1
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
2
|
Falini B, Tiacci E. Hairy-Cell Leukemia. N Engl J Med 2024; 391:1328-1341. [PMID: 39383460 DOI: 10.1056/nejmra2406376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Affiliation(s)
- Brunangelo Falini
- From the Institute of Hematology and the Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Enrico Tiacci
- From the Institute of Hematology and the Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Brazel D, Hermel D, Gandhi P, Saven A. Detangling the Threads of Hairy Cell Leukemia, Beyond the Morphology and Into the Molecular. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:583-591. [PMID: 38849281 DOI: 10.1016/j.clml.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Hairy cell leukemia (HCL) makes up 2% of leukemias in the United States and encompasses great molecular heterogeneity. The standard treatment paradigm involves purine nucleoside analogues in the upfront setting with high complete response rate to initial therapy but frequent relapses. There is an increasing role for BRAF inhibitors, with or without rituximab, in refractory and even in untreated patients. The response to purine analogues in HCL variant cases, otherwise classified as splenic lymphoma with prominent nucleolus in the 5th WHO edition classification, is less robust. Several antibodies, small molecular inhibitors, and combination regimens have been explored in HCL but data is frequently limited by case reports or small case series. Here we review available treatment options including their efficacy and safety profiles. We also explore investigational agents and potential future targets. The goal is to present a comprehensive therapeutic review of this rare disease entity and outline the ever increasing and novel therapeutic management options which interrupt key pathways in the pathogenesis of this malignancy.
Collapse
Affiliation(s)
- Danielle Brazel
- Division of Hematology and Oncology, Scripps Clinic, La Jolla CA.
| | - David Hermel
- Division of Hematology and Oncology, Scripps Clinic, La Jolla CA
| | - Pranav Gandhi
- Division of Pathology, Scripps Green Hospital, La Jolla CA
| | - Alan Saven
- Division of Hematology and Oncology, Scripps Clinic, La Jolla CA
| |
Collapse
|
4
|
LANGABEER STEPHENE. Non-canonical BRAF variants and rearrangements in hairy cell leukemia. Oncol Res 2024; 32:1423-1427. [PMID: 39220131 PMCID: PMC11361905 DOI: 10.32604/or.2024.051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024] Open
Abstract
Hairy cell leukemia (HCL) is an uncommon mature B-cell malignancy characterized by a typical morphology, immunophenotype, and clinical profile. The vast majority of HCL patients harbor the canonical BRAF V600E mutation which has become a rationalized target of the subsequently deregulated RAS-RAF-MEK-MAPK signaling pathway in HCL patients who have relapsed or who are refractory to front-line therapy. However, several HCL patients with a classical phenotype display non-canonical BRAF mutations or rearrangements. These include sequence variants within alternative exons and an oncogenic fusion with the IGH gene. Care must be taken in the molecular diagnostic work-up of patients with typical HCL but without the BRAF V600E to include investigation of these uncommon mechanisms. Identification, functional characterization, and reporting of further such patients is likely to provide insights into the pathogenesis of HCL and enable rational selection of targeted inhibitors in such patients if required.
Collapse
|
5
|
Paillassa J, Maitre E, Belarbi Boudjerra N, Madani A, Benlakhal R, Matthes T, Van Den Neste E, Cailly L, Inchiappa L, Bekadja MA, Tomowiak C, Troussard X. Recommendations for the Management of Patients with Hairy-Cell Leukemia and Hairy-Cell Leukemia-like Disorders: A Work by French-Speaking Experts and French Innovative Leukemia Organization (FILO) Group. Cancers (Basel) 2024; 16:2185. [PMID: 38927891 PMCID: PMC11201647 DOI: 10.3390/cancers16122185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Hairy-cell leukemia (HCL) is a rare B-cell chronic lymphoproliferative disorder (B-CLPD), whose favorable prognosis has changed with the use of purine nucleoside analogs (PNAs), such as cladribine (CDA) or pentostatin (P). However, some patients eventually relapse and over time HCL becomes resistant to chemotherapy. Many discoveries have been made in the pathophysiology of HCL during the last decade, especially in genomics, with the identification of the BRAFV600E mutation and cellular biology, including the importance of signaling pathways as well as tumor microenvironment. All of these new developments led to targeted treatments, especially BRAF inhibitors (BRAFis), MEK inhibitors (MEKis), Bruton's tyrosine kinase (BTK) inhibitors (BTKis) and recombinant anti-CD22 immunoconjugates. RESULTS The following major changes or additions were introduced in these updated guidelines: the clinical relevance of the changes in the classification of splenic B-cell lymphomas and leukemias; the increasingly important diagnostic role of BRAFV600E mutation; and the prognostic role of the immunoglobulin (IG) variable (V) heavy chain (H) (IGHV) mutational status and repertory. We also wish to insist on the specific involvement of bones, skin, brain and/or cerebrospinal fluid (CSF) of the disease at diagnosis or during the follow-up, the novel targeted drugs (BRAFi and MEKi) used for HCL treatment, and the increasing role of minimal residual disease (MRD) assessment. CONCLUSION Here we present recommendations for the diagnosis of HCL, treatment in first line and in relapsed/refractory patients as well as for HCL-like disorders including HCL variant (HCL-V)/splenic B-cell lymphomas/leukemias with prominent nucleoli (SBLPN) and splenic diffuse red pulp lymphoma (SDRPL).
Collapse
Affiliation(s)
- Jérôme Paillassa
- Service des Maladies du Sang, CHU d’Angers, 49000 Angers, France;
| | - Elsa Maitre
- Hématologie Biologique, Structure Fédérative D’oncogénétique Cyto-Moléculaire du CHU de Caen (SF-MOCAE), CHU de Caen, 14000 Caen, France;
- Unité MICAH, INSERM1245, Université Caen-Normandie, 14000 Caen, France
| | | | - Abdallah Madani
- Service d’Hématologie, CHU de Casablanca, Casablanca 20000, Morocco;
| | | | - Thomas Matthes
- Service d’Hématologie, Département d’Oncologie et Service de Pathologie Clinique, Département de Diagnostic, Hôpital Universitaire de Genève, 1205 Genève, Switzerland;
| | - Eric Van Den Neste
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1000 Brussels, Belgium;
| | - Laura Cailly
- Service d’Onco-Hématologie et de Thérapie Cellulaire, CHU de Poitiers, 86000 Poitiers, France; (L.C.)
| | - Luca Inchiappa
- Service d’Hématologie, Institut Paoli-Calmette, 13397 Marseille, France
| | | | - Cécile Tomowiak
- Service d’Onco-Hématologie et de Thérapie Cellulaire, CHU de Poitiers, 86000 Poitiers, France; (L.C.)
| | - Xavier Troussard
- Hématologie Biologique, Structure Fédérative D’oncogénétique Cyto-Moléculaire du CHU de Caen (SF-MOCAE), CHU de Caen, 14000 Caen, France;
- Hematologie CHU Caen Normandie, 14000 Caen, France
| |
Collapse
|
6
|
Łobacz M, Mertowska P, Mertowski S, Kozińska A, Kwaśniewski W, Kos M, Grywalska E, Rahnama-Hezavah M. The Bloody Crossroads: Interactions between Periodontitis and Hematologic Diseases. Int J Mol Sci 2024; 25:6115. [PMID: 38892299 PMCID: PMC11173219 DOI: 10.3390/ijms25116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Periodontitis is a common oral condition that can have a significant impact on the overall health of the body. In recent years, attention has been paid to potential relationships between periodontitis and various hematological disorders. This publication aims to present information available in the literature on this relationship, focusing on examples of red blood cell disorders (such as aplastic anemia and sickle cell anemia) and white blood cell disorders (such as cyclic neutropenia, maladaptive trained immunity, clonal hematopoiesis, leukemia, and multiple myeloma). Understanding these associations can help physicians and dentists better diagnose, monitor, and treat patients associated with both groups of conditions, highlighting the need for interdisciplinary care for patients with oral disorders and hematologic diseases.
Collapse
Affiliation(s)
- Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ł.); (M.R.-H.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Aleksandra Kozińska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland;
| | - Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ł.); (M.R.-H.)
| |
Collapse
|
7
|
Troussard X, Maître E, Paillassa J. Hairy cell leukemia 2024: Update on diagnosis, risk-stratification, and treatment-Annual updates in hematological malignancies. Am J Hematol 2024; 99:679-696. [PMID: 38440808 DOI: 10.1002/ajh.27240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogenous group of mature lymphoid B-cell disorders characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11c, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral bone marrow infiltration and the presence of BRAFV600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood, and the immunoglobulin heavy chain variable region gene mutational status. VH4-34 positive HCL cases are associated with a poor prognosis, as well as HCL with TP53 mutations and HCL-V. TREATMENT Patients should be treated only if HCL is symptomatic. Chemotherapy with risk-adapted therapy purine analogs (PNAs) are indicated in first-line HCL patients. The use of chemo-immunotherapy combining cladribine (CDA) and rituximab (R) represents an increasingly used therapeutic approach. Management of relapsed/refractory disease is based on the use of BRAF inhibitors (BRAFi) plus R, MEK inhibitors (MEKi), recombinant immunoconjugates targeting CD22, Bruton tyrosine kinase inhibitors (BTKi), and Bcl-2 inhibitors (Bcl-2i). However, the optimal sequence of the different treatments remains to be determined.
Collapse
Affiliation(s)
| | - Elsa Maître
- Laboratoire Hématologie, CHU Côte de Nacre, Caen Cedex, France
| | | |
Collapse
|
8
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Park JH, Devlin S, Durham BH, Winer ES, Huntington S, von Keudell G, Vemuri S, Shukla M, Falco V, Cuello B, Gore S, Stone R, Abdel-Wahab O, Tallman MS. Vemurafenib and Obinutuzumab as Frontline Therapy for Hairy Cell Leukemia. NEJM EVIDENCE 2023; 2:EVIDoa2300074. [PMID: 38320179 PMCID: PMC11110928 DOI: 10.1056/evidoa2300074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Hairy cell leukemia (HCL) is characterized by the underlying genetic lesion of BRAFV600E and responsiveness to BRAF inhibitors. We assessed the safety and activity of the BRAF inhibitor vemurafenib combined with obinutuzumab in patients with previously untreated HCL. METHODS: We conducted a single-arm, multicenter clinical study of vemurafenib plus obinutuzumab. Vemurafenib 960 mg twice daily was administered for four cycles, and obinutuzumab was administered in cycles 2 to 4. The primary end point was complete remission (CR). Secondary end points included assessment of safety, minimal residual disease (MRD), and BRAF allele burden according to digital droplet polymerase chain reaction (ddPCR). RESULTS: Thirty patients were enrolled in the study, and 27 patients completed all four cycles of treatments and achieved CR (90%; 95% confidence interval [CI], 73 to 98). Three patients discontinued the study early because of adverse events and were not evaluable for response. Of the 27 patients who achieved CR, 26 patients (96%; 95% CI, 81 to 99) achieved MRD negativity. BRAFV600E allele was undetectable by ddPCR in all 21 evaluable patients. At a median follow-up of 34.9 months (95% CI, 29.6 to 36.9), no patient experienced disease relapse. The most common vemurafenib-related adverse events were rash and arthralgia. Febrile neutropenia occurred in two patients, and blood or platelet transfusions were required in two patients. CONCLUSIONS: Combined time-limited vemurafenib and obinutuzumab achieved CR in more than 90% of patients with previously untreated HCL. In this small study, acquired vemurafenib resistance or dose-limiting toxicity was not observed. Patients were not observed long enough to reveal secondary malignancies. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03410875.)
Collapse
Affiliation(s)
- Jae H Park
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Department of Medicine, Weill Cornell Medicine, New York
| | - Sean Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Benjamin H Durham
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Eric S Winer
- Leukemia Service, Department of Medicine, Dana-Farber Cancer Institute, Boston
| | | | | | - Shreya Vemuri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Madhulika Shukla
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Victoria Falco
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Bernadette Cuello
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Steven Gore
- Yale Cancer Center, New Haven, CT
- National Cancer Institute, Bethesda, MD
| | - Richard Stone
- Leukemia Service, Department of Medicine, Dana-Farber Cancer Institute, Boston
| | - Omar Abdel-Wahab
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Department of Medicine, Northwestern Comprehensive Cancer Center, Chicago
- Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago
| |
Collapse
|
10
|
Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol 2023; 23:595-610. [PMID: 36941354 PMCID: PMC11140722 DOI: 10.1038/s41577-023-00843-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells - a condition known as clonal haematopoiesis (CH) - are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.
Collapse
Affiliation(s)
- Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle L Robinette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
11
|
Yap J, Yuan J, Ng WH, Chen GB, Sim YRM, Goh KC, Teo J, Lim TYH, Goay SM, Teo JHJ, Lao Z, Lam P, Sabapathy K, Hu J. BRAF(V600E) mutation together with loss of Trp53 or pTEN drives the origination of hairy cell leukemia from B-lymphocytes. Mol Cancer 2023; 22:125. [PMID: 37543582 PMCID: PMC10403926 DOI: 10.1186/s12943-023-01817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2023] Open
Abstract
Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.
Collapse
Affiliation(s)
- Jiajun Yap
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jimin Yuan
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Urology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Geriatric Department, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Gao Bin Chen
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Yuen Rong M Sim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Kah Chun Goh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Joey Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Trixie Y H Lim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Shee Min Goay
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Jia Hao Jackie Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Zhentang Lao
- Department of Hematology, Singapore General Hospital, Blk7 Outram Road, 169608, Singapore, Singapore
| | - Paula Lam
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Physiology, National University of Singapore, 2 Medical Drive, 117597, Singapore, Singapore
- Cellvec Pte. Ltd, 100 Pasir Panjang Road, 118518, Singapore, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore.
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
12
|
Schroers-Martin JG, Soo J, Brisou G, Scherer F, Kurtz DM, Sworder BJ, Khodadoust MS, Jin MC, Bru A, Liu CL, Stehr H, Vineis P, Natkunam Y, Teras LR, Song JY, Nadel B, Diehn M, Roulland S, Alizadeh AA. Tracing Founder Mutations in Circulating and Tissue-Resident Follicular Lymphoma Precursors. Cancer Discov 2023; 13:1310-1323. [PMID: 36939219 PMCID: PMC10239329 DOI: 10.1158/2159-8290.cd-23-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
Follicular lymphomas (FL) are characterized by BCL2 translocations, often detectable in blood years before FL diagnosis, but also observed in aging healthy individuals, suggesting additional lesions are required for lymphomagenesis. We directly characterized early cooperating mutations by ultradeep sequencing of prediagnostic blood and tissue specimens from 48 subjects who ultimately developed FL. Strikingly, CREBBP lysine acetyltransferase (KAT) domain mutations were the most commonly observed precursor lesions, and largely distinguished patients developing FL (14/48, 29%) from healthy adults with or without detected BCL2 rearrangements (0/13, P = 0.03 and 0/20, P = 0.007, respectively). CREBBP variants were detectable a median of 5.8 years before FL diagnosis, were clonally selected in FL tumors, and appeared restricted to the committed B-cell lineage. These results suggest that mutations affecting the CREBBP KAT domain are common lesions in FL cancer precursor cells (CPC), with the potential for discriminating subjects at risk of developing FL or monitoring residual disease. SIGNIFICANCE Our study provides direct evidence for recurrent genetic aberrations preceding FL diagnosis, revealing the combination of BCL2 translocation with CREBBP KAT domain mutations as characteristic committed lesions of FL CPCs. Such prediagnostic mutations are detectable years before clinical diagnosis and may help discriminate individuals at risk for lymphoma development. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Joseph G. Schroers-Martin
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Joanne Soo
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Gabriel Brisou
- Aix-Marseille University, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Florian Scherer
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - David M. Kurtz
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Brian J. Sworder
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Michael S. Khodadoust
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Michael C. Jin
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Agnès Bru
- Aix-Marseille University, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Chih Long Liu
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Henning Stehr
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Yasodha Natkunam
- Department of Pathology, Stanford University Medical Center, Stanford, CA
| | | | - Joo Y. Song
- City of Hope Cancer Research Hospital, Duarte, CA
| | - Bertrand Nadel
- Aix-Marseille University, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Sandrine Roulland
- Aix-Marseille University, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Ash A. Alizadeh
- Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
Gargiulo E, Giordano M, Niemann CU, Moussay E, Paggetti J, Morande PE. The protective role of the microenvironment in hairy cell leukemia treatment: Facts and perspectives. Front Oncol 2023; 13:1122699. [PMID: 36968995 PMCID: PMC10031020 DOI: 10.3389/fonc.2023.1122699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Hairy cell leukemia (HCL) is an incurable, rare lymphoproliferative hematological malignancy of mature B cAlthough first line therapy with purine analogues leads to positive results, almost half of HCL patients relapse after 5-10 years, and standard treatment may not be an option due to intolerance or refractoriness. Proliferation and survival of HCL cells is regulated by surrounding accessory cells and soluble signals present in the tumor microenvironment, which actively contributes to disease progression. In vitro studies show that different therapeutic approaches tested in HCL impact the tumor microenvironment, and that this milieu offers a protection affecting treatment efficacy. Herein we explore the effects of the tumor microenvironment to different approved and experimental therapeutic options for HCL. Dissecting the complex interactions between leukemia cells and their milieu will be essential to develop new targeted therapies for HCL patients.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
- Chronic Lymphocytic Leukemia Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mirta Giordano
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carsten U. Niemann
- Chronic Lymphocytic Leukemia Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Moussay
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
14
|
Dong Q, Wang Y, Xiu Y, Sakr H, Burnworth B, Xu D, O'Brien T, Burke J, Hu S, Zeng G, Zhao C. Clonally related composite chronic lymphocytic leukaemia and mantle cell lymphoma. Br J Haematol 2023; 200:660-664. [PMID: 36375473 PMCID: PMC10162861 DOI: 10.1111/bjh.18565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Qianze Dong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yan Xiu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hany Sakr
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Dongbin Xu
- Hematologics Inc., Seattle, Washington, USA
| | - Timothy O'Brien
- Department of Medicine, Section of Hematology, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Juanita Burke
- Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gang Zeng
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Deciphering Genetic Alterations of Hairy Cell Leukemia and Hairy Cell Leukemia-like Disorders in 98 Patients. Cancers (Basel) 2022; 14:cancers14081904. [PMID: 35454811 PMCID: PMC9028144 DOI: 10.3390/cancers14081904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The diagnosis of hairy cell leukemia (cHCL) and HCL-like disorders, including the variant form of HCL (vHCL) and splenic diffuse red pulp lymphoma (SDRPL) can be challenging, particularly in complex situations. The integration of all data, including molecular data, is essential for distinguishing the different entities. The BRAFV600E mutation is identified in most cHCL cases, whereas it is absent in vHCL and SDRPL. MAP2K1 mutations are observed in half of vHCL cases and in cHCL BRAFWT and they are associated with a worse prognosis. The interest in deep sequencing for the diagnosis and prognosis of hairy cell leukemia and HCL-like disorders is essential. Some KLF2 genetic alterations have been localized on the AID consensus motif, suggesting an AID-induced mutation mechanism. KLF2 is the second most altered gene in HCL, and mutations must be investigated to confirm whether AID could be responsible for the genetic alterations in this gene. Clonal evolution can be observed in half of the cases. Abstract Hairy cell leukemia (cHCL) patients have, in most cases, a specific clinical and biological presentation with splenomegaly, anemia, leukopenia, neutropenia, monocytopenia and/or thrombocytopenia, identification of hairy cells that express CD103, CD123, CD25, CD11c and identification of the V600E mutation in the B-Raf proto-oncogene (BRAF) in 90% of cases. Monocytopenia is absent in vHCL and SDRPL patients and the abnormal cells do not express CD25 or CD123 and do not present the BRAFV600E mutation. Ten percent of cHCL patients are BRAFWT and the distinction between cHCL and HCL-like disorders including the variant form of HCL (vHCL) and splenic diffuse red pulp lymphoma (SDRPL) can be challenging. We performed deep sequencing in a large cohort of 84 cHCL and 16 HCL-like disorders to improve insights into the pathogenesis of the diseases. BRAF mutations were detected in 76/82 patients of cHCL (93%) and additional mutations were identified in Krüppel-like Factor 2 (KLF2) in 19 patients (23%) or CDKN1B in 6 patients (7.5%). Some KLF2 genetic alterations were localized on the cytidine deaminase (AID) consensus motif, suggesting AID-induced mutations. When analyzing sequential samples, a clonal evolution was identified in half of the cHCL patients (6/12 pts). Among the 16 patients with HCL-like disorders, we observed an enrichment of MAP2K1 mutations in vHCL/SDRPL (3/5 pts) and genes involved in the epigenetic regulation (KDM6A, EZH2, CREBBP, ARID1A) (3/5 pts). Furthermore, MAP2K1 mutations were associated with a bad prognosis and a shorter time to next treatment (TTNT) and progression-free survival (PFS), independently of the HCL classification.
Collapse
|
16
|
Lee Y, DiMaulo-Milk E, Leslie J, Ding L. Hematopoietic stem cells temporally transition to thrombopoietin dependence in the fetal liver. SCIENCE ADVANCES 2022; 8:eabm7688. [PMID: 35294228 PMCID: PMC8926339 DOI: 10.1126/sciadv.abm7688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Tissue stem cells temporally change intrinsic mechanisms to meet physiological demands. However, little is known whether and how stem cells rely on distinct extrinsic maintenance mechanisms over time. Here, we found that hematopoietic stem cells (HSCs) temporally transition to depend on thrombopoietin (TPO), a key extrinsic factor, from E16.5 onward in the developing liver. Deletion of Tpo reduced mTOR activity, induced differentiation gene expression, and preferentially depleted metabolically active HSCs. Ectopic activation of the JAK2 or MAPK pathway did not rescue HSCs in Tpo-/- mice. Enforced activation of the mTOR pathway by conditionally deleting Tsc1 significantly rescued HSCs and their gene expression in Tpo-/- mice. Lin28b intrinsically promoted mTOR activation in HSCs, and its expression diminished over time. Conditional deletion of Lin28b further reduced mTOR activity and strongly exacerbated HSC depletion in Tpo-/- mice. Therefore, HSCs temporally transition from intrinsic LIN28B-dependent to extrinsic TPO-dependent maintenance in the developing liver.
Collapse
|
17
|
Troussard X, Maître E, Cornet E. Hairy cell leukemia 2022: Update on diagnosis, risk-stratification, and treatment. Am J Hematol 2022; 97:226-236. [PMID: 34710243 DOI: 10.1002/ajh.26390] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogeneous group of mature lymphoid B-cell disorders characterized by the identification of hairy cells, a specific genetic profile, a different clinical course, and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11C, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral medullary infiltration and the presence of BRAFV600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood, and the immunoglobulin heavy chain variable region gene mutational status. VH4-34-positive HCL cases are associated with a poor prognosis. TREATMENT Patients should be treated only if HCL is symptomatic. Chemotherapy with risk adapted therapy purine analogs (PNAs) are indicated in first-line HCL patients. The use of chemo-immunotherapy combining PNAs and rituximab (R) represents an increasingly used therapeutic approach. Management of relapsed/refractory disease is based on the use of BRAF inhibitors (BRAFi) plus rituximab or MEK inhibitors (MEKi), recombinant immunoconjugates targeting CD22 or Bruton Tyrosine Kinase inhibitors (BTKi). However, the optimal sequence of the different treatments remains to be determined. The Bcl2-inhibitors (Bcl-2i) can play a major role in the future.
Collapse
Affiliation(s)
- Xavier Troussard
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
- Université Caen Normandie Caen Cedex France
| | - Elsa Maître
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
- Université Caen Normandie Caen Cedex France
| | - Edouard Cornet
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
- Université Caen Normandie Caen Cedex France
| |
Collapse
|
18
|
Oscier D, Stamatopoulos K, Mirandari A, Strefford J. The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers (Basel) 2022; 14:697. [PMID: 35158965 PMCID: PMC8833447 DOI: 10.3390/cancers14030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.
Collapse
Affiliation(s)
- David Oscier
- Department of Haematology, Royal Bournemouth and Christchurch NHS Trust, Bournemouth BH7 7DW, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Amatta Mirandari
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| | - Jonathan Strefford
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| |
Collapse
|
19
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
20
|
Rodriguez S, Celay J, Goicoechea I, Jimenez C, Botta C, Garcia-Barchino MJ, Garces JJ, Larrayoz M, Santos S, Alignani D, Vilas-Zornoza A, Perez C, Garate S, Sarvide S, Lopez A, Reinhardt HC, Carrasco YR, Sanchez-Garcia I, Larrayoz MJ, Calasanz MJ, Panizo C, Prosper F, Lamo-Espinosa JM, Motta M, Tucci A, Sacco A, Gentile M, Duarte S, Vitoria H, Geraldes C, Paiva A, Puig N, Garcia-Sanz R, Roccaro AM, Fuerte G, San Miguel JF, Martinez-Climent JA, Paiva B. Preneoplastic somatic mutations including MYD88L265P in lymphoplasmacytic lymphoma. SCIENCE ADVANCES 2022; 8:eabl4644. [PMID: 35044826 PMCID: PMC8769557 DOI: 10.1126/sciadv.abl4644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.
Collapse
Affiliation(s)
- Sara Rodriguez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jon Celay
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Ibai Goicoechea
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Jimenez
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria-José Garcia-Barchino
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Juan-Jose Garces
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marta Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Susana Santos
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Diego Alignani
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sonia Garate
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sarai Sarvide
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Aitziber Lopez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Hans-Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, DKTK Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)–CSIC, Madrid, Spain
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Maria-Jose Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Maria-Jose Calasanz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Carlos Panizo
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Maria Lamo-Espinosa
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marina Motta
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Tucci
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Massimo Gentile
- Department of Oncohematology, “Annunziata” Hospital, Cosenza, Italy
| | - Sara Duarte
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | | | | | - Artur Paiva
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Ramon Garcia-Sanz
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Jesus F. San Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Angel Martinez-Climent
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| |
Collapse
|
21
|
Kaushal A, Nooka AK, Carr AR, Pendleton KE, Barwick BG, Manalo J, McCachren SS, Gupta VA, Joseph NS, Hofmeister CC, Kaufman JL, Heffner LT, Ansell SM, Boise LH, Lonial S, Dhodapkar KM, Dhodapkar MV. Aberrant Extrafollicular B Cells, Immune Dysfunction, Myeloid Inflammation, and MyD88-Mutant Progenitors Precede Waldenstrom Macroglobulinemia. Blood Cancer Discov 2021; 2:600-615. [PMID: 34778800 PMCID: PMC8580616 DOI: 10.1158/2643-3230.bcd-21-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Waldenstrom macroglobulinemia (WM) and its precursor IgM gammopathy are distinct disorders characterized by clonal mature IgM-expressing B-cell outgrowth in the bone marrow. Here, we show by high-dimensional single-cell immunogenomic profiling of patient samples that these disorders originate in the setting of global B-cell compartment alterations, characterized by expansion of genomically aberrant extrafollicular B cells of the nonmalignant clonotype. Alterations in the immune microenvironment preceding malignant clonal expansion include myeloid inflammation and naïve B- and T-cell depletion. Host response to these early lesions involves clone-specific T-cell immunity that may include MYD88 mutation-specific responses. Hematopoietic progenitors carry the oncogenic MYD88 mutations characteristic of the malignant WM clone. These data support a model for WM pathogenesis wherein oncogenic alterations and signaling in progenitors, myeloid inflammation, and global alterations in extrafollicular B cells create the milieu promoting extranodal pattern of growth in differentiated malignant cells. SIGNIFICANCE These data provide evidence that growth of the malignant clone in WM is preceded by expansion of extrafollicular B cells, myeloid inflammation, and immune dysfunction in the preneoplastic phase. These changes may be related in part to MYD88 oncogenic signaling in pre-B progenitor cells and suggest a novel model for WM pathogenesis. This article is highlighted in the In This Issue feature, p. 549.
Collapse
Affiliation(s)
- Akhilesh Kaushal
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Ajay K. Nooka
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Allison R. Carr
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Katherine E. Pendleton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Julia Manalo
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Samuel S. McCachren
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Vikas A. Gupta
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Nisha S. Joseph
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Craig C. Hofmeister
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jonathan L. Kaufman
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Leonard T. Heffner
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | - Lawrence H. Boise
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Corresponding Authors: Madhav V. Dhodapkar, Winship Cancer Institute, Emory University, 1364 Clifton Road NE, Atlanta, GA 30322. E-mail: ; and Kavita M. Dhodapkar,
| | - Madhav V. Dhodapkar
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Corresponding Authors: Madhav V. Dhodapkar, Winship Cancer Institute, Emory University, 1364 Clifton Road NE, Atlanta, GA 30322. E-mail: ; and Kavita M. Dhodapkar,
| |
Collapse
|
22
|
The Biology of Classic Hairy Cell Leukemia. Int J Mol Sci 2021; 22:ijms22157780. [PMID: 34360545 PMCID: PMC8346068 DOI: 10.3390/ijms22157780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Classic hairy cell leukemia (HCL) is a rare mature B-cell malignancy associated with pancytopenia and infectious complications due to progressive infiltration of the bone marrow and spleen. Despite tremendous therapeutic advances achieved with the implementation of purine analogues such as cladribine into clinical practice, the culprit biologic alterations driving this fascinating hematologic disease have long stayed concealed. Nearly 10 years ago, BRAF V600E was finally identified as a key activating mutation detectable in almost all HCL patients and throughout the entire course of the disease. However, additional oncogenic biologic features seem mandatory to enable HCL transformation, an open issue still under active investigation. This review summarizes the current understanding of key pathogenic mechanisms implicated in HCL and discusses major hurdles to overcome in the context of other BRAF-mutated malignancies.
Collapse
|
23
|
Fugere T, Harley S, Godbole A. Classic hairy cell leukemia with an aggressive presentation. Proc AMIA Symp 2021; 34:721-723. [PMID: 34733001 PMCID: PMC8545148 DOI: 10.1080/08998280.2021.1934344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022] Open
Abstract
Hairy cell leukemia is an indolent neoplasm involving mature B cells with distinct cytologic and immunophenotypic features. It typically presents in older adults with pancytopenia and splenomegaly. We describe a patient who presented with severe anemia and thrombocytopenia, leukocytosis, and splenomegaly. He had an unusually complicated clinical course including pancytopenia refractory to multiple transfusions, oropharyngeal bleeding requiring intubation for airway protection, subdural hematoma after minor trauma, and sepsis due to Staphylococcus aureus bacteremia. This case highlights the importance of considering hairy cell leukemia in the differential diagnosis of all patients with cytopenia and splenomegaly, as this is a disease that has excellent response to treatment with purine analogs.
Collapse
Affiliation(s)
- Tyler Fugere
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas;
| | - Susan Harley
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas;
| | - Abhijit Godbole
- Hematology/Oncology Division, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
BRAFV 600E or mutant MAP2K1 human CD34+ cells establish Langerhans cell-like histiocytosis in immune-deficient mice. Blood Adv 2021; 4:4912-4917. [PMID: 33035332 DOI: 10.1182/bloodadvances.2020001926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Key Points
BRAFV600E or mutant MAP2K1 expression in human CB CD34+ HSPCs lead to Langerhans cell–like histiocytosis in immune-deficient mice. BRAFV600E-expressing human CB CD34+ HSPCs did not generate hairy cell leukemia in xenograft mouse models.
Collapse
|
25
|
Chakraborty R, Abdel-Wahab O, Durham BH. MAP-Kinase-Driven Hematopoietic Neoplasms: A Decade of Progress in the Molecular Age. Cold Spring Harb Perspect Med 2021; 11:a034892. [PMID: 32601132 PMCID: PMC7770072 DOI: 10.1101/cshperspect.a034892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in members of the mitogen-activated protein kinase (MAPK) pathway are extensively studied in epithelial malignancies, with BRAF mutations being one of the most common alterations activating this pathway. However, BRAF mutations are overall quite rare in hematological malignancies. Studies over the past decade have identified high-frequency BRAF V600E, MAP2K1, and other kinase alterations in two groups of MAPK-driven hematopoietic neoplasms: hairy cell leukemia (HCL) and the systemic histiocytoses. Despite HCL and histiocytoses sharing common molecular alterations, these are phenotypically distinct malignancies that differ in respect to clinical presentation and suspected cell of origin. The purpose of this review is to highlight the molecular advancements over the last decade in the histiocytic neoplasms and HCL and discuss the impact these insights have had on our understanding of the molecular pathophysiology, cellular origins, and therapy of these enigmatic diseases as well as perspectives for future research directions.
Collapse
Affiliation(s)
- Rikhia Chakraborty
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
26
|
Kikushige Y. Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. J Clin Exp Hematop 2020; 60:146-158. [PMID: 33148933 PMCID: PMC7810248 DOI: 10.3960/jslrt.20036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is characterized by the clonal expansion of mature CD5+ B cells. There have been substantial advances in the field of CLL research in the last decade, including the identification of recurrent mutations, and clarification of clonal architectures, signaling molecules, and the multistep leukemogenic process, providing a comprehensive understanding of CLL pathogenesis. Furthermore, the development of therapeutic approaches, especially that of molecular target therapies against CLL, has markedly improved the standard of care for CLL. This review focuses on the recent insights made in CLL leukemogenesis and the development of novel therapeutic strategies.
Collapse
MESH Headings
- Adult
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Mutation
Collapse
|
27
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
28
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
29
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Kikushige Y. Pathophysiology of chronic lymphocytic leukemia and human B1 cell development. Int J Hematol 2019; 111:634-641. [PMID: 31797231 DOI: 10.1007/s12185-019-02788-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL), the most frequent type of leukemia in adults, is a lymphoproliferative disease characterized by the clonal expansion of mature CD5+ B cells in peripheral blood, bone marrow, and secondary lymphoid tissues. Over the past decade, substantial advances have been made in understanding the pathogenesis of CLL, including the identification of recurrent mutations, and clarification of clonal architectures, transcriptome analyses, and the multistep leukemogenic process. The biology of CLL is now better understood. The present review focuses on recent insights into CLL leukemogenesis, emphasizing the role of genetic lesions, and the multistep process initiating from very immature hematopoietic stem cells. Finally, we also review progress in the study of human B1 B cells, the putative normal counterparts of CLL cells.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
31
|
Maitre E, Cornet E, Troussard X. Hairy cell leukemia: 2020 update on diagnosis, risk stratification, and treatment. Am J Hematol 2019; 94:1413-1422. [PMID: 31591741 DOI: 10.1002/ajh.25653] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogeneous group of mature lymphoid B-cell disorders. They are characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of three or four based on the CD11C, CD103, CD123, and CD25 expression. Also, the trephine biopsy which makes it possible to specify the degree of tumoral medullary infiltration and the presence of BRAF V600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood and the immunoglobulin heavy chain variable region gene mutational status. The VH4-34 positive HCL cases are associated with poor prognosis. TREATMENT Risk adapted therapy with purine nucleoside analogs (PNA) are indicated in symptomatic first line HCL patients. The use of PNA followed by rituximab represents an alternative option. Management of progressive or refractory disease is based on the use of BRAF inhibitors associated or not with MEK inhibitors, recombinant immunoconjugates targeting CD22 or BCR inhibitors.
Collapse
Affiliation(s)
- Elsa Maitre
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
| | - Edouard Cornet
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
| | | |
Collapse
|
32
|
Lee WY. "Hairiness" is a Facsimile of Reorganized Cytoskeletons: A Cytopathic Effect of Coxiella burnetii. Yonsei Med J 2019; 60:890-897. [PMID: 31538423 PMCID: PMC6753337 DOI: 10.3349/ymj.2019.60.10.890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
In 1993, I reported that Coxiella burnetii transforms human B cells into hairy cells (cbHCs), the first hairy cell reported outside of hairy cell leukemia (HCL). Over last few decades, advances in molecular biology have provided evidence supporting that C. burnetii induces hairiness and inhibits the apoptosis of host cells. The present review summarizes new information in support of cbHC. C. burnetii was shown to induce reorganization of the cytoskeleton and to inhibit apoptosis in host cells. Peritoneal B1a cells were found to be permissive for virulent C. burnetii Nine Mile phase I (NMI) strains in mice. C. burnetii severely impaired E-cad expression in circulating cells of Q fever patients. B-cell non-Hodgkin lymphoma was linked to C. burnetii. Mutation of BRAF V600E was pronounced in HCL, but "hairiness" was not linked to the mutation. Risk factors shared among coxiellosis and HCL in humans and animals were reported in patients with Q-fever. Accordingly, I propose that C. burnetii induces reorganization of the cytoskeleton and inhibits apoptosis as cytopathic effects that are not target cell specific. The observed hairiness in cbHC appears to be a fixed image of dynamic nature, and hairy cells in HCL are distinct among lymphoid cells in circulation. As the cytoskeleton plays key roles in maintaining cell structural integrity in health and disease, the pathophysiology of similar cytopathic effects should be addressed in other diseases, such as myopathies, B-cell dyscrasias, and autoimmune syndromes.
Collapse
Affiliation(s)
- Won Young Lee
- Emeritus Professor, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Maitre E, Wiber M, Cornet E, Troussard X. [Hairy cell leukemia]. Presse Med 2019; 48:842-849. [PMID: 31447330 DOI: 10.1016/j.lpm.2019.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
Hairy cell leukemia (HCL) is a well-defined entity. Proliferation with hair cells, morphological aspects of hairy cells are easy to identify. Hairy cells express markers CD11c, CD25, CD103 and CD123. In 80% of cases, a BRAFV600E mutation is highlighted. In the absence of a BRAFV600E mutation, the differential diagnosis with other hair cell proliferations can be difficult, especially with the variant form of hairy leukemia, diffuse lymphoma of the red pulp of the spleen or splenic lymphoma of the marginal zone. Purine analogues (PNA) with or without anti-CD20 antibodies remain the first-line reference treatment. In case of relapse or resistance to PNA, BRAF inhibitors, with or without MEK inhibitors, are proposed in patients with the mutation. In the absence of BRAFV600E mutation, moxetumomab-pasudotox represents an interesting alternative. A multidisciplinary discussion is always necessary. In complex cases, expert advice is desirable.
Collapse
Affiliation(s)
- Elsa Maitre
- CHU de Caen, laboratoire d'hématologie, 14000 Caen, France
| | - Margaux Wiber
- CHU de Caen, laboratoire d'hématologie, 14000 Caen, France
| | - Edouard Cornet
- CHU de Caen, laboratoire d'hématologie, 14000 Caen, France
| | | |
Collapse
|
34
|
Broccoli A, Bertuzzi C, Fiorentino M, Morigi A, Stefoni V, Agostinelli C, Argnani L, Cavo M, Zinzani PL. BRAF V600E-positive monomorphic epitheliotropic intestinal T-cell lymphoma complicating the course of hairy cell leukemia. Onco Targets Ther 2019; 12:4807-4812. [PMID: 31354304 PMCID: PMC6590676 DOI: 10.2147/ott.s202061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/03/2019] [Indexed: 11/23/2022] Open
Abstract
Hairy cell leukemia (HCL) is an uncommon B-cell chronic lymphoproliferative disorder whose pathogenesis and recurrence are strictly dependent on the presence of the BRAF V600E mutant. A 65-year-old male presented a monomorphic epitheliotropic intestinal T-cell lymphoma (formerly enteropathy-associated T-cell lymphoma, type II) with HCL not responding to first-line induction with cladribine. The intestinal lymphoma bears the BRAF V600E mutant, which is the molecular hallmark of HCL, being implicated in its pathogenesis. The case is of interest, as it provides the first description of a BRAF V600E-positive intestinal T-cell lymphoma, along with immunohistochemical and molecular demonstration, occurring in concomitance with HCL. A novel digital PCR-base method for HCL disease assessment is also suggested.
Collapse
Affiliation(s)
- Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Clara Bertuzzi
- Hematopathology Unit, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | | | - Alice Morigi
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Vittorio Stefoni
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Claudio Agostinelli
- Hematopathology Unit, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Lisa Argnani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Michele Cavo
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Ryan RJH, Wilcox RA. Ontogeny, Genetics, Molecular Biology, and Classification of B- and T-Cell Non-Hodgkin Lymphoma. Hematol Oncol Clin North Am 2019; 33:553-574. [PMID: 31229154 DOI: 10.1016/j.hoc.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mature B- and T-cell lymphomas are diverse in their biology, etiology, genetics, clinical behavior, and response to specific therapies. Here, we review the principles of diagnostic classification for non-Hodgkin lymphomas, summarize the characteristic features of major entities, and place recent biological and molecular findings in the context of principles that are applicable across the spectrum of mature lymphoid cancers.
Collapse
Affiliation(s)
- Russell James Hubbard Ryan
- Department of Pathology, University of Michigan Medical School, 4306 Rogel Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5936, USA.
| | - Ryan Alan Wilcox
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, 4310 Rogel Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5936, USA
| |
Collapse
|
36
|
Loh JW, Khiabanian H. Leukemia’s Clonal Evolution in Development, Progression, and Relapse. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00157-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Geyer MB, Abdel-Wahab O, Tallman MS. BRAF in the cross-hairs. Expert Rev Hematol 2019; 12:183-193. [PMID: 30782032 PMCID: PMC6614740 DOI: 10.1080/17474086.2019.1583553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Hairy cell leukemia (HCL) is a rare, chronic B-cell lymphoproliferative disorder characterized by distinctive morphologic features and an indolent clinical course. The discovery of a recurrent activating mutation in BRAF (BRAF V600E) as a disease-defining genetic event in HCL has substantial diagnostic and therapeutic implications. Areas covered: Herein the authors review the role of BRAF V600E and RAF-MEK-ERK signaling in the pathogenesis of HCL, anecdotal clinical reports of BRAF inhibitor monotherapy in management of relapsed or refractory HCL, larger phase 2 trials investigating efficacy of BRAF inhibitor therapy for HCL, adverse effects commonly associated with BRAF inhibitor therapy, including cutaneous toxicity, and mechanisms of therapeutic resistance. Expert opinion: Ongoing and planned studies will help to optimize the use of BRAF inhibitor therapy for HCL by determining the efficacy of BRAF inhibition in combination with other antigen targeted or molecularly targeted therapies, and more broadly, to determine how hematologists can best utilize and sequence emerging diagnostic and therapeutic modalities in the care of patients with newly diagnosed and relapsed or refractory HCL.
Collapse
Affiliation(s)
- Mark B. Geyer
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Martin S. Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
38
|
Kobayashi M, Tojo A. Langerhans cell histiocytosis in adults: Advances in pathophysiology and treatment. Cancer Sci 2018; 109:3707-3713. [PMID: 30281871 PMCID: PMC6272080 DOI: 10.1111/cas.13817] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare systemic disorder characterized by the accumulation of CD1a+/Langerin+ LCH cells and wide-ranging organ involvement. Langerhans cell histiocytosis was formerly referred to as histiocytosis X, until it was renamed in 1987. Langerhans cell histiocytosis β was named for its morphological similarity to skin Langerhans cells. Studies have shown that LCH cells originate from myeloid dendritic cells rather than skin Langerhans cells. There has been significant debate regarding whether LCH should be defined as an immune disorder or a neoplasm. A breakthrough in understanding the pathogenesis of LCH occurred in 2010 when a gain-of-function mutation in BRAF (V600E) was identified in more than half of LCH patient samples. Studies have since reported that 100% of LCH cases show ERK phosphorylation, indicating that LCH is likely to be a clonally expanding myeloid neoplasm. Langerhans cell histiocytosis is now defined as an inflammatory myeloid neoplasm in the revised 2016 Histiocyte Society classification. Randomized trials and novel approaches have led to improved outcomes for pediatric patients, but no well-defined treatments for adult patients have been developed to date. Although LCH is not fatal in all cases, delayed diagnosis or treatment can result in serious impairment of organ function and decreased quality of life. This study summarizes recent advances in the pathophysiology and treatment of adult LCH, to raise awareness of this "orphan disease".
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Division of Molecular TherapyAdvanced Clinical Research CenterInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Arinobu Tojo
- Division of Molecular TherapyAdvanced Clinical Research CenterInstitute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
39
|
Hattori K, Sakata-Yanagimoto M, Kusakabe M, Nanmoku T, Suehara Y, Matsuoka R, Noguchi M, Yokoyama Y, Kato T, Kurita N, Nishikii H, Obara N, Takano S, Ishikawa E, Matsumura A, Muratani M, Hasegawa Y, Chiba S. Genetic evidence implies that primary and relapsed tumors arise from common precursor cells in primary central nervous system lymphoma. Cancer Sci 2018; 110:401-407. [PMID: 30353605 PMCID: PMC6317941 DOI: 10.1111/cas.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare subtype of lymphoma that arises within the brain or the eyes. PCNSL recurs within the central nervous system (CNS) in most relapsed cases, whereas extra‐CNS relapse is experienced in rare cases. The present study aimed at identifying the presence of common precursor cells (CPC) for primary intra‐ and relapsed extra‐CNS tumors, and further assessing the initiating events in bone marrow (BM). Targeted deep sequencing was carried out for five paired primary intra‐ and relapsed extra‐CNS tumors of PCNSL. Two to five mutations were shared by each pair of intra‐ and extra‐CNS tumors. In particular, MYD88 mutations, L265P in three and P258L in one, were shared by four pairs. Unique somatic mutations were observed in all five intra‐CNS tumors and in four out of five extra‐CNS tumors. Remarkably, IgH clones in the intra‐ and the extra‐CNS tumors in two pairs were distinct from each other, whereas one pair of tumors shared identical monoclonal IgH rearrangement. In a cohort of 23 PCNSL patients, L265P MYD88 mutations were examined in tumor‐free BM mononuclear cells (MNC) in which the PCNSL tumors had L265P MYD88 mutations. L265P MYD88 mutations were detected by a droplet digital PCR method in nine out of 23 bone marrow mononuclear cells. These results suggest that intra‐ and extra‐tumors are derived from CPC with MYD88 mutations in most PCNSL, arising either before or after IgH rearrangement. The initiating MYD88 mutations may occur during B‐cell differentiation in BM.
Collapse
Affiliation(s)
- Keiichiro Hattori
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Manabu Kusakabe
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toru Nanmoku
- Department of Clinical Laboratory, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryota Matsuoka
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhisa Yokoyama
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayasu Kato
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Kurita
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hidekazu Nishikii
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoshi Obara
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shingo Takano
- Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Hasegawa
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shigeru Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
40
|
Schwentner R, Jug G, Kauer MO, Schnöller T, Waidhofer-Söllner P, Holter W, Hutter C. JAG2 signaling induces differentiation of CD14 + monocytes into Langerhans cell histiocytosis-like cells. J Leukoc Biol 2018; 105:101-111. [PMID: 30296338 DOI: 10.1002/jlb.1a0318-098r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/12/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a MAPK pathway-driven disease characterized by the accumulation of CD1a+ langerin+ cells of unknown origin. We have previously reported that the Notch signaling pathway is active in LCH lesions and that the Notch ligand Jagged2 (JAG2) induces CD1a and langerin expression in monocytes in vitro. Here we show that Notch signaling induces monocytes to acquire an LCH gene signature and that Notch inhibition suppresses the LCH phenotype. In contrast, while also CD1c+ dendritic cells or IL-4-stimulated CD14+ monocytes acquire CD1a and langerin positivity in culture, their gene expression profiles and surface phenotypes are more different from primary LCH cells. We propose a model where CD14+ monocytes serve as LCH cell precursor and JAG2-mediated activation of the Notch signaling pathway initiates a differentiation of monocytes toward LCH cells in selected niches and thereby contributes to LCH pathogenesis.
Collapse
Affiliation(s)
- Raphaela Schwentner
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Gunhild Jug
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian O Kauer
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Thomas Schnöller
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | - Wolfgang Holter
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Caroline Hutter
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Distinct patterns of clonal evolution in patients with concurrent myelo- and lymphoproliferative neoplasms. Blood 2018; 132:2201-2205. [PMID: 30249785 DOI: 10.1182/blood-2018-04-845065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
42
|
Itamura H, Ide M, Sato A, Sueoka-Aragane N, Sueoka E, Nishida A, Masunari T, Aoki S, Takizawa J, Suzumiya J, Kimura S. Identification of the BRAF V600E mutation in Japanese patients with hairy cell leukemia and related diseases using a quenching probe method. Int J Hematol 2018; 108:416-422. [PMID: 30043333 DOI: 10.1007/s12185-018-2506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/11/2023]
Abstract
Hairy cell leukemia (HCL) is a rare B-cell lymphoid malignancy that is difficult to distinguish from other morphological variants. The frequency of HCL has not been determined accurately in Japan. Recent studies revealed that the BRAF V600E mutation is the causal genetic event in HCL. We assessed the BRAF mutation in Japanese patients with HCL and related diseases using the quenching probe (QP) method, a single-nucleotide polymorphism detection system, and evaluated the incidence rate of HCL among Japanese patients with chronic lymphocytic leukemia, and related diseases. We identified 18 cases (33.3%) harboring the BRAF mutation among 54 patients diagnosed with, or suspected of having HCL. Of BRAF V600E-positive patients, 7 were only detected using the QP method, not by direct sequencing, whereas 11 were positive using both tests. In a larger cohort of Japanese patients diagnosed with chronic lymphoid leukemia or related diseases, the frequency of HCL was 4%. Patients with the BRAF V600E mutation had a significantly higher frequency of neutropenia, thrombocytopenia, and elevated soluble interleukin-2 receptor and common B-cell surface markers than patients without the mutation. Our results confirm that BRAF V600E-positive HCL is a relatively rare disorder in the Japanese leukemia patient population.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Masaru Ide
- Department of Internal Medicine, Oda Hospital, Kashima, Japan
| | - Akemi Sato
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Taro Masunari
- Department of Hematology, Chugoku Central Hospital, Hiroshima, Japan
| | - Sadao Aoki
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Jun Takizawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, School of Medicine, Shimane University, Izumo, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| |
Collapse
|
43
|
Maitre E, Bertrand P, Maingonnat C, Viailly PJ, Wiber M, Naguib D, Salaün V, Cornet E, Damaj G, Sola B, Jardin F, Troussard X. New generation sequencing of targeted genes in the classical and the variant form of hairy cell leukemia highlights mutations in epigenetic regulation genes. Oncotarget 2018; 9:28866-28876. [PMID: 29989027 PMCID: PMC6034755 DOI: 10.18632/oncotarget.25601] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Classical hairy cell leukemia (HCL-c) is a rare lymphoid neoplasm. BRAFV600E mutation, detected in more than 80% of the cases, is described as a driver mutation, but additional genetic abnormalities appear to be necessary for the disease progression. For cases of HCL-c harboring a wild-type BRAF gene, the differential diagnosis of the variant form of HCL (HCL-v) or splenic diffuse red pulp lymphoma (SDRPL) is complex. We selected a panel of 21 relevant genes based on a literature review of whole exome sequencing studies (BRAF, MAP2K1, DUSP2, MAPK15, ARID1A, ARID1B, EZH2, KDM6A, CREBBP, TP53, CDKN1B, XPO1, KLF2, CXCR4, NOTH1, NOTCH2, MYD88, ANXA1, U2AF1, BCOR, and ABCA8). We analyzed 20 HCL-c and 4 HCL-v patients. The analysis of diagnostic samples mutations in BRAF (n = 18), KLF2 (n = 4), MAP2K1 (n = 3), KDM6A (n = 2), CDKN1B (n = 2), ARID1A (n = 2), CREBBP (n = 2) NOTCH1 (n = 1) and ARID1B (n = 1). BRAFV600E was found in 90% (18/20) of HCL-c patients. In HCL-c patients with BRAFV600E, other mutations were found in 33% (6/18) of cases. All 4 HCL-v patients had mutations in epigenetic regulatory genes: KDM6A (n = 2), CREBBP (n = 1) or ARID1A (n = 1). The analysis of sequential samples (at diagnosis and relapse) from 5 patients (2 HCL-c and 3 HCL-v), showed the presence of 2 new subclonal mutations (BCORE1430X and XPO1E571K) in one patient and variations of the mutated allele frequency in 2 other cases. In the HCL-v disease, we described new mutations targeting KDM6A that encode a lysine demethylase protein. This opens new perspectives for personalized medicine for this group of patients.
Collapse
Affiliation(s)
- Elsa Maitre
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France
| | | | | | | | | | - Dina Naguib
- Laboratoire d'hématologie, CHU Caen, Caen, France
| | | | - Edouard Cornet
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France.,Laboratoire d'hématologie, CHU Caen, Caen, France
| | - Gandhi Damaj
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France.,Institut d'Hématologie de Basse-Normandie, CHU Caen, Caen, France
| | - Brigitte Sola
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France
| | - Fabrice Jardin
- Normandie Univ, INSERM U1245, Université de Rouen, Rouen, France.,Service d'hématologie, Centre Henri Becquerel, Rouen, France
| | - Xavier Troussard
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France.,Laboratoire d'hématologie, CHU Caen, Caen, France.,Institut d'Hématologie de Basse-Normandie, CHU Caen, Caen, France
| |
Collapse
|
44
|
Roider T, Falini B, Dietrich S. Recent advances in understanding and managing hairy cell leukemia. F1000Res 2018; 7:F1000 Faculty Rev-509. [PMID: 29770206 PMCID: PMC5931274 DOI: 10.12688/f1000research.13265.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 01/15/2023] Open
Abstract
Hairy cell leukemia is a rare B-cell malignancy that is characterized by an indolent course. It was initially described as a distinct entity in 1958. Before the establishment of modern treatment, median survival was only 4 years. Since then, major advances in the treatment and understanding of the biology and genomic landscape of hairy cell leukemia have been made. This review summarizes the present understanding of hairy cell leukemia with particular focus on the development of novel and targeted approaches to treatment.
Collapse
Affiliation(s)
- Tobias Roider
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Sascha Dietrich
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Critical influences on the pathogenesis of follicular lymphoma. Blood 2018; 131:2297-2306. [PMID: 29666116 DOI: 10.1182/blood-2017-11-764365] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
The development of follicular lymphoma (FL) from a founder B cell with an upregulation of B-cell lymphoma 2 (BCL2), via the t(14;18) translocation, to a proliferating clone, poised to undergo further transformation to an aggressive lymphoma, illustrates the opportunistic Darwinian process of tumorigenesis. Protection against apoptosis allows an innocent cell to persist and divide, with dangerous accumulation of further mutational changes, commonly involving inactivation of chromatin-modifying genes. But this is not all. FL cells reflect normal B cells in relying on expression of surface immunoglobulin. In doing so, they add another supportive mechanism by exploiting the natural process of somatic hypermutation of the IGV genes. Positive selection of motifs for addition of glycan into the antigen-binding sites of virtually all cases, and the placement of unusual mannoses in those sites, reveals a posttranslational strategy to engage the microenvironment. A bridge between mannosylated surface immunoglobulin of FL cells and macrophage-expressed dendritic cell-specific ICAM-3-grabbing nonintegrin produces a persistent low-level signal that appears essential for life in the hostile germinal center. Early-stage FL therefore requires a triad of changes: protection from apoptosis, mutations in chromatin modifiers, and an ability to interact with lectin-expressing macrophages. These changes are common and persistent. Genetic/epigenetic analysis is providing important data but investigation of the posttranslational landscape is the next challenge. We have one glimpse of its operation via the influence of added glycan on the B-cell receptor of FL. The consequential interaction with environmental lectins illustrates how posttranslational modifications can be exploited by tumor cells, and could lead to new approaches to therapy.
Collapse
|
46
|
Kreitman RJ, Arons E. Update on hairy cell leukemia. CLINICAL ADVANCES IN HEMATOLOGY & ONCOLOGY : H&O 2018; 16:205-215. [PMID: 29742076 PMCID: PMC6290912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hairy cell leukemia (HCL) is a chronic B-cell malignancy with multiple treatment options, including several that are investigational. Patients present with pancytopenia and splenomegaly, owing to the infiltration of leukemic cells expressing CD22, CD25, CD20, CD103, tartrate-resistant acid phosphatase (TRAP), annexin A1 (ANXA1), and the BRAF V600E mutation. A variant lacking CD25, ANXA1, TRAP, and the BRAF V600E mutation, called HCLv, is more aggressive and is classified as a separate disease. A molecularly defined variant expressing unmutated immunoglobulin heavy variable 4-34 (IGHV4-34) is also aggressive, lacks the BRAF V600E mutation, and has a phenotype of HCL or HCLv. The standard first-line treatment, which has remained unchanged for the past 25 to 30 years, is single-agent therapy with a purine analogue, either cladribine or pentostatin. This approach produces a high rate of complete remission. Residual traces of HCL cells, referred to as minimal residual disease, are present in most patients and cause frequent relapse. Repeated treatment with a purine analogue can restore remission, but at decreasing rates and with increasing cumulative toxicity. Rituximab has limited activity as a single agent but achieves high complete remission rates without minimal residual disease when combined with purine analogues, albeit with chemotherapy-associated toxicity. Investigational nonchemotherapy options include moxetumomab pasudotox, which targets CD22; vemurafenib or dabrafenib, each of which targets the BRAF V600E protein; trametinib, which targets mitogen-activated protein kinase enzyme (MEK); and ibrutinib, which targets Bruton tyrosine kinase (BTK).
Collapse
Affiliation(s)
- Robert J Kreitman
- National Cancer Institute's Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Evgeny Arons
- National Cancer Institute's Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553:418-426. [PMID: 29364285 PMCID: PMC6555401 DOI: 10.1038/nature25022] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Collapse
Affiliation(s)
- Elisa Laurenti
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| |
Collapse
|
48
|
Taylor J, Abdel-Wahab O. Stem Cell Model of Hematologic Diseases. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Troussard X, Cornet E. Hairy cell leukemia 2018: Update on diagnosis, risk-stratification, and treatment. Am J Hematol 2017; 92:1382-1390. [PMID: 29110361 PMCID: PMC5698705 DOI: 10.1002/ajh.24936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023]
Abstract
Disease overview Hairy cell leukemia (HCL) and HCL‐like disorders, including HCL variant (HCL‐V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogeneous group of mature lymphoid B‐cell disorders, characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. Diagnosis Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11C, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral medullary infiltration and the presence of BRAF V600E somatic mutation. Risk stratification Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood and the immunoglobulin heavy chain variable region gene mutational status. VH4‐34 positive HCL cases are associated with poor prognosis Risk adapted therapy Purine analogs (PNA) are indicated in symptomatic first line HCL patients. The use of PNA followed by rituximab represents an alternative option. Management of progressive or refractory disease It is based on the use of BRAF inhibitors associated or not with MEK inhibitors, recombinant immunoconjugates targeting CD22 or BCR inhibitors.
Collapse
Affiliation(s)
| | - Edouard Cornet
- Laboratoire Hématologie, CHU Caen, 14 033; Caen Cedex France
| |
Collapse
|
50
|
Mature lymphoid malignancies: origin, stem cells, and chronicity. Blood Adv 2017; 1:2444-2455. [PMID: 29296894 DOI: 10.1182/bloodadvances.2017008854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic behavior of mature lymphoid malignancies, with relapses occurring years apart in many patients, has until recently been unexplained. Patterns of relapse also differ vastly between disease entities, with some being highly curable by chemotherapy whereas others are destined to reemerge after treatment. Lately, the use of next-generation sequencing techniques has revealed essential information on the clonal evolution of lymphoid malignancies. Also, experimental xenograft transplantation point to the possible existence of an ancestral (stem) cell. Such a malignant lymphoid stem cell population could potentially evade current therapies and be the cause of chronicity and death in lymphoma patients; however, the evidence is divergent across disease entities and between studies. In this review we present an overview of genetic studies, case reports, and experimental evidence of the source of mature lymphoid malignancy and discuss the perspectives.
Collapse
|