19/2022]
Abstract
Scleritis is a heterogeneous group of diseases characterized by inflammation of the sclera, which may be due to local or systemic infections or immune mediated diseases. Numerous studies over the last decade have lead to significant progress in understanding the pathogenesis and treatment of this severe and potentially blinding disease. Immunological investigations of non-infectious scleritis and associated diseases have indicated that scleritis is an autoimmune disease and studies on the nature of the local inflammatory response have revealed the prominent role of T and B cells and cytokines, such as TNF-alpha, which in turn has resulted in clinical trials showing the effectiveness of local steroid treatment, anti-TNF and anti-B cell therapy. The widespread use of imaging has led to the realization that posterior scleritis is more common than previously recognized and testing for ANCA antibodies has revealed the prominent role of immune mechanisms in a subset of patients with scleritis and associated systemic vasculitis.
Collapse
Affiliation(s)
- Denis Wakefield
- School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
28
|
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? ACTA ACUST UNITED AC 2013; 198:773-83. [PMID: 22945932 PMCID: PMC3432757 DOI: 10.1083/jcb.201203170] [Citation(s) in RCA: 724] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed “NETosis.” Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.
Collapse
Affiliation(s)
- Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
29
|
|
30
|
Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus-an update. Curr Opin Immunol 2012; 24:651-7. [PMID: 23131610 DOI: 10.1016/j.coi.2012.10.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE, lupus) is characterized by a global loss of self-tolerance with activation of autoreactive T and B cells leading to production of pathogenic autoantibodies and tissue injury. Innate immune mechanisms are necessary for the aberrant adaptive immune responses in SLE. Recent advances in basic and clinical biology have shed new light on disease mechanisms in lupus, with this review discussing the recent studies that offer valuable insights into disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Internal Medicine (Rheumatology), Yale School of Medicine, New Haven, CT 06520, United States
| | | | | |
Collapse
|
31
|
Banham-Hall E, Clatworthy MR, Okkenhaug K. The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatol J 2012; 6:245-58. [PMID: 23028409 PMCID: PMC3460535 DOI: 10.2174/1874312901206010245] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/16/2011] [Accepted: 11/20/2011] [Indexed: 12/14/2022] Open
Abstract
The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110γ and p110δ, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110γ and/or p110δ on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110γ and/or p110δ in autoimmune disease.
Collapse
Affiliation(s)
- Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| | - Menna R Clatworthy
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge CB2 0XY, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| |
Collapse
|
32
|
Sriram U, Varghese L, Bennett HL, Jog NR, Shivers DK, Ning Y, Behrens EM, Caricchio R, Gallucci S. Myeloid dendritic cells from B6.NZM Sle1/Sle2/Sle3 lupus-prone mice express an IFN signature that precedes disease onset. THE JOURNAL OF IMMUNOLOGY 2012; 189:80-91. [PMID: 22661089 DOI: 10.4049/jimmunol.1101686] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Patients with systemic lupus erythematosus show an overexpression of type I IFN-responsive genes that is referred to as "IFN signature." We found that B6.NZMSle1/Sle2/Sle3 (Sle1,2,3) lupus-prone mice also express an IFN signature compared with non-autoimmune C57BL/6 mice. In vitro, myeloid dendritic cells (mDCs) (GM-CSF bone marrow-derived dendritic cells; BMDCs) from Sle1,2,3 mice constitutively overexpressed IFN-responsive genes such as IFN-β, Oas-3, Mx-1, ISG-15, and CXCL10 and members of the IFN signaling pathway STAT1, STAT2, and IRF7. The IFN signature was similar in Sle1,2,3 BMDCs from young, pre-autoimmune mice and from mice with high titers of autoantibodies, suggesting that the IFN signature in mDCs precedes disease onset and is independent from the autoantibodies. Sle1,2,3 BMDCs hyperresponded to stimulation with IFN-α and the TLR7 and TLR9 agonists R848 and CpGs. We propose that this hyperresponse is induced by the IFN signature and only partially contributes to the signature, as oligonucleotides inhibitory for TLR7 and TLR9 only partially suppressed the constitutive IFN signature, and pre-exposure to IFN-α induced the same hyperresponse in wild-type BMDCs as in Sle1,2,3 BMDCs. In vivo, mDCs and to a lesser extent T and B cells from young prediseased Sle1,2,3 mice also expressed the IFN signature, although they lacked the strength that BMDCs showed in vitro. Sle1,2,3 plasmacytoid DCs expressed the IFN signature in vitro but not in vivo, suggesting that mDCs may be more relevant before disease onset. We propose that Sle1,2,3 mice are useful tools to study the role of the IFN signature in lupus pathogenesis.
Collapse
Affiliation(s)
- Uma Sriram
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
From neutrophil extracellular traps to genetic networks that underlie the disease and new targeted therapies, important advances in 2011 improve our understanding of the pathogenesis of systemic lupus erythematosus and mark the beginning of our ability to treat it effectively.
Collapse
Affiliation(s)
- Thomas Dörner
- Department of Medicine, Rheumatology and Clinical Immunology, Charite Center 12, Charite Universitätsmedizin Berlin and Deutsches Rheumaforschungszentrum, Chariteplatz 01, 10098 Berlin, Germany.
| |
Collapse
|
34
|
Kim SJ, Zou YR, Goldstein J, Reizis B, Diamond B. Tolerogenic function of Blimp-1 in dendritic cells. ACTA ACUST UNITED AC 2011; 208:2193-9. [PMID: 21948081 PMCID: PMC3201204 DOI: 10.1084/jem.20110658] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Blimp-1 has been identified as a key regulator of plasma cell differentiation in B cells and effector/memory function in T cells. We demonstrate that Blimp-1 in dendritic cells (DCs) is required to maintain immune tolerance in female but not male mice. Female mice lacking Blimp-1 expression in DCs (DCBlimp-1(ko)) or haploid for Blimp-1 expression exhibit normal DC development but an altered DC function and develop lupus-like autoantibodies. Although DCs have been implicated in the pathogenesis of lupus, a defect in DC function has not previously been shown to initiate the disease process. Blimp-1(ko) DCs display increased production of IL-6 and preferentially induce differentiation of follicular T helper cells (T(FH) cells) in vitro. In vivo, the expansion of T(FH) cells is associated with an enhanced germinal center (GC) response and the development of autoreactivity. These studies demonstrate a critical role for Blimp-1 in the tolerogenic function of DCs and show that a diminished expression of Blimp-1 in DCs can result in aberrant activation of the adaptive immune system with the development of a lupus-like serology in a gender-specific manner. This study is of particular interest because a polymorphism of Blimp-1 associates with SLE.
Collapse
Affiliation(s)
- Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Xavier Bosch
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|