1
|
Lin Z, Luo M, Liang J, Li Z, Lin Y, Chen X, Chen B, Peng L, Ouyang Y, Mou L. A liquid metal-based sticky conductor for wearable and real-time electromyogram monitoring with machine learning classification. J Mater Chem B 2025. [PMID: 40007317 DOI: 10.1039/d4tb01711k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Skin electronics face challenges related to the interface between rigid and soft materials, resulting in discomfort and signal inaccuracies. This study presents the development and characterization of a liquid metal-polydimethylsiloxane (LM-PDMS) sticky conductor designed for wearable electromyography (EMG) monitoring. The conductor leverages a composite of LM inks and PDMS, augmented with silver nanowires (AgNWs) and surface-modified with mercaptoundecanoic acid (MUD) to enhance conductivity. The mechanical properties of the PDMS matrix were optimized using Triton-X to achieve a flexible and adhesive configuration suitable for skin contact. Our LM-PDMS sticky conductor demonstrated excellent stretchability, could endure up to 300% strain without damage, and maintained strong adherence to the skin without relative displacement. Biocompatibility tests confirmed high cell viability, making it suitable for long-term use. EMG signal analysis revealed reliable muscle activity detection, with advanced signal processing techniques effectively filtering noise and stabilizing the baseline. Furthermore, we employed machine learning algorithms to classify EMG signals, achieving high accuracy in distinguishing different muscle activities. This study showcases the potential of LM-PDMS sticky conductors for advanced wearable bioelectronics, offering promising applications in personalized healthcare and real-time muscle activity monitoring.
Collapse
Affiliation(s)
- Zixin Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Mingmei Luo
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Jiayi Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Zijie Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Yanting Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Xiaman Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Baozhu Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Liang Peng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Yongchang Ouyang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Lei Mou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
2
|
Truong TA, Huang X, Barton M, Ashok A, Al Abed A, Almasri R, Shivdasanic MN, Reshamwala R, Ingles J, Thai MT, Nguyen CC, Zhao S, Zhang X, Gu Z, Vasanth A, Peng S, Nguyen TK, Do N, Nguyen NT, Zhao H, Phan HP. Flexible Electrode Arrays Based on a Wide Bandgap Semiconductors for Chronic Implantable Multiplexed Sensing and Heart Pacemakers. ACS NANO 2025; 19:1642-1659. [PMID: 39752298 DOI: 10.1021/acsnano.4c15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals. This study introduces a multielectrode array featuring a wide bandgap (WBG) material as electrodes, demonstrating its suitability for chronic implantable applications. Our devices exhibit excellent flexibility and longevity, taking advantage of the low bending stiffness and chemical inertness in WBG nanomembranes and multimodalities for physical health monitoring, including temperature, strain, and impedance sensing. Our top-down manufacturing process enables the formation of distributed electrode arrays that can be seamlessly integrated onto the curvilinear surfaces of skins. As proof of concept for chronic cardiac pacing applications, we demonstrate the effective pacing functionality of our devices on rabbit hearts through a set of ex vivo experiments. The engineering approach proposed in this study overcomes the drawbacks of prior WBG material fabrication techniques, resulting in an implantable system with high bendability, effective pacing, and high-performance sensing.
Collapse
Affiliation(s)
- Thanh An Truong
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Barton
- School of Nursing & Midwifery, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Reem Almasri
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohit N Shivdasanic
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ronak Reshamwala
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Joshua Ingles
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- College of Engineering and Computer Science and VinUni-Illinois Smart Health Center, Vin University, Hanoi 100000, Vietnam
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Arya Vasanth
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Nho Do
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Kim J, Kim Y, Kim K, Jung H, Seong D, Shin M, Son D. Tissue-Adhesive and Stiffness-Adaptive Neural Electrodes Fabricated Through Laser-Based Direct Patterning. SMALL METHODS 2025:e2401796. [PMID: 39778076 DOI: 10.1002/smtd.202401796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist. Herein, an efficient method for developing a tissue-adhesive, stiffness-adaptive peripheral neural interface (TA-SA-PNI) is presented employing mechanically and electrically stable ultrathin conductive micro/nanomembrane bilayer (UC-MNB) electrodes. A direct laser-patterning technique is utilized to anchor the UC-MNB, comprising a conductive Cu micromembrane encapsulated by a biocompatible Au nanomembrane, onto a tough self-healing polymer (T-SHP) substrate using the thermoplastic properties of T-SHP. The UC-MNB with a wavy structure exhibited strain-insensitive performance under strains of up to 60%. Furthermore, its dynamic stress-relaxation properties enable stiffness adaptation, potentially minimizing chronic nerve compression. Finally, the phenylboronic acid-conjugated alginate (Alg-BA) adhesive layer offers stable tissue adhesion and ionic conductivity, optimizing the TA-SA-PNI for seamless integration into neural applications. Leveraging these advantages, in vivo demonstrations of bidirectional neural pathways are successfully conducted, featuring stable measurements of sensory neural signals and feedback electrical stimulation of the sciatic nerves of rats.
Collapse
Affiliation(s)
- Jaehyon Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Yewon Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Duhwan Seong
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Rao Z, Ershad F, Guan YS, Paccola Mesquita FC, da Costa EC, Morales-Garza MA, Moctezuma-Ramirez A, Kan B, Lu Y, Patel S, Shim H, Cheng K, Wu W, Haideri T, Lian XL, Karim A, Yang J, Elgalad A, Hochman-Mendez C, Yu C. Ultrathin rubbery bio-optoelectronic stimulators for untethered cardiac stimulation. SCIENCE ADVANCES 2024; 10:eadq5061. [PMID: 39642227 PMCID: PMC11623305 DOI: 10.1126/sciadv.adq5061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination-induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation. Here, we introduce an ultrathin (<500 nm), stretchy, and self-adhesive rubbery bio-optoelectronic stimulator (RBOES) in a bilayer construct of a rubbery semiconducting nanofilm and a transparent, stretchable gold nanomesh conductor. The RBOES could maintain its optoelectronic performance when it was stretched by 20%. The RBOES was validated to effectively accelerate the beating of the human induced pluripotent stem cell-derived cardiomyocytes. Furthermore, acceleration of ex vivo perfused rat hearts by optoelectronic stimulation with the self-adhered RBOES was achieved with repetitive pulsed light illumination.
Collapse
Affiliation(s)
- Zhoulyu Rao
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Faheem Ershad
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Ying-Shi Guan
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | | | | | - Marco A. Morales-Garza
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Angel Moctezuma-Ramirez
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Bin Kan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuntao Lu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Patel
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyunseok Shim
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kuan Cheng
- Materials Science and Engineering Program, University of Houston, Houston, TX 77024, USA
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77024, USA
| | - Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77024, USA
| | - Jian Yang
- Department of Materials Science and Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Abdelmotagaly Elgalad
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | | | - Cunjiang Yu
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Department of Mechanical Science and Engineering, Materials Science
and Engineering, Bioengineering, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Qiu Y, Ye H, Zhang S, Zhang H, Zheng Y. Hydrogel-Based Network Metamaterials with Biological Tissue-like Poisson's Ratio Behavior and Stress Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62371-62381. [PMID: 39473237 DOI: 10.1021/acsami.4c12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Soft network metamaterials are widely used in fields such as flexible electronics, tissue engineering, and biomedicine due to their superior properties including low density, high stretchability, and high breathability. However, the prediction and customization of the nonlinear mechanical behavior of soft network metamaterials remain a challenging problem. In this study, a family of hydrogel-based network metamaterials with biological tissue-like mechanical properties are developed based on a machine learning-driven optimization design method. Numerical and experimental results explain the relationship between the mechanical properties of the designed metamaterials and their microstructural features and stretching ratios. The results indicate that the hydrogel-based network metamaterials exhibit J-shaped stress-deformation (σ-λ) behavior similar to biological tissues. This phenomenon arises from the transition of the deformation mode of metamaterials from bending-dominated to stretching-dominated as the stretching ratio increases. Based on the proposed design scheme, the Poisson's ratio of metamaterials can be adjusted within a remarkably wide range of -1.06 to 1.34. Furthermore, through optimizing the design parameters of the metamaterial, the customization of network metamaterials with biological tissue-like zero Poisson's ratio behavior and stress response is achieved. The potential applications of hydrogel-based network metamaterials are demonstrated through artificial skin and LED integrated device. This research offers novel insights into predicting, designing, and fabricating the mechanical behavior of soft network metamaterials.
Collapse
Affiliation(s)
- Yisong Qiu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hongfei Ye
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shuaiqi Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hongwu Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yonggang Zheng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
6
|
Zhang Q, Zhao G, Li Z, Guo F, Huang Y, Guo G, Wang J, Zhou J, Chow L, Huang X, He X, Gao Y, Gao Z, Yao K, Qiu Y, Zhao Z, Zhang B, Yang Y, Liu Y, Hu Y, Wu M, Li J, Wu P, Xu G, He P, Yang Z, Yu X. Multi-functional adhesive hydrogel as bio-interface for wireless transient pacemaker. Biosens Bioelectron 2024; 263:116597. [PMID: 39059179 DOI: 10.1016/j.bios.2024.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Traditional temporary cardiac pacemakers (TCPs), which employ transcutaneous leads and external wired power systems are battery-dependent and generally non-absorbable with rigidity, thereby necessitating surgical retrieval after therapy and resulting in potentially severe complications. Wireless and bioresorbable transient pacemakers have, hence, emerged recently, though hitting a bottleneck of unfavorable tissue-device bonding interface subject to mismatched mechanical modulus, low adhesive strength, inferior electrical performances, and infection risks. Here, to address such crux, we develop a multifunctional interface hydrogel (MIH) with superior electrical performance to facilitate efficient electrical exchange, comparable mechanical strength to natural heart tissue, robust adhesion property to enable stable device-tissue fixation (tensile strength: ∼30 kPa, shear strength of ∼30 kPa, and peel-off strength: ∼85 kPa), and good bactericidal effect to suppress bacterial growth. Through delicate integration of this versatile MIH with a leadless, battery-free, wireless, and transient pacemaker, the entire system exhibits stable and conformal adhesion to the beating heart while enabling precise and constant electrical stimulation to modulate the cardiac rhythm. It is envisioned that this versatile MIH and the proposed integration framework will have immense potential in overcoming key limitations of traditional TCPs, and may inspire the design of novel bioelectronic-tissue interfaces for next-generation implantable medical devices.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Fang Guo
- School of Public Health, The University of Hong Kong, Pok Fu Lam, HKSAR, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jiachen Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Xinxin He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yuze Qiu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zirui Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Yawen Yang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yingjian Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yue Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Guoqiang Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Pinyuan He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China.
| |
Collapse
|
7
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
9
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Kim HJ, Choi H, Kim DH, Son D. Stretchable Functional Nanocomposites for Soft Implantable Bioelectronics. NANO LETTERS 2024; 24:8453-8464. [PMID: 38771649 DOI: 10.1021/acs.nanolett.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Material advances in soft bioelectronics, particularly those based on stretchable nanocomposites─functional nanomaterials embedded in viscoelastic polymers with irreversible or reversible bonds─have driven significant progress in translational medical device research. The unique mechanical properties inherent in the stretchable nanocomposites enable stiffness matching between tissue and device, as well as its spontaneous mechanical adaptation to in vivo environments, minimizing undesired mechanical stress and inflammation responses. Furthermore, these properties allow percolative networks of conducting fillers in the nanocomposites to be sustained even under repetitive tensile/compressive stresses, leading to stable tissue-device interfacing. Here, we present an in-depth review of materials strategies, fabrication/integration techniques, device designs, applications, and translational opportunities of nanocomposite-based soft bioelectronics, which feature intrinsic stretchability, self-healability, tissue adhesion, and/or syringe injectability. Among many, applications to brain, heart, and peripheral nerves are predominantly discussed, and translational studies in certain domains such as neuromuscular and cardiovascular engineering are particularly highlighted.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Heewon Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Dai J, Wang B, Chang Z, Lu X, Nie J, Ren Q, Lv Y, Rotenberg MY, Fang Y. Injectable Mesh-Like Conductive Hydrogel Patch for Elimination of Atrial Fibrillation. Adv Healthc Mater 2024; 13:e2303219. [PMID: 38198617 DOI: 10.1002/adhm.202303219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Irregular electrical impulses in atrium are the leading cause of atrial fibrillation (AF), resulting in fatal arrhythmia and sudden cardiac death. Traditional medication and physical therapies are widely used, but generally suffer problems in serious physical damage and high surgical risks. Flexible and soft implants have great potential to be a novel approach for heart diseases therapy. A conductive hydrogel-based mesh cardiac patch is developed for application in AF elimination. The designed mesh patch with rhombic-shaped structure exhibits excellent flexibility, surface conformability, and deformation compliance, making it fit well with heart surface and accommodate to the deformation during heart beating. Moreover, the mechanical elastic and shape-memory properties of the mesh patch enable a minimally invasive injection of the patch into living animals. The mesh patch is implanted on the atrium surface for one month, indicating good biocompatibility and stability. Furthermore, the conductive patch can effectively eliminate AF owing to the conductivity and high charge storage capability (CSC) of the hydrogel. The proposed scheme of cardiac bioelectric signal modulation using conductive hydrogel brings new possibility for the treatment of arrhythmia diseases.
Collapse
Affiliation(s)
- Jing Dai
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinxin Lu
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai, 200444, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Yin Fang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
12
|
Deng J, Wu J, Chen X, Sarrafian TL, Varela CE, Whyte W, Guo CF, Roche ET, Griffiths LG, Yuk H, Nabzdyk CS, Zhao X. A bioadhesive pacing lead for atraumatic cardiac monitoring and stimulation in rodent and porcine models. Sci Transl Med 2024; 16:eado9003. [PMID: 38896601 DOI: 10.1126/scitranslmed.ado9003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.
Collapse
Affiliation(s)
- Jue Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | | | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ellen T Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Christoph S Nabzdyk
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Zhang H, Shao Y, Xia R, Chen G, Xiang X, Yu Y. Stretchable Electrodes with Interfacial Percolation Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401550. [PMID: 38591837 DOI: 10.1002/adma.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Stretchable electrodes are an essential component that determines the functionality and reliability of stretchable electronics, but face the challenge of balancing conductivity and stretchability. This work proposes a new conducting concept called the interfacial percolation network (PN) that results in stretchable electrodes with high conductivity, large stretchability, and high stability. The interfacial PN is composed of a 2D silver nanowires (AgNWs) PN and a protruding 3D AgNWs PN embedded on the surface and in the near-surface region of an elastic polymer matrix, respectively. The protruded PN is obtained by changing the arrangements of AgNWs from horizontal to quasi-vertical through introducing foreign polymer domains in the near-surface region of the polymer matrix. The resulting electrode achieves a conductivity of 13 500 S cm-1 and a stretchability of 660%. Its resistance changes under stretched conditions are orders of magnitude lower than those of conventional 2D PN and 2D + 3D PN. An interfacial PN electrode made from liquid metal remained its conductivity at 46 750 S cm-1 after the electrode underwent multiple stretch-release cycles with a deformation of >600%. The concept of interfacial PN provides fruitful implications for the design of stretchable electronics.
Collapse
Affiliation(s)
- Hanxue Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rui Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guoli Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Xiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanhao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
14
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
Han SI, Sunwoo SH, Park CS, Lee SP, Hyeon T, Kim DH. Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics. ACS NANO 2024; 18:12025-12048. [PMID: 38706306 DOI: 10.1021/acsnano.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.
Collapse
Affiliation(s)
- Sang Ihn Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Ban S, Lee CW, Sakthivelpathi V, Chung JH, Kim JH. Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9727. [PMID: 38139573 PMCID: PMC10748204 DOI: 10.3390/s23249727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Skin-based wearable devices have gained significant attention due to advancements in soft materials and thin-film technologies. Nevertheless, traditional wearable electronics often entail expensive and intricate manufacturing processes and rely on metal-based substrates that are susceptible to corrosion and lack flexibility. In response to these challenges, this paper has emerged with an alternative substrate for wearable electrodes due to its cost-effectiveness and scalability in manufacturing. Paper-based electrodes offer an attractive solution with their inherent properties of high breathability, flexibility, biocompatibility, and tunability. In this study, we introduce carbon nanotube-based paper composites (CPC) electrodes designed for the continuous detection of biopotential signals, such as electrooculography (EOG), electrocardiogram (ECG), and electroencephalogram (EEG). To prevent direct skin contact with carbon nanotubes, we apply various packaging materials, including polydimethylsiloxane (PDMS), Eco-flex, polyimide (PI), and polyurethane (PU). We conduct a comparative analysis of their signal-to-noise ratios in comparison to conventional gel electrodes. Our system demonstrates real-time biopotential monitoring for continuous health tracking, utilizing CPC in conjunction with a portable data acquisition system. The collected data are analyzed to provide accurate heart rates, respiratory rates, and heart rate variability metrics. Additionally, we explore the feasibility using CPC for sleep monitoring by collecting EEG signals.
Collapse
Affiliation(s)
- Seunghyeb Ban
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
| | - Chang Woo Lee
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (C.W.L.); (J.-H.C.)
| | - Vigneshwar Sakthivelpathi
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (C.W.L.); (J.-H.C.)
| | - Jae-Hyun Chung
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (C.W.L.); (J.-H.C.)
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (C.W.L.); (J.-H.C.)
| |
Collapse
|
19
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
20
|
Zhang T, Liu N, Xu J, Liu Z, Zhou Y, Yang Y, Li S, Huang Y, Jiang S. Flexible electronics for cardiovascular healthcare monitoring. Innovation (N Y) 2023; 4:100485. [PMID: 37609559 PMCID: PMC10440597 DOI: 10.1016/j.xinn.2023.100485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most urgent threats to humans worldwide, which are responsible for almost one-third of global mortality. Over the last decade, research on flexible electronics for monitoring and treatment of CVDs has attracted tremendous attention. In contrast to conventional medical instruments in hospitals that are usually bulky, hard to move, monofunctional, and time-consuming, flexible electronics are capable of continuous, noninvasive, real-time, and portable monitoring. Notable progress has been made in this emerging field, and thus a number of significant achievements and concomitant research prospects deserve attention for practical implementation. Here, we comprehensively review the latest progress of flexible electronics for CVDs, focusing on new functions provided by flexible electronics. First, the characteristics of CVDs and flexible electronics and the foundation of their combination are briefly reviewed. Then, four representative applications of flexible electronics for CVDs are elaborated: blood pressure (BP) monitoring, electrocardiogram (ECG) monitoring, echocardiogram monitoring, and direct epicardium monitoring. Their operational principles, progress, merits and demerits, and future efforts are discussed. Finally, the remaining challenges and opportunities for flexible electronics for cardiovascular healthcare are outlined.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zeye Liu
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shoujun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| |
Collapse
|
21
|
Chen Z, Nguyen K, Kowalik G, Shi X, Tian J, Doshi M, Alber BR, Guan X, Liu X, Ning X, Kay MW, Lu L. Transparent and Stretchable Au─Ag Nanowire Recording Microelectrode Arrays. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201716. [PMID: 38644939 PMCID: PMC11031257 DOI: 10.1002/admt.202201716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 04/23/2024]
Abstract
Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk-free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high-fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold-coated silver nanowires (Au─Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au─Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2-7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Khanh Nguyen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xinyu Shi
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jinbi Tian
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Mitansh Doshi
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xun Guan
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xin Ning
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Luyao Lu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
22
|
Lee JH, Jang TM, Shin JW, Lim BH, Rajaram K, Han WB, Ko GJ, Yang SM, Han S, Kim DJ, Kang H, Lim JH, Lee KS, Park E, Hwang SW. Wireless, Fully Implantable and Expandable Electronic System for Bidirectional Electrical Neuromodulation of the Urinary Bladder. ACS NANO 2023; 17:8511-8520. [PMID: 37070621 DOI: 10.1021/acsnano.3c00755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Current standard clinical options for patients with detrusor underactivity (DUA) or underactive bladder─the inability to release urine naturally─include the use of medications, voiding techniques, and intermittent catheterization, for which the patient inserts a tube directly into the urethra to eliminate urine. Although those are life-saving techniques, there are still unfavorable side effects, including urinary tract infection (UTI), urethritis, irritation, and discomfort. Here, we report a wireless, fully implantable, and expandable electronic complex that enables elaborate management of abnormal bladder function via seamless integrations with the urinary bladder. Such electronics can not only record multiple physiological parameters simultaneously but also provide direct electrical stimulation based on a feedback control system. Uniform distribution of multiple stimulation electrodes via mesh-type geometry realizes low-impedance characteristics, which improves voiding/urination efficiency at the desired times. In vivo evaluations using live, free-moving animal models demonstrate system-level functionality.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong Hee Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyu-Sung Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Biomedical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
23
|
Sunwoo SH, Han SI, Jung D, Kim M, Nam S, Lee H, Choi S, Kang H, Cho YS, Yeom DH, Cha MJ, Lee S, Lee SP, Hyeon T, Kim DH. Stretchable Low-Impedance Conductor with Ag-Au-Pt Core-Shell-Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device. ACS NANO 2023; 17:7550-7561. [PMID: 37039606 DOI: 10.1021/acsnano.2c12659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanically soft metallic nanocomposites have gained much attention as a key material for intrinsically stretchable biointegrated devices. However, it has been challenging to develop a stretchable conductive nanocomposite with all the desired material characteristics including high conductivity, high stretchability, low cytotoxicity, and low impedance. Here, we present a material strategy for the stretchable conductive nanocomposite, particularly emphasizing low impedance, by combining silver-gold-platinum core-shell-shell nanowires and homogeneously dispersed in situ synthesized platinum nanoparticles (Pt NPs). The highly embossed structure of the outermost Pt shell, together with the intrinsic electrical property of Pt, contributes to minimizing the impedance. The gold-platinum double-layer sheath prevents leaching of cytotoxic Ag ions, thus improving biocompatibility. Homogeneously dispersed Pt NPs, synthesized in situ during fabrication of the nanocomposite, simultaneously enhance conductivity, reduce impedance, and improve stretchability by supporting the percolation network formation. This intrinsically stretchable nanocomposite conductor can be applied to wearable and implantable bioelectronics for recording biosignals and delivering electrical stimulations in vivo.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minseong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Myung-Jin Cha
- Department of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Han WB, Ko GJ, Lee KG, Kim D, Lee JH, Yang SM, Kim DJ, Shin JW, Jang TM, Han S, Zhou H, Kang H, Lim JH, Rajaram K, Cheng H, Park YD, Kim SH, Hwang SW. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun 2023; 14:2263. [PMID: 37081012 PMCID: PMC10119106 DOI: 10.1038/s41467-023-38040-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghak Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188 Pangyoyeok-ro, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13524, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
25
|
Sunwoo SH, Cha MJ, Han SI, Kang H, Cho YS, Yeom DH, Park CS, Park NK, Choi SW, Kim SJ, Cha GD, Jung D, Choi S, Oh S, Nam GB, Hyeon T, Kim DH, Lee SP. Ventricular tachyarrhythmia treatment and prevention by subthreshold stimulation with stretchable epicardial multichannel electrode array. SCIENCE ADVANCES 2023; 9:eadf6856. [PMID: 37000879 PMCID: PMC10065438 DOI: 10.1126/sciadv.adf6856] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 05/24/2023]
Abstract
The implantable cardioverter-defibrillator (ICD) is an effective method to prevent sudden cardiac death in high-risk patients. However, the transvenous lead is incompatible with large-area electrophysiological mapping and cannot accommodate selective multichannel precision stimulations. Moreover, it involves high-energy shocks, resulting in pain, myocardial damage, and recurrences of ventricular tachyarrhythmia (VTA). We present a method for VTA treatment based on subthreshold electrical stimulations using a stretchable epicardial multichannel electrode array, which does not disturb the normal contraction or electrical propagation of the ventricle. In rabbit models with myocardial infarction, the infarction was detected by mapping intracardiac electrograms with the stretchable epicardial multichannel electrode array. Then, VTAs could be terminated by sequential electrical stimuli from the epicardial multichannel electrode array beginning with low-energy subthreshold stimulations. Last, we used these subthreshold stimulations to prevent the occurrence of additional VTAs. The proposed protocol using the stretchable epicardial multichannel electrode array provides opportunities toward the development of innovative methods for painless ICD therapy.
Collapse
MESH Headings
- Rabbits
- Animals
- Tachycardia, Ventricular/therapy
- Tachycardia, Ventricular/epidemiology
- Tachycardia, Ventricular/etiology
- Defibrillators, Implantable/adverse effects
- Heart Ventricles
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/epidemiology
- Myocardial Infarction/therapy
- Myocardial Infarction/etiology
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Myung-Jin Cha
- Departments of Cardiology and Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Na Kyeong Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seil Oh
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi-Byoung Nam
- Departments of Cardiology and Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
26
|
Cheng X, Fan Z, Yao S, Jin T, Lv Z, Lan Y, Bo R, Chen Y, Zhang F, Shen Z, Wan H, Huang Y, Zhang Y. Programming 3D curved mesosurfaces using microlattice designs. Science 2023; 379:1225-1232. [PMID: 36952411 DOI: 10.1126/science.adf3824] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Cellular microstructures form naturally in many living organisms (e.g., flowers and leaves) to provide vital functions in synthesis, transport of nutrients, and regulation of growth. Although heterogeneous cellular microstructures are believed to play pivotal roles in their three-dimensional (3D) shape formation, programming 3D curved mesosurfaces with cellular designs remains elusive in man-made systems. We report a rational microlattice design that allows transformation of 2D films into programmable 3D curved mesosurfaces through mechanically guided assembly. Analytical modeling and a machine learning-based computational approach serve as the basis for shape programming and determine the heterogeneous 2D microlattice patterns required for target 3D curved surfaces. About 30 geometries are presented, including both regular and biological mesosurfaces. Demonstrations include a conformable cardiac electronic device, a stingray-like dual mode actuator, and a 3D electronic cell scaffold.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhichao Fan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Tianqi Jin
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zengyao Lv
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Renheng Bo
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yitong Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Huanhuan Wan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Civil & Environmental Engineering, Mechanical Engineering, and Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
27
|
Kim HJ, Jung D, Sunwoo SH, Jung S, Koo JH, Kim DH. Integration of Conductive Nanocomposites and Nanomembranes for High‐Performance Stretchable Conductors. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Hye Jin Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Institute of Radiation Medicine Seoul National University Medical Research Center Seoul 03080 Republic of Korea
| | - Sonwoo Jung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
28
|
Zhang Q, Yang G, Xue L, Dong G, Su W, Cui MJ, Wang ZG, Liu M, Zhou Z, Zhang X. Ultrasoft and Biocompatible Magnetic-Hydrogel-Based Strain Sensors for Wireless Passive Biomechanical Monitoring. ACS NANO 2022; 16:21555-21564. [PMID: 36479886 DOI: 10.1021/acsnano.2c10404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Implantable flexible mechanical sensors have exhibited great potential in health monitoring and disease diagnosis due to continuous and real-time monitoring capability. However, the wires and power supply required in current devices cause inconvenience and potential risks. Magnetic-based devices have demonstrated advantages in wireless and passive sensing, but the mismatched mechanical properties, poor biocompatibility, and insufficient sensitivity have limited their applications in biomechanical monitoring. Here, a wireless and passive flexible magnetic-based strain sensor based on a gelatin methacrylate/Fe3O4 magnetic hydrogel has been fabricated. The sensor exhibits ultrasoft mechanical properties, strong magnetic properties, and long-term stability in saline solution and can monitor strains down to 50 μm. A model of the sensing process is established to identify the optimal detection location and the relation between the relative magnetic permeability and the sensitivity of the sensors. Moreover, an in vitro tissue model is developed to investigate the potential of the sensor in detecting subtle biomechanical signals and avoiding interference with bioactivities. Furthermore, a real-time and high-throughput biomonitoring platform is built and implements passive wireless monitoring of the drug response and cultural status of the cardiomyocytes. This work demonstrates the potential of applying magnetic sensing for biomechanical monitoring and provides ideas for the design of wireless and passive implantable devices.
Collapse
Affiliation(s)
- Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Guannan Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Li Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Guohua Dong
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Wei Su
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Meng Jie Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Zhi Guang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| |
Collapse
|
29
|
Ban S, Lee YJ, Kim KR, Kim JH, Yeo WH. Advances in Materials, Sensors, and Integrated Systems for Monitoring Eye Movements. BIOSENSORS 2022; 12:1039. [PMID: 36421157 PMCID: PMC9688058 DOI: 10.3390/bios12111039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Eye movements show primary responses that reflect humans' voluntary intention and conscious selection. Because visual perception is one of the fundamental sensory interactions in the brain, eye movements contain critical information regarding physical/psychological health, perception, intention, and preference. With the advancement of wearable device technologies, the performance of monitoring eye tracking has been significantly improved. It also has led to myriad applications for assisting and augmenting human activities. Among them, electrooculograms, measured by skin-mounted electrodes, have been widely used to track eye motions accurately. In addition, eye trackers that detect reflected optical signals offer alternative ways without using wearable sensors. This paper outlines a systematic summary of the latest research on various materials, sensors, and integrated systems for monitoring eye movements and enabling human-machine interfaces. Specifically, we summarize recent developments in soft materials, biocompatible materials, manufacturing methods, sensor functions, systems' performances, and their applications in eye tracking. Finally, we discuss the remaining challenges and suggest research directions for future studies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yoon Jae Lee
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ka Ram Kim
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Woon-Hong Yeo
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA 30332, USA
- Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
30
|
Liu Y, Zheng M, O’Connor B, Dong J, Zhu Y. Curvilinear soft electronics by micromolding of metal nanowires in capillaries. SCIENCE ADVANCES 2022; 8:eadd6996. [PMID: 36399557 PMCID: PMC9674275 DOI: 10.1126/sciadv.add6996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Soft electronics using metal nanowires have attracted notable attention attributed to their high electrical conductivity and mechanical flexibility. However, high-resolution complex patterning of metal nanowires on curvilinear substrates remains a challenge. Here, a micromolding-based method is reported for scalable printing of metal nanowires, which enables complex and highly conductive patterns on soft curvilinear and uneven substrates with high resolution and uniformity. Printing resolution of 20 μm and conductivity of the printed patterns of ~6.3 × 106 S/m are achieved. Printing of grid structures with uniform thickness for transparent conductive electrodes (TCEs) and direct printing of pressure sensors on curved surfaces such as glove and contact lens are also realized. The printed hybrid soft TCEs and smart contact lens show promising applications in optoelectronic devices and personal health monitoring, respectively. This printing method can be extended to other nanomaterials for large-scale printing of high-performance soft electronics.
Collapse
Affiliation(s)
- Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael Zheng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Brendan O’Connor
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jingyan Dong
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
31
|
Hwang JC, Kim M, Kim S, Seo H, An S, Jang EH, Han SY, Kim MJ, Kim NK, Cho SW, Lee S, Park JU. In situ diagnosis and simultaneous treatment of cardiac diseases using a single-device platform. SCIENCE ADVANCES 2022; 8:eabq0897. [PMID: 36103536 PMCID: PMC9473581 DOI: 10.1126/sciadv.abq0897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 06/07/2023]
Abstract
The in situ diagnosis of cardiac activities with simultaneous therapeutic electrical stimulation of the heart is key to preventing cardiac arrhythmia. Here, we present an unconventional single-device platform that enables in situ monitoring even in a wet condition and control of beating heart motions without interferences to the recording signal. This platform consists of the active-matrix array of pressure-sensitive transistors for detecting cardiac beatings, biocompatible, low-impedance electrodes for cardiac stimulations, and an alginate-based hydrogel adhesive for attaching this platform conformally to the epicardium. In contrast to conventional electrophysiological sensing using electrodes, the pressure-sensitive transistors measured mechanophysiological characteristics by monitoring the spatiotemporal distributions of cardiac pressures during heart beating motions. In vivo tests show mechanophysiological readings having good correlation with electrocardiography and negligible interference with the electrical artifacts caused during cardiac stimulations. This platform can therapeutically synchronize the rhythm of abnormal heartbeats through efficient pacing of cardiac arrhythmia.
Collapse
Affiliation(s)
- Jae Chul Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Soohwan An
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Seung Yeop Han
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Mi Jung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nam Kyun Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sak Lee
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
32
|
Kang J, Lim YW, Lee I, Kim S, Kim KY, Lee W, Bae BS. Photopatternable Poly(dimethylsiloxane) (PDMS) for an Intrinsically Stretchable Organic Electrochemical Transistor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24840-24849. [PMID: 35584034 DOI: 10.1021/acsami.2c06343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patterning elastomers is an essential process for the application of elastomers to stretchable bioelectric devices. In general, replication of a mold and laser ablation are used for patterning elastomers. However, these methods are inefficient and time consuming due to complex patterning procedures and a heat-induced curing mechanism. In this work, we developed a photopatternable elastomer called thiol-ene cross-linked poly(dimethylsiloxane) (TC-PDMS). TC-PDMS showed high-resolution patternability (∼100 μm) through a direct patterning process. It also had high stretchability (∼140%) and low Young's modulus (∼2.9 MPa) similar to conventional PDMS. To demonstrate its practicability in stretchable bioelectric devices, TC-PDMS was applied to a passivation layer of an intrinsically stretchable organic electrochemical transistor (OECT), which showed a low leakage current (∼20 μA) and a high transconductance (0.432 mS) at high strain (60%). The stretchable OECT was able to record electrocardiographic (ECG) signals from human skin, and the measured ECG signals exhibited a high signal-to-noise ratio of 12.2 dB.
Collapse
Affiliation(s)
- Joohyuk Kang
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Woo Lim
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Injun Lee
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungwan Kim
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Yeun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Wonryung Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Byeong-Soo Bae
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Cox-Pridmore DM, Castro FA, Silva SRP, Camelliti P, Zhao Y. Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105281. [PMID: 35119208 DOI: 10.1002/smll.202105281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Heart diseases are currently the leading cause of death worldwide. The ability to create cardiovascular tissue has numerous applications in understanding tissue development, disease progression, pharmacological testing, bio-actuators, and transplantation; yet current cardiovascular tissue engineering (CTE) methods are limited. However, there have been emerging developments in the bioelectronics field, with the creation of biomimetic devices that can intimately interact with cardiac cells, provide monitoring capabilities, and regulate tissue formation. Combining bioelectronics with cardiac tissue engineering can overcome current limitations and produce physiologically relevant tissue that can be used in various areas of cardiovascular research and medicine. This review highlights the recent advances in cardiovascular-based bioelectronics. First, cardiac tissue engineering and the potential of bioelectronic therapies for cardiovascular diseases are discussed. Second, advantageous bioelectronic materials for CTE and implantation and their properties are reviewed. Third, several representative cardiovascular tissue-bioelectronic interface models and the beneficial functions that bioelectronics can demonstrate in in vitro and in vivo applications are explored. Finally, the prospects and remaining challenges for clinical application are discussed.
Collapse
Affiliation(s)
- Dannielle M Cox-Pridmore
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Fernando A Castro
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - S Ravi P Silva
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yunlong Zhao
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
34
|
Park C, Lee B, Kim J, Lee H, Kang J, Yoon J, Ban J, Song C, Cho SJ. Flexible Sensory Systems: Structural Approaches. Polymers (Basel) 2022; 14:1232. [PMID: 35335562 PMCID: PMC8955130 DOI: 10.3390/polym14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Biology is characterized by smooth, elastic, and nonplanar surfaces; as a consequence, soft electronics that enable interfacing with nonplanar surfaces allow applications that could not be achieved with the rigid and integrated circuits that exist today. Here, we review the latest examples of technologies and methods that can replace elasticity through a structural approach; these approaches can modify mechanical properties, thereby improving performance, while maintaining the existing material integrity. Furthermore, an overview of the recent progress in wave/wrinkle, stretchable interconnect, origami/kirigami, crack, nano/micro, and textile structures is provided. Finally, potential applications and expected developments in soft electronics are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seong J. Cho
- Department of Mechanical Engineering, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea; (C.P.); (B.L.); (J.K.); (H.L.); (J.K.); (J.Y.); (J.B.); (C.S.)
| |
Collapse
|
35
|
Tang X, He Y, Liu J. Soft bioelectronics for cardiac interfaces. BIOPHYSICS REVIEWS 2022; 3:011301. [PMID: 38505226 PMCID: PMC10903430 DOI: 10.1063/5.0069516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 03/21/2024]
Abstract
Bioelectronics for interrogation and intervention of cardiac systems is important for the study of cardiac health and disease. Interfacing cardiac systems by using conventional rigid bioelectronics is limited by the structural and mechanical disparities between rigid electronics and soft tissues as well as their limited performance. Recently, advances in soft electronics have led to the development of high-performance soft bioelectronics, which is flexible and stretchable, capable of interfacing with cardiac systems in ways not possible with conventional rigid bioelectronics. In this review, we first review the latest developments in building flexible and stretchable bioelectronics for the epicardial interface with the heart. Next, we introduce how stretchable bioelectronics can be integrated with cardiac catheters for a minimally invasive in vivo heart interface. Then, we highlight the recent progress in the design of soft bioelectronics as a new class of biomaterials for integration with different in vitro cardiac models. In particular, we highlight how these devices unlock opportunities to interrogate the cardiac activities in the cardiac patch and cardiac organoid models. Finally, we discuss future directions and opportunities using soft bioelectronics for the study of cardiac systems.
Collapse
Affiliation(s)
- Xin Tang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Yichun He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| |
Collapse
|
36
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
37
|
Kumar A, Shaikh MO, Kumar RKR, Dutt K, Pan CT, Chuang CH. Highly sensitive, flexible and biocompatible temperature sensor utilizing ultra-long Au@AgNW-based polymeric nanocomposites. NANOSCALE 2022; 14:1742-1754. [PMID: 35014657 DOI: 10.1039/d1nr05068k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their excellent sensitivity, stretchability, flexibility and conductivity, polymeric nanocomposites with conductive fillers have shown promise for a wide range of applications in bioelectronics and wearable devices. Herein, we report on the development of a flexible and biocompatible polymeric nanocomposite comprising ultra-long Ag-Au core-sheath nanowires (Au@AgNWs) dispersed in elastomeric media to fabricate a high-resolution wearable temperature sensor. Ultra-long AgNWs with an aspect ratio of about 1500 were synthesized using a Ca2+ ion-mediated facile one-pot polyol process. To enhance the biocompatibility and anti-oxidative property of the AgNWs, a 10-20 nm gold (Au) layer was conformably deposited without affecting the original nanowire morphology. The core-sheath structure of Au@AgNWs was characterized using HRTEM and EDS elemental mapping while the biocompatibility and anti-oxidative properties were tested using hydrogen peroxide (H2O2) etching in solution phase. Finally, the fabricated nanowires were used to prepare the Au@AgNW-poly-ethylene glycol (PEG)-polyurethane (PU)-based nanocomposite ink which can be printed on interdigitated electrodes to fabricate a thermoresistive temperature sensor with negative temperature coefficient (NTC) of resistance and quick response time (<100 s). The Au@AgNW-PEG-PU nanocomposite was characterized in detail and a novel temperature sensing mechanism based on controlling the internanowire distance of the PEG coated Au@AgNWs percolation by means of capillarity force among the nanowires as a result of the glass transition temperature of thermosensitive PEG was demonstrated. The proposed printable temperature sensor is flexible and biocompatible and shows promise for a range of wearable applications.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Muhammad Omar Shaikh
- Sustainability Science and Engineering Program, Tunghai University, Taichung 407224, Taiwan
| | - R K Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Karishma Dutt
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
38
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
39
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Song S, Kim KY, Lee SH, Kim KK, Lee K, Lee W, Jeon H, Ko SH. Recent Advances in 1D Nanomaterial‐Based Bioelectronics for Healthcare Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sangmin Song
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Kyung Yeun Kim
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Sun Hee Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering Stanford University Stanford CA 94305 USA
| | - Kyungwoo Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Wonryung Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Hojeong Jeon
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
- KU-KIST Graduate School of Converging Science and Technology Korea University 145, Anam-ro Seongbuk-gu Seoul 02841 Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Institute of Advanced Machines and Design/Institute of Engineering Research Seoul National University Seoul 08826 Korea
| |
Collapse
|
41
|
Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn JH. 2D Materials for Skin-Mountable Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005858. [PMID: 33998064 DOI: 10.1002/adma.202005858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Skin-mountable devices that can directly measure various biosignals and external stimuli and communicate the information to the users have been actively studied owing to increasing demand for wearable electronics and newer healthcare systems. Research on skin-mountable devices is mainly focused on those materials and mechanical design aspects that satisfy the device fabrication requirements on unusual substrates like skin and also for achieving good sensing capabilities and stable device operation in high-strain conditions. 2D materials that are atomically thin and possess unique electrical and optical properties offer several important features that can address the challenging needs in wearable, skin-mountable electronic devices. Herein, recent research progress on skin-mountable devices based on 2D materials that exhibit a variety of device functions including information input and output and in vitro and in vivo healthcare and diagnosis is reviewed. The challenges, potential solutions, and perspectives on trends for future work are also discussed.
Collapse
Affiliation(s)
- Jejung Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yongjun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minpyo Kang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Songfang Zhao
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Material Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
42
|
Belenkov YN, Koroteev AV, Mareev VY. Mitral valve replacement and implantation of an extracardial mesh frame in patients with severe heart failure: results of a clinical study and a description of a clinical case 18 years after surgery. KARDIOLOGIYA 2021; 61:4-10. [PMID: 34713780 DOI: 10.18087/cardio.2021.9.n1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022]
Abstract
Aim Dilated cardiomyopathy (DCMP) is a major cause for severe heart failure. Development of a combination (drug and surgery) treatment of this disease is relevant. This prospective observational study was aimed at evaluating short- and long-term results of extracardiac mesh implantation in DCMP patients with heart failure resistant to the optimum drug therapy.Material and methods The extracardiac mesh ACOR-1 was implanted in 15 patients with DCMP. All meshes were produced individually for each patient and made of Gelweave (great Britain) vascular graft strips. The mesh size corresponded to the heart diastolic size, which was measured after achieving a maximum possible clinical improvement for the patient. Long-term results were followed for up to 4 years. Mean age of patients was 43.1±10.8 years (from 28 to 62 years). One patient was followed up for 18 years. Data of that patient were presented as a clinical case report.Results From October, 2003 through October, 2007, 15 DCMP patients received mesh implants. Cases of in-hospital death were absent. In 3 mos. after the surgery, left ventricular volumes decreased (end-diastolic volume decreased from 251.7±80.7 to 229.0±61.3 ml; end-systolic volume decreased from 182.3±73.6 to 167.7±46.2 ml), and the left ventricular pump function improved (ejection fraction increased from 25.2±6.0 to 27.1±5.1 %; cardiac index increased from 2.0±0.5 to 2.4±0.7 ml /min /m2). The functional state of patients improved by one NYHA class, from 3.7±0.3 to 2.8±0.6. In some cases, the left ventricular size and the systolic function completely normalized. There were no episodes of circulatory decompensation in the long term after surgery. Actuarial survival for the observation period was 100%.Conclusion Implantation of extracardiac mesh prevented progression of heart dilatation and, in combination with drug therapy, it may represent an effective method for treatment of DCMP.
Collapse
Affiliation(s)
- Yu N Belenkov
- Sechenov Moscow State Medical University, Moscow, Russia
| | - A V Koroteev
- Sechenov Moscow State Medical University, Moscow, Russia
| | - V Yu Mareev
- Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
43
|
Post AD, Buchan S, John M, Safavi-Naeini P, Cosgriff-Hernández E, Razavi M. Reconstituting electrical conduction in soft tissue: the path to replace the ablationist. Europace 2021; 23:1892-1902. [PMID: 34477862 DOI: 10.1093/europace/euab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias are a leading cause of morbidity and mortality in the developed world. A common mechanism underlying many of these arrhythmias is re-entry, which may occur when native conduction pathways are disrupted, often by myocardial infarction. Presently, re-entrant arrhythmias are most commonly treated with antiarrhythmic drugs and myocardial ablation, although both treatment methods are associated with adverse side effects and limited efficacy. In recent years, significant advancements in the field of biomaterials science have spurred increased interest in the development of novel therapies that enable restoration of native conduction in damaged or diseased myocardium. In this review, we assess the current landscape of materials-based approaches to eliminating re-entrant arrhythmias. These approaches potentially pave the way for the eventual replacement of myocardial ablation as a preferred therapy for such pathologies.
Collapse
Affiliation(s)
- Allison D Post
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Skylar Buchan
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Mathews John
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Payam Safavi-Naeini
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | | | - Mehdi Razavi
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA.,Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021; 10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Indexed: 12/19/2022]
Abstract
A variety of electrophysiological signals (electrocardiography, electromyography, electroencephalography, etc.) are generated during the physiological activities of human bodies, which can be collected by electrodes and thus provide critical insights into health status or facilitate fundamental scientific research. The long-term stable and high-quality recording of electrophysiological signals is the premise for their further applications, leading to demands for flexible electrodes with similar mechanical modulus and minimized irritation to human bodies. This review summarizes the latest advances in flexible electrodes for the acquisition of various electrophysiological signals. First, the concept of electrophysiological signals and the characteristics of different subcategory signals are introduced. Second, the invasive and noninvasive methods are reviewed for electrophysiological signal recording with a highlight on the design of flexible electrodes, followed by a discussion on their material selection. Subsequently, the applications of the electrophysiological signal acquisition in pathological diagnosis and restoration of body functions are discussed, showing the advantages of flexible electrodes. Finally, the main challenges and opportunities in this field are discussed. It is believed that the further exploration of materials for flexible electrodes and the combination of multidisciplinary technologies will boost the applications of flexible electrodes for medical diagnosis and human-machine interface.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaochuan Dai
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
45
|
Shim HJ, Sunwoo S, Kim Y, Koo JH, Kim D. Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Adv Healthc Mater 2021; 10:e2002105. [PMID: 33506654 DOI: 10.1002/adhm.202002105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Elastomers are suitable materials for constructing a conformal interface with soft and curvilinear biological tissue due to their intrinsically deformable mechanical properties. Intrinsically soft electronic devices whose mechanical properties are comparable to human tissue can be fabricated using suitably functionalized elastomers. This article reviews recent progress in functionalized elastomers and their application to intrinsically soft and biointegrated electronics. Elastomers can be functionalized by adding appropriate fillers, either nanoscale materials or polymers. Conducting or semiconducting elastomers synthesized and/or processed with these materials can be applied to the fabrication of soft biointegrated electronic devices. For facile integration of soft electronics with the human body, additional functionalization strategies can be employed to improve adhesive or autonomous healing properties. Recently, device components for intrinsically soft and biointegrated electronics, including sensors, stimulators, power supply devices, displays, and transistors, have been developed. Herein, representative examples of these fully elastomeric device components are discussed. Finally, the remaining challenges and future outlooks for the field are presented.
Collapse
Affiliation(s)
- Hyung Joon Shim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Yeongjun Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
46
|
Yoo S, Lee J, Joo H, Sunwoo S, Kim S, Kim D. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100614. [PMID: 34075721 DOI: 10.1002/adhm.202100614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Implantable bioelectronic devices are becoming useful and prospective solutions for various diseases owing to their ability to monitor or manipulate body functions. However, conventional implantable devices (e.g., pacemaker and neurostimulator) are still bulky and rigid, which is mostly due to the energy storage component. In addition to mechanical mismatch between the bulky and rigid implantable device and the soft human tissue, another significant drawback is that the entire device should be surgically replaced once the initially stored energy is exhausted. Besides, retrieving physiological information across a closed epidermis is a tricky procedure. However, wireless interfaces for power and data transfer utilizing radio frequency (RF) microwave offer a promising solution for resolving such issues. While the RF interfacing devices for power and data transfer are extensively investigated and developed using conventional electronics, their application to implantable bioelectronics is still a challenge owing to the constraints and requirements of in vivo environments, such as mechanical softness, small module size, tissue attenuation, and biocompatibility. This work elucidates the recent advances in RF-based power transfer and telemetry for implantable bioelectronics to tackle such challenges.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Jonghun Lee
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Hyunwoo Joo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sanghoek Kim
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
47
|
Wang Y, Graham ES, Unsworth CP. Superior galvanostatic electrochemical deposition of platinum nanograss provides high performance planar microelectrodes for in vitroneural recording. J Neural Eng 2021; 18. [PMID: 34371484 DOI: 10.1088/1741-2552/ac1bc1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Objective.Platinum nanograss (Ptng) has been demonstrated as an excellent coating to increase the electrode roughness and reduce the impedance of microelectrodes for neural recording. However, the optimisation of the original potentiostatic electrochemical deposition (PSED) method has been performed by the original group only and noin vitrovalidation of functionality was reported.Approach.This study firstly reinvestigates the use of the PSED method for Ptng coating at different charge densities which highlights non-uniformities in the edges of the microelectrodes for increasing deposition charge densities, leading to a decreased impedance which is in fact an artefact. We then introduce a novel Ptng fabrication method of galvanostatic electrochemical deposition (GSED).Main results.We demonstrate that the GSED deposition method also significantly reduces the electrode impedance, raises the charge storage capacity and provides a significantly more planar electrode surface in comparison to the PSED method with negligible edge effects. In addition, we demonstrate how high-quality neural recordings were performed, for the first time, using the Ptng GSED deposition microelectrodes from human hNT neurons and how spiking and bursting were observed.Significance.Thus, the GSED Ptng deposition method presented here provides an alternative method of microelectrode fabrication for neural applications with excellent impedance and planarity of surface.
Collapse
Affiliation(s)
- Yi Wang
- Department of Engineering Science, University of Auckland, Auckland, New Zealand and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, University of Auckland, Auckland, New Zealand and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
48
|
Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Different research fields in energy sciences, such as photovoltaics for solar energy conversion, supercapacitors for energy storage, electrocatalysis for clean energy conversion technologies, and materials-bacterial hybrid for CO2 fixation have been under intense investigations over the past decade. In recent years, new platforms for biointerface designs have emerged from the energy conversion and storage principles. This paper reviews recent advances in nano- and microscale materials/devices for optical and electrical biointerfaces. First, a connection is drawn between biointerfaces and energy science, and how these two distinct research fields can be connected is summarized. Then, a brief overview of current available tools for biointerface studies is presented. Third, three representative biointerfaces are reviewed, including neural, cardiac, and bacterial biointerfaces, to show how to apply these tools and principles to biointerface design and research. Finally, two possible future research directions for nano- and microscale biointerfaces are proposed.
Collapse
Affiliation(s)
- Kun Hou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuanwang Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boya Kuang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
49
|
Roshanbinfar K, Esser TU, Engel FB. Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine. Antioxid Redox Signal 2021; 35:143-162. [PMID: 32993354 DOI: 10.1089/ars.2020.8193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Heart failure is among the leading causes of morbidity worldwide with a 5-year mortality rate of ∼50%. Therefore, major efforts are invested to reduce heart damage upon injury or maintain and at best restore heart function. Recent Advances: In clinical trials, acellular constructs succeeded in improving cardiac function by stabilizing the infarcted heart. In addition, strategies utilizing stem-cell-derived cardiomyocytes have been developed to improve heart function postmyocardial infarction in small and large animal models. These strategies range from injection of cell-laden hydrogels to unstructured hydrogel-based and complex biofabricated cardiac patches. Importantly, novel methods have been developed to promote differentiation of stem-cell-derived cardiomyocytes to prevascularized cardiac patches. Critical Issues: Despite substantial progress in vascularization strategies for heart-on-the-chip technologies, little advance has been made in generating vascularized cardiac patches with clinically relevant dimensions. In addition, proper electrical coupling between engineered and host tissue to prevent and/or eliminate arrhythmia remains an unresolved issue. Finally, despite advanced approaches to include hierarchical structures in cardiac tissues, engineered tissues do not generate forces in the range of native adult cardiac tissue. Future Directions: It involves utilizing novel materials and advancing biofabrication strategies to generate prevascularized three-dimensional multicellular constructs of clinical relevant size; inclusion of hierarchical structures, electroconductive materials, and biologically active factors to enhance cardiomyocyte differentiation for optimized force generation and vascularization; optimization of bioreactor strategies for tissue maturation. Antioxid. Redox Signal. 35, 143-162.
Collapse
Affiliation(s)
- Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman U Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen, MURCE, Erlangen, Germany
| |
Collapse
|
50
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|