1
|
Kinsella L, Brook J, Briest M, Brook MJ. Inconsistent excipient listings in DailyMed: implications for drug safety. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6851-6854. [PMID: 38563879 DOI: 10.1007/s00210-024-03067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Excipients, or inactive ingredients, are a frequent cause of medication intolerance and allergy. Patients and clinicians concerned about medication allergies and sensitivities rely on the U.S. National Library of Medicine's DailyMed for accurate lists of excipients. Based on our anecdotal discovery of several examples of excipient omissions, we wished to examine the accuracy of DailyMed's listings more systematically in a sample of commonly prescribed medications. The objective of the study is to identify the frequency of inconsistency of excipient reporting within the DailyMed website. We performed a database audit of the Structured Product Labeling XML file provided by the drug manufacturer to the Food and Drug Administration and DailyMed for two randomly selected formulations of each of 50 commonly prescribed medications. For each of the 100 formulations, we compared the excipients listed in the "Description" to those in the "Ingredients and Appearance" sections in DailyMed. The Structured Product Labeling data file provided by the drug manufacturer contained internal inconsistencies of excipients in 39% of the formulations examined. Despite the use of Structured Product Labeling, the drug manufacturer's medication labels provided to the FDA and reported by DailyMed often contain conflicting information about inactive ingredients. Patients with allergies and excipient sensitivity should be aware of these discrepancies and consult multiple sections of the label to identify potential allergy-inducing inactive ingredients.
Collapse
Affiliation(s)
| | - Jill Brook
- Standing Up to POTS, Springfield, OH, USA.
| | | | | |
Collapse
|
2
|
Busam JA, Rezaie A, Pimentel M. Revisiting Meta-analyses of Placebo Response in Drug Trials for Irritable Bowel Syndrome: A Call to Disclose Excipients. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00551-2. [PMID: 38901659 DOI: 10.1016/j.cgh.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Jonathan A Busam
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
| | - Ali Rezaie
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mark Pimentel
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
3
|
Tieu L, Uchi J, Patel N, Meghani M, Patel P, Nguyen Y. Embracing Medication Needs of Patients based on Ethical, Dietary, and Religious Preferences. Am J Lifestyle Med 2024; 18:351-363. [PMID: 38737876 PMCID: PMC11082863 DOI: 10.1177/15598276221135538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Purpose: Many patients seek medications without animal-derived ingredients for a multitude of reasons. The purpose of this comprehensive qualitative review is to assess current literature on the topic of animal-free medications and identify the roles that key stakeholders can play in addressing the needs of these patients. Methods: A comprehensive literature search was conducted on PubMed and Google Scholar from inception to June 2022 to identify key articles surrounding the topic of animal-free ingredients and medications. Results: The need for animal-free medications impacts not just vegans and vegetarians, but also those with dietary restrictions due to other beliefs. Three key stakeholder initiatives can address the needs of these patients: 1) Healthcare professionals (HCPs) should strive to select appropriate medications considering their patients' religious and/or cultural background; 2) patients must be involved and notify their providers about their dietary requirements; 3) pharmaceutical industry and manufacturers need to consider animal-free product formulations and provide clear labeling. Conclusion: There is a rising interest in animal-free medications and several organizations and advocacy groups have raised concerns for easier access to these medications. However, more regulatory guidance or oversight is needed. For the nearly 25% animal-free medications available in the market, independent certification marks would facilitate informed consumer decision-making.
Collapse
Affiliation(s)
| | | | - Nirva Patel
- Gilead, Foster City, CA, USA (LT); VeganMed, Vacaville, CA, USA (JU, YN); Harvard Law School, Cambridge, MA, USA (NP); Hindu American Foundation, Washington, DC, USA (MM); and American College of Lifestyle Medicine, Chesterfield, MO, USA (PP)
| | - Mihir Meghani
- Gilead, Foster City, CA, USA (LT); VeganMed, Vacaville, CA, USA (JU, YN); Harvard Law School, Cambridge, MA, USA (NP); Hindu American Foundation, Washington, DC, USA (MM); and American College of Lifestyle Medicine, Chesterfield, MO, USA (PP)
| | - Padmaja Patel
- Gilead, Foster City, CA, USA (LT); VeganMed, Vacaville, CA, USA (JU, YN); Harvard Law School, Cambridge, MA, USA (NP); Hindu American Foundation, Washington, DC, USA (MM); and American College of Lifestyle Medicine, Chesterfield, MO, USA (PP)
| | - Yen Nguyen
- Gilead, Foster City, CA, USA (LT); VeganMed, Vacaville, CA, USA (JU, YN); Harvard Law School, Cambridge, MA, USA (NP); Hindu American Foundation, Washington, DC, USA (MM); and American College of Lifestyle Medicine, Chesterfield, MO, USA (PP)
| |
Collapse
|
4
|
Awotunde O, Lu J, Cai J, Roseboom N, Honegger S, Joseph O, Wicks A, Hayes K, Lieberman M. Mitigating the impact of gelatin capsule variability on detection of substandard and falsified pharmaceuticals with near-IR spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1611-1622. [PMID: 38406859 DOI: 10.1039/d4ay00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Portable NIR spectrometers are effective in detecting authentic pharmaceutical products in intact capsule formulations, which can be used to screen for substandard or falsified versions of those authentic products. However, the chemometric models are trained on libraries of authentic products, and are generally unreliable for detection of quality problems in products from outside their training set, even for products that are nominally the same active pharmaceutical ingredient and same dosage as products in the training set. As part of our research directed at developing better non-brand-specific strategies for pharmaceutical screening, we investigated the impact of capsule composition on NIR modeling. We found that capsule features like gelatin type, color, or thickness, give rise to a similar amount of variance in the NIR spectra as the type of API stored within the capsules. Our results highlight the efficacy of orthogonal projection to latent structures in mitigating the impacts of different types of capsules on the accuracy of NIR chemometric models for classification and regression analysis of lab-made samples. The models showed good performance for classification of field-collected doxycycline capsules as good or bad quality when an NIR-based % w/w metric was used, identifying five samples that were adulterated with talc. However, the % w/w was systematically underestimated, so when evaluating the capsules based on their absolute API content according to the monograph standard, the classification accuracy decreased from 100% to 70%. The underestimation was attributed to an unforeseen variability in the quantities and types of excipients present in the capsules.
Collapse
Affiliation(s)
- Olatunde Awotunde
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jiaqi Lu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jin Cai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nicholas Roseboom
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Sarah Honegger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Ornella Joseph
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alyssa Wicks
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kathleen Hayes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Marya Lieberman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
5
|
Lukose L, Seth S, Sud K, Nankivell B, Nicdao MA, Castelino RL. Hidden danger: maize starch excipient allergy. Med J Aust 2024; 220:184-185. [PMID: 38180266 DOI: 10.5694/mja2.52201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 01/06/2024]
Affiliation(s)
| | | | - Kamal Sud
- Nepean Kidney Research Centre, Nepean Hospital, Sydney, NSW
- Blacktown Hospital, Blacktown, NSW
| | | | | | | |
Collapse
|
6
|
Kan AKC, Chiang V, Saha C, Au EYL, Li PH. Feasibility of a drug allergy registry-based excipient allergy database and call for universal mandatory drug ingredient disclosure: the case of PEG. FRONTIERS IN ALLERGY 2024; 4:1331036. [PMID: 38292585 PMCID: PMC10824824 DOI: 10.3389/falgy.2023.1331036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Background Excipient allergy is a rare, but potentially lethal, form of drug allergy. Diagnosing excipient allergy remains difficult in regions without mandatory drug ingredient disclosure and is a significant barrier to drug safety. Objective To investigate the feasibility of a drug allergy registry-based excipient database to identify potential excipient culprits in patients with history of drug allergy, using polyethylene glycol (PEG) as an example. Methods An excipient registry was created by compiling the excipient lists pertaining to all available formulations of the top 50 most reported drug allergy culprits in Hong Kong. Availability of excipient information, and its relationship with total number of formulations of individual drugs were analysed. All formulations were checked for the presence or absence of PEG. Results Complete excipient information was available for 36.5% (729/2,000) of all formulations of the top 50 reported drug allergy culprits in Hong Kong. The number of formulations for each drug was associated with proportion of available excipient information (ρ = 0.466, p = 0.001). Out of 729 formulations, 109 (15.0%) and 620 (85.0%) were confirmed to contain and not contain PEG, respectively. Excipient information was not available for the other 1,271 (63.6%) formulations. We were unable to confirm the presence or absence of PEG in any of the top 50 drug allergy culprits in Hong Kong. Conclusion In countries without mandatory drug ingredient disclosure, excipient databases are unlikely able to identify potential excipient allergy in drug allergy patients. Legislations to enforce mandatory and universal ingredient disclosure are urgently needed.
Collapse
Affiliation(s)
- Andy Ka Chun Kan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Valerie Chiang
- Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Chinmoy Saha
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Elaine Y. L. Au
- Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Philip Hei Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Rauch C, Lucio L, De Fer BB, Lheritier-Barrand M. Bioequivalence of 2 Pediatric Formulations of Fexofenadine Hydrochloride Oral Suspension. Clin Pharmacol Drug Dev 2023; 12:1194-1203. [PMID: 37655364 DOI: 10.1002/cpdd.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023]
Abstract
Fexofenadine hydrochloride (HCl) is a second-generation, nonsedating, histamine H1-receptor antagonist used to manage seasonal allergic rhinitis and chronic idiopathic urticaria. A new oral pediatric suspension of fexofenadine HCl has been developed, with the preservative potassium sorbate replacing parabens. The objective of this phase 1 single-center, open-label, randomized, 2-treatment, full-replicated, 4-period, 2-sequence crossover study in healthy adult volunteers was to assess the bioequivalence of 30 mg of the new oral suspension of fexofenadine HCl (test) versus 30 mg of the marketed pediatric oral suspension of fexofenadine HCl (reference). The replicate design was based on the high intra-individual variability of fexofenadine (>30% on Cmax ). The study comprised 68 randomized and treated volunteers. Plasma concentrations of fexofenadine were similar following the administration of a single dose of each formulation. Cmax , AUClast , AUC, median tmax , and mean t1/2z were similar between administrations of the same fexofenadine formulation and between formulations. A high intra-individual variability was confirmed with both formulations. Bioequivalence of the test and reference fexofenadine HCl formulations was demonstrated as the 90% confidence intervals of the geometric least squares mean ratio for Cmax , AUClast , and AUC of fexofenadine were all within the bioequivalence range of 0.80-1.25. There were no serious adverse events (AEs) or study discontinuations due to treatment-emergent AEs with either fexofenadine HCl formulation. The new paraben-free fexofenadine HCl 30-mg oral suspension and marketed fexofenadine HCl 30-mg pediatric oral suspension are bioequivalent under fasting conditions, with no safety concerns and a safety profile consistent with the known profile of fexofenadine.
Collapse
Affiliation(s)
- Clemence Rauch
- Clinical Development & Biometry, Sanofi CHC, Gentilly, France
| | | | | | | |
Collapse
|
8
|
Green LJ, Bhatia ND, Toledano O, Erlich M, Spizuoco A, Goodyear BC, York JP, Jakus J. Silica-based microencapsulation used in topical dermatologic applications. Arch Dermatol Res 2023; 315:2787-2793. [PMID: 37792034 PMCID: PMC10616207 DOI: 10.1007/s00403-023-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Microencapsulation has received extensive attention because of its various applications. Since its inception in the 1940s, this technology has been used across several areas, including the chemical, food, and pharmaceutical industries. Over-the-counter skin products often contain ingredients that readily and unevenly degrade upon contact with the skin. Enclosing these substances within a silica shell can enhance their stability and better regulate their delivery onto and into the skin. Silica microencapsulation uses silica as the matrix material into which ingredients can be embedded to form microcapsules. The FDA recognizes amorphous silica as a safe inorganic excipient and recently approved two new topical therapies for the treatment of rosacea and acne. The first approved formulation uses a novel silica-based controlled vehicle delivery technology to improve the stability of two active ingredients that are normally not able to be used in the same formulation due to potential instability and drug degradation. The formulation contains 3.0% benzoyl peroxide (BPO) and 0.1% tretinoin topical cream to treat acne vulgaris in adults and pediatric patients. The second formulation contains silica microencapsulated 5.0% BPO topical cream to treat inflammatory rosacea lesions in adults. Both formulations use the same amorphous silica sol-gel microencapsulation technology to improve formulation stability and skin compatibility parameters.
Collapse
Affiliation(s)
- Lawrence J Green
- George Washington University School of Medicine, Washington, DC, USA.
| | | | | | | | | | | | | | - Jeannette Jakus
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
9
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Hong K, Rowhani-Farid A, Doshi P. Definition and rationale for placebo composition: Cross-sectional analysis of randomized trials and protocols published in high-impact medical journals. Clin Trials 2023; 20:564-570. [PMID: 37050893 DOI: 10.1177/17407745231167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND/AIMS Inadequate description of trial interventions in publications has been repeatedly reported, a problem that extends to the description of placebo controls. Without describing placebo contents, it cannot be assumed that a placebo is inert. Pharmacologically active placebos complicate accurate estimation and interpretation of efficacy and safety data. In this study, we sought to assess whether placebo contents are described in study protocols and publications of trials published in high-impact medical journals. METHODS We identified all placebo-controlled randomized clinical trials (RCTs) published in 2016 in Annals of Internal Medicine, The BMJ, the Journal of the American Medical Association (JAMA), The Lancet, and the New England Journal of Medicine (NEJM). We included all trials with publicly available study protocols. From journal publications and associated study protocols, we searched and recorded: description of placebo contents; the amount of each placebo ingredient; and investigators' stated rationale for selection of placebo ingredients. RESULTS We included 113 placebo-controlled RCTs. Of the 113 trials, placebo content was described in 22 (19.5%) journal publications and 51 (45.1%) study protocols. The amount of each placebo ingredient was described in 15 (13.3%) journal publications and 47 (41.6%) study protocols. None of the journal publications explained the rationale for the choice of placebo ingredients, whereas a rationale was provided in 4 (3.5%) study protocols. The stated rationales were to ensure the placebo was visually indistinguishable from the experimental intervention (N = 3) and ensure comparability with a previous study (N = 1). CONCLUSION There is no accessible record of the composition of placebos for approximately half of high-impact RCTs, even with access to study protocols. This impedes reproducibility and raises unanswerable questions about what effects-beneficial or harmful-the placebo may have had on trial participants, potentially confounding an accurate assessment of the experimental intervention's safety and efficacy. Considering that study protocols are unabridged, detailed documents describing the trial design and methodology, the fact that less than half of the study protocols described the placebo contents raises concerns about clinical trial transparency. To improve the reproducibility and potential of placebo-controlled RCTs to provide reliable evidence on the efficacy and safety profile of drugs and other experimental interventions, more detail regarding placebo contents must be included in trial documents.
Collapse
Affiliation(s)
- Kyungwan Hong
- Department of Practice, Sciences, and Health Outcomes Research, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Anisa Rowhani-Farid
- Department of Practice, Sciences, and Health Outcomes Research, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Peter Doshi
- Department of Practice, Sciences, and Health Outcomes Research, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
11
|
Turek M, Różycka-Sokołowska E, Koprowski M, Marciniak B, Bałczewski P. Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox ® Biotest. Molecules 2023; 28:6590. [PMID: 37764366 PMCID: PMC10535389 DOI: 10.3390/molecules28186590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The ecotoxicological impact of pharmaceuticals has received considerable attention, primarily focusing on active pharmaceutical ingredients (APIs) while largely neglecting the potential hazards posed by pharmaceutical excipients. Therefore, we analyzed the ecotoxicity of 16 commonly used pharmaceutical excipients, as well as 26 API-excipient and excipient-excipient mixtures utilizing the Microtox® test. In this way, we assessed the potential risks that pharmaceutical excipients, generally considered safe, might pose to the aquatic environment. We investigated both their individual ecotoxicity and their interactions with tablet ingredients using concentration addition (CA) and independent action (IA) models to shed light on the often-overlooked ecotoxicological consequences of these substances. The CA model gave a more accurate prediction of toxicity and should be recommended for modeling the toxicity of combinations of drugs with different effects. A challenge when studying the ecotoxicological impact of some pharmaceutical excipients is their poor water solubility, which hinders the use of standard aquatic ecotoxicity testing techniques. Therefore, we used a modification of the Microtox® Basic Solid Phase protocol developed for poorly soluble substances. The results obtained suggest the high toxicity of some excipients, i.e., SLS and meglumine, and confirm the occurrence of interactions between APIs and excipients. Through this research, we hope to foster a better understanding of the ecological impact of pharmaceutical excipients, prompting the development of risk assessment strategies within the pharmaceutical industry.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (E.R.-S.); (B.M.)
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (E.R.-S.); (B.M.)
| | - Marek Koprowski
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Bernard Marciniak
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (E.R.-S.); (B.M.)
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (E.R.-S.); (B.M.)
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| |
Collapse
|
12
|
Amiri A, Guess L, Gilder R, Showalter D, Hart L, Sattler B. Using Fume Hood to Reduce Nurses' Exposure to Particulate Matters Dispersed Into the Air During Pill Crushing. Workplace Health Saf 2023; 71:412-418. [PMID: 37515535 DOI: 10.1177/21650799231184756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
BACKGROUND Pill crushing is a common practice in patient care settings. Crushing pills can disperse particulate matter (PM) into indoor air. The PM is a widespread air pollutant composed of microscopic particles and droplets of various sizes and may carry active and/or inactive ingredients nurses can inhale. This study aimed to quantify PM sizes and concentration in indoor air when pills are crushed and examine the role of a fume hood in reducing particulate pollution. METHODS Two scenarios (with and without a fume hood) representing nurses' pill-crushing behaviors were set up in a positive-pressure cleanroom. Two acetaminophen tablets (325 mg/tablet) were crushed into powder and mixed with unsweetened applesauce. The PM sizes and concentrations were measured before and during crushing. RESULTS Different sizes of PM, including inhalable, respirable, and thoracic particles, were emitted during medication crushing. The total count of all particle sizes and mass concentrations of particles were significantly lower during crushing when a fume hood was used (p = .00). CONCLUSION Pill crushing increases PM and should be considered a workplace safety health hazard for nurses. Healthcare professionals should work under a fume hood when crushing pills and wear proper protective equipment. The findings of significant particulate pollution related to pill crushing suggest that further research is warranted.
Collapse
Affiliation(s)
- Azita Amiri
- College of Nursing, The University of Alabama in Huntsville
| | | | | | | | | | - Barbara Sattler
- School of Nursing and Health Professions, University of San Fransisco
| |
Collapse
|
13
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
14
|
Bahna SL. New insights in hidden food allergies. JOURNAL OF FOOD ALLERGY 2023; 5:19-24. [PMID: 39022332 PMCID: PMC11250454 DOI: 10.2500/jfa.2023.5.230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Food allergic reactions primarily occur after exposure to the offending food through ingestion, contact, or inhalation. However, it can occur covertly through hidden ways that are often missed, with undesirable consequences. Information has been accumulating over the years to indicate that food allergy (FA) may have been the problem in subjects who do not report an association to eating, touching, or smelling a food. Therefore, it would be prudent to explore the possibility of a hidden FA. The causative substance may be a food allergen or a nonfood allergen hidden in a previously tolerated food. Food allergens are commonly hidden in various medications, even in anti-allergy drugs. A blood product may passively transmit food allergens to a recipient who is sensitized or food-specific immunoglobulin E antibodies to a recipient who is nonatopic. It may also be excreted in breast milk, saliva, or semen. Transmission of the FA genetic trait can occur through transplantation of hematopoietic tissue. When the medical history and routine allergy evaluation do not point to the cause of an allergic reaction, it would be prudent to suspect hidden FA before labeling the reaction as idiopathic. A skillful detailed history taking, a cooperative patient, a careful reading of labels, and an interested allergist are needed for suspecting hidden FA and for planning an appropriate evaluation and verification of the offending allergen and, ultimately, optimal relief for the patient.
Collapse
Affiliation(s)
- Sami L. Bahna
- From the Allergy and Immunology Section, Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
15
|
Kleinstäuber M, Colgan S, Petrie KJ. Trust in the approval process of medicines mediates the effect of an educational intervention on the pain relief induced by a generic analgesic. Res Social Adm Pharm 2023:S1551-7411(23)00237-1. [PMID: 37142475 DOI: 10.1016/j.sapharm.2023.04.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Generic medicines have been associated with less efficacy compared to originator products. Educational videos explaining generic medicines can have a positive effect on perceptions of generic drugs and their pain-relieving effect. The central aim of the current study was to examine whether trust in the governmental approval process of medicines mediates the effect of educational video interventions on the pain-relieving effect induced by a generic medicine and whether trust can be built by improving individuals' understanding of generic medication. METHODS This is a secondary analysis of a randomized controlled trial where participants with frequent tension headaches were randomly assigned to either watching a video explaining generic drugs (n = 69) or a video informing about headaches (control group: n = 34). After watching the video, participants took an originator and a generic pain analgesic in a randomized order to treat their next two consecutive headaches. Pain severity was measured before and 1 h after taking the medicine. RESULTS A multiple serial mediator model showed that improving individuals' understanding of generic medicines is associated with increased trust in medicines. Both factors together, understanding and trust, significantly mediated the effect of the video education about generic drugs on the generic's pain-relieving effect (total indirect effect: coefficient: 0.20, 95% CI: 0.42, -0.0001). CONCLUSION Results of this study show that improving individuals' understanding of generic medication and trust in the process of approving medicines should be considered as important mechanisms of future educational interventions about generic medicines.
Collapse
Affiliation(s)
- Maria Kleinstäuber
- Department of Psychology, Emma Eccles Jones College of Education and Human Services, Utah State University, Logan, USA.
| | - Sarah Colgan
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1142, New Zealand.
| | - Keith J Petrie
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
16
|
Pharmacokinetic modulation of substrate drugs via the inhibition of drug-metabolizing enzymes and transporters using pharmaceutical excipients. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Robinson LB, Ruffner MA. Proton Pump Inhibitors in Allergy: Benefits and Risks. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3117-3123. [PMID: 36162802 PMCID: PMC9923889 DOI: 10.1016/j.jaip.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Proton pump inhibitors (PPIs) are widely prescribed and are indicated for the treatment of several gastrointestinal disorders. Allergists may prescribe PPIs as a result of the coincidence of gastroesophageal reflux disease with asthma or rhinitis, or when gastroesophageal reflux disease presents as chronic cough. Furthermore, long-term, high-dose PPI therapy is a recommended option for managing eosinophilic esophagitis, resulting in histologic remission in approximately 40% of patients. Here, we discuss current recommendations for PPI use, its deescalation, and its side effect profile. We review evidence supporting the epidemiologic link between the use of acid-suppressant medication and the subsequent development of allergic disorders.
Collapse
Affiliation(s)
| | - Melanie A Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa.
| |
Collapse
|
18
|
Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J, Khan DA, Golden DBK, Shaker M, Stukus DR, Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J. Drug allergy: A 2022 practice parameter update. J Allergy Clin Immunol 2022; 150:1333-1393. [PMID: 36122788 DOI: 10.1016/j.jaci.2022.08.028] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Affiliation(s)
- David A Khan
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Aleena Banerji
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Kimberly G Blumenthal
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Roland Solensky
- Corvallis Clinic, Oregon State University/Oregon Health Science University College of Pharmacy, Corvallis, Ore
| | - Andrew A White
- Department of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Derek K Chu
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - David B K Golden
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Matthew J Greenhawt
- Food Challenge and Research Unit Section of Allergy and Immunology, Children's Hospital Colorado University of Colorado School of Medicine, Aurora, Colo
| | - Caroline C Horner
- Department of Pediatrics, Division of Allergy Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Dennis Ledford
- Division of Allergy and Immunology, Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Fla; James A. Haley Veterans Affairs Hospital, Tampa, Fla
| | - Jay A Lieberman
- Division of Allergy and Immunology, The University of Tennessee Health Science Center, Memphis, Tenn
| | - John Oppenheimer
- Division of Allergy, Rutgers New Jersey Medical School, Rutgers, NJ
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, Ariz
| | - Marcus S Shaker
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - David R Stukus
- Division of Allergy and Immunology, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University College of Medicine, Columbus, Ohio
| | - Dana Wallace
- Nova Southeastern Allopathic Medical School, Fort Lauderdale, Fla
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen S, Li T, Yang L, Zhai F, Jiang X, Xiang R, Ling G. Artificial intelligence-driven prediction of multiple drug interactions. Brief Bioinform 2022; 23:6720429. [PMID: 36168896 DOI: 10.1093/bib/bbac427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
When a drug is administered to exert its efficacy, it will encounter multiple barriers and go through multiple interactions. Predicting the drug-related multiple interactions is critical for drug development and safety monitoring because it provides foundations for practical, safe compatibility and rational use of multiple drugs. With the progress of artificial intelligence (AI) technology, a variety of novel prediction methods for single interaction have emerged and shown great advantages compared to the traditional, expensive and time-consuming laboratory research. To promote the comprehensive and simultaneous predictions of multiple interactions, we systematically reviewed the application of AI in drug-drug, drug-food (excipients) and drug-microbiome interactions. We began by outlining the model methods, evaluation indicators, algorithms and databases commonly used to build models for three types of drug interactions. The models based on the metabolic enzyme P450, drug similarity and drug targets have empathized among the machine learning models of drug-drug interactions. In particular, we discussed the limitations of current approaches and identified potential areas for future research. It is anticipated the in-depth review will be helpful for the development of the next-generation of systematic prediction models for simultaneous multiple interactions.
Collapse
Affiliation(s)
- Siqi Chen
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tiancheng Li
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Luna Yang
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Fei Zhai
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiwei Jiang
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Rongwu Xiang
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.,Liaoning Medical Big Data and Artificial Intelligence Engineering Technology Research Center, Shenyang 110016, China
| | - Guixia Ling
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
20
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
21
|
Narlesky MR, Palting A, Sukpraprut-Braaten S, Powell A, Strayhan R. Initiating Psychotropic Treatment in a Patient With Alpha-Gal Syndrome. Cureus 2022; 14:e28443. [PMID: 36176862 PMCID: PMC9512307 DOI: 10.7759/cureus.28443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
Alpha-gal syndrome, which is typically acquired by a tick bite, is an IgE-mediated immune response to galactose-alpha-1,3-galactose (alpha-gal), an oligosaccharide in most mammalian tissue. This report describes a 29-year-old Caucasian female with comorbid alpha-gal syndrome who presented to the inpatient psychiatric unit after an intentional overdose. Because of the patient’s alpha-gal syndrome, the treatment team worked with the hospital pharmacy to evaluate treatment options that did not contain mammalian products. After carefully reviewing the ingredients of suitable medications on formulary, the patient was started on a generic sertraline formulation that was free of mammalian derivatives. At the time of discharge, the patient reported significant symptom improvement and was free of symptoms suggesting an alpha-gal allergic reaction. This case illustrates the challenges of starting psychiatric medications in a patient with comorbid alpha-gal syndrome.
Collapse
|
22
|
Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. PLANTS 2022; 11:plants11121577. [PMID: 35736728 PMCID: PMC9227804 DOI: 10.3390/plants11121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.
Collapse
|
23
|
Zhang C, Mou M, Zhou Y, Zhang W, Lian X, Shi S, Lu M, Sun H, Li F, Wang Y, Zeng Z, Li Z, Zhang B, Qiu Y, Zhu F, Gao J. Biological activities of drug inactive ingredients. Brief Bioinform 2022; 23:6582006. [PMID: 35524477 DOI: 10.1093/bib/bbac160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
In a drug formulation (DFM), the major components by mass are not Active Pharmaceutical Ingredient (API) but rather Drug Inactive Ingredients (DIGs). DIGs can reach much higher concentrations than that achieved by API, which raises great concerns about their clinical toxicities. Therefore, the biological activities of DIG on physiologically relevant target are widely demanded by both clinical investigation and pharmaceutical industry. However, such activity data are not available in any existing pharmaceutical knowledge base, and their potentials in predicting the DIG-target interaction have not been evaluated yet. In this study, the comprehensive assessment and analysis on the biological activities of DIGs were therefore conducted. First, the largest number of DIGs and DFMs were systematically curated and confirmed based on all drugs approved by US Food and Drug Administration. Second, comprehensive activities for both DIGs and DFMs were provided for the first time to pharmaceutical community. Third, the biological targets of each DIG and formulation were fully referenced to available databases that described their pharmaceutical/biological characteristics. Finally, a variety of popular artificial intelligence techniques were used to assess the predictive potential of DIGs' activity data, which was the first evaluation on the possibility to predict DIG's activity. As the activities of DIGs are critical for current pharmaceutical studies, this work is expected to have significant implications for the future practice of drug discovery and precision medicine.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Martinez MN, Sinko B, Wu F, Flanagan T, Borbás E, Tsakalozou E, Giacomini KM. A Critical Overview of the Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption. AAPS J 2022; 24:60. [DOI: 10.1208/s12248-022-00711-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
|
25
|
Analyzing Excipient-Related Adverse Events in Antiseizure Drug Formulations. Epilepsy Res 2022; 184:106947. [DOI: 10.1016/j.eplepsyres.2022.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
|
26
|
Lee JH, Park CS, Pyo MJ, Ryang Lee A, Shin E, Yoo YS, Song WJ, Kim TB, Cho YS, Kwon HS. Intradermal testing increases the accuracy of an immediate-type cefaclor hypersensitivity diagnosis. World Allergy Organ J 2022; 15:100643. [PMID: 35432713 PMCID: PMC8983408 DOI: 10.1016/j.waojou.2022.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Hypersensitivity reactions to cefaclor have increased in accordance with its frequent use. However, only limited data are available on the diagnostic value of skin tests for these conditions, particularly intradermal tests (IDTs). Objective To evaluate the clinical usefulness of IDT compared to the ImmunoCAP test in patients with cefaclor-induced immediate-type hypersensitivity. Methods We conducted a retrospective chart review from January 2010 to June 2020 of adult subjects from 2 tertiary hospitals in Korea with a history of suspected immediate-type hypersensitivity to cefaclor, and who had undergone ImmunoCAP and IDT. Results Overall, 131 subjects diagnosed with cefaclor hypersensitivity were included in the analysis. Fifty-nine patients (59/131, 45.04%) were positive in both IDT and ImmunoCAP. Fifty-four (54/131, 41.22%) and 6 (6/131, 4.58%) subjects showed positive results only with IDT or the ImmunoCAP test, respectively. Twelve subjects (12/131, 9.16%) were negative by both tests but reacted positively in a drug provocation test. The frequency of IDT positivity was similar regardless of the severity of reactions. However, positivity of ImmunoCAP was lower in subjects with mild reactions compared to those with anaphylaxis. Regarding the diagnosis of cefaclor hypersensitivity, the overall sensitivity of IDT and ImmunoCAP was 0.863 and 0.496, respectively while the specificity was 1. The combination of IDT and ImmunoCAP further increased this sensitivity to 0.908. Conclusion IDT was more sensitive than ImmunoCAP for the diagnosis of cefaclor allergy, regardless of the severity of the hypersensitivity reaction. Therefore, we recommend a combination of IDT and ImmunoCAP for the diagnosis of cefaclor hypersensitivity.
Collapse
Affiliation(s)
- Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chan Sun Park
- Department of Allergy and Clinical Immunology, Inje University of College of Medicine, Haeundae Paik Hospital, Busan, South Korea
| | - Min Ju Pyo
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - A. Ryang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eunyong Shin
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Sang Yoo
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - You-Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Corresponding author. Hyouk-Soo Kwon, M.D., Ph.D.; Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
27
|
Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
|
28
|
Chen C, Yaari Z, Apfelbaum E, Grodzinski P, Shamay Y, Heller DA. Merging data curation and machine learning to improve nanomedicines. Adv Drug Deliv Rev 2022; 183:114172. [PMID: 35189266 PMCID: PMC9233944 DOI: 10.1016/j.addr.2022.114172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Nanomedicine design is often a trial-and-error process, and the optimization of formulations and in vivo properties requires tremendous benchwork. To expedite the nanomedicine research progress, data science is steadily gaining importance in the field of nanomedicine. Recently, efforts have explored the potential to predict nanomaterials synthesis and biological behaviors via advanced data analytics. Machine learning algorithms process large datasets to understand and predict various material properties in nanomedicine synthesis, pharmacologic parameters, and efficacy. "Big data" approaches may enable even larger advances, especially if researchers capitalize on data curation methods. However, the concomitant use of data curation processes needed to facilitate the acquisition and standardization of large, heterogeneous data sets, to support advanced data analytics methods such as machine learning has yet to be leveraged. Currently, data curation and data analytics areas of nanotechnology-focused data science, or 'nanoinformatics', have been proceeding largely independently. This review highlights the current efforts in both areas and the potential opportunities for coordination to advance the capabilities of data analytics in nanomedicine.
Collapse
Affiliation(s)
- Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elana Apfelbaum
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yosi Shamay
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Kim HI, Dopheide JA. Changing Manufacturer to Address Neutropenia Induced by Non-Clozapine Second Generation Antipsychotics. J Am Pharm Assoc (2003) 2022; 62:1441-1445. [DOI: 10.1016/j.japh.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
30
|
Mi X, Shukla D. Predicting the Activities of Drug Excipients on Biological Targets using One-Shot Learning. J Phys Chem B 2022; 126:1492-1503. [PMID: 35142529 DOI: 10.1021/acs.jpcb.1c10574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excipients are major components of drugs and are used to improve drug attributes such as stability and appearance. Excipients approved by the U.S. Food and Drug Administration (FDA) are regarded as safe for humans in allowed concentrations, but their potential interactions with drug targets have not been investigated systematically, which might influence a drug's efficacy. Deep learning models have been used for the identification of ligands that could bind to the drug targets. However, due to the limited available data, it is challenging to reliably estimate the likelihood of a ligand-protein interaction. One-shot learning techniques provide a potential approach to address this low data problem as these techniques require only one or a few examples to classify the new data. In this study, we apply one-shot learning models to data sets that include ligands binding to G-protein-coupled receptors (GPCRs) and kinases. The predicted results suggest that one-shot learning could be used for predicting ligand-protein interactions, and the models attain better performance when protein targets contain conserved binding pockets. The trained models are also used to predict interactions between excipients and drug targets, which provides a potential efficient strategy to explore the activities of drug excipients. We find that a large number of drug excipients could interact with biological targets and influence their function. The results demonstrate how one-shot learning can be used to make accurate predictions for excipient-protein interactions, and these methods could be used for selecting excipients with limited drug-protein interactions.
Collapse
Affiliation(s)
- Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Evaluation of Medication Package Inserts in Ethiopia. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:8299218. [PMID: 35096074 PMCID: PMC8791750 DOI: 10.1155/2022/8299218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022]
Abstract
Background Patients require accurate and reliable information to help them use their medications safely and effectively. Inadequate patient knowledge may contribute to medication nonadherence which could negatively affect treatment outcomes. The purpose of this study was to evaluate the presentation and completeness of medication package inserts (MPIs) which are available in the Ethiopian market. Methods A cross-sectional document review was performed in February and March of 2019. All MPIs which were authorized by EFDA to sell in the Ethiopian market and available during the data collection period were considered. Results The mean overall completeness score of 200 MPIs was 18.39 ± 4.30. Of the 200 MPIs, only 20% were from domestic pharmaceutical companies. Antimicrobials represented 24% of the total MPIs. Topical preparations, cardiovascular drugs, gastrointestinal drugs, and nonsteroidal anti-inflammatory drugs, accounted for 12.5%,12.5%, 11%, and 9% of the MPIs, respectively. The majority of the MPIs presented information about the drug's use during pregnancy and lactation, 77.0% and 74.0%, respectively. However, only half of the MPIs, 49.5%, gave information about special warnings and precautions. Only a few of the MPIs provided information about instructions to convert tablets or capsules into liquid forms and the possibility of tablet splitting, 4.8% and 8.7%, respectively. Furthermore, only 1.0% had local language translation. Conclusion The MPIs available in Ethiopia provide inadequate information including about the safety of drug products and local language translation. Regulatory authorities should implement stringent regulations to ensure the provision of vital information which extends beyond checking the mere presence of an MPI. They should also act to the possible standardization of MPIs.
Collapse
|
32
|
Jadoon T, Ahsin A, Ullah F, Mahmood T, Ayub K. Adsorption mechanism of p- aminophenol over silver-graphene composite: A first principles study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021; 178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care. In this review, we discuss AM as an innovative tool for drug product design. We provide a brief overview of the different AM processes and their respective impact on the design of drug delivery systems. We highlight several enabling features of AM, including unconventional release, customization, and miniaturization, and discuss several applications of AM for the fabrication of drug products. This includes products that have been approved or are in development. As the field matures, there are also several new challenges to broad implementation in the pharmaceutical landscape. We discuss several of these from the regulatory and industrial perspectives and provide an outlook for how these issues may be addressed. The introduction of AM into the field of drug delivery is an enabling technology and many new drug products can be created through productive collaboration of engineers, materials scientists, pharmaceutical scientists, and industrial partners.
Collapse
|
34
|
Real-world Evidence for Adherence and Persistence with Atorvastatin Therapy. Cardiol Ther 2021; 10:445-464. [PMID: 34586613 PMCID: PMC8555050 DOI: 10.1007/s40119-021-00240-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Atorvastatin, which has been approved by regulatory agencies for primary- and secondary-prevention patients with dyslipidemia, has historically been the most commonly prescribed statin and is now widely available in generic formulations. Despite widespread statin usage, many patients fail to attain recommended (LDL-C) targets. While several factors impact the successful treatment of dyslipidemia, suboptimal patient adherence is a major limiting factor to medication effectiveness. In this narrative review we sought to investigate patient adherence and persistence with atorvastatin in a real-world setting and to identify barriers to LDL-C goal attainment and therapy outcomes beyond the realm of clinical trials. Moreover, in light of growing generic usage, we carried out targeted literature searches to investigate the impact of generic atorvastatin availability on patient adherence/persistence, and on lipid and efficacy outcomes, compared with branded formulations. Unsurprisingly, real-world data suggest that patient adherence/persistence to atorvastatin is suboptimal, but few studies have attempted to address factors impacting adherence. Data from studies comparing adherence/persistence in patients prescribed branded or generic atorvastatin are limited and show no clear evidence that initiation of a specific preparation of atorvastatin impacts adherence/persistence. Furthermore, results from studies comparing adherence/persistence of patients who switched from the branded to the generic drug are conflicting, although they do suggest that switching may negatively impact adherence over the long term. Additional real-world studies are clearly required to understand potential differences in adherence and persistence between patients initiating treatment with branded versus generic atorvastatin and, moreover, the factors that influence adherence. Targeted education initiatives and additional research are needed to understand and improve patient adherence in a real-world setting.
Collapse
|
35
|
Blaesi AH, Saka N. The role of excipient molecular weight in drug release by fibrous dosage forms with close packing and high drug loading. Int J Pharm 2021; 606:120009. [PMID: 33246051 DOI: 10.1016/j.ijpharm.2020.120009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
In this work, the role of excipient molecular weight in drug release by close-packed, highly drug-loaded fibrous dosage forms is investigated. Three dosage forms with 87 wt% ibuprofen drug, and 13 wt% hydroxypropyl methylcellulose (HPMC) excipient of molecular weights 10, 26, and 86 kg/mol were prepared by wet 3D-patterning and drying. Upon immersion in a dissolution fluid, the dosage form with 10 kg/mol excipient fragmented and dissolved within 10 minutes. The dosage form with 26 kg/mol excipient fragmented slower, and dissolved in 60 minutes. The dosage form with 86 kg/mol excipient, however, did not fragment at all. Instead, a thick, highly viscous mass was formed that eroded slowly, in 500 minutes. Theoretical models suggest that the dissolution fluid rapidly percolates the inter-fiber void space, and a capillary pressure develops in the pores of the fibers. The fluid then diffuses into the fiber walls, and they transition to a viscous suspension. If the molecular weight of the excipient is small (~10 kg/mol), the viscosity is low and the suspension fragments and dissolves rapidly. If the molecular weight is moderate (~30 kg/mol), the fragmentation and dissolution rates are slower. If the molecular weight is large (~100 kg/mol), a thick, highly viscous mass is formed from which drug release is very slow. Thus, by appropriate choice of the molecular weight of the excipient, a wide range of drug release rates by close-packed, highly drug-loaded fibrous dosage forms can be realized.
Collapse
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Aron H. Blaesi, CH-7078 Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism towards Personalized Medicine. Pharmaceutics 2021; 13:1261. [PMID: 34452222 PMCID: PMC8399842 DOI: 10.3390/pharmaceutics13081261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffectiveness, is critical to patients' outcomes. However, many orally administered therapeutic drugs are susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which contributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug bioavailability. These drug carriers are designed to target different intestinal regions, including (1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4 bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed from clinical practice due to serious drug-drug interactions, but also provide alternative approaches to reduce pharmacokinetic variability.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Ken Dong
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | - Zhigao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China;
| | - Ruimin Miao
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Weijia Lu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| |
Collapse
|
37
|
Taneja V, Taneja I, Mihali AB, Pawar R. Excipient Hypersensitivity Masquerading as Multidrug Allergy. Am J Med 2021; 134:e447-e448. [PMID: 33811872 DOI: 10.1016/j.amjmed.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Vikas Taneja
- Section of Hospital Medicine, Beth Israel Deaconess Medical Center, Boston, Mass.
| | - Isha Taneja
- Tufts University School of Medicine, Boston, Mass
| | | | - Rahul Pawar
- Section of Hospital Medicine, Beth Israel Deaconess Medical Center, Boston, Mass
| |
Collapse
|
38
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
39
|
Caballero ML, Krantz MS, Quirce S, Phillips EJ, Stone CA. Hidden Dangers: Recognizing Excipients as Potential Causes of Drug and Vaccine Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:2968-2982. [PMID: 33737254 PMCID: PMC8355062 DOI: 10.1016/j.jaip.2021.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Excipients are necessary as a support to the active ingredients in drugs, vaccines, and other products, and they contribute to their stability, preservation, pharmacokinetics, bioavailability, appearance, and acceptability. For both drugs and vaccines, these are rare reactions; however, for vaccines, they are the primary cause of immediate hypersensitivity. Suspicion for these "hidden dangers" should be high, in particular, when anaphylaxis has occurred in association with multiple chemically distinct drugs. Common excipients implicated include gelatin, carboxymethylcellulose, polyethylene glycols, and products related to polyethylene glycols in immediate hypersensitivity reactions and propylene glycol in delayed hypersensitivity reactions. Complete evaluation of a suspected excipient reaction requires detailed information from the product monograph and package insert to identify all ingredients that are present and to understand the function and structure for these chemicals. This knowledge helps develop a management plan that may include allergy testing to identify the implicated component and to give patients detailed information for future avoidance of relevant foods, drugs, and vaccines. Excipient reactions should be particularly considered for specific classes of drugs where they have been commonly found to be the culprit (eg, corticosteroids, injectable hormones, immunotherapies, monoclonal antibodies, and vaccines). We provide a review of the evidence-based literature outlining epidemiology and mechanisms of excipient reactions and provide strategies for heightened recognition and allergy testing.
Collapse
Affiliation(s)
| | - Matthew S Krantz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elizabeth J Phillips
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, Tenn; Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Cosby A Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
40
|
Cumulative Risks of Excipients in Pediatric Phytomucolytic Syrups: The Implications for Pharmacy Practice. Sci Pharm 2021. [DOI: 10.3390/scipharm89030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expectorant phytomucolytic syrups are widely used pediatric OTC-medicines. Physicians, pediatricians, and pharmacists are traditionally concerned with the efficacy of the active ingredients in cough syrups, and rarely consider the safety aspects of excipients that however are not absolutely “inactive” and are proved to initiate some negative reactions and interactions with other drugs. This paper presents a review, categorization, and comparative analysis of the safety profile of excipients contained in the 22 best-selling OTC pediatric phytomucolytic syrups available in pharmaceutical markets in Ukraine and Germany and proposes an approach to the consideration of the excipients’ safety risks for a pharmacist in the process of pharmaceutical care. The study has revealed that only one of the twenty-two analyzed syrups does not contain any potentially harmful excipients. The results of this analysis were used for developing a specific decision tool for pharmacists that can be used for minimizing excipient-initiated reactions when delivering OTC phytomucolytic syrups for children.
Collapse
|
41
|
Chen LH, Doyle PS. Design and Use of a Thermogelling Methylcellulose Nanoemulsion to Formulate Nanocrystalline Oral Dosage Forms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008618. [PMID: 34096099 DOI: 10.1002/adma.202008618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Oral drug products have become indispensable in modern medicine because of their exceptional patient compliance. However, poor bioavailability of ubiquitous low-water-soluble active pharmaceutical ingredients (APIs) and lack of efficient oral drug formulations remain as significant challenges. Nanocrystalline formulations are an attractive route to increase API solubility, but typically require abrasive mechanical milling and several processing steps to create an oral dosage form. Using the dual amphiphilic and thermoresponsive properties of methylcellulose (MC), a new thermogelling nanoemulsion and a facile thermal dripping method are developed for efficient formulation of composite particles with the MC matrix embedded with precisely controlled API nanocrystals. Moreover, a fast and tunable release performance is achieved with the combination of a fast-eroding MC matrix and fast-dissolving API nanocrystals. Using the versatile thermal processing approach, the thermogelling nanoemulsion is easily formulated into a wide variety of dosage forms (nanoparticle suspension, drug tablet, and oral thin film) in a manner that avoids nanomilling. Overall, the proposed thermogelling nanoemulsion platform not only broadens the applications of thermoresponsive nanoemulsions but also shows great promise for more efficient formulation of oral drug products with high quality and tunable fast release.
Collapse
Affiliation(s)
- Liang-Hsun Chen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| |
Collapse
|
42
|
Reker D, Rybakova Y, Kirtane AR, Cao R, Yang JW, Navamajiti N, Gardner A, Zhang RM, Esfandiary T, L'Heureux J, von Erlach T, Smekalova EM, Leboeuf D, Hess K, Lopes A, Rogner J, Collins J, Tamang SM, Ishida K, Chamberlain P, Yun D, Lytton-Jean A, Soule CK, Cheah JH, Hayward AM, Langer R, Traverso G. Computationally guided high-throughput design of self-assembling drug nanoparticles. NATURE NANOTECHNOLOGY 2021; 16:725-733. [PMID: 33767382 PMCID: PMC8197729 DOI: 10.1038/s41565-021-00870-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/28/2021] [Indexed: 05/22/2023]
Abstract
Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.
Collapse
Affiliation(s)
- Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yulia Rybakova
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ameya R Kirtane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruonan Cao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Engineering Science, University of Toronto, Toronto, Ontario, Canada
| | - Jee Won Yang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Natsuda Navamajiti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Apolonia Gardner
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rosanna M Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tina Esfandiary
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johanna L'Heureux
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas von Erlach
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena M Smekalova
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaimie Rogner
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joy Collins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Siddartha M Tamang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keiko Ishida
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul Chamberlain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - DongSoo Yun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison M Hayward
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Reker D, Shi Y, Kirtane AR, Hess K, Zhong GJ, Crane E, Lin CH, Langer R, Traverso G. Machine Learning Uncovers Food- and Excipient-Drug Interactions. Cell Rep 2021; 30:3710-3716.e4. [PMID: 32187543 PMCID: PMC7179333 DOI: 10.1016/j.celrep.2020.02.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food-and excipient-drug interactions and functional drug formulation development. Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food-or excipient-drug interactions.
Collapse
Affiliation(s)
- Daniel Reker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yunhua Shi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ameya R Kirtane
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Hess
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace J Zhong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan Crane
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chih-Hsin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Bruusgaard-Mouritsen MA, Mortz C, Winther L, Garvey LH. Repeated idiopathic anaphylaxis caused by povidone. Ann Allergy Asthma Immunol 2021; 126:598-600. [PMID: 33545346 DOI: 10.1016/j.anai.2021.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Affiliation(s)
| | - Charlotte Mortz
- Odense Research Centre for Anaphylaxis (ORCA), Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Lone Winther
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | - Lene Heise Garvey
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
DeRidder L, Sharma A, Liaw K, Sharma R, John J, Kannan S, Kannan RM. Dendrimer-tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. NANOSCALE 2021; 13:939-952. [PMID: 33479718 DOI: 10.1039/d0nr05958g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Switching microglia from a disease exacerbating, 'pro-inflammatory' state into a neuroprotective, 'anti-inflammatory' phenotype is a promising strategy for addressing multiple neurodegenerative diseases. Pro-inflammatory microglia contribute to disease progression by releasing neurotoxic substances and accelerating pathogenic protein accumulation. PPARα and PPARγ agonists have both been shown to shift microglia from a pro-inflammatory ('M1-like') to an alternatively activated ('M2-like') phenotype. Such strategies have been explored in clinical trials for neurological diseases, such as Alzheimer's and Parkinson's disease, but have likely failed due to their poor blood-brain barrier (BBB) penetration. Hydroxyl-terminated polyamidoamine dendrimers (without the attachment of any targeting ligands) have been shown to cross the impaired BBB at the site of neuroinflammation and accumulate in activated microglia. Therefore, dendrimer conjugation of a PPARα/γ dual agonist may enable targeted phenotype switching of activated microglia. Here we present the synthesis and characterization of a novel dendrimer-PPARα/γ dual agonist conjugate (D-tesaglitazar). In vitro, D-tesaglitazar induces an 'M1 to M2' phenotype shift, decreases secretion of reactive oxygen species, increases expression of genes for phagocytosis and enzymatic degradation of pathogenic proteins (e.g. β-amyloid, α-synuclein), and increases β-amyloid phagocytosis. These results support further development of D-tesaglitazar towards translation for multiple neurodegenerative diseases, especially Alzheimer's and Parkinson's Disease.
Collapse
Affiliation(s)
- Louis DeRidder
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - John John
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, 21218, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA and Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Schlauersbach J, Hanio S, Lenz B, Vemulapalli SPB, Griesinger C, Pöppler AC, Harlacher C, Galli B, Meinel L. Leveraging bile solubilization of poorly water-soluble drugs by rational polymer selection. J Control Release 2020; 330:36-48. [PMID: 33333120 DOI: 10.1016/j.jconrel.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Poorly water-soluble drugs frequently solubilize into bile colloids and this natural mechanism is key for efficient bioavailability. We tested the impact of pharmaceutical polymers on this solubilization interplay using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and by assessing the flux across model membranes. Eudragit E, Soluplus, and a therapeutically used model polymer, Colesevelam, impacted the bile-colloidal geometry and molecular interaction. These polymer-induced changes reduced the flux of poorly water-soluble and bile interacting drugs (Perphenazine, Imatinib) but did not impact the flux of bile non-interacting Metoprolol. Non-bile interacting polymers (Kollidon VA 64, HPMC-AS) neither impacted the flux of colloid-interacting nor colloid-non-interacting drugs. These insights into the drug substance/polymer/bile colloid interplay potentially point towards a practical optimization parameter steering formulations to efficient bile-solubilization by rational polymer selection.
Collapse
Affiliation(s)
- Jonas Schlauersbach
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Bettina Lenz
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, DE-37077 Goetingen, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | - Bruno Galli
- Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany; Helmholtz Institute for RNA-based Infection Biology (HIRI), DE-97070 Wuerzburg, Germany.
| |
Collapse
|
47
|
Reker D, Blum SM, Wade P, Steiger C, Traverso G. Historical Evolution and Provider Awareness of Inactive Ingredients in Oral Medications. Pharm Res 2020; 37:234. [PMID: 33123783 PMCID: PMC8212167 DOI: 10.1007/s11095-020-02953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE A multitude of different versions of the same medication with different inactive ingredients are currently available. It has not been quantified how this has evolved historically. Furthermore, it is unknown whether healthcare professionals consider the inactive ingredient portion when prescribing medications to patients. METHODS We used data mining to track the number of available formulations for the same medication over time and correlate the number of available versions in 2019 to the number of manufacturers, the years since first approval, and the number of prescriptions. A focused survey among healthcare professionals was conducted to query their consideration of the inactive ingredient portion of a medication when writing prescriptions. RESULTS The number of available versions of a single medication have dramatically increased in the last 40 years. The number of available, different versions of medications are largely determined by the number of manufacturers producing this medication. Healthcare providers commonly do not consider the inactive ingredient portion when prescribing a medication. CONCLUSIONS A multitude of available versions of the same medications provides a potentially under-recognized opportunity to prescribe the most suitable formulation to a patient as a step towards personalized medicine and mitigate potential adverse events from inactive ingredients.
Collapse
Affiliation(s)
- Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Biomedical Engineering , Duke University , Durham, North Carolina, 27708, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
- MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Steven M Blum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Peter Wade
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Christoph Steiger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
- MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
- MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
48
|
Murthee KG, Varese N, Hew M, O'Hehir RE, Zubrinich C. Novel basophil activation test in the diagnosis of povidone anaphylaxis. Ann Allergy Asthma Immunol 2020; 126:98-99. [PMID: 32911058 DOI: 10.1016/j.anai.2020.08.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Kavitha Garuna Murthee
- Allergy, Asthma, and Clinical Immunology Service, Alfred Health, Melbourne, Victoria, Australia; Department of Internal Medicine, Singapore General Hospital, Singapore
| | - Nirupama Varese
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia; Department of Immunology and Pathology Central Clinical School Monash University, Melbourne, Victoria, Australia
| | - Mark Hew
- Allergy, Asthma, and Clinical Immunology Service, Alfred Health, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia; School of Public health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Robyn E O'Hehir
- Allergy, Asthma, and Clinical Immunology Service, Alfred Health, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Celia Zubrinich
- Allergy, Asthma, and Clinical Immunology Service, Alfred Health, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia; School of Public health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Mai Y, Ashiru-Oredope DA, Yao Z, Dou L, Madla CM, Taherali F, Murdan S, Basit AW. Boosting drug bioavailability in men but not women through the action of an excipient. Int J Pharm 2020; 587:119678. [DOI: 10.1016/j.ijpharm.2020.119678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
|
50
|
Abstract
The commercial marketplace has seen a rapid increase in the number of over-the-counter charcoal-containing mouthwashes. The purpose of this systemic review was to examine the clinical and laboratory evidence supporting therapeutic claims of efficacy and safety of use of charcoal-based mouthwashes. Secondly, the product labels and information of 36 commercially marketed charcoal mouthwashes were reviewed for active ingredients. Only 8% of charcoal mouthwashes contained an active ingredient, such as cetylpyridinium chloride or chlorhexidine. There is insufficient evidence to substantiate the therapeutic and cosmetic marketing claims of charcoal-based mouthwashes, including antimicrobial activity, anti-halitosis, tooth whitening, periodontal disease control, caries reduction and tooth remineralisation, among others. Moreover, there is no available information on charcoal particulate size or abrasivity of any of these products. Dental clinicians should advise their patients to exercise caution when using over-the-counter charcoal-containing mouthwashes because of the lack of evidence supporting therapeutic or cosmetic effectiveness as well as safety.
Collapse
|