1
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2575-2592. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
2
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Eisel MLS, Burns M, Ashizawa T, Byrne B, Corti M, Subramony SH. Emerging therapies in hereditary ataxias. Trends Mol Med 2024:S1471-4914(24)00194-1. [PMID: 39153956 DOI: 10.1016/j.molmed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
Collapse
Affiliation(s)
- Mallory L S Eisel
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Burns
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, TX, USA
| | - Barry Byrne
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sub H Subramony
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
4
|
Zhao J, Chen Z, Zhang M, Zou L, He S, Liu J, Wang Q, Song X, Wu J. DeepIRES: a hybrid deep learning model for accurate identification of internal ribosome entry sites in cellular and viral mRNAs. Brief Bioinform 2024; 25:bbae439. [PMID: 39234953 PMCID: PMC11375421 DOI: 10.1093/bib/bbae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/03/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
The internal ribosome entry site (IRES) is a cis-regulatory element that can initiate translation in a cap-independent manner. It is often related to cellular processes and many diseases. Thus, identifying the IRES is important for understanding its mechanism and finding potential therapeutic strategies for relevant diseases since identifying IRES elements by experimental method is time-consuming and laborious. Many bioinformatics tools have been developed to predict IRES, but all these tools are based on structure similarity or machine learning algorithms. Here, we introduced a deep learning model named DeepIRES for precisely identifying IRES elements in messenger RNA (mRNA) sequences. DeepIRES is a hybrid model incorporating dilated 1D convolutional neural network blocks, bidirectional gated recurrent units, and self-attention module. Tenfold cross-validation results suggest that DeepIRES can capture deeper relationships between sequence features and prediction results than other baseline models. Further comparison on independent test sets illustrates that DeepIRES has superior and robust prediction capability than other existing methods. Moreover, DeepIRES achieves high accuracy in predicting experimental validated IRESs that are collected in recent studies. With the application of a deep learning interpretable analysis, we discover some potential consensus motifs that are related to IRES activities. In summary, DeepIRES is a reliable tool for IRES prediction and gives insights into the mechanism of IRES elements.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Zhewei Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Shan He
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Quan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| |
Collapse
|
5
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
6
|
Iftimovici A, He Q, Jiao C, Duchesnay E, Krebs MO, Kebir O, Chaumette B. Longitudinal MicroRNA Signature of Conversion to Psychosis. Schizophr Bull 2024; 50:363-373. [PMID: 37607340 PMCID: PMC10919777 DOI: 10.1093/schbul/sbad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND HYPOTHESIS The emergence of psychosis in ultra-high-risk subjects (UHR) is influenced by gene-environment interactions that rely on epigenetic mechanisms such as microRNAs. However, whether they can be relevant pathophysiological biomarkers of psychosis' onset remains unknown. STUDY DESIGN We present a longitudinal study of microRNA expression, measured in plasma by high-throughput sequencing at baseline and follow-up, in a prospective cohort of 81 UHR, 35 of whom developed psychosis at follow-up (converters). We combined supervised machine learning and differential graph analysis to assess the relative weighted contribution of each microRNA variation to the difference in outcome and identify outcome-specific networks. We then applied univariate models to the resulting microRNA variations common to both strategies, to interpret them as a function of demographic and clinical covariates. STUDY RESULTS We identified 207 microRNA variations that significantly contributed to the classification. The differential network analysis found 276 network-specific correlations of microRNA variations. The combination of both strategies identified 25 microRNAs, whose gene targets were overrepresented in cognition and schizophrenia genome-wide association studies findings. Interpretable univariate models further supported the relevance of miR-150-5p and miR-3191-5p variations in psychosis onset, independent of age, sex, cannabis use, and medication. CONCLUSIONS In this first longitudinal study of microRNA variation during conversion to psychosis, we combined 2 methodologically independent data-driven strategies to identify a dynamic epigenetic signature of the emergence of psychosis that is pathophysiologically relevant.
Collapse
Affiliation(s)
- Anton Iftimovici
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, BAOBAB, Centre d'études de Saclay, Gif-sur-Yvette, France
| | - Qin He
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France
| | - Chuan Jiao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France
| | - Edouard Duchesnay
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, BAOBAB, Centre d'études de Saclay, Gif-sur-Yvette, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Pôle hospitalo-universitaire d'Evaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Oussama Kebir
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Pôle hospitalo-universitaire d'Evaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Boris Chaumette
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Pôle hospitalo-universitaire d'Evaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
8
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
9
|
Abstract
Gene therapy using adeno-associated virus (AAV) is a rapidly developing technology with widespread treatment potential. AAV2 vectors injected directly into the brain by stereotaxic brain surgery have shown good results in treating aromatic l-amino acid decarboxylase deficiency. Moreover, gene therapy using the AAV9 vector, which crosses the blood-brain barrier, has been performed in more than 2000 patients worldwide as a disease-modifying therapy for spinal muscular atrophy. AAV vectors have been applied to the development of gene therapies for various pediatric diseases. Gene therapy trials for hemophilia and ornithine transcarbamylase deficiency are underway. Clinical trials are planned for glucose transporter I deficiency, Niemann-Pick disease type C, and spinocerebellar ataxia type 1. The genome of AAV vectors is located in the episome and is rarely integrated into chromosomes, making the vectors safe. However, serious adverse events such as hepatic failure and thrombotic microangiopathy have been reported, and ongoing studies are focusing on developing more efficient vectors to reduce required dosages.
Collapse
|
10
|
Biswas DD, El Haddad L, Sethi R, Huston ML, Lai E, Abdelbarr MM, Mhandire DZ, ElMallah MK. Neuro-respiratory pathology in spinocerebellar ataxia. J Neurol Sci 2022; 443:120493. [PMID: 36410186 PMCID: PMC9808489 DOI: 10.1016/j.jns.2022.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The spinocerebellar ataxias (SCA) are a heterogeneous group of neurodegenerative disorders with an autosomal dominant inheritance. Symptoms include poor coordination and balance, peripheral neuropathy, impaired vision, incontinence, respiratory insufficiency, dysphagia, and dysarthria. Although many patients with SCA have respiratory-related complications, the exact mechanism and extent of this pathology remain unclear. This review aims to provide an update on the recent clinical and preclinical scientific findings on neuropathology causing respiratory insufficiency in SCA.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Meredith L Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mariam M Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Godfrey JD, Hejazi D, Du X, Wei C, Rao E, Gomez CM. HER2 c-Terminal Fragments Are Expressed via Internal Translation of the HER2 mRNA. Int J Mol Sci 2022; 23:ijms23179549. [PMID: 36076950 PMCID: PMC9455161 DOI: 10.3390/ijms23179549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
The HER2/neu signaling pathway is one of the most frequently mutated in human cancer. Although therapeutics targeting this pathway have good efficacy, cancer cells frequently develop resistance. The HER2 gene encodes the full-length HER2 protein, as well as smaller c-terminal fragments (CTFs), which have been shown to be a cause of resistance. Here, we show that HER2 CTFs, exclusive from the full-length HER2 protein, are generated via internal translation of the full-length HER2 mRNA and identify regions which are required for this mechanism to occur. These regions of the HER2 mRNA may present novel sites for therapeutic intervention via small molecules or antisense oligonucleotides (ASOs).
Collapse
|
12
|
Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022; 10:biomedicines10081865. [PMID: 36009412 PMCID: PMC9405587 DOI: 10.3390/biomedicines10081865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Many conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES trans-acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment. The relationship between IRESs and ITAFs with tumorigenesis and resistance to therapy has been studied in recent years, proposing new therapeutic targets and treatments. In addition, IRES-dependent translation initiation dysregulation is also related to neurological and cardiovascular diseases, muscular atrophies, or other syndromes. The participation of these structures in the development of such pathologies has been studied, yet to a far lesser extent than in cancer. Strategies involving the disruption of IRES–ITAF interactions or the modification of ITAF expression levels may be used with great impact in the development of new therapeutics. In this review, we aim to comprehend the current data on groups of human pathologies associated with IRES and/or ITAF dysregulation and their application in the designing of new therapeutic approaches using them as targets or tools. Thus, we wish to summarise the evidence in the field hoping to open new promising lines of investigation toward personalised treatments.
Collapse
|
13
|
Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res 2022; 50:6618-6638. [PMID: 35736234 PMCID: PMC9262622 DOI: 10.1093/nar/gkac519] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) bind to complementary target RNAs and regulate their gene expression post-transcriptionally. These non-coding regulatory RNAs become functional after loading into Argonaute (AGO) proteins to form the effector complexes. Humans have four AGO proteins, AGO1, AGO2, AGO3 and AGO4, which share a high sequence identity. Since most miRNAs are found across the four AGOs, it has been thought that they work redundantly, and AGO2 has been heavily studied as the exemplified human paralog. Nevertheless, an increasing number of studies have found that the other paralogs play unique roles in various biological processes and diseases. In the last decade, the structural study of the four AGOs has provided the field with solid structural bases. This review exploits the completed structural catalog to describe common features and differences in target specificity across the four AGOs.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- To whom correspondence should be addressed. Tel: +1 614 688 2188;
| |
Collapse
|
14
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
15
|
Lunev E, Karan A, Egorova T, Bardina M. Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines 2022; 10:biomedicines10051140. [PMID: 35625877 PMCID: PMC9139062 DOI: 10.3390/biomedicines10051140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have become an attractive tool for efficient gene transfer into animal tissues. Extensively studied as the vehicles for therapeutic constructs in gene therapy, AAVs are also applied for creating animal models of human genetic disorders. Neurological disorders are challenging to model in laboratory animals by transgenesis or genome editing, at least partially due to the embryonic lethality and the timing of the disease onset. Therefore, gene transfer with AAV vectors provides a more flexible option for simulating genetic neurological disorders. Indeed, the design of the AAV expression construct allows the reproduction of various disease-causing mutations, and also drives neuron-specific expression. The natural and newly created AAV serotypes combined with various delivery routes enable differentially targeting neuronal cell types and brain areas in vivo. Moreover, the same viral vector can be used to reproduce the main features of the disorder in mice, rats, and large laboratory animals such as non-human primates. The current review demonstrates the general principles for the development and use of AAVs in modeling neurological diseases. The latest achievements in AAV-mediated modeling of the common (e.g., Alzheimer’s disease, Parkinson’s disease, ataxias, etc.) and ultra-rare disorders affecting the central nervous system are described. The use of AAVs to create multiple animal models of neurological disorders opens opportunities for studying their mechanisms, understanding the main pathological features, and testing therapeutic approaches.
Collapse
Affiliation(s)
- Evgenii Lunev
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| | - Anna Karan
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Tatiana Egorova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Maryana Bardina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| |
Collapse
|
16
|
Shi B, Song Q, Luo X, Song J, Xia D, Xia Z, Liu M, Wang W, Wang R, Du H, Wei Q, Han J. Identification of an IRES within the coding region of the structural protein of human rhinovirus 16. J Med Virol 2021; 94:2653-2661. [PMID: 34873729 DOI: 10.1002/jmv.27507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/07/2022]
Abstract
As an alternative mechanism for cap-dependent (m7GpppN) translation, internal ribosome entry site (IRES)-dependent translation has been observed in the 5' untranslated regions (5' UTR) and coding regions of a number of viral and eukaryotic mRNAs. In this study, a series of 5' terminal truncated structural protein genes that were fused with GFP was used to screen for potential IRESs, and IRESs were identified using a bicistronic luciferase vector or GFP expression vector possessing a hairpin structure. Our results revealed that a putative IRES was located between nt 1982 and 2281 in the VP3 coding region of the human rhinovirus 16 (HRV16) genomes. We also demonstrated that effective IRES-initiated protein expression in vitro did not occur through splicing sites or cryptic promoters. We confirmed that thapsigargin (TG), an inducer of endoplasmic reticulum stress (ERS), facilitated increased IRES activity in a dose-dependent manner. Additionally, the secondary structure of the IRES was predicted online using the RNAfold web server.
Collapse
Affiliation(s)
- Bingtian Shi
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qinqin Song
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiaonuan Luo
- Department of Pathology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Juan Song
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Dong Xia
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhiqiang Xia
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Mi Liu
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Wang
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ruifang Wang
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Haijun Du
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|
18
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
19
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
20
|
Current Status of Gene Therapy Research in Polyglutamine Spinocerebellar Ataxias. Int J Mol Sci 2021; 22:ijms22084249. [PMID: 33921915 PMCID: PMC8074016 DOI: 10.3390/ijms22084249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.
Collapse
|
21
|
The Pathophysiology and Clinical Manifestations of Spinocerebellar Ataxia Type 6. THE CEREBELLUM 2021; 19:459-464. [PMID: 32125675 DOI: 10.1007/s12311-020-01120-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxias (SCA) constitute of a group of degenerative and progressive disorders that can be identified on a molecular and cellular basis. Along with histological changes, the clinical presentation of SCA differs between subtypes. In addition to basic cerebellar dysfunction symptoms, patients with SCA develop gait ataxia, dysphagia, dysarthria, oculomotor disturbances, pyramidal and extrapyramidal disease signs, rigidity, bradycardia, sensory deficits, and mild cognitive and executive function decline. MRI scans have confirmed reduction in mass of frontal, temporal, and parietal portions of the brain along with the cerebellar peduncles, brainstem, and cranial nerve III. Clinically, these damages manifest as decline in cognition and problems with speech, contemplation, and vision. This review article compares the most prevalent subtypes of SCA based on genetic background, pathogenesis, neurological manifestations, other presenting symptoms, and diagnostic workup. Further goals of research in this field should be directed towards a cure for SCA, which currently does not exist.
Collapse
|
22
|
Reprogramming translation for gene therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:439-476. [PMID: 34175050 DOI: 10.1016/bs.pmbts.2021.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translational control plays a fundamental role in the regulation of gene expression in eukaryotes. Modulating translational efficiency allows the cell to fine-tune the expression of genes, spatially control protein localization, and trigger fast responses to environmental stresses. Translational regulation involves mechanisms acting on multiple steps of the protein synthesis pathway: initiation, elongation, and termination. Many cis-acting elements present in the 5' UTR of transcripts can influence translation at the initiation step. Among them, the Kozak sequence impacts translational efficiency by regulating the recognition of the start codon; upstream open reading frames (uORFs) are associated with inhibition of translation of the downstream protein; internal ribosomal entry sites (IRESs) can promote cap-independent translation. CRISPR-Cas technology is a revolutionary gene-editing tool that has also been applied to the regulation of gene expression. In this chapter, we focus on the genome editing approaches developed to modulate the translational efficiency with the aim to find novel therapeutic approaches, in particular acting on the cis-elements, that regulate the initiation of protein synthesis.
Collapse
|
23
|
Rentiya Z, Hutnik R, Bae J. Response to: "The Pathophysiology and Clinical Manifestations of Spinocerebellar Ataxia Type 6" Commentary by Rowland et al. THE CEREBELLUM 2021; 20:486-488. [PMID: 33411313 DOI: 10.1007/s12311-020-01220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Zubir Rentiya
- Departments of Radiology, Neurology, Ophthalmology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| | - Robert Hutnik
- Department of Surgery, Stony Brook Medicine, Stony Brook, NY, USA
| | - Junun Bae
- Providence St. Peter Hospital, Olympia, WA, USA
| |
Collapse
|
24
|
Commentary to: "The Pathophysiology and Clinical Manifestations of Spinocerebellar Ataxia Type 6" by Rentiya et al., Cerebellum 2020;19(3):459-464). THE CEREBELLUM 2020; 20:484-485. [PMID: 33219436 DOI: 10.1007/s12311-020-01221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
|
25
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
26
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Ultrasound Assisted Exosomal Delivery of Tissue Responsive mRNA for Enhanced Efficacy and Minimized Off-Target Effects. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:558-567. [PMID: 32334416 PMCID: PMC7182664 DOI: 10.1016/j.omtn.2020.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
Exosome-mediated nucleic acids delivery has been emerging as a promising strategy for gene therapy. However, the intrinsic off-target effects due to non-specific uptake of exosomes by other tissues remain the big hurdle for clinical application. In this study, we aimed to enhance the efficacy and minimize the off-target effects by simultaneously encapsulating engineered mRNA translationally activated by tissue-specific microRNA (miRNA) and increasing targeted delivery efficiency via ultrasound-targeted microbubble destruction (UTMD). Briefly, the upstream of interest transcript was engineered to harbor an internal ribosome entry site (IRES) modified with two miRNA recognition sites. In vitro reporter experiments revealed that the engineered mRNA could be encapsulated into exosomes and can be translationally activated by corresponding miRNAs in the recipient cells. By a proof-of-principle in vivo experiment, we encapsulated miR-148a (an adipose relatively specific miRNA)-responsive PGC1α mRNA into exosomes and delivered the exosomes into the adipose tissue with the aid of UTMD. Efficient PGC1α translation was activated in the adipose tissue, together with obvious browning induction. Moreover, there was much lower off-target translation of PGC1 α in lungs and other tissues. Taken together, our study establishes a novel adipose-specific exosome delivery strategy to enhance efficacy and minimize off-target effects simultaneously.
Collapse
|
28
|
Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A 2020; 117:6023-6034. [PMID: 32132200 DOI: 10.1073/pnas.1920008117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.
Collapse
|
29
|
Abstract
Cerebellar ataxia can be caused by a variety of disorders, including degenerative processes, autoimmune and paraneoplastic illness as well as by gene mutations inherited in autosomal dominant, autosomal recessive, or X-linked fashions. In this review, we highlight the treatments for cerebellar ataxia in a systematic way, to provide guidance for clinicians who treat patients with cerebellar ataxia. In addition, we review therapies currently under development for ataxia, which we feel is currently one of the most exciting fields in neurology.
Collapse
|
30
|
Recent Advances in the Treatment of Cerebellar Disorders. Brain Sci 2019; 10:brainsci10010011. [PMID: 31878024 PMCID: PMC7017280 DOI: 10.3390/brainsci10010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Various etiopathologies affect the cerebellum, resulting in the development of cerebellar ataxias (CAs), a heterogeneous group of disorders characterized clinically by movement incoordination, affective dysregulation, and cognitive dysmetria. Recent progress in clinical and basic research has opened the door of the ‘‘era of therapy” of CAs. The therapeutic rationale of cerebellar diseases takes into account the capacity of the cerebellum to compensate for pathology and restoration, which is collectively termed cerebellar reserve. In general, treatments of CAs are classified into two categories: cause-cure treatments, aimed at arresting disease progression, and neuromodulation therapies, aimed at potentiating cerebellar reserve. Both forms of therapies should be introduced as soon as possible, at a time where cerebellar reserve is still preserved. Clinical studies have established evidence-based cause-cure treatments for metabolic and immune-mediated CAs. Elaborate protocols of rehabilitation and non-invasive cerebellar stimulation facilitate cerebellar reserve, leading to recovery in the case of controllable pathologies (metabolic and immune-mediated CAs) and delay of disease progression in the case of uncontrollable pathologies (degenerative CAs). Furthermore, recent advances in molecular biology have encouraged the development of new forms of therapies: the molecular targeting therapy, which manipulates impaired RNA or proteins, and the neurotransplantation therapy, which delays cell degeneration and facilitates compensatory functions. The present review focuses on the therapeutic rationales of these recently developed therapeutic modalities, highlighting the underlying pathogenesis.
Collapse
|
31
|
Abstract
Spinocerebellar ataxia type 17 (SCA17) is caused by polyglutamine (polyQ) expansion in the TATA box-binding protein (TBP), which functions as a general transcription factor. Like other polyQ expansion-mediated diseases, SCA17 is characterized by late-onset and selective neurodegeneration, despite the disease protein being ubiquitously expressed in the body. To date, the pathogenesis of polyQ diseases is not fully understood, and there are no effective treatments for these devastating disorders. The well-characterized function of TBP and typical neurodegeneration in SCA17 give us opportunities to understand how polyQ expansion causes selective neurodegeneration and to develop effective therapeutics. In this review, we discuss the molecular mechanisms behind SCA17, focusing on transcriptional dysregulation as its major cause. Mounting evidence suggests that reversing transcriptional alterations induced by mutant TBP and reducing the expression of mutant TBP are promising strategies to treat SCA17.
Collapse
Affiliation(s)
- Qiong Liu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yongcheng Pan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| | - Shihua Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
33
|
Szpisjak L, Zadori D, Klivenyi P, Vecsei L. Clinical Characteristics and Possible Drug Targets in Autosomal Dominant Spinocerebellar Ataxias. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:279-293. [DOI: 10.2174/1871527318666190311155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Background & Objective:
The autosomal dominant spinocerebellar ataxias (SCAs) belong
to a large and expanding group of neurodegenerative disorders. SCAs comprise more than 40 subtypes
characterized by progressive ataxia as a common feature. The most prevalent diseases among SCAs
are caused by CAG repeat expansions in the coding-region of the causative gene resulting in polyglutamine
(polyQ) tract formation in the encoded protein. Unfortunately, there is no approved therapy to
treat cerebellar motor dysfunction in SCA patients. In recent years, several studies have been conducted
to recognize the clinical and pathophysiological aspects of the polyQ SCAs more accurately.
This scientific progress has provided new opportunities to develop promising gene therapies, including
RNA interference and antisense oligonucleotides.
Conclusion:
The aim of the current work is to give a brief summary of the clinical features of SCAs
and to review the cardinal points of pathomechanisms of the most common polyQ SCAs. In addition,
we review the last few year’s promising gene suppression therapies of the most frequent polyQ SCAs
in animal models, on the basis of which human trials may be initiated in the near future.
Collapse
Affiliation(s)
- Laszlo Szpisjak
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Dong X, Cong S. The Emerging Role of microRNAs in Polyglutamine Diseases. Front Mol Neurosci 2019; 12:156. [PMID: 31275113 PMCID: PMC6593396 DOI: 10.3389/fnmol.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that regulate a large amount of post-transcriptional repressor genes by recognizing semi-complementary target sequences that are normally located in the 3' UTR of the mRNA. Altered expression of miRNA has been related to several pathological processes, including polyglutamine (Poly Q) diseases. Specific expression patterns in the circulating fluids and brain parenchyma have been speculated as potential biomarkers for Poly Q disease diagnosis and prognosis. Several miRNAs have been consistently identified in diseases including Huntington's disease (HD) and spinocerebellar ataxia (SCA). In our review, we describe the emerging role of miRNAs in Poly Q diseases and provide an overview on general miRNA biology, implications in pathophysiology, and their potential roles as future biomarkers and applications for therapy.
Collapse
Affiliation(s)
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Ashizawa AT, Holt J, Faust K, Liu W, Tiwari A, Zhang N, Ashizawa T. Intravenously Administered Novel Liposomes, DCL64, Deliver Oligonucleotides to Cerebellar Purkinje Cells. THE CEREBELLUM 2019; 18:99-108. [PMID: 29987489 DOI: 10.1007/s12311-018-0961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebellar Purkinje cells (PCs) show conspicuous damages in many ataxic disorders. Targeted delivery of short nucleic acids, such as antisense oligonucleotides, to PCs may be a potential treatment for ataxic disorders, especially spinocerebellar ataxias (SCAs), which are mostly caused by a gain of toxic function of the mutant RNA or protein. However, oligonucleotides do not cross the blood-brain barrier (BBB), necessitating direct delivery into the central nervous system (CNS) through intra-thecal, intra-cisternal, intra-cerebral ventricular, or stereotactic parenchymal administration. We have developed a novel liposome (100 to 200 nm in diameter) formulation, DCL64, composed of dipalmitoyl-phosphatidylcholine, cholesterol, and poloxamer L64, which incorporates oligonucleotides efficiently (≥ 70%). Confocal microscopy showed that DCL64 was selectively taken up by brain microvascular endothelial cells by interacting with low-density lipoprotein receptor (LDLr) family members on cell surface, but not with other types of lipid receptors such as caveolin or scavenger receptor class B type 1. LDLr family members are implicated in brain microvascular endothelial cell endocytosis/transcytosis, and are abundantly localized on cerebellar PCs. Intravenous administration of DCL64 in normal mice showed distribution of oligonucleotides to the brain, preferentially in PCs. Mice that received DCL64 showed no adverse effect on hematological, hepatic, and renal functions in blood tests, and no histopathological abnormalities in major organs. These studies suggest that DCL64 delivers oligonucleotides to PCs across the BBB via intravenous injection with no detectable adverse effects. This property potentially makes DCL64 particularly attractive as a delivery vehicle in treatments of SCAs.
Collapse
Affiliation(s)
- Ana Tari Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Bio-Path Holdings, Inc., Bellaire, TX, USA
| | - Jenny Holt
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelsey Faust
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Weier Liu
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Anjana Tiwari
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Nan Zhang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA. .,Department of Neurology, University of Florida, Gainesville, FL, USA. .,Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|
37
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
38
|
Du X, Wei C, Hejazi Pastor DP, Rao ER, Li Y, Grasselli G, Godfrey J, Palmenberg AC, Andrade J, Hansel C, Gomez CM. α1ACT Is Essential for Survival and Early Cerebellar Programming in a Critical Neonatal Window. Neuron 2019; 102:770-785.e7. [PMID: 30922876 DOI: 10.1016/j.neuron.2019.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Postnatal cerebellar development is a precisely regulated process involving well-orchestrated expression of neural genes. Neurological phenotypes associated with CACNA1A gene defects have been increasingly recognized, yet the molecular principles underlying this association remain elusive. By characterizing a dose-dependent CACNA1A gene deficiency mouse model, we discovered that α1ACT, as a transcription factor and secondary protein of CACNA1A mRNA, drives dynamic gene expression networks within cerebellar Purkinje cells and is indispensable for neonatal survival. Perinatal loss of α1ACT leads to motor dysfunction through disruption of neurogenesis and synaptic regulatory networks. However, its elimination in adulthood has minimal effect on the cerebellum. These findings shed light on the critical role of α1ACT in facilitating neuronal development in both mice and humans and support a rationale for gene therapies for calcium-channel-associated cerebellar disorders. Finally, we show that bicistronic expression may be common to the voltage-gated calcium channel (VGCC) gene family and may help explain complex genetic syndromes.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | | - Eshaan R Rao
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), L.go R. Benzi 10, 16132 Genova, Italy
| | - Jack Godfrey
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
39
|
Martins Junior CR, Borba FCD, Martinez ARM, Rezende TJRD, Cendes IL, Pedroso JL, Barsottini OGP, França Júnior MC. Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:555-562. [PMID: 30231129 DOI: 10.1590/0004-282x20180080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of monogenic diseases that share ataxia and autosomal dominant inheritance as the core features. An important proportion of SCAs are caused by CAG trinucleotide repeat expansions in the coding region of different genes. In addition to genetic heterogeneity, clinical features transcend motor symptoms, including cognitive, electrophysiological and imaging aspects. Despite all the progress in the past 25 years, the mechanisms that determine how neuronal death is mediated by these unstable expansions are still unclear. The aim of this article is to review, from an historical point of view, the first CAG-related ataxia to be genetically described: SCA 1.
Collapse
Affiliation(s)
| | - Fabrício Castro de Borba
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | | | | | - Iscia Lopes Cendes
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Genética Médica, Campinas SP, Brasil
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Unidade de Ataxia, Departamento de Neurologia, São Paulo SP, Brasil
| | | | | |
Collapse
|
40
|
Pastor PDH, Du X, Fazal S, Davies AN, Gomez CM. Targeting the CACNA1A IRES as a Treatment for Spinocerebellar Ataxia Type 6. THE CEREBELLUM 2019; 17:72-77. [PMID: 29374372 DOI: 10.1007/s12311-018-0917-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have discovered that the P/Q-type voltage-gated Ca2+ channel (VGCC) gene, CACNA1A, encodes both the α1A (Cav2.1) subunit and a newly recognized transcription factor, α1ACT, by means of a novel internal ribosomal entry site (IRES) within the α1A C-terminal coding region. α1ACT, when mutated with an expansion of the polyglutamine tract in the C-terminus, gives rise to spinocerebellar ataxia type 6 (SCA6). Because silencing of the entire CACNA1A gene would result in the loss of the essential Cav2.1 channel, the IRES controlling α1ACT expression is an excellent target for selective silencing of α1ACT as a therapeutic intervention for SCA6. We performed a high-throughput screen of FDA-approved small molecules using a dual luciferase reporter system and identified ten hits able to selectively inhibit the IRES. We identified four main candidates that showed selective suppression of α1ACT relative to α1A in HEK cells expressing a native CACNA1A vector. We previously pursued another avenue of molecular intervention through miRNA silencing. We studied three human miRNAs (miRNA-711, -3191-5p, -4786) that would potentially bind to sequences within the CACNA1A IRES region, based on an miRNA prediction program. Only miRNA-3191-5p was found to selectively inhibit the translation of α1ACT in cells. We developed a hyperacute model of SCA6 in mice by injecting a pathogenic form of the IRES-mediated α1ACT (AAV9-α1ACTQ33). Finally, we tested the effectiveness of the miRNA therapy by co-expressing either control miRNA or miRNA-3191-5p and found that miRNA-3191-5p decreased the levels of α1ACTQ33 and prevented the hyperacute disease in mice. These studies provide the proof of principle that a therapy directed at selectively preventing α1ACT expression could be used to treat SCA6.
Collapse
Affiliation(s)
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
| | - Sarah Fazal
- Cellular Screening Center Core, University of Chicago, Chicago, IL, 60637, USA
| | - Andre N Davies
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
41
|
Pilotto F, Saxena S. Epidemiology of inherited cerebellar ataxias and challenges in clinical research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18785258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
43
|
Takezawa Y, Kikuchi A, Haginoya K, Niihori T, Numata-Uematsu Y, Inui T, Yamamura-Suzuki S, Miyabayashi T, Anzai M, Suzuki-Muromoto S, Okubo Y, Endo W, Togashi N, Kobayashi Y, Onuma A, Funayama R, Shirota M, Nakayama K, Aoki Y, Kure S. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann Clin Transl Neurol 2018; 5:538-551. [PMID: 29761117 PMCID: PMC5945967 DOI: 10.1002/acn3.551] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 02/05/2023] Open
Abstract
Objective Cerebral palsy is a common, heterogeneous neurodevelopmental disorder that causes movement and postural disabilities. Recent studies have suggested genetic diseases can be misdiagnosed as cerebral palsy. We hypothesized that two simple criteria, that is, full-term births and nonspecific brain MRI findings, are keys to extracting masqueraders among cerebral palsy cases due to the following: (1) preterm infants are susceptible to multiple environmental factors and therefore demonstrate an increased risk of cerebral palsy and (2) brain MRI assessment is essential for excluding environmental causes and other particular disorders. Methods A total of 107 patients-all full-term births-without specific findings on brain MRI were identified among 897 patients diagnosed with cerebral palsy who were followed at our center. DNA samples were available for 17 of the 107 cases for trio whole-exome sequencing and array comparative genomic hybridization. We prioritized variants in genes known to be relevant in neurodevelopmental diseases and evaluated their pathogenicity according to the American College of Medical Genetics guidelines. Results Pathogenic/likely pathogenic candidate variants were identified in 9 of 17 cases (52.9%) within eight genes: CTNNB1,CYP2U1,SPAST,GNAO1,CACNA1A,AMPD2,STXBP1, and SCN2A. Five identified variants had previously been reported. No pathogenic copy number variations were identified. The AMPD2 missense variant and the splice-site variants in CTNNB1 and AMPD2 were validated by in vitro functional experiments. Interpretation The high rate of detecting causative genetic variants (52.9%) suggests that patients diagnosed with cerebral palsy in full-term births without specific MRI findings may include genetic diseases masquerading as cerebral palsy.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Pediatrics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Atsuo Kikuchi
- Department of Pediatrics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Kazuhiro Haginoya
- Department of Pediatrics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan.,Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan.,Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Tetsuya Niihori
- Department of Medical Genetics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Yurika Numata-Uematsu
- Department of Pediatrics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan.,Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Takehiko Inui
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan.,Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Saeko Yamamura-Suzuki
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan
| | - Takuya Miyabayashi
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan
| | - Mai Anzai
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan.,Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Sato Suzuki-Muromoto
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan.,Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Wakaba Endo
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan.,Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Noriko Togashi
- Department of Pediatric Neurology Miyagi Children's Hospital 4-3-17, Ochiai, Aoba-ku Sendai Miyagi 989-3126 Japan
| | - Yasuko Kobayashi
- Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Akira Onuma
- Department of Pediatric Neurology Takuto Rehabilitation Center for Children Sendai 982-0241 Japan
| | - Ryo Funayama
- Division of Cell Proliferation United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Sciences United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
| | - Keiko Nakayama
- Division of Cell Proliferation United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
| | - Yoko Aoki
- Department of Medical Genetics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Shigeo Kure
- Department of Pediatrics Tohoku University School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
44
|
Du X, Gomez CM. Spinocerebellar [corrected] Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:147-173. [PMID: 29427102 DOI: 10.1007/978-3-319-71779-1_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1-p13.2. Normal alleles have 4-18 repeats, while alleles causing disease contain 19-33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, The University of Chicago, Chicago, 60637, IL, USA
| | | |
Collapse
|
45
|
Park MS, Phan HD, Busch F, Hinckley SH, Brackbill JA, Wysocki VH, Nakanishi K. Human Argonaute3 has slicer activity. Nucleic Acids Res 2017; 45:11867-11877. [PMID: 29040713 PMCID: PMC5714244 DOI: 10.1093/nar/gkx916] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022] Open
Abstract
Of the four human Argonaute (AGO) paralogs, only AGO2 has been shown to have slicer activity. The others (AGO1, AGO3 and AGO4) have been thought to assemble with microRNAs to form slicer-independent effector complexes that bind target mRNAs and silence gene expression through translational repression and deadenylation but not cleavage. Here, we report that recombinant AGO3 loaded with miR-20a cleaves complementary target RNAs, whereas AGO3 loaded with let-7a, miR-19b or miR-16 does not, indicating that AGO3 has slicer activity but that this activity depends on the guide RNA. Our cleavage assays using chimeric guides revealed the significance of seed sequence for AGO3 activity, which depends specifically on the sequence of the post-seed. Unlike AGO2, target cleavage by AGO3 requires both 5′- and 3′-flanking regions. Our 3.28 Å crystal structure shows that AGO3 forms a complete active site mirroring that of AGO2, but not a well-defined nucleic acid-binding channel. These results demonstrating that AGO3 also has slicer activity but with more intricate substrate requirements, explain the observation that AGO3 has retained the necessary catalytic residues throughout its evolution. In addition, our structure inspires the idea that the substrate-binding channel of AGO3 and consequently its cellular function, may be modulated by accessory proteins.
Collapse
Affiliation(s)
- Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Hong-Duc Phan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Samantha H Hinckley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - James A Brackbill
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, Muguruma K. Vulnerability of Purkinje Cells Generated from Spinocerebellar Ataxia Type 6 Patient-Derived iPSCs. Cell Rep 2017; 17:1482-1490. [PMID: 27806289 DOI: 10.1016/j.celrep.2016.10.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/15/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by loss of Purkinje cells in the cerebellum. SCA6 is caused by CAG trinucleotide repeat expansion in CACNA1A, which encodes Cav2.1, α1A subunit of P/Q-type calcium channel. However, the pathogenic mechanism and effective therapeutic treatments are still unknown. Here, we have succeeded in generating differentiated Purkinje cells that carry patient genes by combining disease-specific iPSCs and self-organizing culture technologies. Patient-derived Purkinje cells exhibit increased levels of full-length Cav2.1 protein but decreased levels of its C-terminal fragment and downregulation of the transcriptional targets TAF1 and BTG1. We further demonstrate that SCA6 Purkinje cells exhibit thyroid hormone depletion-dependent degeneration, which can be suppressed by two compounds, thyroid releasing hormone and Riluzole. Thus, we have constructed an in vitro disease model recapitulating both ontogenesis and pathogenesis. This model may be useful for pathogenic investigation and drug screening.
Collapse
Affiliation(s)
- Yoshihito Ishida
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroyuki Kitajima
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Ayaka Nishiyama
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Haruhisa Inoue
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Keiko Muguruma
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| |
Collapse
|
47
|
Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sci 2017; 7:brainsci7100128. [PMID: 29019918 PMCID: PMC5664055 DOI: 10.3390/brainsci7100128] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
The polyglutamine (polyQ) diseases, such as Huntington’s disease and several types of spinocerebellar ataxias, are a group of inherited neurodegenerative diseases that are caused by an abnormal expansion of the polyQ tract in disease-causative proteins. Proteins with an abnormally expanded polyQ stretch undergo a conformational transition to β-sheet rich structure, which assemble into insoluble aggregates with β-sheet rich amyloid fibrillar structures and accumulate as inclusion bodies in neurons, eventually leading to neurodegeneration. Since misfolding and aggregation of the expanded polyQ proteins are the most upstream event in the most common pathogenic cascade of the polyQ diseases, they are proposed to be one of the most ideal targets for development of disease-modifying therapies for polyQ diseases. In this review, we summarize the current understanding of the molecular pathogenic mechanisms of the polyQ diseases, and introduce therapeutic approaches targeting misfolding and aggregation of the expanded polyQ proteins, which are not only effective on a wide spectrum of polyQ diseases, but also broadly correct the functional abnormalities of multiple downstream cellular processes affected in the aggregation process of polyQ proteins. We hope that in the near future, effective therapies are developed, to bring hope to many patients suffering from currently intractable polyQ diseases.
Collapse
|
48
|
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18:613-626. [PMID: 28855740 PMCID: PMC6420820 DOI: 10.1038/nrn.2017.92] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Collapse
Affiliation(s)
- Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
49
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
50
|
Carmona V, Cunha-Santos J, Onofre I, Simões AT, Vijayakumar U, Davidson BL, Pereira de Almeida L. Unravelling Endogenous MicroRNA System Dysfunction as a New Pathophysiological Mechanism in Machado-Joseph Disease. Mol Ther 2017; 25:1038-1055. [PMID: 28236575 DOI: 10.1016/j.ymthe.2017.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/28/2016] [Accepted: 01/24/2017] [Indexed: 01/07/2023] Open
Abstract
Machado-Joseph disease (MJD) is a genetic neurodegenerative disease caused by an expanded polyglutamine tract within the protein ataxin-3 (ATXN3). Despite current efforts, MJD's mechanism of pathogenesis remains unclear and no disease-modifying treatment is available. Therefore, in this study, we investigated (1) the role of the 3' UTR of ATXN3, a putative microRNA (miRNA) target, (2) whether miRNA biogenesis and machinery are dysfunctional in MJD, and (3) which specific miRNAs target ATXN3-3' UTR and whether they can alleviate MJD neuropathology in vivo. Our results demonstrate that endogenous miRNAs, by targeting sequences in the 3' UTR, robustly reduce ATXN3 expression and aggregation in vitro and neurodegeneration and neuroinflammation in vivo. Importantly, we found an abnormal MJD-associated downregulation of genes involved in miRNA biogenesis and silencing activity. Finally, we identified three miRNAs-mir-9, mir-181a, and mir-494-that interact with the ATXN3-3' UTR and whose expression is dysregulated in human MJD neurons and in other MJD cell and animal models. Furthermore, overexpression of these miRNAs in mice resulted in reduction of mutATXN3 levels, aggregate counts, and neuronal dysfunction. Altogether, these findings indicate that endogenous miRNAs and the 3' UTR of ATXN3 play a crucial role in MJD pathogenesis and provide a promising opportunity for MJD treatment.
Collapse
Affiliation(s)
- Vitor Carmona
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Janete Cunha-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Isabel Onofre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Teresa Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Udaya Vijayakumar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|