1
|
Shahbazi M, Wheeler HE, Armstrong GT, Frisina RD, Travis LB, Dolan ME. Comparison of GWAS results between de novo tinnitus and cancer treatment-related tinnitus suggests distinctive roles for genetic risk factors. Sci Rep 2024; 14:27952. [PMID: 39543288 PMCID: PMC11564524 DOI: 10.1038/s41598-024-78274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Tinnitus is a common sensorineural complication that can occur de novo or after cancer treatments involving cisplatin or radiotherapy. Considering the heterogeneous etiology and pathophysiology of tinnitus, the extent to which shared genetic risk factors contribute to de novo tinnitus and cancer treatment-induced tinnitus is not clear. Here we report a GWAS for de novo tinnitus using the UK Biobank cohort with nine loci showing significantly associated variants (p < 5 × 10-8). To our knowledge, significant associations in four of these loci are novel, represented by rs7336872, rs115125870, rs1532898 and rs2537, with UBAC2, NUDT9, TGM4 and MPP2 as their nearest protein coding genes, respectively. Through quantitative comparison of results from GWAS of de novo tinnitus with GWAS of radiation-induced tinnitus, two intronic variants (rs7023227 and rs3780395) from a locus within immunoregulatory gene PD-L1 (CD274) reached the replication threshold using comparison thresholds of 10-5 and 10-4, with no other shared genetic risk factors identified. We did not observe shared genetic risk factors between de novo and cisplatin-induced tinnitus. Our results suggest that genetic risk factors are mainly distinct based on etiology of tinnitus and future efforts to study, prevent or treat tinnitus are expected to benefit from strategies that allow for distinction of cases based on the primary environmental risk factor.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Department of Medicine, University of Chicago, 900 E 57th St., KCBD 7100, Chicago, IL, 60637, USA
| | | | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert D Frisina
- Departments of Medical Engineering and Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, USA
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, IN, USA
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, 900 E 57th St., KCBD 7100, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Aytekin ES, Cagdas D. APECED and the place of AIRE in the puzzle of the immune network associated with autoimmunity. Scand J Immunol 2023; 98:e13299. [PMID: 38441333 DOI: 10.1111/sji.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 03/07/2024]
Abstract
In the last 20 years, discoveries about the autoimmune regulator (AIRE) protein and its critical role in immune tolerance have provided fundamental insights into understanding the molecular basis of autoimmunity. This review provides a comprehensive overview of the effect of AIRE on immunological tolerance and the characteristics of autoimmune diseases in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED), which is caused by biallelic AIRE mutations. A better understanding of the immunological mechanisms of AIRE deficiency may enlighten immune tolerance mechanisms and new diagnostic and treatment strategies for autoimmune diseases. Considering that not all clinical features of APECED are present in a given follow-up period, the diagnosis is not easy in a patient at the first visit. Longer follow-up and a multidisciplinary approach are essential for diagnosis. It is challenging to prevent endocrine and other organ damage compared with other diseases associated with multiple autoimmunities, such as FOXP3, LRBA, and CTLA4 deficiencies. Unfortunately, no curative therapy like haematopoietic stem cell transplantation or specific immunomodulation is present that is successful in the treatment.
Collapse
Affiliation(s)
- Elif Soyak Aytekin
- Pediatric Allergy and Immunology, Department of Pediatrics, SBU Dr. Sami Ulus Children Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Ihsan Dogramaci Children`s Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
3
|
Oftedal BE, Assing K, Baris S, Safgren SL, Johansen IS, Jakobsen MA, Babovic-Vuksanovic D, Agre K, Klee EW, Majcic E, Ferré EM, Schmitt MM, DiMaggio T, Rosen LB, Rahman MO, Chrysis D, Giannakopoulos A, Garcia MT, González-Granado LI, Stanley K, Galant-Swafford J, Suwannarat P, Meyts I, Lionakis MS, Husebye ES. Dominant-negative heterozygous mutations in AIRE confer diverse autoimmune phenotypes. iScience 2023; 26:106818. [PMID: 37235056 PMCID: PMC10206195 DOI: 10.1016/j.isci.2023.106818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disease characterized by severe and childhood onset organ-specific autoimmunity caused by mutations in the autoimmune regulator (AIRE) gene. More recently, dominant-negative mutations within the PHD1, PHD2, and SAND domains have been associated with an incompletely penetrant milder phenotype with later onset familial clustering, often masquerading as organ-specific autoimmunity. Patients with immunodeficiencies or autoimmunity where genetic analyses revealed heterozygous AIRE mutations were included in the study and the dominant-negative effects of the AIRE mutations were functionally assessed in vitro. We here report additional families with phenotypes ranging from immunodeficiency, enteropathy, and vitiligo to asymptomatic carrier status. APS-1-specific autoantibodies can hint to the presence of these pathogenic AIRE variants although their absence does not rule out their presence. Our findings suggest functional studies of heterozygous AIRE variants and close follow-up of identified individuals and their families.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Stephanie L. Safgren
- Center for Individualized Medicine, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | | | | | | | - Eric W. Klee
- Mayo Clinic, Department of Quantitative Health Sciences, Rochester, MN, USA
| | - Emina Majcic
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise M.N. Ferré
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Monica M. Schmitt
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tom DiMaggio
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muhammad Obaidur Rahman
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Dionisios Chrysis
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School, University of Patras, Rion, Greece
| | - Aristeidis Giannakopoulos
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School, University of Patras, Rion, Greece
| | - Maria Tallon Garcia
- Pediatric Hematology and Oncology Department, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Luis Ignacio González-Granado
- Unidad de Inmunodeficiencias, Pediatría, Instituto de Investigación Hospital 12 de Octubre, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Katherine Stanley
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente MidAtlantic, Rockville, MD, USA
| | | | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente MidAtlantic, Rockville, MD, USA
| | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Laboratory for Inborn Errors of Immunity, Department of Microbiology Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
A gene-centric approach to biomarker discovery identifies transglutaminase 1 as an epidermal autoantigen. Proc Natl Acad Sci U S A 2021; 118:2100687118. [PMID: 34911754 PMCID: PMC8713791 DOI: 10.1073/pnas.2100687118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
The nine-member transglutaminase protein family includes five known autoantigens. Because of the frequent roles of transglutaminases in autoimmunity, we decided to explore whether the remaining members might also constitute autoantigens, but in as-yet-unexplained disorders. We turned to TGM1, and since this member is primarily expressed in squamous epithelia, we focused on skin disorders. By screening a broad range of acquired skin disorders, we identified TGM1 to be a major autoantigen in the severe blistering disease paraneoplastic pemphigus. This study illustrates a gene-centric approach to biomarker discovery—starting from a putative autoantigen to search for its corresponding disease—that may prove generally applicable for studies of autoimmunity. Autoantigen discovery is a critical challenge for the understanding and diagnosis of autoimmune diseases. While autoantibody markers in current clinical use have been identified through studies focused on individual disorders, we postulated that a reverse approach starting with a putative autoantigen to explore multiple disorders might hold promise. We here targeted the epidermal protein transglutaminase 1 (TGM1) as a member of a protein family prone to autoimmune attack. By screening sera from patients with various acquired skin disorders, we identified seropositive subjects with the blistering mucocutaneous disease paraneoplastic pemphigus. Validation in further subjects confirmed TGM1 autoantibodies as a 55% sensitive and 100% specific marker for paraneoplastic pemphigus. This gene-centric approach leverages the wealth of data available for human genes and may prove generally applicable for biomarker discovery in autoimmune diseases.
Collapse
|
6
|
Biochemical Characterisation of Human Transglutaminase 4. Int J Mol Sci 2021; 22:ijms222212448. [PMID: 34830327 PMCID: PMC8619550 DOI: 10.3390/ijms222212448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Transglutaminases are protein-modifying enzymes involved in physiological and pathological processes with potent therapeutic possibilities. Human TG4, also called prostate transglutaminase, is involved in the development of autoimmune and tumour diseases. Although rodent TG4 is well characterised, biochemical characteristics of human TG4 that could help th e understanding of its way of action are not published. First, we analysed proteomics databases and found that TG4 protein is present in human tissues beyond the prostate. Then, we studied in vitro the transamidase activity of human TG4 and its regulation using the microtitre plate method. Human TG4 has low transamidase activity which prefers slightly acidic pH and a reducing environment. It is enhanced by submicellar concentrations of SDS suggesting that membrane proximity is an important regulatory event. Human TG4 does not bind GTP as tested by GTP-agarose and BODIPY-FL-GTPγS binding, and its proteolytic activation by dispase or when expressed in AD-293 cells was not observed either. We identified several potential human TG4 glutamine donor substrates in the AD-293 cell extract by biotin-pentylamine incorporation and mass spectrometry. Several of these potential substrates are involved in cell–cell interaction, adhesion and proliferation, suggesting that human TG4 could become an anticancer therapeutic target.
Collapse
|
7
|
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front Pediatr 2021; 9:723532. [PMID: 34790633 PMCID: PMC8591095 DOI: 10.3389/fped.2021.723532] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic autoimmune disease caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in the peripheral escape of self-reactive T lymphocytes and the generation of several cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison's disease). In addition, APECED patients develop several non-endocrine autoimmune manifestations with variable frequencies, whose recognition by pediatricians should facilitate an earlier diagnosis and allow for the prompt implementation of targeted screening, preventive, and therapeutic strategies. This review summarizes our current understanding of the genetic, immunological, clinical, diagnostic, and treatment features of APECED.
Collapse
Affiliation(s)
| | | | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
8
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
9
|
Tian H, Huang S, Bai P, Xiao X, Peng D, Zhao H, Liu Y, Feng Q, Liao M, Li F, Liang W. The effect of infertile semen on the mRNA-based body fluid identification. Electrophoresis 2021; 42:1614-1622. [PMID: 34233021 DOI: 10.1002/elps.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 11/08/2022]
Abstract
In the past decade, mRNA markers have been well demonstrated as promising molecular markers in forensic body fluid identification (BFI), and successfully used in wide applications. Several studies have assessed the performance of semen-specific mRNA markers in distinguishing semen from other common body fluids at the crime scene. Infertility has been reported as a global health problem that is affecting approximately 15% of couples worldwide. Therefore, it is important for forensic researchers to consider the impact of infertility on semen identification. This study aimed to explore the effect of semen from infertile men (hereinafter "infertile semen") on BFI and to identify semen-specific mRNAs that can efficiently and accurately distinguish normal and infertile semen samples from other body fluids. Results showed that the selected five mRNAs (KLK3, TGM4, SEMG1, PRM1, and PRM2) performed a significantly high semen specificity in normal semen. Moreover, KLK3 was slightly influenced by infertile semen samples with over 98% positive results in all semen samples. The accuracy to predict normal semen reached up to 96.6% using the discrimination function Y1 with KLK3 and PRM1. However, when the infertile semen samples were included in discrimination function (function Y2 with KLK3), the accuracy rate of semen identification (including the normal and infertile semen) was down to 89.5%. Besides, the sensitivity of multiplex assay could reach down to 50pg. Our results suggest that it is important to consider the presence of infertile semen when using mRNAs to identify semen samples, which would have a far-reaching impact in forensic identification.
Collapse
Affiliation(s)
- Huan Tian
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Sicheng Huang
- Institute of Forensic Science, Chengdu Public Security Bureau, Chengdu, Sichuan, P. R. China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xiao Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Huan Zhao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuqing Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qian Feng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
Mohkhedkar M, Venigalla SSK, Janakiraman V. Untangling COVID-19 and autoimmunity: Identification of plausible targets suggests multi organ involvement. Mol Immunol 2021; 137:105-113. [PMID: 34242919 PMCID: PMC8241658 DOI: 10.1016/j.molimm.2021.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 10/28/2022]
Abstract
Underlying mechanisms of multi-organ manifestations and exacerbated inflammation in COVID-19 are yet to be delineated. The hypothesis of SARS-CoV-2 triggering autoimmunity is gaining attention and, in the present study, we have identified 28 human proteins harbouring regions homologous to SARS-CoV-2 peptides that could possibly be acting as autoantigens in COVID-19 patients displaying autoimmune conditions. Interestingly, these conserved regions are amongst the experimentally validated B cell epitopes of SARS-CoV-2 proteins. The reported human proteins have demonstrated presence of autoantibodies against them in typical autoimmune conditions which may explain the frequent occurrence of autoimmune conditions following SARS-CoV-2 infection. Moreover, the proposed autoantigens' widespread tissue distribution is suggestive of their involvement in multi-organ manifestations via molecular mimicry. We opine that our report may aid in directing subsequent necessary antigen-specific studies, results of which would be of long-term relevance in management of extrapulmonary symptoms of COVID-19.
Collapse
Affiliation(s)
- Mugdha Mohkhedkar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Siva Sai Krishna Venigalla
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Vani Janakiraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
11
|
Sharifinejad N, Zaki-Dizaji M, Tebyanian S, Zainaldain H, Jamee M, Rizvi FS, Hosseinzadeh S, Fayyaz F, Hamedifar H, Sabzevari A, Matloubi M, Heropolitańska-Pliszka E, Aghamahdi F, Abolhassani H, Azizi G. Clinical, immunological, and genetic features in 938 patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a systematic review. Expert Rev Clin Immunol 2021; 17:807-817. [PMID: 33957837 DOI: 10.1080/1744666x.2021.1925543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare inborn immune error characterized by a triad of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism (HP), and adrenal insufficiency (ADI).Methods: Literature search was conducted in PubMed, Web of Science, and Scopus databases using related keywords, and included studies were systematically evaluated.Results: We reviewed 938 APECED patients and the classic triad of APECED was detected in 57.3% (460 of 803) of patients. CMC (82.5%) was reported as the earliest, HP (84.2%) as the most prevalent, and ADI (72.2%) as the latest presentation within the classic triad. A broad spectrum of non-triad involvements has also been reported; mainly included ectodermal dystrophy (64.5%), infections (58.7%), gastrointestinal disorders (52.0%), gonadal failure (42.0%), neurologic involvements (36.4%), and ocular manifestations (34.3%). A significant positive correlation was detected between certain tissue-specific autoantibodies and particular manifestations including ADI and HP. Neutralizing autoantibodies were detected in at least 60.0% of patients. Nonsense and/or frameshift insertion-deletion mutations were detected in 73.8% of patients with CMC, 70.9% of patients with HP, and 74.6% of patients with primary ADI.Conclusion: Besides penetrance diversity, our review revealed a diverse affected ethnicity (mainly from Italy followed by Finland and Ireland). APECED can initially present in adolescence as 5.2% of the patients were older than 18 years at the disease onset. According to the variety of clinical conditions, which in the majority of patients appear gradually over time, clinical management deserves a separate analysis.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Shafi Tebyanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Zainaldain
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Fatema Sadaat Rizvi
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Soheila Hosseinzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Farimah Fayyaz
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,CinnaGen Research and Production Co., Alborz, Iran
| | - Araz Sabzevari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Orchid Pharmed Company, Tehran, Iran
| | - Mojdeh Matloubi
- Medical Immunology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Fatemeh Aghamahdi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
12
|
Lopez-Bujanda ZA, Obradovic A, Nirschl TR, Crowley L, Macedo R, Papachristodoulou A, O'Donnell T, Laserson U, Zarif JC, Reshef R, Yuan T, Soni MK, Antonarakis ES, Haffner MC, Larman HB, Shen MM, Muranski P, Drake CG. TGM4: an immunogenic prostate-restricted antigen. J Immunother Cancer 2021; 9:e001649. [PMID: 34193566 PMCID: PMC8246381 DOI: 10.1136/jitc-2020-001649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Prostate cancer is the second leading cause of cancer-related death in men in the USA; death occurs when patients progress to metastatic castration-resistant prostate cancer (CRPC). Although immunotherapy with the Food and Drug Administration-approved vaccine sipuleucel-T, which targets prostatic acid phosphatase (PAP), extends survival for 2-4 months, the identification of new immunogenic tumor-associated antigens (TAAs) continues to be an unmet need. METHODS We evaluated the differential expression profile of castration-resistant prostate epithelial cells that give rise to CRPC from mice following an androgen deprivation/repletion cycle. The expression levels of a set of androgen-responsive genes were further evaluated in prostate, brain, colon, liver, lung, skin, kidney, and salivary gland from murine and human databases. The expression of a novel prostate-restricted TAA was then validated by immunostaining of mouse tissues and analyzed in primary tumors across all human cancer types in The Cancer Genome Atlas. Finally, the immunogenicity of this TAA was evaluated in vitro and in vivo using autologous coculture assays with cells from healthy donors as well as by measuring antigen-specific antibodies in sera from patients with prostate cancer (PCa) from a neoadjuvant clinical trial. RESULTS We identified a set of androgen-responsive genes that could serve as potential TAAs for PCa. In particular, we found transglutaminase 4 (Tgm4) to be highly expressed in prostate tumors that originate from luminal epithelial cells and only expressed at low levels in most extraprostatic tissues evaluated. Furthermore, elevated levels of TGM4 expression in primary PCa tumors correlated with unfavorable prognosis in patients. In vitro and in vivo assays confirmed the immunogenicity of TGM4. We found that activated proinflammatory effector memory CD8 and CD4 T cells were expanded by monocyte-derived dendritic cell (moDCs) pulsed with TGM4 to a greater extent than moDCs pulsed with either PAP or prostate-specific antigen (PSA), and T cells primed with TGM4-pulsed moDCs produce functional cytokines following a prime/boost regiment or in vitro stimulation. An IgG antibody response to TGM4 was detected in 30% of vaccinated patients, while fewer than 8% of vaccinated patients developed antibody responses to PSA or prostate-specific membrane antigen (PSMA). CONCLUSIONS These results suggest that TGM4 is an immunogenic, prostate-restricted antigen with the potential for further development as an immunotherapy target.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Current: Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Thomas R Nirschl
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Laura Crowley
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
| | - Rodney Macedo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexandros Papachristodoulou
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, USA
| | - Timothy O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jelani C Zarif
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Ran Reshef
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Hematology Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Tiezheng Yuan
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mithil K Soni
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - H Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael M Shen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
| | - Pawel Muranski
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Hematology Oncology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Li S, Song G, Bai Y, Song N, Zhao J, Liu J, Hu C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front Immunol 2021; 12:645632. [PMID: 34012435 PMCID: PMC8126629 DOI: 10.3389/fimmu.2021.645632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Dysregulated autoantibodies and cytokines were deemed to provide important cues for potential illnesses, such as various carcinomas and autoimmune diseases. Increasing biotechnological approaches have been applied to screen and identify the specific alterations of these biomolecules as distinctive biomarkers in diseases, especially autoimmune diseases. As a versatile and robust platform, protein microarray technology allows researchers to easily profile dysregulated autoantibodies and cytokines associated with autoimmune diseases using various biological specimens, mainly serum samples. Here, we summarize the applications of protein microarrays in biomarker discovery for autoimmune diseases. In addition, the key issues in the process of using this approach are presented for improving future studies.
Collapse
Affiliation(s)
- Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yina Bai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Ning Song
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jian Liu
- Department of Rheumatology, Aerospace Center Hospital, Aerospace, Clinical Medical College, Peking University, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
14
|
Zou X, Zhang Y, Wang X, Zhang R, Yang W. The Role of AIRE Deficiency in Infertility and Its Potential Pathogenesis. Front Immunol 2021; 12:641164. [PMID: 33679804 PMCID: PMC7933666 DOI: 10.3389/fimmu.2021.641164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
The increasing number of patients with infertility is recognized as an emerging problem worldwide. However, little is known about the cause of infertility. At present, it is believed that infertility may be related to genetic or abnormal immune responses. It has long been indicated that autoimmune regulator (AIRE), a transcription factor, participates in immune tolerance by regulating the expression of thousands of promiscuous tissue-specific antigens in medullary thymic epithelial cells (mTECs), which play a pivotal role in preventing autoimmune diseases. AIRE is also expressed in germ cell progenitors. Importantly, the deletion of AIRE leads to severe oophoritis and age-dependent depletion of follicular reserves and causes altered embryonic development in female mice. AIRE-deficient male mice exhibit altered apoptosis during spermatogenesis and have a significantly decreased breeding capacity. These reports suggest that AIRE deficiency may be responsible for infertility. The causes may be related to the production of autoantibodies against sperm, poor development of germ cells, and abnormal ovarian function, which eventually lead to infertility. Here, we focus on the potential associations of AIRE deficiency with infertility as well as the possible pathogenesis, providing insight into the significance of AIRE in the development of infertility.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Anamthathmakula P, Winuthayanon W. Mechanism of semen liquefaction and its potential for a novel non-hormonal contraception†. Biol Reprod 2020; 103:411-426. [PMID: 32529252 PMCID: PMC7523691 DOI: 10.1093/biolre/ioaa075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Semen liquefaction is a proteolytic process where a gel-like ejaculated semen becomes watery due to the enzymatic activity of prostate-derived serine proteases in the female reproductive tract. The liquefaction process is crucial for the sperm to gain their motility and successful transport to the fertilization site in Fallopian tubes (or oviducts in animals). Hyperviscous semen or failure in liquefaction is one of the causes of male infertility. Therefore, the biochemical inhibition of serine proteases in the female reproductive tract after ejaculation is a prime target for novel contraceptive development. Herein, we will discuss protein components in the ejaculates responsible for semen liquefaction and any developments of contraceptive methods in the past that involve the liquefaction process.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Maddock RMA, Pollard GJ, Moreau NG, Perry JJ, Race PR. Enzyme-catalysed polymer cross-linking: Biocatalytic tools for chemical biology, materials science and beyond. Biopolymers 2020; 111:e23390. [PMID: 32640085 DOI: 10.1002/bip.23390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Intermolecular cross-linking is one of the most important techniques that can be used to fundamentally alter the material properties of a polymer. The introduction of covalent bonds between individual polymer chains creates 3D macromolecular assemblies with enhanced mechanical properties and greater chemical or thermal tolerances. In contrast to many chemical cross-linking reactions, which are the basis of thermoset plastics, enzyme catalysed processes offer a complimentary paradigm for the assembly of cross-linked polymer networks through their predictability and high levels of control. Additionally, enzyme catalysed reactions offer an inherently 'greener' and more biocompatible approach to covalent bond formation, which could include the use of aqueous solvents, ambient temperatures, and heavy metal-free reagents. Here, we review recent progress in the development of biocatalytic methods for polymer cross-linking, with a specific focus on the most promising candidate enzyme classes and their underlying catalytic mechanisms. We also provide exemplars of the use of enzyme catalysed cross-linking reactions in industrially relevant applications, noting the limitations of these approaches and outlining strategies to mitigate reported deficiencies.
Collapse
Affiliation(s)
- Rosie M A Maddock
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| | - Gregory J Pollard
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Nicolette G Moreau
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Justin J Perry
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
18
|
Rausch MP, Meador LR, Metzger TC, Li H, Qiu S, Anderson MS, Hastings KT. GILT in Thymic Epithelial Cells Facilitates Central CD4 T Cell Tolerance to a Tissue-Restricted, Melanoma-Associated Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2020; 204:2877-2886. [PMID: 32269095 DOI: 10.4049/jimmunol.1900523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022]
Abstract
Central tolerance prevents autoimmunity, but also limits T cell responses to potentially immunodominant tumor epitopes with limited expression in healthy tissues. In peripheral APCs, γ-IFN-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of disulfide bond-containing proteins, including the self-antigen and melanoma Ag tyrosinase-related protein 1 (TRP1). The role of GILT in thymic Ag processing and generation of central tolerance has not been investigated. We found that GILT enhanced the negative selection of TRP1-specific thymocytes in mice. GILT expression was enriched in thymic APCs capable of mediating deletion, namely medullary thymic epithelial cells (mTECs) and dendritic cells, whereas TRP1 expression was restricted solely to mTECs. GILT facilitated MHC class II-restricted presentation of endogenous TRP1 by pooled thymic APCs. Using bone marrow chimeras, GILT expression in thymic epithelial cells (TECs), but not hematopoietic cells, was sufficient for complete deletion of TRP1-specific thymocytes. An increased frequency of TRP1-specific regulatory T (Treg) cells was present in chimeras with increased deletion of TRP1-specific thymocytes. Only chimeras that lacked GILT in both TECs and hematopoietic cells had a high conventional T/Treg cell ratio and were protected from melanoma challenge. Thus, GILT expression in thymic APCs, and mTECs in particular, preferentially facilitates MHC class II-restricted presentation, negative selection, and increased Treg cells, resulting in a diminished antitumor response to a tissue-restricted, melanoma-associated self-antigen.
Collapse
Affiliation(s)
- Matthew P Rausch
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Lydia R Meador
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Todd C Metzger
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - Handong Li
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - K Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| |
Collapse
|
19
|
Vazquez SE, Ferré EMN, Scheel DW, Sunshine S, Miao B, Mandel-Brehm C, Quandt Z, Chan AY, Cheng M, German M, Lionakis M, DeRisi JL, Anderson MS. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife 2020; 9:e55053. [PMID: 32410729 PMCID: PMC7228772 DOI: 10.7554/elife.55053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of autoantigens remains a critical challenge for understanding and treating autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease pathogenesis, and many of the antigens found in APS1 extend to more common autoimmune diseases. Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from a cohort of people with APS1 and discovered multiple common antibody targets. These novel APS1 autoantigens exhibit tissue-restricted expression, including expression in enteroendocrine cells, pineal gland, and dental enamel. Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-restricted autoimmunity, including a link between anti-KHDC3L autoantibodies and premature ovarian insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. Our study highlights the utility of PhIP-Seq for extensively interrogating antigenic repertoires in human autoimmunity and the importance of antigen discovery for improved understanding of disease mechanisms.
Collapse
Affiliation(s)
- Sara E Vazquez
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David W Scheel
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda Miao
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, University of California, San FranciscoSan FranciscoUnited States
| | - Mickie Cheng
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Michael German
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Michail Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
20
|
Lind A, Eriksson D, Akel O, Ramelius A, Palm L, Lernmark Å, Kämpe O, Elding Larsson H, Landegren N. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand J Immunol 2020; 91:e12864. [PMID: 32056243 DOI: 10.1111/sji.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder caused by a specific loss of hypocretin-producing neurons. The incidence of NT1 increased in Sweden, Finland and Norway following Pandemrix®-vaccination, initiated to prevent the 2009 influenza pandemic. The pathogenesis of NT1 is poorly understood, and causal links to vaccination are yet to be clarified. The strong association with Human leukocyte antigen (HLA) DQB1*06:02 suggests an autoimmune pathogenesis, but proposed autoantigens remain controversial. We used a two-step approach to identify autoantigens in patients that acquired NT1 after Pandemrix®-vaccination. Using arrays of more than 9000 full-length human proteins, we screened the sera of 10 patients and 24 healthy subjects for autoantibodies. Identified candidate antigens were expressed in vitro to enable validation studies with radiobinding assays (RBA). The validation cohort included NT1 patients (n = 39), their first-degree relatives (FDR) (n = 66), population controls (n = 188), and disease controls representing multiple sclerosis (n = 100) and FDR to type 1 diabetes patients (n = 41). Reactivity towards previously suggested NT1 autoantigen candidates including Tribbles homolog 2, Prostaglandin D2 receptor, Hypocretin receptor 2 and α-MSH/proopiomelanocortin was not replicated in the protein array screen. By comparing case to control signals, three novel candidate autoantigens were identified in the protein array screen; LOC401464, PARP3 and FAM63B. However, the RBA did not confirm elevated reactivity towards either of these proteins. In summary, three putative autoantigens in NT1 were identified by protein array screening. Autoantibodies against these candidates could not be verified with independent methods. Further studies are warranted to identify hypothetical autoantigens related to the pathogenesis of Pandemrix®-induced NT1.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Nils Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
21
|
Search for Novel Diagnostic Biomarkers of Prostate Inflammation-Related Disorders: Role of Transglutaminase Isoforms as Potential Candidates. Mediators Inflamm 2019; 2019:7894017. [PMID: 31360119 PMCID: PMC6652054 DOI: 10.1155/2019/7894017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
Investigations on prostate inflammation-related disorders, including acute and chronic prostatitis, chronic pelvic pain syndrome, benign prostate hyperplasia (BPH), and prostate cancer (PCa), are still ongoing to find new, accurate, and noninvasive biomarkers for a differential diagnosis of those pathological conditions sharing some common macroscopic features. Moreover, an ideal biomarker should be useful for risk assessment of prostate inflammation progression to more severe disorders, like BPH or PCa, as well as for monitoring of treatment response and prognosis establishment in carcinoma cases. Recent literature evidence highlighted that changes in the expression of transglutaminases, enzymes that catalyze transamidation reactions leading to posttranslational modifications of soluble proteins, occur in prostate inflammation-related disorders. This review focuses on the role specifically played by transglutaminases 4 (TG4) and 2 (TG2) and suggests that both isoenzymes hold a potential to be included in the list of candidates as novel diagnostic biomarkers for the above-cited prostate pathological conditions.
Collapse
|
22
|
Murdica V, Cermisoni GC, Zarovni N, Salonia A, Viganò P, Vago R. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients. Hum Reprod 2019; 34:1416-1427. [DOI: 10.1093/humrep/dez114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
STUDY QUESTION
Are there differences in the proteomic profile of exosomes isolated from seminal plasma of normozoospermic (NSP) and severe asthenozoospermic (SA) men, potentially contributing to sperm features?
SUMMARY ANSWER
A relevant group of proteins known to positively regulate sperm functions were over-represented in seminal exosomes of NSP men, i.e. cysteine-rich secretory protein-1 (CRISP1), while the inhibitory protein glycodelin was enriched in exosomes of SA subjects.
WHAT IS KNOWN ALREADY
Exosomes are secreted along the male reproductive tract and are thought to be involved in spermatozoa maturation and function. Ejaculated spermatozoa are still able to capture exosomes; exosomes of NSP individuals improve sperm motility and prompt capacitation, while exosomes of SA men fail to exert similar features.
STUDY DESIGN, SIZE, DURATION
Semen samples from NSP and SA men, aged 18 to 55 and registered at a single IVF center, were considered for this study project. Subjects were subdivided into three groups: a discovery cohort (five NSP men and six SA patients), a validation cohort (seven NSP and seven SA men) and the ‘glycodelin analysis’ cohort (20 NSP and 37 SA men). Exosomes were purified from semen of every participant.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Exosomes were characterized by nanoparticle tracking analysis, transmission electron microscopy and western blot. Comprehensive proteomics analysis of the exosomal proteome was performed by nanoscale liquid chromatographic tandem mass spectrometry analysis. Funrich software was used to determine statistical enrichment of pathways, networks and Gene Ontology terms of the identified proteins. Validation of differentially expressed proteins was performed through ELISA and western blot analysis.
MAIN RESULTS AND THE ROLE OF CHANCE
The comprehensive proteomic analysis identified a total of 2138 proteins for both groups. There were 89 proteins found to be differentially expressed in exosomes of NSP versus SA subjects, of which 37 were increased in the NSP group and 52 were increased in the SA group. One-third of the exosomes-associated proteins highly expressed in NSP samples were involved in the reproductive process; conversely, the over-expressed proteins in exosomes of SA samples were not functionally specific. Quantitative data were confirmed on seminal exosomes from different cohorts of subjects.
LARGE SCALE DATA
N/A
LIMITATIONS, REASONS FOR CAUTION
Transfer of the proteins from exosomes to spermatozoa has been only partially demonstrated and up-take mechanisms are still poorly defined.
WIDER IMPLICATIONS OF THE FINDINGS
Seminal exosomes carry proteins that are potentially able to either favour or inhibit the reproductive process in humans. A better understanding of these phenomena might pave the way for novel intervention measures in terms of male infertility.
STUDY FUNDING/COMPETING INTEREST(S)
This study was funded by the Italian Ministry of Health through an Institution Seed Grant. None of the authors has any competing interests.
Collapse
Affiliation(s)
- Valentina Murdica
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Greta Chiara Cermisoni
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Andrea Salonia
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
23
|
Landegren N, Rosen LB, Freyhult E, Eriksson D, Fall T, Smith G, Ferre EMN, Brodin P, Sharon D, Snyder M, Lionakis M, Anderson M, Kämpe O. Comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'. eLife 2019; 8:43578. [PMID: 31244471 PMCID: PMC6597240 DOI: 10.7554/elife.43578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 01/13/2023] Open
Abstract
The AIRE gene plays a key role in the development of central immune tolerance by promoting thymic presentation of tissue-specific molecules. Patients with AIRE-deficiency develop multiple autoimmune manifestations and display autoantibodies against the affected tissues. In 2016 it was reported that: i) the spectrum of autoantibodies in patients with AIRE-deficiency is much broader than previously appreciated; ii) neutralizing autoantibodies to type I interferons (IFNs) could provide protection against type 1 diabetes in these patients (Meyer et al., 2016). We attempted to replicate these new findings using a similar experimental approach in an independent patient cohort, and found no evidence for either conclusion.
Collapse
Affiliation(s)
- Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Program in Medical and Population Genetics, Broad Institute of Harvard, Massachusetts Institute of Technology, Cambridge, United States.,Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Elise M N Ferre
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Petter Brodin
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Women's and Children's Health, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Donald Sharon
- Department of Genetics, School of Medicine, Stanford University, Stanford, United States
| | - Michael Snyder
- Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University, Lund, Sweden.,Department of Genetics, School of Medicine, Stanford University, Stanford, United States
| | - Michail Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Mark Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, United States
| | - Olle Kämpe
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Sedhai YR, Basnyat S. Petrified pinna and pericarditis in autoimmune polyendocrine syndrome. BMJ Case Rep 2019; 12:12/6/e229369. [PMID: 31167769 DOI: 10.1136/bcr-2019-229369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Petrified pinna refers to the calcification or ossification of the external auricular cartilage. It is an uncommon clinical entity and is most often associated with local trauma, frostbite or inflammation. Auricular calcification may be the exclusive cutaneous marker of underlying endocrinopathy. It has been most commonly associated with adrenal insufficiency and other endocrine conditions like diabetes mellitus, hypothyroidism and acromegaly. We present a 47-year-old Caucasian manwho presented with acute pericarditis with tamponade physiology, who was found to have petrified pinnae as a telltale sign of the underlying autoimmune polyendocrine syndrome type 2.
Collapse
Affiliation(s)
- Yub Raj Sedhai
- Internal Medicine, VCU School of Medicine, South Hill, Virginia, USA
| | - Soney Basnyat
- Internal Medicine, St Mary Mercy Hospital, Livonia, Michigan, USA
| |
Collapse
|
25
|
Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: Autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev 2019; 287:103-120. [PMID: 30565240 PMCID: PMC6309421 DOI: 10.1111/imr.12714] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
The discovery of the autoimmune regulator (AIRE) protein and the delineation of its critical contributions in the establishment of central immune tolerance has significantly expanded our understanding of the immunological mechanisms that protect from the development of autoimmune disease. The parallel identification and characterization of patient cohorts with the monogenic disorder autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), which is typically caused by biallelic AIRE mutations, has underscored the critical contribution of AIRE in fungal immune surveillance at mucosal surfaces and in prevention of multiorgan autoimmunity in humans. In this review, we synthesize the current clinical, genetic, molecular and immunological knowledge derived from basic studies in Aire-deficient animals and from APECED patient cohorts. We also outline major advances and research endeavors that show promise for informing improved diagnostic and therapeutic approaches for patients with APECED.
Collapse
Affiliation(s)
- Gregory M Constantine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Affiliation(s)
- Laszlo Lorand
- Department of Cell and Molecular BiologyNorthwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Siiri E. Iismaa
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research Institute Darlinghurst New South Wales Australia
- St Vincent's Clinical SchoolUniversity of New South Wales Kensington New South Wales Australia
| |
Collapse
|
27
|
Lovewell TRJ, McDonagh AJG, Messenger AG, Azzouz M, Tazi-Ahnini R. Meta-Analysis of Autoimmune Regulator-Regulated Genes in Human and Murine Models: A Novel Human Model Provides Insights on the Role of Autoimmune Regulator in Regulating STAT1 and STAT1-Regulated Genes. Front Immunol 2018; 9:1380. [PMID: 30002654 PMCID: PMC6031710 DOI: 10.3389/fimmu.2018.01380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Autoimmune regulator (AIRE) regulates promiscuous expression of tissue-restricted antigens in medullary epithelial cells (mTEC) of the thymus. To understand the diverse effects of AIRE, it is crucial to elucidate the molecular mechanisms underlying the process of AIRE-regulated gene expression. In this study, we generated a recombinant AIRE expression variant of the TEC 1A3 human cell line, TEC 1A3 AIREhi, to determine genes targeted by AIRE, and using microarray analysis, we identified 482 genes showing significant differential expression (P < 0.05; false discovery rate <5%), with 353 upregulated and 129 downregulated by AIRE expression. Microarray data were validated by quantitative PCR, confirming the differential expression of 12 known AIRE-regulated genes. Comparison of AIRE-dependent differential expression in our cell line model with murine datasets identified 447 conserved genes with a number of transcription regulatory interactions, forming several key nodes, including STAT1, which had over 30 interactions with other AIRE-regulated genes. As STAT1 mutations cause dominant chronic mucocutaneous candidiasis and decreased STAT1 levels in monocytes of autoimmune polyglandular syndrome 1 (APS-1) patients, it was important to further characterize AIRE-STAT1 interactions. TEC 1A3AIREhi were treated with the STAT1 phosphorylation inhibitors fludarabine and LLL3 showed that phosphorylated STAT1 (p-STAT1) was not responsible for any of the observed differential expression. Moreover, treatment of TEC 1A3 AIREhi with STAT1 shRNA did not induce any significant variation in the expression of unphosphorylated STAT1 (U-STAT1) downstream genes, suggesting that these genes were directly regulated by AIRE but not via U-STAT1. The novel model system we have developed provides potential opportunities for further analysis of the pathogenesis of (APS-1) and the wider roles of the AIRE gene.
Collapse
Affiliation(s)
- Thomas R. J. Lovewell
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | - Andrew G. Messenger
- Department of Dermatology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Rachid Tazi-Ahnini
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Lu JC, Shen JM, Hu XC, Peng LP, Hong ZW, Yao B. Identification and preliminary study of immunogens involved in autoimmune prostatitis in human males. Prostate 2018; 78:1092-1102. [PMID: 29947032 DOI: 10.1002/pros.23684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Experimental models have confirmed that autoimmunity is an important factor in the onset of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, there is no conclusive evidence on whether autoimmune prostatitis exists in human males. METHODS Rabbits were immunized with either human prostate tissue homogenates or normal saline and the antiserum was collected. Two-dimensional electrophoresis (2-DE) was performed on the homogenates and Western blotting was conducted on the sera. The identified human prostate tissue immunodominant antigens (HPTIAs) were detected by mass spectrometry. The serum immunoglobulin (Ig)G from the immunized rabbits was purified with protein A-agarose, and the purified IgG was linked with Sepharose to purify HPTIAs by affinity chromatography. Non-obese diabetic (NOD) mice were immunized with the purified HPTIAs, and the levels of serum antibodies, INF-γ, and histopathological changes in their prostate tissues were detected. The purified HPTIAs were coated into polystyrene pores and serum autoantibodies in CP/CPPS patients were detected by enzyme-linked immunosorbent assay (ELISA). Meanwhile, serum interleukin 2 (IL-2), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) levels in CP/CPPS patients were also determined by ELISA. RESULTS Sixteen HPTIAs were identified. Among them, three types were reported to be associated with prostatic diseases. Prostatitis was induced in mice immunized with the 16-HPTIA complex, with positive serum autoantibody and increased prostatic IFN-γ levels. The positive rate of serum autoantibodies against HPTIAs was significantly higher in CP/CPPS patients (23.1%, 18/78) than in the control (2.7%, 2/75). But there was no significant difference in serum TNFα, IFNγ, and IL-2 levels between the CPPS patients with positive and negative autoantibodies against HPTIAs. CONCLUSIONS Autoantibodies against HPTIAs exist in part in CP/CPPS patients, which implies that autoimmunity and the 16 HPTIAs are important factors in the onset of CP/CPPS. The detection of serum autoantibodies could be applied in clinical diagnoses of autoimmune prostatitis; treatment protocols might change. Additional studies are needed to determine which of the 16 HPTIAs is the most important.
Collapse
Affiliation(s)
- Jin-Chun Lu
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
- Department of Laboratory Science, Nanjing Hospital, Jiangsu Corps, The Armed Police Force, PLA, Nanjing, Jiangsu, China
| | - Jia-Ming Shen
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xue-Chun Hu
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Long-Ping Peng
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhi-Wei Hong
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Bing Yao
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Abstract
INTRODUCTION High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward. Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays. Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.
Collapse
Affiliation(s)
- Jessica G Duarte
- a Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute/School of Cancer Medicine , La Trobe University , Heidelberg , Australia
| | - Jonathan M Blackburn
- b Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, Faculty of Health Sciences , University of Cape Town , Observatory, South Africa
| |
Collapse
|
30
|
MESH Headings
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Diarrhea/genetics
- Diarrhea/immunology
- Diarrhea/therapy
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/therapy
- Humans
- Immune System Diseases/congenital
- Immune System Diseases/genetics
- Immune System Diseases/immunology
- Immune System Diseases/therapy
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/therapy
Collapse
Affiliation(s)
- Eystein S Husebye
- From the Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen (E.S.H., O.K.), and the Department of Medicine, Haukeland University Hospital (E.S.H.), Bergen, Norway; the Department of Medicine (Solna), Karolinska Institutet, Stockholm (E.S.H., O.K.); and the Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco (M.S.A.)
| | - Mark S Anderson
- From the Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen (E.S.H., O.K.), and the Department of Medicine, Haukeland University Hospital (E.S.H.), Bergen, Norway; the Department of Medicine (Solna), Karolinska Institutet, Stockholm (E.S.H., O.K.); and the Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco (M.S.A.)
| | - Olle Kämpe
- From the Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen (E.S.H., O.K.), and the Department of Medicine, Haukeland University Hospital (E.S.H.), Bergen, Norway; the Department of Medicine (Solna), Karolinska Institutet, Stockholm (E.S.H., O.K.); and the Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco (M.S.A.)
| |
Collapse
|
31
|
ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease. Sci Rep 2018; 8:4852. [PMID: 29556082 PMCID: PMC5859008 DOI: 10.1038/s41598-018-23034-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Dogs can spontaneously develop complex systemic autoimmune disorders, with similarities to human autoimmune disease. Autoantibodies directed at self-antigens are a key feature of these autoimmune diseases. Here we report the identification of interleukin enhancer-binding factors 2 and 3 (ILF2 and ILF3) as autoantigens in canine immune-mediated rheumatic disease. The ILF2 autoantibodies were discovered in a small, selected canine cohort through the use of human protein arrays; a method not previously described in dogs. Subsequently, ILF3 autoantibodies were also identified in the same cohort. The results were validated with an independent method in a larger cohort of dogs. ILF2 and ILF3 autoantibodies were found exclusively, and at a high frequency, in dogs that showed a speckled pattern of antinuclear antibodies on immunofluorescence. ILF2 and ILF3 autoantibodies were also found at low frequency in human patients with SLE and Sjögren's syndrome. These autoantibodies have the potential to be used as diagnostic biomarkers for canine, and possibly also human, autoimmune disease.
Collapse
|
32
|
Kárpáti S, Sárdy M, Németh K, Mayer B, Smyth N, Paulsson M, Traupe H. Transglutaminases in autoimmune and inherited skin diseases: The phenomena of epitope spreading and functional compensation. Exp Dermatol 2018; 27:807-814. [PMID: 28940785 DOI: 10.1111/exd.13449] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Transglutaminases (TGs) are structurally and functionally related enzymes that modify the post-translational structure and activity of proteins or peptides, and thus are able to turn on or switch off their function. Depending on location and activities, TGs are able to modify the signalling, the function and the fate of cells and extracellular connective tissues. Besides mouse models, human diseases enable us to appreciate the function of various TGs. In this study, skin diseases induced by genetic damages or autoimmune targeting of these enzymes will be discussed. TG1, TG3 and TG5 contribute to the cutaneous barrier and thus to the integrity and function of epidermis. TGM1 mutations related to autosomal recessive ichthyosis subtypes, TGM5 mutations to a mild epidermolysis bullosa phenotype and as novelty TGM3 mutation to uncombable hair syndrome will be discussed. Autoimmunity to TG2, TG3 and TG6 may develop in a few of those genetically determined individuals who lost tolerance to gluten, and manifest as coeliac disease, dermatitis herpetiformis or gluten-dependent neurological symptoms, respectively. These gluten responder diseases commonly occur in combination. In autoimmune diseases, the epitope spreading is remarkable, while in some inherited pathologies, a unique compensation of the lost enzyme function is noted.
Collapse
Affiliation(s)
- Sarolta Kárpáti
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Krisztián Németh
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Balázs Mayer
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Neil Smyth
- Biological Sciences, University of Southampton, Southampton, UK
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
33
|
Eriksson D, Dalin F, Eriksson GN, Landegren N, Bianchi M, Hallgren Å, Dahlqvist P, Wahlberg J, Ekwall O, Winqvist O, Catrina SB, Rönnelid J, Hulting AL, Lindblad-Toh K, Alimohammadi M, Husebye ES, Knappskog PM, Rosengren Pielberg G, Bensing S, Kämpe O. Cytokine Autoantibody Screening in the Swedish Addison Registry Identifies Patients With Undiagnosed APS1. J Clin Endocrinol Metab 2018; 103:179-186. [PMID: 29069385 DOI: 10.1210/jc.2017-01957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
CONTEXT Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features autoimmune Addison disease as a major component. Although APS1 accounts for only a small fraction of all patients with Addison disease, early identification of these individuals is vital to prevent the potentially lethal complications of APS1. OBJECTIVE To determine whether available serological and genetic markers are valuable screening tools for the identification of APS1 among patients diagnosed with Addison disease. DESIGN We systematically screened 677 patients with Addison disease enrolled in the Swedish Addison Registry for autoantibodies against interleukin-22 and interferon-α4. Autoantibody-positive patients were investigated for clinical manifestations of APS1, additional APS1-specific autoantibodies, and DNA sequence and copy number variations of AIRE. RESULTS In total, 17 patients (2.5%) displayed autoantibodies against interleukin-22 and/or interferon-α4, of which nine were known APS1 cases. Four patients previously undiagnosed with APS1 fulfilled clinical, genetic, and serological criteria. Hence, we identified four patients with undiagnosed APS1 with this screening procedure. CONCLUSION We propose that patients with Addison disease should be routinely screened for cytokine autoantibodies. Clinical or serological support for APS1 should warrant DNA sequencing and copy number analysis of AIRE to enable early diagnosis and prevention of lethal complications.
Collapse
Affiliation(s)
- Daniel Eriksson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Frida Dalin
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Winqvist
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anna-Lena Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | | | - Eystein S Husebye
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sophie Bensing
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
34
|
Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Front Immunol 2017; 8:976. [PMID: 28861084 PMCID: PMC5561390 DOI: 10.3389/fimmu.2017.00976] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
High titer autoantibodies produced by B lymphocytes are clinically important features of many common autoimmune diseases. APECED patients with deficient autoimmune regulator (AIRE) gene collectively display a broad repertoire of high titer autoantibodies, including some which are pathognomonic for major autoimmune diseases. AIRE deficiency severely reduces thymic expression of gene-products ordinarily restricted to discrete peripheral tissues, and developing T cells reactive to those gene-products are not inactivated during their development. However, the extent of the autoantibody repertoire in APECED and its relation to thymic expression of self-antigens are unclear. We here undertook a broad protein array approach to assess autoantibody repertoire in APECED patients. Our results show that in addition to shared autoantigen reactivities, APECED patients display high inter-individual variation in their autoantigen profiles, which collectively are enriched in evolutionarily conserved, cytosolic and nuclear phosphoproteins. The APECED autoantigens have two major origins; proteins expressed in thymic medullary epithelial cells and proteins expressed in lymphoid cells. These findings support the hypothesis that specific protein properties strongly contribute to the etiology of B cell autoimmunity.
Collapse
Affiliation(s)
- Dmytro Fishman
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Anu Remm
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Antonella Meloni
- Pediatric Clinic II, Ospedale Microcitemico, Cagliari, Italy.,Department of Biomedical and Biotechnological Science, University of Cagliari, Cagliari, Italy
| | - Katarina Trebusak Podkrajsek
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Kai Krohn
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College, Guy's Hospital, London, United Kingdom
| | - Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
35
|
Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MH, Jenkins MK, Adams EJ, Savage PA. Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity 2017; 47:107-117.e8. [PMID: 28709804 DOI: 10.1016/j.immuni.2017.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/17/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T (Treg) cells expressing the transcription factor Foxp3 are critical for the prevention of autoimmunity and the suppression of anti-tumor immunity. The major self-antigens recognized by Treg cells remain undefined, representing a substantial barrier to the understanding of immune regulation. Here, we have identified natural Treg cell ligands in mice. We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the other associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC-class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. On the basis of these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self-proteins that are most susceptible to autoimmune attack, and we suggest that this link could be exploited as a generalizable strategy for identifying the Treg cell antigens relevant to human autoimmunity.
Collapse
Affiliation(s)
- John D Leonard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Dana C Gilmore
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wioletta I Nawrocka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jaime L Chao
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Mary H Schoenbach
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Zaidi G, Bhatia V, Sahoo SK, Sarangi AN, Bharti N, Zhang L, Yu L, Eriksson D, Bensing S, Kämpe O, Bharani N, Yachha SK, Bhansali A, Sachan A, Jain V, Shah N, Aggarwal R, Aggarwal A, Srinivasan M, Agarwal S, Bhatia E. Autoimmune polyendocrine syndrome type 1 in an Indian cohort: a longitudinal study. Endocr Connect 2017; 6:289-296. [PMID: 28446514 PMCID: PMC5510449 DOI: 10.1530/ec-17-0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Autoimmune polyendocrine syndrome type 1 (APS1) is a rare autosomal recessive disorder characterized by progressive organ-specific autoimmunity. There is scant information on APS1 in ethnic groups other than European Caucasians. We studied clinical aspects and autoimmune regulator (AIRE) gene mutations in a cohort of Indian APS1 patients. DESIGN Twenty-three patients (19 families) from six referral centres in India, diagnosed between 1996 and 2016, were followed for [median (range)] 4 (0.2-19) years. METHODS Clinical features, mortality, organ-specific autoantibodies and AIRE gene mutations were studied. RESULTS Patients varied widely in their age of presentation [3.5 (0.1-17) years] and number of clinical manifestations [5 (2-11)]. Despite genetic heterogeneity, the frequencies of the major APS1 components (mucocutaneous candidiasis: 96%; hypoparathyroidism: 91%; primary adrenal insufficiency: 55%) were similar to reports in European series. In contrast, primary hypothyroidism (23%) occurred more frequently and at an early age, while kerato-conjunctivitis, urticarial rash and autoimmune hepatitis were uncommon (9% each). Six (26%) patients died at a young age [5.8 (3-23) years] due to septicaemia, hepatic failure and adrenal/hypocalcaemic crisis from non-compliance/unexplained cause. Interferon-α and/or interleukin-22 antibodies were elevated in all 19 patients tested, including an asymptomatic infant. Eleven AIRE mutations were detected, the most common being p.C322fsX372 (haplotype frequency 37%). Four mutations were novel, while six others were previously described in European Caucasians. CONCLUSIONS Indian APS1 patients exhibited considerable genetic heterogeneity and had highly variable clinical features. While the frequency of major manifestations was similar to that of European Caucasians, other features showed significant differences. A high mortality at a young age was observed.
Collapse
Affiliation(s)
- Ghazala Zaidi
- Departments of EndocrinologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vijayalakshmi Bhatia
- Departments of EndocrinologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Saroj K Sahoo
- Departments of EndocrinologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Aditya Narayan Sarangi
- Departments of GastroenterologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Niharika Bharti
- Departments of EndocrinologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Li Zhang
- Department of ImmunologyBarbara Davis Centre for Childhood Diabetes, Denver, USA
| | - Liping Yu
- Department of ImmunologyBarbara Davis Centre for Childhood Diabetes, Denver, USA
| | - Daniel Eriksson
- Department of Medicine (Solna)Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and SurgeryKarolinska Institutet, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna)Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Science for Life LaboratoryDepartment of Medical Sciences, Uppsala University, Sweden
| | - Nisha Bharani
- Department of EndocrinologyAmrita Institute of Medical Sciences, Kochi, India
| | - Surendra Kumar Yachha
- Departments of Paediatric GastroenterologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anil Bhansali
- Department of EndocrinologyPostgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alok Sachan
- Department of EndocrinologySri Venkateshwara Institute of Medical Sciences, Tirupathi, India
| | - Vandana Jain
- Department of PaediatricsAll India Institute of Medical Sciences, New Delhi, India
| | - Nalini Shah
- Department of EndocrinologyKing Edward Memorial Hospital, Seth GS Medical College, Mumbai, India
| | - Rakesh Aggarwal
- Departments of GastroenterologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amita Aggarwal
- Departments of Clinical ImmunologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Muthuswamy Srinivasan
- Departments of Medical GeneticsSanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sarita Agarwal
- Departments of Medical GeneticsSanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eesh Bhatia
- Departments of EndocrinologySanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
37
|
Pathogenic and Protective Autoantibodies in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED). Antibodies (Basel) 2017; 6:antib6010001. [PMID: 31548517 PMCID: PMC6698825 DOI: 10.3390/antib6010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare disorder caused by mutations in the autoimmune regulator (AIRE) gene, leading to defects in T cell selection. The disease manifestations include both autoimmune tissue destruction and immunodeficiency, with specific susceptibility to chronic mucocutaneous candidiasis. Studies have demonstrated a wide repertoire of high affinity tissue- and cytokine-specific antibodies in patients with APECED. Here, we review the antigenic targets and function of these disease-causing and disease-ameliorating antibodies.
Collapse
|
38
|
Iismaa SE. The prostate-specific protein, transglutaminase 4 (TG4), is an autoantigen associated with male subfertility. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S35. [PMID: 27868003 DOI: 10.21037/atm.2016.10.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Siiri E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; ; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
39
|
Bruserud Ø, Oftedal BE, Landegren N, Erichsen MM, Bratland E, Lima K, Jørgensen AP, Myhre AG, Svartberg J, Fougner KJ, Bakke Å, Nedrebø BG, Mella B, Breivik L, Viken MK, Knappskog PM, Marthinussen MC, Løvås K, Kämpe O, Wolff AB, Husebye ES. A Longitudinal Follow-up of Autoimmune Polyendocrine Syndrome Type 1. J Clin Endocrinol Metab 2016; 101:2975-83. [PMID: 27253668 PMCID: PMC4971337 DOI: 10.1210/jc.2016-1821] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Autoimmune polyendocrine syndrome type 1 (APS1) is a childhood-onset monogenic disease defined by the presence of two of the three major components: hypoparathyroidism, primary adrenocortical insufficiency, and chronic mucocutaneous candidiasis (CMC). Information on longitudinal follow-up of APS1 is sparse. OBJECTIVE To describe the phenotypes of APS1 and correlate the clinical features with autoantibody profiles and autoimmune regulator (AIRE) mutations during extended follow-up (1996-2016). PATIENTS All known Norwegian patients with APS1. RESULTS Fifty-two patients from 34 families were identified. The majority presented with one of the major disease components during childhood. Enamel hypoplasia, hypoparathyroidism, and CMC were the most frequent components. With age, most patients presented three to five disease manifestations, although some had milder phenotypes diagnosed in adulthood. Fifteen of the patients died during follow-up (median age at death, 34 years) or were deceased siblings with a high probability of undisclosed APS1. All except three had interferon-ω) autoantibodies, and all had organ-specific autoantibodies. The most common AIRE mutation was c.967_979del13, found in homozygosity in 15 patients. A mild phenotype was associated with the splice mutation c.879+1G>A. Primary adrenocortical insufficiency and type 1 diabetes were associated with protective human leucocyte antigen genotypes. CONCLUSIONS Multiple presumable autoimmune manifestations, in particular hypoparathyroidism, CMC, and enamel hypoplasia, should prompt further diagnostic workup using autoantibody analyses (eg, interferon-ω) and AIRE sequencing to reveal APS1, even in adults. Treatment is complicated, and mortality is high. Structured follow-up should be performed in a specialized center.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Nils Landegren
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Kari Lima
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Anders P Jørgensen
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Anne G Myhre
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Johan Svartberg
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Kristian J Fougner
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Åsne Bakke
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Bjørn G Nedrebø
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Bjarne Mella
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Lars Breivik
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Marte K Viken
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Mihaela C Marthinussen
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Kristian Løvås
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Olle Kämpe
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Anette B Wolff
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| |
Collapse
|
40
|
Abramson J, Husebye ES. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 2016; 271:127-40. [PMID: 27088911 DOI: 10.1111/imr.12419] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The establishment of central tolerance in the thymus is critical for avoiding deleterious autoimmune diseases. Autoimmune regulator (AIRE), the causative gene in autoimmune polyendocrine syndrome type-1 (APS-1), is crucial for the establishment of self-tolerance in the thymus by promoting promiscuous expression of a wide array of tissue-restricted self-antigens. This step is critical for elimination of high-affinity self-reactive T cells from the immunological repertoire, and for the induction of a specific subset of Foxp3(+) T-regulatory (Treg ) cells. In this review, we discuss the most recent advances in our understanding of how AIRE operates on molecular and cellular levels, as well as of how its loss of function results in breakdown of self-tolerance mechanisms characterized by a broad and heterogeneous repertoire of autoimmune phenotypes.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
41
|
Abstract
Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.
Collapse
|
42
|
Landegren N, Pourmousa Lindberg M, Skov J, Hallgren Å, Eriksson D, Lisberg Toft-Bertelsen T, MacAulay N, Hagforsen E, Räisänen-Sokolowski A, Saha H, Nilsson T, Nordmark G, Ohlsson S, Gustafsson J, Husebye ES, Larsson E, Anderson MS, Perheentupa J, Rorsman F, Fenton RA, Kämpe O. Autoantibodies Targeting a Collecting Duct-Specific Water Channel in Tubulointerstitial Nephritis. J Am Soc Nephrol 2016; 27:3220-3228. [PMID: 26984885 DOI: 10.1681/asn.2015101126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
Tubulointerstitial nephritis is a common cause of kidney failure and may have diverse etiologies. This form of nephritis is sometimes associated with autoimmune disease, but the role of autoimmune mechanisms in disease development is not well understood. Here, we present the cases of three patients with autoimmune polyendocrine syndrome type 1 who developed tubulointerstitial nephritis and ESRD in association with autoantibodies against kidney collecting duct cells. One of the patients developed autoantibodies targeting the collecting duct-specific water channel aquaporin 2, whereas autoantibodies of the two other patients reacted against the HOXB7 or NFAT5 transcription factors, which regulate the aquaporin 2 promoter. Our findings suggest that tubulointerstitial nephritis developed in these patients as a result of an autoimmune insult on the kidney collecting duct cells.
Collapse
Affiliation(s)
- Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden;
| | | | - Jakob Skov
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| | - Åsa Hallgren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| | | | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne Räisänen-Sokolowski
- Department of Pathology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Heikki Saha
- Department of Medicine, Tampere University Hospital Medical School, Tampere, Finland
| | | | | | | | | | - Eystein S Husebye
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Erik Larsson
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California
| | - Jaakko Perheentupa
- The Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland; and
| | | | - Robert A Fenton
- Interactions of Proteins in Epithelial Transport Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Olle Kämpe
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| |
Collapse
|
43
|
Landegren N, Sharon D, Freyhult E, Hallgren Å, Eriksson D, Edqvist PH, Bensing S, Wahlberg J, Nelson LM, Gustafsson J, Husebye ES, Anderson MS, Snyder M, Kämpe O. Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1. Sci Rep 2016; 6:20104. [PMID: 26830021 PMCID: PMC4735587 DOI: 10.1038/srep20104] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features multiple autoimmune disease manifestations. It is caused by mutations in the Autoimmune regulator (AIRE) gene, which promote thymic display of thousands of peripheral tissue antigens in a process critical for establishing central immune tolerance. We here used proteome arrays to perform a comprehensive study of autoimmune targets in APS1. Interrogation of established autoantigens revealed highly reliable detection of autoantibodies, and by exploring the full panel of more than 9000 proteins we further identified MAGEB2 and PDILT as novel major autoantigens in APS1. Our proteome-wide assessment revealed a marked enrichment for tissue-specific immune targets, mirroring AIRE’s selectiveness for this category of genes. Our findings also suggest that only a very limited portion of the proteome becomes targeted by the immune system in APS1, which contrasts the broad defect of thymic presentation associated with AIRE-deficiency and raises novel questions what other factors are needed for break of tolerance.
Collapse
Affiliation(s)
- Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Donald Sharon
- Department of Genetics, Stanford University, California, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, Connecticut, USA
| | - Eva Freyhult
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden.,Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Sweden.,Bioinformatics Infrastructure for Life Sciences, Sweden
| | - Åsa Hallgren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden and Science for Life Laboratory, Uppsala, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology and Department of Medical and Health Sciences and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lawrence M Nelson
- Integrative Reproductive Medicine Group, Intramural Research Program on Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Gustafsson
- Department of Women's and Children's Health, Uppsala University, Sweden
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, USA
| | - Michael Snyder
- Department of Genetics, Stanford University, California, USA
| | - Olle Kämpe
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| |
Collapse
|
44
|
De Martino L, Capalbo D, Improda N, Lorello P, Ungaro C, Di Mase R, Cirillo E, Pignata C, Salerno M. Novel Findings into AIRE Genetics and Functioning: Clinical Implications. Front Pediatr 2016; 4:86. [PMID: 27597936 PMCID: PMC4992815 DOI: 10.3389/fped.2016.00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), formerly known as autoimmune polyendocrine syndrome type 1, is a paradigm of a monogenic autoimmune disease caused by mutations of a gene, named autoimmune regulator (AIRE). AIRE acts as a transcription regulator that promotes immunological central tolerance by inducing the ectopic thymic expression of many tissue-specific antigens. Although the syndrome is a monogenic disease, it is characterized by a wide variability of the clinical expression with no significant correlation between genotype and phenotype. Indeed, many aspects regarding the exact role of AIRE and APECED pathogenesis still remain unraveled. In the last decades, several studies in APECED and in its mouse experimental counterpart have revealed new insights on how immune system learns self-tolerance. Moreover, novel interesting findings have extended our understanding of AIRE's function and regulation thus improving our knowledge on the pathogenesis of APECED. In this review, we will summarize recent novelties on molecular mechanisms underlying the development of APECED and their clinical implications.
Collapse
Affiliation(s)
- Lucia De Martino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | | | - Nicola Improda
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Paola Lorello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Carla Ungaro
- Department of Pediatrics, Federico II University , Naples , Italy
| | | | - Emilia Cirillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Mariacarolina Salerno
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| |
Collapse
|