1
|
Si X, Ji G, Ma S, Huang Z, Liu T, Shi Z, Zhang Y, Li J, Song W, Chen X. Minimally Invasive Injectable Gel for Local Immunotherapy of Liver and Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405935. [PMID: 39116306 PMCID: PMC11481255 DOI: 10.1002/advs.202405935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Indexed: 08/10/2024]
Abstract
Local immunotherapy represents a promising solution for preventing tumor recurrence and metastasis post tumor surgical resection by eliminating residue tumor cells as well as eliciting tumor-specific immune responses. Minimally invasive surgery has become a mainstream surgical method worldwide due to its advantages of aesthetics and rapid postoperative recovery. Unfortunately, the currently reported local immunotherapy strategies are mostly designed to be used after open laparotomy, which go against the current surgical philosophy of minimally invasive therapy and is not suitable for clinical translation. Aiming at this problem, a minimally invasive injectable gel (MIGel) is herein reported loaded with immunotherapeutic agents for gastric and liver cancer postoperative treatment. The MIGel is formed by crosslinking between oxidized dextran (ODEX) and 4-arm polyethylene glycol hydroxylamine (4-arm PEG-ONH2) through oxime bonds, which can be injected through a clinic-used minimally invasive drainage tube and adhered tightly to the tissue. The loaded oxaliplatin (OxP) and resiquimod (R848) can be released constantly over two weeks and resulted in over 75% cure rate in orthotopic mouse gastric and liver cancer model. Collectively, a concept of minimally invasive local immunotherapy is proposed and MIGel is designed for local intraperitoneal cancer immunotherapy through minimally invasive surgery, with good clinical translation potential.
Collapse
Affiliation(s)
- Xinghui Si
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022China
| | - Guofeng Ji
- Department of General Surgery, Xuanwu HospitalCapital Medical UniversityBeijing100053China
| | - Sheng Ma
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022China
| | - Zichao Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Taiyuan Liu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- The Second Hospital of Jilin UniversityChangchun130000China
| | - Zhiyuan Shi
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Yu Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022China
| | - Jia Li
- Department of General Surgery, Xuanwu HospitalCapital Medical UniversityBeijing100053China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
2
|
Chen C, Yuan P, Zhang Z. Nanomedicine-based cancer immunotherapy: a bibliometric analysis of research progress and prospects. Front Immunol 2024; 15:1446532. [PMID: 39247199 PMCID: PMC11377264 DOI: 10.3389/fimmu.2024.1446532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Despite the increasing number of studies on nanomedicine-based cancer immunotherapy, the overall research trends in this field remain inadequately characterized. This study aims to evaluate the research trends and hotspots in nanomedicine-based cancer immunotherapy through a bibliometric analysis. As of March 31, 2024, relevant publications were retrieved from the Web of Science Core Collection. Analytical tools including VOSviewer, CiteSpace, and an online bibliometric analysis platform were employed. A total of 5,180 publications were analyzed. The study reveals geographical disparities in research output, with China and the United States being the leading contributors. Institutionally, the Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Sichuan University are prominent contributors. Authorship analysis identifies key researchers, with Liu Zhuang being the most prolific author. "ACS Nano" and the "Journal of Controlled Release and Biomaterials" are identified as the leading journals in the field. Frequently occurring keywords include "cancer immunotherapy" and "drug delivery." Emerging frontiers in the field, such as "mRNA vaccine," "sonodynamic therapy," "oral squamous cell carcinoma," "STING pathway,"and "cGAS-STING pathway," are experiencing rapid growth. This study aims to provide new insights to advance scientific research and clinical applications in nanomedicine-based cancer immunotherapy.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengfei Yuan
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Wang M, Rousseau B, Qiu K, Huang G, Zhang Y, Su H, Le Bihan-Benjamin C, Khati I, Artz O, Foote MB, Cheng YY, Lee KH, Miao MZ, Sun Y, Bousquet PJ, Hilmi M, Dumas E, Hamy AS, Reyal F, Lin L, Armistead PM, Song W, Vargason A, Arthur JC, Liu Y, Guo J, Zhou X, Nguyen J, He Y, Ting JPY, Anselmo AC, Huang L. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol 2024; 42:1263-1274. [PMID: 37749267 DOI: 10.1038/s41587-023-01957-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.
Collapse
Affiliation(s)
- Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Hang Su
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Christine Le Bihan-Benjamin
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Ines Khati
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Oliver Artz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Michael Z Miao
- Curriculum in Oral and Craniofacial Biomedicine, Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Philippe-Jean Bousquet
- Health Survey, Data Science and Assessment Division, French National Cancer Institute, Boulogne Billancourt, France
| | - Marc Hilmi
- GERCOR Group, Paris, France
- Medical Oncology Department, Curie Institute, Saint Cloud, France
| | - Elise Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Medical Oncology, Centre René Hughenin, Saint Cloud, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Surgery, Institut Jean Godinot, Reims, France
- Department of Surgical Oncology, Institut Curie, University of Paris, Paris, France
| | - Lin Lin
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Paul M Armistead
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Internal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Ava Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Division of Craniofacial and Surgical Care, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
5
|
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, Marepally S. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B 2024; 14:2885-2900. [PMID: 39027251 PMCID: PMC11252464 DOI: 10.1016/j.apsb.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.
Collapse
Affiliation(s)
- Porkizhi Arjunan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Manipal academy for higher education, Mangalore 576104, Karnataka, India
| | - Durga Kathirvelu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Ashish Kumar Goel
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Uday George Zacharaiah
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Department of Hematology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
6
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Tong S, Xie L, Xie X, Xu J, You Y, Sun Y, Zhou S, Ma C, Jiang G, Ma F, Wang Z, Gao X, Chen J. Nano-Plumber Reshapes Glymphatic-Lymphatic System to Sustain Microenvironment Homeostasis and Improve Long-Term Prognosis after Traumatic Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304284. [PMID: 37867233 PMCID: PMC10700187 DOI: 10.1002/advs.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Long-term changes in the microenvironment of the brain contribute to the degeneration of neurological function following TBI. However, current research focuses primarily on short-term modulation during the early phases of TBI, not on the critical significance of long-term homeostasis in the brain microenvironment. Notably, dysfunction of the glymphatic-lymphatic system results in the accumulation of danger/damage-associated molecular patterns (DAMPs) in the brain, which is regarded as the leading cause of long-term microenvironmental disturbances following TBI. Here, a nanostructure, Nano-plumber, that co-encapsulates the microenvironment regulator pro-DHA and the lymphatic-specific growth factor VEGF-C is developed, allowing for a sustainable and orderly regulation of the microenvironment to promote long-term neurological recovery. Nano-plumber reverses the injury microenvironment by suppressing microglia and astrocytes activation and maintaining reduced activation via enhanced glymphatic-lymphatic drainage, and significantly improves the neurological function of rodents with TBI. This study demonstrates that glymphatic-lymphatic system reconstruction is essential for enhancing long-term prognosis following TBI, and that the Nano-plumber developed here may serve as a clinically translatable treatment option for TBI.
Collapse
Affiliation(s)
- Shiqiang Tong
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Laozhi Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Xiaoying Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Jianpei Xu
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yang You
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yinzhe Sun
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Songlei Zhou
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Chuchu Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Fenfen Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
- Department of PharmacyShanghai Pudong HospitalFudan UniversityShanghai201399China
| | - Zhihua Wang
- Department of EmergencyShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jun Chen
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
8
|
Jalil AT, Thabit SN, Hanan ZK, Alasheqi MQ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromol Res 2023; 31:739-752. [DOI: 10.1007/s13233-023-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 01/03/2025]
|
9
|
Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma. Nat Commun 2023; 14:435. [PMID: 36702831 PMCID: PMC9880004 DOI: 10.1038/s41467-023-35957-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immunosuppression. Here, we develop a nanostructure named Nano-reshaper to co-encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.
Collapse
|
10
|
Hsieh HT, Huang HC, Chung CW, Chiang CC, Hsia T, Wu HF, Huang RL, Chiang CS, Wang J, Lu TT, Chen Y. CXCR4-targeted nitric oxide nanoparticles deliver PD-L1 siRNA for immunotherapy against glioblastoma. J Control Release 2022; 352:920-930. [PMID: 36334859 DOI: 10.1016/j.jconrel.2022.10.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/26/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
While immunotherapy has emerged as a promising strategy to treat glioblastoma multiforme (GBM), the limited availability of immunotherapeutic agents in tumors due to the presence of the blood-brain barrier (BBB) and immunosuppressive tumor microenvironment dampens efficacy. Nitric oxide (NO) plays a role in modulating both the BBB and tumor vessels and could thus be delivered to disrupt the BBB and improve the delivery of immunotherapeutics into GBM tumors. Herein, we report an immunotherapeutic approach that utilizes CXCR4-targeted lipid‑calcium-phosphate nanoparticles with NO donors (LCP-NO NPs). The delivery of NO resulted in enhanced BBB permeability and thus improved gene delivery across the BBB. CXCR4-targeted LCP-NO NPs delivered siRNA against the immune checkpoint ligand PD-L1 to GBM tumors, silenced PD-L1 expression, increased cytotoxic T cell infiltration and activation in GBM tumors, and suppressed GBM progression. Thus, the codelivery of NO and PD-L1 siRNA by these CXCR4-targeted NPs may serve as a potential immunotherapy for GBM.
Collapse
Affiliation(s)
- Hsin-Tzu Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Fang Wu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Rui-Lin Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
11
|
Li J, Pu R, He X, Chen Q, Liu S, Liu W, Li J. A Precipitation-Enhanced Emission (PEE) Strategy for Increasing the Brightness and Reducing the Liver Retention of NIR-II Fluorophores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204153. [PMID: 36209389 DOI: 10.1002/smll.202204153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The lack of organic fluorophores with high quantum yields (QYs) and low liver retention in the second near-infrared (NIR-II) window has become a bottleneck in the bioimaging field. An approach to address these problems is proposed by encapsulating phosphorylated fluorescent dyes into biodegradable calcium phosphate nanoparticles. First, an NIR-II molecule, LJ-2P, is designed with increased water solubility by introducing two phosphate groups. Meanwhile, LJ-2P co-precipitates with calcium ions to form LJ-2P nanoparticles (NPs). The QYs of LJ-2P NPs in aqueous solution is increased by 36.57-fold to 5.12% compared with that of LJ-2P. This unique phenomenon is named as precipitation-enhanced emission (PEE), whose detailed mechanism is explored by femtosecond transient absorption. It is demonstrated that co-precipitation of LJ-2P with calcium ions changes the micro-environment, which restricts the molecular rotation and reduces the interaction of water molecules, especially the excited-state proton transfer. In addition, due to the pH-sensitive nature, more than 80% of the LJ-2P NPs are metabolized in the liver within 24 h. Based on the excellent optical properties and good biocompatibility, high-contrast vascular visualization and breast tumor detecting are achieved. This strategy can apply to other NIR-II fluorophores to achieve high QYs and low liver retention.
Collapse
Affiliation(s)
- Jinwei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suhong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
12
|
Hao M, Wang K, Ding Y, Li H, Liu Y, Ding L. Which patients are prone to suffer liver metastasis? A review of risk factors of metachronous liver metastasis of colorectal cancer. Eur J Med Res 2022; 27:130. [PMID: 35879739 PMCID: PMC9310475 DOI: 10.1186/s40001-022-00759-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/09/2022] [Indexed: 12/07/2022] Open
Abstract
Abstract
Background
In recent years, with the increasing incidence of colorectal cancer (CRC) and its high fatality rate, CRC has seized the attention of the world. And liver metastasis, as the main cause of death of CRC, has become the leading cause of treatment failure in CRC, especially metachronous liver metastasis, have caused patients who underwent bowel resection to experience multiple tortures.
Main body
Metachronous liver metastasis has severely affected the quality of life and prognosis of patients. Therefore, in this review, we discuss risk factors for metachronous liver metastasis of CRC, which is the premise for effective intervention for CRC patients who suffer metachronous liver metastasis after undergoing surgery, as well as the signaling pathways associated with CRC.
Conclusion
The occurrence of metachronous liver metastasis is closely related to histology-based prognostic biomarkers, serum-based biomarkers, tumor microenvironment, pre-metastatic niche, liquid biopsy and tissue-based biomarkers. Further research is required to explore the risk factors associated with liver metastasis of CRC.
Collapse
|
13
|
Bai X, Zhang X, Shi H, Geng G, Wu B, Lai Y, Xiang W, Wang Y, Cao Y, Shi B, Li Y. Government drivers of breast cancer prevention: A spatiotemporal analysis based on the association between breast cancer and macro factors. Front Public Health 2022; 10:954247. [PMID: 36268002 PMCID: PMC9578696 DOI: 10.3389/fpubh.2022.954247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023] Open
Abstract
Background Currently, breast cancer (BC) is ranked among the top malignant tumors in the world, and has attracted widespread attention. Compared with the traditional analysis on biological determinants of BC, this study focused on macro factors, including light at night (LAN), PM2.5, per capita consumption expenditure, economic density, population density, and number of medical beds, to provide targets for the government to implement BC interventions. Methods A total of 182 prefecture-level cities in China from 2013 to 2016 were selected as the sample of the study. The geographically and temporally weighted regression (GTWR) model was adopted to describe the spatiotemporal correlation between the scale of BC and macro factors. Results The results showed that the GTWR model can better reveal the spatiotemporal variation. In the temporal dimension, the fluctuations of the regression coefficients of each variable were significant. In the spatial dimension, the positive impacts of LAN, per capita consumption expenditure, population density and number of medical beds gradually increased from west to east, and the positive coefficient of PM2.5 gradually increased from north to south. The negative impact of economic density gradually increased from west to east. Conclusion The fact that the degree of effect of each variable fluctuates over time reminds the government to pay continuous attention to BC prevention. The spatial heterogeneity features also urge the government to focus on different macro indicators in eastern and western China or southern and northern China. In other words, our research helps drive the government to center on key regions and take targeted measures to curb the rapid growth of BC.
Collapse
Affiliation(s)
- Xiaodan Bai
- Department of Economics, School of Economics, Minzu University of China, Beijing, China
| | - Xiyu Zhang
- Research Center of Health Policy and Management, School of Health Management, Harbin Medical University, Harbin, China
| | - Hongping Shi
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Guihong Geng
- Department of Economics, School of Economics, Minzu University of China, Beijing, China
| | - Bing Wu
- Research Center of Health Policy and Management, School of Health Management, Harbin Medical University, Harbin, China
| | - Yongqiang Lai
- Research Center of Health Policy and Management, School of Health Management, Harbin Medical University, Harbin, China
| | - Wenjing Xiang
- Department of Economics, School of Economics, Minzu University of China, Beijing, China
| | - Yanjie Wang
- Department of Economics, School of Economics, Minzu University of China, Beijing, China
| | - Yu Cao
- Department of Economics, School of Economics, Minzu University of China, Beijing, China
| | - Baoguo Shi
- Department of Economics, School of Economics, Minzu University of China, Beijing, China,*Correspondence: Baoguo Shi
| | - Ye Li
- Research Center of Health Policy and Management, School of Health Management, Harbin Medical University, Harbin, China,Ye Li
| |
Collapse
|
14
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
15
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev 2022; 183:114137. [PMID: 35143893 DOI: 10.1016/j.addr.2022.114137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
The critical role of tumor microenvironment (TME) in tumor initiation and development has been well-recognized after more than a century of studies. Numerous therapeutic approaches targeting TME are rapidly developed including those leveraging nanotechnology, which have been further accelerated since the emergence of immune checkpoint blockade therapies in the past decade. While there are many reviews focusing on TME remodeling therapies via drug delivery and engineering strategies in animal models, state-of-the-art evaluation of clinical development states of TME-targeted therapeutics is rarely found. Here, we illustrate opportunities for integrating nano-delivery system for the development of TME-specific therapeutic regimen, followed by a comprehensive summary of the most up to date approved or clinically evaluated therapeutics targeting cellular and extracellular components within tumor immune and stromal microenvironment, including small molecule and monoclonal antibody drugs as well as nanomedicines. In the end, we also discuss challenges and possible solutions for clinical translation of TME-targeted nanomedicines.
Collapse
|
17
|
Espejo-Cruz ML, González-Rubio S, Zamora-Olaya J, Amado-Torres V, Alejandre R, Sánchez-Frías M, Ciria R, De la Mata M, Rodríguez-Perálvarez M, Ferrín G. Circulating Tumor Cells in Hepatocellular Carcinoma: A Comprehensive Review and Critical Appraisal. Int J Mol Sci 2021; 22:ijms222313073. [PMID: 34884878 PMCID: PMC8657934 DOI: 10.3390/ijms222313073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm and a major cause of cancer-related death worldwide. There is no ideal biomarker allowing early diagnosis of HCC and tumor surveillance in patients receiving therapy. Liquid biopsy, and particularly circulating tumor cells (CTCs), have emerged as a useful tool for diagnosis and monitoring therapeutic responses in different tumors. In the present manuscript, we evaluate the current evidence supporting the quantitative and qualitative assessment of CTCs as potential biomarkers of HCC, as well as technical aspects related to isolation, identification, and classification of CTCs. Although the dynamic assessment of CTCs in patients with HCC may aid the decision-making process, there are still many uncertainties and technical caveats to be solved before this methodology has a true impact on clinical practice guidelines. More studies are needed to identify the optimal combination of surface markers, to increase the efficiency of ex-vivo expansion of CTCs, or even to target CTCs as a potential therapeutic strategy to prevent HCC recurrence after surgery or to hamper tumor progression and extrahepatic spreading.
Collapse
Affiliation(s)
- María Lola Espejo-Cruz
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Sandra González-Rubio
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Javier Zamora-Olaya
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Víctor Amado-Torres
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Rafael Alejandre
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Manuel De la Mata
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| | - Gustavo Ferrín
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
18
|
Zuo S, Song J, Zhang J, He Z, Sun B, Sun J. Nano-immunotherapy for each stage of cancer cellular immunity: which, why, and what? Theranostics 2021; 11:7471-7487. [PMID: 34158861 PMCID: PMC8210608 DOI: 10.7150/thno.59953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy provides a new avenue for combating cancer. Current research in anticancer immunotherapy is primary based on T cell-mediated cellular immunity, which can be divided into seven steps and is named the cancer-immunity cycle. Unfortunately, clinical applications of cancer immunotherapies are restricted by inefficient drug delivery, low response rates, and unmanageable adverse reactions. In response to these challenges, the combination of nanotechnology and immunotherapy (nano-immunotherapy) has been extensively studied in recent years. Rational design of advanced nano-immunotherapies requires in-depth consideration of "which" immune step is targeted, "why" it needs to be further enhanced, and "what" nanotechnology can do for immunotherapy. However, the applications and effects of nanotechnology in the cancer-immunity cycle have not been well reviewed. Herein, we summarize the current developments in nano-immunotherapy for each stage of cancer cellular immunity, with special attention on the which, why and what. Furthermore, we summarize the advantages of nanotechnology for combination immunotherapy in two categories: enhanced efficacy and reduced toxicity. Finally, we discuss the challenges of nano-immunotherapy in detail and provide a perspective.
Collapse
Affiliation(s)
| | | | | | | | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
19
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
20
|
Wang Y, Tiruthani K, Li S, Hu M, Zhong G, Tang Y, Roy S, Zhang L, Tan J, Liao C, Liu R. mRNA Delivery of a Bispecific Single-Domain Antibody to Polarize Tumor-Associated Macrophages and Synergize Immunotherapy against Liver Malignancies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007603. [PMID: 33945178 PMCID: PMC8240965 DOI: 10.1002/adma.202007603] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/11/2021] [Indexed: 05/05/2023]
Abstract
Liver malignancies are among the tumor types that are resistant to immune checkpoint inhibition therapy. Tumor-associated macrophages (TAMs) are highly enriched and play a major role in inducing immunosuppression in liver malignancies. Herein, CCL2 and CCL5 are screened as two major chemokines responsible for attracting TAM infiltration and inducing their polarization toward cancer-promoting M2-phenotype. To reverse this immunosuppressive process, an innovative single-domain antibody that bispecifically binds and neutralizes CCL2 and CCL5 (BisCCL2/5i) with high potency and specificity is directly evolved. mRNA encoding BisCCL2/5i is encapsulated in a clinically approved lipid nanoparticle platform, resulting in a liver-homing biomaterial that allows transient yet efficient expression of BisCCL2/5i in the diseased organ in a multiple dosage manner. This BisCCL2/5i mRNA nanoplatform significantly induces the polarization of TAMs toward the antitumoral M1 phenotype and reduces immunosuppression in the tumor microenvironment. The combination of BisCCL2/5i with PD-1 ligand inhibitor (PD-Li) achieves long-term survival in mouse models of primary liver cancer and liver metastasis of colorectal and pancreatic cancers. The work provides an effective bispecific targeting strategy that could broaden the PD-Li therapy to multiple types of malignancies in the human liver.
Collapse
Affiliation(s)
- Ying Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Karthik Tiruthani
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guojie Zhong
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sourav Roy
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lillian Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jun Tan
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, P.R. China
| | - Chengheng Liao
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Yang M, Zhang C. The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res 2021; 11:1845-1860. [PMID: 34094657 PMCID: PMC8167702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the gatekeeper cells in the liver, contributing critical roles in liver physiological and pathological changes. Factors such as dietary macronutrients, toxins, and aging impact LSEC fenestration. Defenestration of LSECs changes their phenotype and function. Under liver injury, capillarized LSECs promote hepatic stellate cells (HSCs) activation and fibrogenesis, while decapillarized LSECs protect the activation of HSCs and liver injury. The expression of chemokines, such as CXCL9 and CXCL16, changes and impacts the infiltration of immune cells in the liver during disease progression, including hepatocellular carcinoma (HCC). As the largest solid organ, liver is one of the most favorable organs into where tumor cells metastasize. The increased interaction and adhesion of circulating tumor cells (CTCs) with LSECs in the local microenvironment and LSEC-induced tolerance of immunity promote cancer liver metastasis. Several strategies can be applied to target LSEC to modulate their function to prevent cancer liver metastasis, including gut microbiota modulation, microRNA therapy, and medical treatment. Delivery of different treatment agents with nanoparticles may promote precise target treatment. Overall, targeting LSECs is a potential strategy for treatment of early liver diseases and prevention of cancer liver metastasis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of MissouriColumbia, Missouri, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of MissouriColumbia, Missouri, USA
| |
Collapse
|
22
|
Lu G, Qiu Y, Su X. Targeting CXCL12-CXCR4 Signaling Enhances Immune Checkpoint Blockade Therapy Against Triple Negative Breast Cancer. Eur J Pharm Sci 2021; 157:105606. [PMID: 33131745 DOI: 10.1016/j.ejps.2020.105606] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/21/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Insufficient T cell infiltration in triple-negative breast cancer (TNBC) has limited its response rate to immune checkpoint blockade (ICB) therapies and motivated the development of immunostimulatory approaches to enhance the ICB therapy. CXCR4 is a chemokine receptor highly upregulated both on cell surface and cytoplasm in tumor tissues. Activating CXCR4 has been associated with increased immunosuppression in the tumor microenvironment. Here, we developed a CXCR4-targeted liposomal formulation (Liposomal-AMD3100) to enhance therapeutic efficacy of AMD3100, a CXCR4 antagonist. Particularly, AMD3100 is not only encapsulated into the liposome but coated on the surface of the formulation to serve as a targeting moiety and a dual blocker capable of inhibiting CXCR4 activation extracellularly and intracellularly. The Liposomal-AMD3100 remodeled both immune and stromal microenvironment more efficiently compared with free AMD3100, indicating better pharmacodynamic profile of AMD3100 achieved by liposomal formulation. The combination of anti-PD-L1 with Liposomal-AMD3100 formulation exhibited an increased antitumor effect and prolonged survival time compared with monotherapies in a murine TNBC model (4T1). This work proves that immune activation via liposomal delivery of CXCR4 inhibitors has a great potential to expand ICB therapies to originally ICB-insensitive cancer types.
Collapse
Affiliation(s)
- Guowen Lu
- Department of Thyroid and breast mininally invasive surgery, Ningbo Yinzhou People's Hospital, No.251 Baizhang East Road, 315000 Ningbo, Zhejiang, P.R. China.
| | - Yier Qiu
- Department of Thyroid and breast mininally invasive surgery, Ningbo Yinzhou People's Hospital, No.251 Baizhang East Road, 315000 Ningbo, Zhejiang, P.R. China
| | - Xiaobao Su
- Department of Thyroid and breast mininally invasive surgery, Ningbo Yinzhou People's Hospital, No.251 Baizhang East Road, 315000 Ningbo, Zhejiang, P.R. China
| |
Collapse
|
23
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Zhou X, Liu X, Huang L. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006220. [PMID: 33692665 PMCID: PMC7939128 DOI: 10.1002/adfm.202006220] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are one of the most abundant non-malignant cells in the tumor microenvironment, playing critical roles in mediating tumor immunity. As important innate immune cells, macrophages possess the potential to engulf tumor cells and present tumor-specific antigens for adaptive antitumor immunity induction, leading to growing interest in targeting macrophage phagocytosis for cancer immunotherapy. Nevertheless, live tumor cells have evolved to evade phagocytosis by macrophages via the extensive expression of anti-phagocytic molecules, such as CD47. In addition, macrophages also rapidly recognize and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits inflammatory responses and facilitates immune escape of tumor cells. Thus, intervention of macrophage phagocytosis by blocking anti-phagocytic signals on live tumor cells or inhibiting tumor efferocytosis presents a promising strategy for the development of cancer immunotherapies. Here, the regulation of macrophage-mediated tumor cell phagocytosis is first summarized, followed by an overview of strategies targeting macrophage phagocytosis for the development of antitumor therapies. Given the potential off-target effects associated with the administration of traditional therapeutics (for example, monoclonal antibodies, small molecule inhibitors), we highlight the opportunity for nanomedicine in macrophage phagocytosis intervention.
Collapse
Affiliation(s)
- Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Feng W, Huang W, Chen J, Qiao C, Liu D, Ji X, Xie M, Zhang T, Wang Y, Sun M, Tian D, Fan D, Nie Y, Wu K, Xia L. CXCL12-mediated HOXB5 overexpression facilitates Colorectal Cancer metastasis through transactivating CXCR4 and ITGB3. Theranostics 2021; 11:2612-2633. [PMID: 33456563 PMCID: PMC7806482 DOI: 10.7150/thno.52199] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Metastasis is the major reason for the high mortality of colorectal cancer (CRC). However, the molecular mechanism underlying CRC metastasis remains unclear. Here, we report a novel role of homeobox B5 (HOXB5), a member of the HOX family, in promoting CRC metastasis. Method: The expression of HOXB5 and its target genes were examined by immunohistochemistry in human CRC. Chromatin immunoprecipitation and luciferase reporter assays were performed to measure the transcriptional regulation of target genes by HOXB5. The metastatic capacities of CRC cells were evaluated by in vivo lung and liver metastatic models. Results: The elevated expression of HOXB5 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in CRC patients. HOXB5 expression was an independent and significant risk factor for the recurrence and survival in CRC patients. Overexpression of HOXB5 promoted CRC metastasis by transactivating metastatic related genes, C-X-C motif chemokine receptor 4 (CXCR4) and integrin subunit beta 3 (ITGB3). C-X-C motif chemokine ligand 12 (CXCL12), which is the ligand of CXCR4, upregulated HOXB5 expression through the extracellular regulated protein kinase (ERK)/ETS proto-oncogene 1, transcription factor (ETS1) pathway. The knockdown of HOXB5 decreased CXCL12-enhanced CRC metastasis. Furthermore, AMD3100, a specific CXCR4 inhibitor, significantly suppressed HOXB5-mediated CRC metastasis. HOXB5 expression was positively correlated with CXCR4 and ITGB3 expression in human CRC tissues, and patients with positive co-expression of HOXB5/CXCR4, or HOXB5/ITGB3 exhibited the worst prognosis. Conclusion: Our study implicates HOXB5 as a prognostic biomarker in CRC, and defines a CXCL12-HOXB5-CXCR4 positive feedback loop that plays an important role in promoting CRC metastasis.
Collapse
Affiliation(s)
- Weibo Feng
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chenyang Qiao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Limin Xia
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
26
|
Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, He Z. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Gener P, Gonzalez Callejo P, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Schwartz S. The potential of nanomedicine to alter cancer stem cell dynamics: the impact of extracellular vesicles. Nanomedicine (Lond) 2020; 15:2785-2800. [PMID: 33191837 DOI: 10.2217/nnm-2020-0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The presence of highly resistant cancer stem cells (CSCs) within tumors as drivers of metastatic spread has been commonly accepted. Nonetheless, the likelihood of its dynamic phenotype has been strongly discussed. Importantly, intratumoral cell-to-cell communication seems to act as the main regulatory mechanism of CSC reversion. Today, new strategies for cancer treatment focusing into modulating tumor cell intercommunication and the possibility to modulate the composition of the tumor microenvironment are being explored. In this review, we summarize the literature describing the phenomenon of CSC reversion and the factors known to influence this phenotypic switch. Furthermore, we will discuss the possible role of nanomedicine toward altering this reversion, and to influence the tumor microenvironment composition and the metastatic spread of the disease.
Collapse
Affiliation(s)
- Petra Gener
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Patricia Gonzalez Callejo
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joaquín Seras-Franzoso
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Fernanda Andrade
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Diana Rafael
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Simo Schwartz
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
29
|
Guo J, Huang L. Membrane-core nanoparticles for cancer nanomedicine. Adv Drug Deliv Rev 2020; 156:23-39. [PMID: 32450105 DOI: 10.1016/j.addr.2020.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most severe disease burdens in modern times, with an estimated increase in the number of patients diagnosed globally from 18.1 million in 2018 to 23.6 million in 2030. Despite a significant progress achieved by conventional therapies, they have limitations and are still far from ideal. Therefore, safe, effective and widely-applicable treatments are urgently needed. Over the past decades, the development of novel delivery approaches based on membrane-core (MC) nanostructures for transporting chemotherapeutics, nucleic acids and immunomodulators has significantly improved anticancer efficacy and reduced side effects. In this review, the formulation strategies based on MC nanostructures for delivery of anticancer drug are described, and recent advances in the application of MC nanoformulations to overcome the delivery hurdles for clinical translation are discussed.
Collapse
|
30
|
Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for Antimetastatic Treatment. Trends Cancer 2020; 6:645-659. [PMID: 32448754 DOI: 10.1016/j.trecan.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
Tumor metastases, that is, the development of secondary tumors in organs distant from the primary tumor, and their treatment remain a serious problem in cancer therapy. The unique challenges for tracking and treating tumor metastases lie in the small size, high heterogeneity, and wide dispersion to distant organs of metastases. Recently, nanomedicines, with the capacity to precisely deliver therapeutic agents to both primary and secondary tumors, have demonstrated many potential benefits for metastatic cancer theranostics. Given the remarkable progression in emerging nanotherapeutics for antimetastatic treatment, it is timely to summarize the latest advances in this field. This review highlights the rationale, advantages, and challenges for integrating biomedical nanotechnology with cancer biology to develop antimetastatic nanotherapeutics.
Collapse
Affiliation(s)
- Fujun Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
31
|
Song W, Das M, Chen X. Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. Trends Cancer 2020; 6:288-298. [PMID: 32209444 PMCID: PMC7101275 DOI: 10.1016/j.trecan.2020.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
With the rapid increase in the use of nanotechnology and immunotherapy for cancer management in the recent past, there are great implications for using nanotechnology in immuno-oncology. However, to deliver clinical success, the scientific and clinical rationale must be critically evaluated when applying nanotechnology to immuno-oncology challenges. This opinion article distinguishes between designing nanotherapeutics for immunotherapy and the past focus on the placement of chemotherapy agents in nanoparticles. We believe the integration of nanotechnology with cancer immunotherapy for nano-immunotherapeutics provides unique opportunities for both fields, paving the way for entirely new therapeutic paradigms. As a particular focus in our article, we envision the necessities and challenges of nanotechnology in the development of in situ cancer vaccines, immune checkpoint inhibitors, adoptive cell transfer, and bispecific antibody therapy.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin, 130022, China.
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin, 130022, China
| |
Collapse
|
32
|
Lee JW, Beatty GL. Inflammatory networks cultivate cancer cell metastasis to the liver. Cell Cycle 2020; 19:642-651. [PMID: 32053029 PMCID: PMC7145328 DOI: 10.1080/15384101.2020.1728013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
The liver is the most frequent site of metastatic spread in malignancies that arise from the digestive system, including pancreatic ductal adenocarcinoma (PDAC). Metastasis to the liver is a major cause of morbidity and mortality in cancer patients, yet mechanisms that govern this process remain poorly understood. Until recently, liver tropism of metastasis was believed to be driven by mechanical factors that direct the passive flow of circulating cancer cells to the liver. However, emerging evidence now shows that liver metastasis is a dynamic process that is, at least in part, dependent on the formation of a "pro-metastatic niche". Key features of this niche are myeloid cells and fibrosis that support cancer cell colonization and growth. Inflammatory responses that are mounted early during primary tumor development are critical for the recruitment of myeloid cells and the deposition of extracellular matrix (ECM) proteins within the liver. Intriguingly, the inflammatory processes that direct the formation of a pro-metastatic niche share remarkable resemblance to mechanisms of liver injury and regeneration, suggesting that cancer co-opts physiological liver functions to support metastasis. Therefore, therapeutic strategies that target key elements of liver inflammation that form the basis of a pro-metastatic niche may lead to effective treatments for metastatic cancer.
Collapse
Affiliation(s)
- Jae W. Lee
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory L. Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Am J Cancer Res 2020; 10:3099-3117. [PMID: 32194857 PMCID: PMC7053194 DOI: 10.7150/thno.42998] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent advances in the field of immunotherapy have profoundly opened up the potential for improved cancer therapy and reduced side effects. However, the tumor microenvironment (TME) is highly immunosuppressive, therefore, clinical outcomes of currently available cancer immunotherapy are still poor. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. In this review, the immunoregulatory cell types (cells relating to the regulation of immune responses) inside the TME in terms of stimulatory and suppressive roles are described, and the technologies used to identify and quantify these cells are provided. In addition, recent examples of nanomaterial-based cancer immunotherapy are discussed, with particular emphasis on those designed to overcome barriers caused by the complexity and diversity of TME.
Collapse
|
34
|
Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020; 232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/09/2023]
|
35
|
Huang Y, Chen Y, Zhou S, Chen L, Wang J, Pei Y, Xu M, Feng J, Jiang T, Liang K, Liu S, Song Q, Jiang G, Gu X, Zhang Q, Gao X, Chen J. Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors. Nat Commun 2020; 11:622. [PMID: 32001695 PMCID: PMC6992734 DOI: 10.1038/s41467-020-14425-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
The failure of immunotherapies in immune-excluded tumor (IET) is largely ascribed to the void of intratumoral cytotoxic T cells (CTLs). The major obstacles are the excessive stroma, defective vasculatures and the deficiency of signals recruiting CTLs. Here we report a dual-mechanism based CTLs infiltration enhancer, Nano-sapper, which can simultaneously reduce the physical obstacles in tumor microenvironment and recruiting CTLs to potentiate immunotherapy in IET. Nano-sapper consists a core that co-loaded with antifibrotic phosphates-modified α-mangostin and plasmid encoding immune-enhanced cytokine LIGHT. Through reversing the abnormal activated fibroblasts, decreasing collagen deposition, normalizing the intratumoral vasculatures, and in situ stimulating the lymphocyte-recruiting chemoattractants expression, Nano-sapper paves the road for the CTLs infiltration, induces the intratumoral tertiary lymphoid structures, thus reshapes tumor microenvironment and potentiates checkpoint inhibitor against IET. This study demonstrates that the combination of antifibrotic agent and immune-enhanced cytokine might represent a modality in promoting immunotherapy against IET. The exclusion of cytotoxic T cells remains an important barrier to the efficacy of immunotherapies. Here the authors demonstrate that the combination anti-fibrosis agents and immune-enhanced cytokines can enhance T cell infiltration in a mouse model of pancreatic cancer.
Collapse
Affiliation(s)
- Yukun Huang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Yu Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Songlei Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Liang Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Jiahao Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Yuanyuan Pei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Kaifan Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Shanshan Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P.R. China
| | - Gan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P.R. China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P.R. China
| | - Qian Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P.R. China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P.R. China.
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, P.R. China. .,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, P.R. China.
| |
Collapse
|
36
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
37
|
Huang KW, Hsu FF, Qiu JT, Chern GJ, Lee YA, Chang CC, Huang YT, Sung YC, Chiang CC, Huang RL, Lin CC, Dinh TK, Huang HC, Shih YC, Alson D, Lin CY, Lin YC, Chang PC, Lin SY, Chen Y. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. SCIENCE ADVANCES 2020; 6:eaax5032. [PMID: 31998834 PMCID: PMC6962042 DOI: 10.1126/sciadv.aax5032] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/15/2019] [Indexed: 05/07/2023]
Abstract
While immunotherapy holds great promise for combating cancer, the limited efficacy due to an immunosuppressive tumor microenvironment and systemic toxicity hinder the broader application of cancer immunotherapy. Here, we report a combinatorial immunotherapy approach that uses a highly efficient and tumor-selective gene carrier to improve anticancer efficacy and circumvent the systemic toxicity. In this study, we engineered tumor-targeted lipid-dendrimer-calcium-phosphate (TT-LDCP) nanoparticles (NPs) with thymine-functionalized dendrimers that exhibit not only enhanced gene delivery capacity but also immune adjuvant properties by activating the stimulator of interferon genes (STING)-cGAS pathway. TT-LDCP NPs delivered siRNA against immune checkpoint ligand PD-L1 and immunostimulatory IL-2-encoding plasmid DNA to hepatocellular carcinoma (HCC), increased tumoral infiltration and activation of CD8+ T cells, augmented the efficacy of cancer vaccine immunotherapy, and suppressed HCC progression. Our work presents nanotechnology-enabled dual delivery of siRNA and plasmid DNA that selectively targets and reprograms the immunosuppressive tumor microenvironment to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fu-Fei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jiantai Timothy Qiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guann-Jen Chern
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-An Lee
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Chun Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Chieh Sung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Rui-Lin Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chu-Chi Lin
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Trinh Kieu Dinh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chuan Shih
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Donia Alson
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center; Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Chiao Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center; Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
38
|
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2019; 69:238-248. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Immunotherapy is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases, even cure previously untreatable malignancies. Anti-tumour immunotherapies designed to amplify T cell responses against defined tumour antigens have long been considered effective approaches for cancer treatment. Despite a clear rationale behind such immunotherapies, extensive past efforts were unsuccessful in mediating clinically relevant anti-tumour activity in humans. This is mainly because tumours adopt specific mechanisms to circumvent the host´s immunity. Emerging data suggest that the full potential of cancer immunotherapy will be only achieved by combining immunotherapies designed to generate or amplify anti-tumour T cell responses with strategies able to impair key tumour immune-evasion mechanisms. However, many approaches aimed to re-shape the tumour immune microenvironment (TIME) are commonly associated with severe systemic toxicity, require frequent administration, and only show modest efficacy in clinical settings. The use of nanodelivery systems is revealing as a valid means to overcome these limitations by improving the targeting efficiency, minimising systemic exposure of immunomodulatory agents, and enabling the development of novel combinatorial immunotherapies. In this review, we examine the emerging field of therapeutic modulation of TIME by the use of nanoparticle-based immunomodulators and potential future directions for TIME-targeting nanotherapies.
Collapse
Affiliation(s)
- Maria L Guevara
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesca Persano
- Department of Mathematics and Physics, University of Salento, Lecce, Italy
| | - Stefano Persano
- Formulation Testing & Discovery, BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| |
Collapse
|
39
|
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. NATURE NANOTECHNOLOGY 2019; 14:1093-1103. [PMID: 31802032 DOI: 10.1038/s41565-019-0589-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/06/2019] [Indexed: 05/19/2023]
Abstract
The microbiome is emerging as a key player and driver of cancer. Traditional modalities to manipulate the microbiome (for example, antibiotics, probiotics and microbiota transplants) have been shown to improve efficacy of cancer therapies in some cases, but issues such as collateral damage to the commensal microbiota and consistency of these approaches motivates efforts towards developing new technologies specifically designed for the microbiome-cancer interface. Considering the success of nanotechnology in transforming cancer diagnostics and treatment, nanotechnologies capable of manipulating interactions that occur across microscopic and molecular length scales in the microbiome and the tumour microenvironment have the potential to provide innovative strategies for cancer treatment. As such, opportunities at the intersection of nanotechnology, the microbiome and cancer are massive. In this Review, we highlight key opportunistic areas for applying nanotechnologies towards manipulating the microbiome for the treatment of cancer, give an overview of seminal work and discuss future challenges and our perspective on this emerging area.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Zhang P, Zhai Y, Cai Y, Zhao Y, Li Y. Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904156. [PMID: 31566275 DOI: 10.1002/adma.201904156] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Indexed: 05/18/2023]
Abstract
Metastasis is the leading cause of cancer-associated death, with poor prognosis even after extensive treatment. The dormancy of metastatic cancer cells during dissemination or after colony formation is one major reason for treatment failure, as most drugs target cells of active proliferation. Immunotherapy has shown great potential in cancer therapy because the activity of effector cells is less affected by the metabolic status of cancer cells. In addition, metastatic cells out of immunosuppressive tumor microenvironment (TME) are more susceptible to immune clearance, although these cells can achieve immune surveillance evasion via strategies such as platelet and macrophage recruitment. Since nanomaterials themselves or their carried drugs have the capability to modulate the immune system, a great amount of focus has been placed on nanomedicine strategies that leverage immune cells participating the metastatic cascade. These nanomedicines successfully inhibit the tumor metastasis and prolong the survival of model animals. Immune cells that are involved in the metastasis cascade are first summarized and then recent and inspiring strategies and nanomaterials in this growing field are highlighted.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Tang Y, Lu Y, Chen Y, Luo L, Cai L, Peng B, Huang W, Liao H, Zhao L, Pan M. Pre-metastatic niche triggers SDF-1/CXCR4 axis and promotes organ colonisation by hepatocellular circulating tumour cells via downregulation of Prrx1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:473. [PMID: 31752959 PMCID: PMC6873584 DOI: 10.1186/s13046-019-1475-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023]
Abstract
Background Circulating tumour cells (CTCs), especially mesenchymal CTCs, are important determinants of metastasis, which leads to most recurrence and mortality in hepatocellular carcinoma (HCC). However, little is known about the underlying mechanisms of CTC colonisation in pre-metastatic niches. Methods Detection and classification of CTCs in patients were performed using the CanPatrol™ system. A lentiviral vector expressing Prrx1-targeting shRNA was constructed to generate a stable HCC cell line with low expression of Prrx1. The effect of Prrx1 knockdown on stemness, migration, and drug resistance of the cell line was assessed, including involvement of SDF-1/CXCR4 signalling. Promising clinical applications of an inhibitor of STAT3 tyrosine phosphorylation, C188–9, and specific blockade with CXCR4 antibody were explored. Results The number of mesenchymal CTCs in blood was closely associated with tumour recurrence or metastasis. Pre-metastatic niche-derived SDF-1 could downregulate Prrx1, which induced the stemness, drug resistance, and increased expression of CXCR4 in HCC cells through the STAT3 pathway in vitro. In vivo, mice bearing tumours of Prrx1 low-expressing cells had significantly shorter survival. In xenograft tumours and clinical samples, loss of Prrx1 was negatively correlated with increased expression of CXCR4 in lung metastatic sites compared with that in the primary foci. Conclusions These findings demonstrate that decreased expression of Prrx1 stimulates SDF-1/CXCR4 signalling and contributes to organ colonisation with blood CTCs in HCC. STAT3 inhibition and specific blockade of CXCR4 have clinical potential as therapeutics for eliminating organ metastasis in advanced HCC.
Collapse
Affiliation(s)
- Yujun Tang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yishi Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Chen
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Luo
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bangjian Peng
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenbin Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hangyu Liao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Mingxin Pan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
42
|
Baidoo SA, Sarkodie EK, Boakye-Yiadom KO, Kesse S. Nanomedicinal delivery systems for intelligent treatment of hepatocellular carcinoma. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Das M, Huang L. Liposomal Nanostructures for Drug Delivery in Gastrointestinal Cancers. J Pharmacol Exp Ther 2019; 370:647-656. [PMID: 30541917 PMCID: PMC6812858 DOI: 10.1124/jpet.118.254797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) cancers like liver, pancreatic, colorectal, and gastric cancer remain some of the most difficult and aggressive cancers. Nanoparticles like liposomes had been approved in the clinic for cancer therapy dating as far back as 1995. Over the years, liposomal formulations have come a long way, facing several roadblocks and failures, and advancing by optimizing formulations and incorporating novel design approaches to navigate therapeutic delivery challenges. The first liposomal formulation for a GI cancer drug was approved recently in 2015, setting the stage for further clinical developments of liposome-based delivery systems for therapies against GI malignancies. This article reviews the design considerations and strategies that can be used to deliver drugs to GI tumors, the wide range of therapeutic agents that have been explored in preclinical as well as clinical studies, and the current therapies that are being investigated in the clinic against GI malignancies.
Collapse
Affiliation(s)
- Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Molecular Alterations Associated with DNA Repair in Pancreatic Adenocarcinoma Are Associated with Sites of Recurrence. J Gastrointest Cancer 2019; 50:285-291. [PMID: 29427136 DOI: 10.1007/s12029-018-0073-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies with a rising incidence. Mutational analysis of PDAC has provided valuable information but has not yet dramatically changed the therapeutic landscape due to the number of variations detected in any one individual. The pattern of molecular alterations-gene mutations, variations in copy number, and changes in gene expression-has been described in the literature. The purpose of this study is to further investigate the molecular alterations in recurrent or metastatic PDAC based on the site of disease. METHODS Molecular alterations in patients with recurrent or metastatic PDAC from 2007 to 2015 were analyzed. The most common molecular alterations found in PDAC tumors from the pancreas were compared to metastatic PDAC specimens from the liver, lung, peritoneum, and other locations. Means were compared with a two-tailed Student's t test or ANOVA as appropriate. Rates of molecular alterations among the different groups were compared with Pearson's χ2. RESULTS Two thousand five hundred fifty-two patients with PDAC were identified in a retrospective database, and the 15 most common molecular alterations were utilized for analysis. The most common alterations among all patients were mutations in KRAS and PTEN (59 and 62%, respectively), with differences in prevalence by site of metastasis (p = 0.042 and p = 0.037, respectively). KRAS mutations were more commonly found in metastasis in the lung (72%) than in other sites (59%, p = 0.042). Low expression of ERCC1 was found in 49% of lung metastases from PDAC but only 15% in PDAC in the pancreas (p < 0.001). Five of the 8 molecular alterations significantly associated with site of metastatic disease were involved in DNA maintenance, repair, replication, or transcription (each p < 0.001). CONCLUSIONS Aberrant expression or mutation in genes involved in DNA maintenance is found in association with specific sites of metastatic PDAC. Personalizing therapy for metastatic PDAC based on site of disease and their associated molecular alterations warrants further investigation.
Collapse
|
45
|
Hu M, Wang Y, Xu L, An S, Tang Y, Zhou X, Li J, Liu R, Huang L. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat Commun 2019; 10:2993. [PMID: 31278269 PMCID: PMC6611764 DOI: 10.1038/s41467-019-10893-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Activated hepatic stellate cell (aHSC)-mediated liver fibrosis is essential to the development of liver metastasis. Here, we discover intra-hepatic scale-up of relaxin (RLN, an anti-fibrotic peptide) in response to fibrosis along with the upregulation of its primary receptor (RXFP1) on aHSCs. The elevated expression of RLN serves as a natural regulator to deactivate aHSCs and resolve liver fibrosis. Therefore, we hypothesize this endogenous liver fibrosis repair mechanism can be leveraged for liver metastasis treatment via enforced RLN expression. To validate the therapeutic potential, we utilize aminoethyl anisamide-conjugated lipid-calcium-phosphate nanoparticles to deliver plasmid DNA encoding RLN. The nanoparticles preferentially target metastatic tumor cells and aHSCs within the metastatic lesion and convert them as an in situ RLN depot. Expressed RLN reverses the stromal microenvironment, which makes it unfavorable for established liver metastasis to grow. In colorectal, pancreatic, and breast cancer liver metastasis models, we confirm the RLN gene therapy results in significant inhibition of metastatic progression and prolongs survival. In addition, enforced RLN expression reactivates intra-metastasis immune milieu. The combination of the RLN gene therapy with PD-L1 blockade immunotherapy further produces a synergistic anti-metastatic efficacy. Collectively, the targeted RLN gene therapy represents a highly efficient, safe, and versatile anti-metastatic modality, and is promising for clinical translation.
Collapse
Affiliation(s)
- Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ligeng Xu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, China
| | - Sai An
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
46
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
47
|
Liu M, Song W, Huang L. Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Lett 2019; 448:31-39. [PMID: 30731107 PMCID: PMC10859225 DOI: 10.1016/j.canlet.2019.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/27/2018] [Accepted: 01/24/2019] [Indexed: 01/12/2023]
Abstract
Solid tumors especially desmoplastic tumors are complex organ-like structures. Tumor-associated fibroblasts (TAFs), one type of the stromal cells, support the initiation, progression, and metastasis of carcinomas. TAFs also contribute to immunosuppressive tumor microenvironment (TME) and hinder T lymphocytes in killing tumors. Here, the role of TAFs in TME is discussed. In specific, TAFs form barriers for the penetration of T lymphocytes. TAFs also act as negative regulators for T lymphocytes. These findings suggest that targeting TAFs is a promising strategy for improving cancer immunotherapy. Our previous studies have indicated the ability of therapeutic nanoparticles to distribute into, and deplete or inactivate TAFs. This approach is discussed in the context of developing specific and effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Mengrui Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA; Department of Pharmaceutics, Collage of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA.
| |
Collapse
|
48
|
An S, Tiruthani K, Wang Y, Xu L, Hu M, Li J, Song W, Jiang H, Sun J, Liu R, Huang L. Locally Trapping the C-C Chemokine Receptor Type 7 by Gene Delivery Nanoparticle Inhibits Lymphatic Metastasis Prior to Tumor Resection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805182. [PMID: 30690891 PMCID: PMC6878664 DOI: 10.1002/smll.201805182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 05/29/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, no targeted treatment is available for TNBC, and the most common clinical therapy is tumor resection, which often promotes metastasis risks. Strong evidence suggests that the lymphatic metastasis is mediated by the C-C chemokine receptor type 7 (CCR7)/C-C motif chemokine ligand 21 crosstalk between tumor cells and the lymphatic system. It is hypothesized that CCR7 is a key immune modulator in the tumor microenvironment and the local blockade of CCR7 could effectively inhibit TNBC lymphatic metastasis. Accordingly, a plasmid encoding an antagonistic CCR7 affinity protein-CCR7 trap is delivered by tumor targeting nanoparticles in a highly metastatic 4T1 TNBC mouse model. Results show that CCR7 traps are transiently expressed, locally disrupt the signaling pathways in the tumor site, and efficiently inhibit TNBC lymphatic metastasis, without inducing immunosuppression as observed in systemic therapies using CCR7 monoclonal antibody. Significantly, upon applying CCR7 trap therapy prior to tumor resection, a 4T1 TNBC mouse model shows good prognosis without any further metastasis and relapse. In addition, CCR7 trap therapy efficiently inhibits the lymphatic metastasis in a B16F10 melanoma mouse model, indicating its great potential for various metastatic diseases treatment.
Collapse
Affiliation(s)
- Sai An
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Karthik Tiruthani
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ying Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ligeng Xu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongnan Jiang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
49
|
Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun 2019; 10:574. [PMID: 30718511 PMCID: PMC6361944 DOI: 10.1038/s41467-019-08538-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/30/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are responsible for the immunologic tolerance of liver which is a common site for visceral metastases, suggesting its potential role as an target for cancer immunotherapy. However, targeted modulation of LSECs is still not achieved thus far. Here, we report LSECs are specifically targeted and modulated by melittin nanoparticles (α-melittin-NPs). Intravital imaging shows that LSECs fluoresce within 20 s after intravenous injection of α-melittin-NPs. α-melittin-NPs trigger the activation of LSECs and lead to dramatic changes of cytokine/chemokine milieu in the liver, which switches the hepatic immunologic environment to the activated state. As a result, α-melittin-NPs resist the formation of metastatic lesions with high efficiency. More strikingly, the survival rate reaches 80% in the spontaneous liver metastatic tumor model. Our research provides support for the use of α-melittin-NPs to break LSEC-mediated immunologic tolerance, which opens an avenue to control liver metastasis through the immunomodulation of LSECs. Liver sinusoidal endothelial cells are known to promote immune tolerance in liver. Here, the authors target these cells using melittin nanoparticles and show alterations in the liver immune environment and suppression of liver metastases.
Collapse
|
50
|
Arjmand B, Larijani B, Sheikh Hosseini M, Payab M, Gilany K, Goodarzi P, Parhizkar Roudsari P, Amanollahi Baharvand M, Hoseini Mohammadi NS. The Horizon of Gene Therapy in Modern Medicine: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:33-64. [PMID: 31845133 DOI: 10.1007/5584_2019_463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene therapy as a novel study in molecular medicine will have a significant impact on human health in the near future. In recent years, the scope of gene therapy has been developed and is now beginning to revolutionize therapeutic approaches. Accordingly, many types of diseases are now being studied and treated in clinical trials through various gene delivery vectors. The emergence of recombinant DNA technology which provides the possibility of fetal genetic screening and genetic counseling is a good case in point. Therefore, gene therapy advances are being applied to correct inherited genetic disorders such as hemophilia, cystic fibrosis, and familial hypercholesterolemia as well as acquired diseases like cancer, AIDS, Alzheimer's disease, Parkinson's disease, and infectious diseases like HIV. As a result, gene therapy approaches have the ability to help the vast majority of newborns with different diseases. Since these ongoing treatments and clinical trials are being developed, many more barriers and challenges have been created. In order to continue this positive growth, these challenges need to be recognized and addressed. Accordingly, safety, efficiency and also risks and benefits of gene therapy trials for each disease should be considered. As a result, sustained manufacturing of the therapeutic gene product without any harmful side effects is the least requirement for gene therapy. Herein, different aspects of gene therapy, an overview of the progress, and also the prospects for the future have been discussed for the successful practice of gene therapy.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Amanollahi Baharvand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hoseini Mohammadi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|