1
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
2
|
Schönrich G, Abdelaziz MO, Raftery MJ. Epstein-Barr virus, interleukin-10 and multiple sclerosis: A ménage à trois. Front Immunol 2022; 13:1028972. [PMID: 36275700 PMCID: PMC9585213 DOI: 10.3389/fimmu.2022.1028972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease that is characterized by inflammation and demyelination of nerve cells. There is strong evidence that Epstein-Barr virus (EBV), a human herpesvirus infecting B cells, greatly increases the risk of subsequent MS. Intriguingly, EBV not only induces human interleukin-10 but also encodes a homologue of this molecule, which is a key anti-inflammatory cytokine of the immune system. Although EBV-encoded IL-10 (ebvIL-10) has a high amino acid identity with its cellular counterpart (cIL-10), it shows more restricted and partially weaker functionality. We propose that both EBV-induced cIL-10 and ebvIL-10 act in a temporally and functionally coordinated manner helping the pathogen to establish latency in B cells and, at the same time, to balance the function of antiviral T cells. As a result, the EBV load persisting in the immune system is kept at a constant but individually different level (set point). During this immunological tug of war between virus and host, however, MS can be induced as collateral damage if the set point is too high. Here, we discuss a possible role of ebvIL-10 and EBV-induced cIL-10 in EBV-driven pathogenesis of MS.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,*Correspondence: Günther Schönrich,
| | - Mohammed O. Abdelaziz
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Hematology, Oncology and Tumor Immunology (CCM), Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
4
|
Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 2017; 108:159-172. [PMID: 28844788 DOI: 10.1016/j.nbd.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by active immunization of C57BL/6 mice with peptide from myelin oligodendrocyte protein (MOG35-55), is a neuroinflammatory, demyelinating disease widely recognized as an animal model of multiple sclerosis (MS). Typically, EAE presents with an ascending course of paralysis, and inflammation that is predominantly localized to the spinal cord. Recent studies have further indicated that inflammation - in both MS and EAE - might initiate within the meninges and propagate from there to the underlying parenchyma. However, the patterns of inflammation within the respective meningeal and parenchymal compartments along the length of the spinal cord, and the progression with which these patterns develop during EAE, have yet to be detailed. Such analysis could hold key to identifying factors critical for spreading, as well as constraining, inflammation along the neuraxis. To address this issue, high-resolution 3-dimensional (3D) confocal microscopy was performed to visualize, in detail, the sequence of leukocyte infiltration at distinct regions of the spinal cord. High quality virtual slide scanning for imaging the entire spinal cord using epifluorescence was further conducted to highlight the directionality and relative degree of inflammation. Meningeal inflammation was found to precede parenchymal inflammation at all levels of the spinal cord, but did not develop equally or simultaneously throughout the subarachnoid space (SAS) of the meninges. Instead, meningeal inflammation was initially most obvious in the caudal SAS, from which it progressed to the immediate underlying parenchyma, paralleling the first signs of clinical disease in the tail and hind limbs. Meningeal inflammation could then be seen to extend in the caudal-to-rostral direction, followed by a similar, but delayed, trajectory of parenchymal inflammation. To additionally determine whether the course of ascending paralysis and leukocyte infiltration during EAE is reflected in differences in inflammatory gene expression by meningeal and parenchymal microvessels along the spinal cord, laser capture microdissection (LCM) coupled with gene expression profiling was performed. Expression profiles varied between these respective vessel populations at both the cervical and caudal levels of the spinal cord during disease progression, and within each vessel population at different levels of the cord at a given time during disease. These results reinforce a significant role for the meninges in the development and propagation of central nervous system inflammation associated with MS and EAE.
Collapse
Affiliation(s)
- Bandana Shrestha
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Peter Chianchiano
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| |
Collapse
|
5
|
Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 2016; 132:317-38. [PMID: 27522506 PMCID: PMC4992028 DOI: 10.1007/s00401-016-1606-5] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022]
Abstract
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood–brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer’s disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Alexander Flügel
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Roy O Weller
- Faculty of Medicine, University of Southampton, Southampton, UK.
- Neuropathology, Mailpoint 813, Level E, South Block, Southampton University Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
6
|
Waisman A, Liblau RS, Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol 2015; 14:945-55. [PMID: 26293566 DOI: 10.1016/s1474-4422(15)00141-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/22/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
Almost every disorder of the CNS is said to have an inflammatory component, but the precise nature of inflammation in the CNS is often imprecisely defined, and the role of CNS-resident cells is uncertain compared with that of cells that invade the tissue from the systemic immune compartment. To understand inflammation in the CNS, the term must be better defined, and the response of tissue to disturbances in homoeostasis (eg, neurodegenerative processes) should be distinguished from disorders in which aberrant immune responses lead to CNS dysfunction and tissue destruction (eg, autoimmunity). Whether the inflammatory tissue response to injury is reparative or degenerative seems to be dependent on context and timing, as are the windows of opportunity for therapeutic intervention in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Roland S Liblau
- Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
The development of high-throughput DNA sequencing technologies has enabled large-scale characterization of functional antibody repertoires, a new method of understanding protective and pathogenic immune responses. Important parameters to consider when sequencing antibody repertoires include the methodology, the B-cell population and clinical characteristics of the individuals analysed, and the bioinformatic analysis. Although focused sequencing of immunoglobulin heavy chains or complement determining regions can be utilized to monitor particular immune responses and B-cell malignancies, high-fidelity analysis of the full-length paired heavy and light chains expressed by individual B cells is critical for characterizing functional antibody repertoires. Bioinformatic identification of clonal antibody families and recombinant expression of representative members produces recombinant antibodies that can be used to identify the antigen targets of functional immune responses and to investigate the mechanisms of their protective or pathogenic functions. Integrated analysis of coexpressed functional genes provides the potential to further pinpoint the most important antibodies and clonal families generated during an immune response. Sequencing antibody repertoires is transforming our understanding of immune responses to autoimmunity, vaccination, infection and cancer. We anticipate that antibody repertoire sequencing will provide next-generation biomarkers, diagnostic tools and therapeutic antibodies for a spectrum of diseases, including rheumatic diseases.
Collapse
Affiliation(s)
- William H. Robinson
- Division of Immunology and Rheumatology, CCSR 4135, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|