1
|
Buthut M, Starke G, Akmazoglu TB, Colucci A, Vermehren M, van Beinum A, Bublitz C, Chandler J, Ienca M, Soekadar SR. HYBRIDMINDS-summary and outlook of the 2023 international conference on the ethics and regulation of intelligent neuroprostheses. Front Hum Neurosci 2024; 18:1489307. [PMID: 39483192 PMCID: PMC11524843 DOI: 10.3389/fnhum.2024.1489307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Neurotechnology and Artificial Intelligence (AI) have developed rapidly in recent years with an increasing number of applications and AI-enabled devices that are about to enter the market. While promising to substantially improve quality of life across various severe medical conditions, there are also concerns that the convergence of these technologies, e.g., in the form of intelligent neuroprostheses, may have undesirable consequences and compromise cognitive liberty, mental integrity, or mental privacy. Therefore, various international organizations, such as the Organization for Economic Cooperation and Development (OECD) or United Nations Educational, Scientific and Cultural Organization (UNESCO), have formed initiatives to tackle such questions and develop recommendations that mitigate risks while fostering innovation. In this context, a first international conference on the ethics and regulation of intelligent neuroprostheses was held in Berlin, Germany, in autumn 2023. The conference gathered leading experts in neuroscience, engineering, ethics, law, philosophy as well as representatives of industry, policy making and the media. Here, we summarize the highlights of the conference, underline the areas in which a broad consensus was found among participants, and provide an outlook on future challenges in development, deployment, and regulation of intelligent neuroprostheses.
Collapse
Affiliation(s)
- Maria Buthut
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Starke
- Faculty of Medicine, Institute for History and Ethics of Medicine, Technical University of Munich, Munich, Germany
- École Polytechnique Fédérale de Lausanne, College of Humanities, Lausanne, Switzerland
| | | | - Annalisa Colucci
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Vermehren
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Marcello Ienca
- Faculty of Medicine, Institute for History and Ethics of Medicine, Technical University of Munich, Munich, Germany
- École Polytechnique Fédérale de Lausanne, College of Humanities, Lausanne, Switzerland
| | - Surjo R. Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
3
|
Ding K, Rakhshan M, Paredes-Acuña N, Cheng G, Thakor NV. Sensory integration for neuroprostheses: from functional benefits to neural correlates. Med Biol Eng Comput 2024; 62:2939-2960. [PMID: 38760597 DOI: 10.1007/s11517-024-03118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
In the field of sensory neuroprostheses, one ultimate goal is for individuals to perceive artificial somatosensory information and use the prosthesis with high complexity that resembles an intact system. To this end, research has shown that stimulation-elicited somatosensory information improves prosthesis perception and task performance. While studies strive to achieve sensory integration, a crucial phenomenon that entails naturalistic interaction with the environment, this topic has not been commensurately reviewed. Therefore, here we present a perspective for understanding sensory integration in neuroprostheses. First, we review the engineering aspects and functional outcomes in sensory neuroprosthesis studies. In this context, we summarize studies that have suggested sensory integration. We focus on how they have used stimulation-elicited percepts to maximize and improve the reliability of somatosensory information. Next, we review studies that have suggested multisensory integration. These works have demonstrated that congruent and simultaneous multisensory inputs provided cognitive benefits such that an individual experiences a greater sense of authority over prosthesis movements (i.e., agency) and perceives the prosthesis as part of their own (i.e., ownership). Thereafter, we present the theoretical and neuroscience framework of sensory integration. We investigate how behavioral models and neural recordings have been applied in the context of sensory integration. Sensory integration models developed from intact-limb individuals have led the way to sensory neuroprosthesis studies to demonstrate multisensory integration. Neural recordings have been used to show how multisensory inputs are processed across cortical areas. Lastly, we discuss some ongoing research and challenges in achieving and understanding sensory integration in sensory neuroprostheses. Resolving these challenges would help to develop future strategies to improve the sensory feedback of a neuroprosthetic system.
Collapse
Affiliation(s)
- Keqin Ding
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Mohsen Rakhshan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32816, USA
- Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, FL, 32816, USA
| | - Natalia Paredes-Acuña
- Institute for Cognitive Systems, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Gordon Cheng
- Institute for Cognitive Systems, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Navarro P, Barrera M, Olmo A, Torres Y. Electrical impedance characterization and modelling of Ti-Β implants. J Biomed Mater Res A 2024. [PMID: 39277842 DOI: 10.1002/jbm.a.37797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Commercially pure titanium (c.p. Ti) and Ti6Al4V alloys are the most widely used metallic biomaterials in the biomedical sector. However, their high rigidity and the controversial toxicity of their alloying elements often compromise their clinical success. The use of porous β-Titanium alloys is proposed as a solution to these issues. In this regard, it is necessary to implement economic, repetitive, and non-destructive measurement techniques that allow for the semi-quantitative evaluation of the chemical nature of the implant, its microstructural characteristics, and/or surface changes. This study proposes the use of simple measurement protocols based on electrical impedance measurements, correlating them with the porosity inherent to processing conditions (pressure and temperature), as well as the chemical composition of the implant. Results revealed a clear direct relationship between porosity and electrical impedance. The percentage and/or size of the porosity decrease with an increase in compaction pressure and temperature. Moreover, there is a notable influence of the frequency used in the measurements obtained. Additionally, the sensitivity of this measurement technique has enabled the evaluation of differences in chemical composition and the detection of intermetallics in the implants. For the first time in the literature, this research establishes relationships between stiffness and electrical impedance, using approximations and models for the observed trends. All the results obtained corroborate the appropriateness of the technique to achieve the real-time characterization of Titanium implants, in an efficient and non-invasive way.
Collapse
Affiliation(s)
- Paula Navarro
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain
| | - Miguel Barrera
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain
| | - Alberto Olmo
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain
- Instituto de Microelectrónica de Sevilla, IMSE-CNM-CSIC, Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Pitkin M, Park H, Frossard L, Klishko AN, Prilutsky BI. Transforming the Anthropomorphic Passive Free-Flow Foot Prosthesis Into a Powered Foot Prosthesis With Intuitive Control and Sensation (Bionic FFF). Mil Med 2024; 189:439-447. [PMID: 39160882 DOI: 10.1093/milmed/usae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Approximately 89% of all service members with amputations do not return to duty. Restoring intuitive neural control with somatosensory sensation is a key to improving the safety and efficacy of prosthetic locomotion. However, natural somatosensory feedback from lower-limb prostheses has not yet been incorporated into any commercial prostheses. MATERIALS AND METHODS We developed a neuroprosthesis with intuitive bidirectional control and somatosensation and evoking phase-dependent locomotor reflexes, we aspire to significantly improve the prosthetic rehabilitation and long-term functional outcomes of U.S. amputees. We implanted the skin and bone integrated pylon with peripheral neural interface pylon into the cat distal tibia, electromyographic electrodes into the residual gastrocnemius muscle, and nerve cuff electrodes on the distal tibial and sciatic nerves. Results. The bidirectional neural interface that was developed was integrated into the existing passive Free-Flow Foot and Ankle prosthesis, WillowWood, Mount Sterling, OH. The Free-Flow Foot was chosen because it had the highest Index of Anthropomorphicity among lower-limb prostheses and was the first anthropomorphic prosthesis brought to market. Conclusion. The cats walked on a treadmill with no cutaneous feedback from the foot in the control condition and with their residual distal tibial nerve stimulated during the stance phase of walking.
Collapse
Affiliation(s)
- Mark Pitkin
- Poly-Orth International, Sharon, MA 02067, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Hangue Park
- Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Intelligent Prevision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, South Korea
| | - Laurent Frossard
- Griffith University, Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Southport, QLD 4215, Australia
- YourResearchProject Ptd Ltd, Brisbane, QLD 4065, Australia
| | - Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Nanivadekar AC, Bose R, Petersen BA, Okorokova EV, Sarma D, Madonna TJ, Barra B, Farooqui J, Dalrymple AN, Levy I, Helm ER, Miele VJ, Boninger ML, Capogrosso M, Bensmaia SJ, Weber DJ, Fisher LE. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation. Nat Biomed Eng 2024; 8:992-1003. [PMID: 38097809 PMCID: PMC11404213 DOI: 10.1038/s41551-023-01153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.
Collapse
Affiliation(s)
- Ameya C Nanivadekar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Rohit Bose
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Bailey A Petersen
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Elizaveta V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Devapratim Sarma
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tyler J Madonna
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatrice Barra
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Juhi Farooqui
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Ashley N Dalrymple
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Isaiah Levy
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric R Helm
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent J Miele
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Douglas J Weber
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Ortiz-Catalan M. Thermally sentient bionic limbs. Nat Biomed Eng 2024; 8:938-940. [PMID: 38216669 DOI: 10.1038/s41551-023-01174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Affiliation(s)
- Max Ortiz-Catalan
- The Bionics Institute, Melbourne, Victoria, Australia.
- Department of Bionic Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Manero A, Rivera V, Fu Q, Schwartzman JD, Prock-Gibbs H, Shah N, Gandhi D, White E, Crawford KE, Coathup MJ. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering (Basel) 2024; 11:695. [PMID: 39061777 PMCID: PMC11274085 DOI: 10.3390/bioengineering11070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
| | - Viviana Rivera
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
| | - Qiushi Fu
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan D. Schwartzman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Hannah Prock-Gibbs
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Neel Shah
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Deep Gandhi
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Evan White
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Kaitlyn E. Crawford
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| |
Collapse
|
9
|
Song H, Hsieh TH, Yeon SH, Shu T, Nawrot M, Landis CF, Friedman GN, Israel EA, Gutierrez-Arango S, Carty MJ, Freed LE, Herr HM. Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nat Med 2024; 30:2010-2019. [PMID: 38951635 PMCID: PMC11271427 DOI: 10.1038/s41591-024-02994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/11/2024] [Indexed: 07/03/2024]
Abstract
For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented. To test this hypothesis, we present a neuroprosthetic interface consisting of surgically connected, agonist-antagonist muscles including muscle-sensing electrodes. In a cohort of seven leg amputees, the interface is shown to augment residual muscle afferents by 18% of biologically intact values. Compared with a matched amputee cohort without the afferent augmentation, the maximum neuroprosthetic walking speed is increased by 41%, enabling equivalent peak speeds to persons without leg amputation. Further, this level of afferent augmentation enables biomimetic adaptation to various walking speeds and real-world environments, including slopes, stairs and obstructed pathways. Our results suggest that even a small augmentation of residual muscle afferents restores biomimetic gait under continuous neuromodulation in individuals with leg amputation.
Collapse
Affiliation(s)
- Hyungeun Song
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tsung-Han Hsieh
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seong Ho Yeon
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tony Shu
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Nawrot
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christian F Landis
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel N Friedman
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erica A Israel
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha Gutierrez-Arango
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew J Carty
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Lisa E Freed
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh M Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Manz S, Schmalz T, Ernst M, Köhler TM, Gonzalez-Vargas J, Dosen S. Using mobile eye tracking to measure cognitive load through gaze behavior during walking in lower limb prosthesis users: A preliminary assessment. Clin Biomech (Bristol, Avon) 2024; 115:106250. [PMID: 38657356 DOI: 10.1016/j.clinbiomech.2024.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Lower limb amputation does not affect only physical and psychological functioning but the use of a prosthetic device can also lead to increased cognitive demands. Measuring cognitive load objectively is challenging, and therefore, most studies use questionnaires that are easy to apply but can suffer from subjective bias. Motivated by this, the present study investigated whether a mobile eye tracker can be used to objectively measure cognitive load by monitoring gaze behavior during a set of motor tasks. METHODS Five prosthetic users and eight able-bodied controls participated in this study. Eye tracking data and kinematics were recorded during a set of motor tasks (level ground walking, walking on uneven terrain, obstacle avoidance, stairs up and ramp down, as well as ramp up and stairs down) while the participants were asked to focus their gaze on a visual target for as long as possible. Target fixation times and increase in pupil diameters were determined and correlated to subjective ratings of cognitive load. FINDINGS Overall, target fixation time and pupil diameter showed strong negative and positive correlations, respectively, to the subjective rating of cognitive load in the able-bodied controls (-0.75 and 0.80, respectively). However, the individual correlation strength, and in some cases, even the sign, was different across participants. A similar trend could be observed in prosthetic users. INTERPRETATION The results of this study showed that a mobile eye tracker may be used to estimate cognitive load in prosthesis users during locomotor tasks. This paves the way to establish a new approach to assessing cognitive load, which is objective and yet practical and simple to administer. Nevertheless, future studies should corroborate these results by comparing them to other objective measures as well as focus on translating the proposed approach outside of a laboratory.
Collapse
Affiliation(s)
- Sabina Manz
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Ottobock SE & Co. KGaA, Global Research, Duderstadt, Germany
| | - Thomas Schmalz
- Ottobock SE & Co. KGaA, Clinical Research & Services, Research Biomechanics, Göttingen, Germany
| | - Michael Ernst
- Ottobock SE & Co. KGaA, Clinical Research & Services, Research Biomechanics, Göttingen, Germany
| | | | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
11
|
Ghiami Rad A, Shahbazi B. A systematic investigation of sensorimotor mechanisms with intelligent prostheses in patients with ankle amputation while walking. J Mech Behav Biomed Mater 2024; 151:106357. [PMID: 38181570 DOI: 10.1016/j.jmbbm.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
It is thought that creating sensorimotor feedback in people with ankle joint amputation can affect motor biomechanics during gait, but there is little evidence or previous research. This study e aim ed to investigate the sensorimotor mechanism of smart prostheses in with ankle amputations while walking. Search in Google Scholar, Scopus, PubMed and Medline databases between April 2017 and February 2023, in addition to a detailed review in specialized clinical and engineering databases, 29 articles were selected based on the inclusion and exclusion criteria. Trials that mainly include; Proprioception, walking process in movement disorders, ankle amputation were included. Qualitative assessments of selected trials using PEDro' scale was used. The review of studies showed that the use of pressure sensors, neural stimulation through encoded algorithms can provide continuous tactile and positional information of the artificial leg in the direction of neural stimulation throughout the entire walking cycle. These findings indicate that restoration of intraneuronal sensory feedback leads to functional and cognitive benefits. With these definitions, different companies and research centers are trying to improve the mechanics of walking, however, movement strategies are unknown despite little research in creating sense and movement in the use of smart prostheses.
Collapse
Affiliation(s)
- Amir Ghiami Rad
- Movement Biomechanics, Department of Movement Behavior, Faculty of Sports Sciences, University Of Tabriz, Tabriz, Iran.
| | - Behnam Shahbazi
- Movement Biomechanics, Department of Sports Biomechanics, Faculty of Sports Sciences, Bu- Ali Sina University, Hamadan, Iran.
| |
Collapse
|
12
|
Katic Secerovic N, Balaguer JM, Gorskii O, Pavlova N, Liang L, Ho J, Grigsby E, Gerszten PC, Karal-Ogly D, Bulgin D, Orlov S, Pirondini E, Musienko P, Raspopovic S, Capogrosso M. Neural population dynamics reveals disruption of spinal circuits' responses to proprioceptive input during electrical stimulation of sensory afferents. Cell Rep 2024; 43:113695. [PMID: 38245870 PMCID: PMC10962447 DOI: 10.1016/j.celrep.2024.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by, the intervention. Here, we approach this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs. We recorded intraspinal neural activity in four monkeys while generating proprioceptive inputs from the radial nerve. We then applied continuous stimulation to the radial nerve cutaneous branch and quantified the impact of the stimulation on spinal processing of proprioceptive inputs via neural population dynamics. Proprioceptive pulses consistently produce neural trajectories that are disrupted by concurrent cutaneous stimulation. This disruption propagates to the somatosensory cortex, suggesting that electrical stimulation can perturb natural information processing across the neural axis.
Collapse
Affiliation(s)
- Natalija Katic Secerovic
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia; The Mihajlo Pupin Institute, University of Belgrade, 11060 Belgrade, Serbia; Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; National University of Science and Technology "MISIS," 4 Leninskiy Pr., 119049 Moscow, Russia
| | - Natalia Pavlova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dzhina Karal-Ogly
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Dmitry Bulgin
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergei Orlov
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia; Life Improvement by Future Technologies Center "LIFT," 143025 Moscow, Russia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland.
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
13
|
Valle G, Katic Secerovic N, Eggemann D, Gorskii O, Pavlova N, Petrini FM, Cvancara P, Stieglitz T, Musienko P, Bumbasirevic M, Raspopovic S. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun 2024; 15:1151. [PMID: 38378671 PMCID: PMC10879152 DOI: 10.1038/s41467-024-45190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Artificial communication with the brain through peripheral nerve stimulation shows promising results in individuals with sensorimotor deficits. However, these efforts lack an intuitive and natural sensory experience. In this study, we design and test a biomimetic neurostimulation framework inspired by nature, capable of "writing" physiologically plausible information back into the peripheral nervous system. Starting from an in-silico model of mechanoreceptors, we develop biomimetic stimulation policies. We then experimentally assess them alongside mechanical touch and common linear neuromodulations. Neural responses resulting from biomimetic neuromodulation are consistently transmitted towards dorsal root ganglion and spinal cord of cats, and their spatio-temporal neural dynamics resemble those naturally induced. We implement these paradigms within the bionic device and test it with patients (ClinicalTrials.gov identifier NCT03350061). He we report that biomimetic neurostimulation improves mobility (primary outcome) and reduces mental effort (secondary outcome) compared to traditional approaches. The outcomes of this neuroscience-driven technology, inspired by the human body, may serve as a model for advancing assistive neurotechnologies.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Natalija Katic Secerovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- School of Electrical Engineering, University of Belgrade, 11000, Belgrade, Serbia
- The Mihajlo Pupin Institute, University of Belgrade, 11000, Belgrade, Serbia
| | - Dominic Eggemann
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Oleg Gorskii
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Neuromodulation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", 119049, Moscow, Russia
| | - Natalia Pavlova
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - Paul Cvancara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Pavel Musienko
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Sirius University of Science and Technology, Neuroscience Program, Sirius, Russia
- Laboratory for Neurorehabilitation Technologies, Life Improvement by Future Technologies Center "LIFT", Moscow, Russia
| | - Marko Bumbasirevic
- Orthopaedic Surgery Department, School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Schlafly M, Prabhakar A, Popovic K, Schlafly G, Kim C, Murphey TD. Collaborative robots can augment human cognition in regret-sensitive tasks. PNAS NEXUS 2024; 3:pgae016. [PMID: 38725525 PMCID: PMC11079486 DOI: 10.1093/pnasnexus/pgae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/02/2024] [Indexed: 05/12/2024]
Abstract
Despite theoretical benefits of collaborative robots, disappointing outcomes are well documented by clinical studies, spanning rehabilitation, prostheses, and surgery. Cognitive load theory provides a possible explanation for why humans in the real world are not realizing the benefits of collaborative robots: high cognitive loads may be impeding human performance. Measuring cognitive availability using an electrocardiogram, we ask 25 participants to complete a virtual-reality task alongside an invisible agent that determines optimal performance by iteratively updating the Bellman equation. Three robots assist by providing environmental information relevant to task performance. By enabling the robots to act more autonomously-managing more of their own behavior with fewer instructions from the human-here we show that robots can augment participants' cognitive availability and decision-making. The way in which robots describe and achieve their objective can improve the human's cognitive ability to reason about the task and contribute to human-robot collaboration outcomes. Augmenting human cognition provides a path to improve the efficacy of collaborative robots. By demonstrating how robots can improve human cognition, this work paves the way for improving the cognitive capabilities of first responders, manufacturing workers, surgeons, and other future users of collaborative autonomy systems.
Collapse
Affiliation(s)
- Millicent Schlafly
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ahalya Prabhakar
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Katarina Popovic
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Geneva Schlafly
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Christopher Kim
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Todd D Murphey
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Taghlabi KM, Cruz-Garza JG, Hassan T, Potnis O, Bhenderu LS, Guerrero JR, Whitehead RE, Wu Y, Luan L, Xie C, Robinson JT, Faraji AH. Clinical outcomes of peripheral nerve interfaces for rehabilitation in paralysis and amputation: a literature review. J Neural Eng 2024; 21:011001. [PMID: 38237175 DOI: 10.1088/1741-2552/ad200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Peripheral nerve interfaces (PNIs) are electrical systems designed to integrate with peripheral nerves in patients, such as following central nervous system (CNS) injuries to augment or replace CNS control and restore function. We review the literature for clinical trials and studies containing clinical outcome measures to explore the utility of human applications of PNIs. We discuss the various types of electrodes currently used for PNI systems and their functionalities and limitations. We discuss important design characteristics of PNI systems, including biocompatibility, resolution and specificity, efficacy, and longevity, to highlight their importance in the current and future development of PNIs. The clinical outcomes of PNI systems are also discussed. Finally, we review relevant PNI clinical trials that were conducted, up to the present date, to restore the sensory and motor function of upper or lower limbs in amputees, spinal cord injury patients, or intact individuals and describe their significant findings. This review highlights the current progress in the field of PNIs and serves as a foundation for future development and application of PNI systems.
Collapse
Affiliation(s)
- Khaled M Taghlabi
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Jesus G Cruz-Garza
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Taimur Hassan
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Ojas Potnis
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, United States of America
| | - Lokeshwar S Bhenderu
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Jaime R Guerrero
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Rachael E Whitehead
- Department of Academic Affairs, Houston Methodist Academic Institute, Houston, TX 77030, United States of America
| | - Yu Wu
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Lan Luan
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Chong Xie
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
16
|
Cho Y, Jeong HH, Shin H, Pak CJ, Cho J, Kim Y, Kim D, Kim T, Kim H, Kim S, Kwon S, Hong JP, Suh HP, Lee S. Hybrid Bionic Nerve Interface for Application in Bionic Limbs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303728. [PMID: 37840396 PMCID: PMC10724394 DOI: 10.1002/advs.202303728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Intuitive and perceptual neuroprosthetic systems require a high degree of neural control and a variety of sensory feedback, but reliable neural interfaces for long-term use that maintain their functionality are limited. Here, a novel hybrid bionic interface is presented, fabricated by integrating a biological interface (regenerative peripheral nerve interface (RPNI)) and a peripheral neural interface to enhance the neural interface performance between a nerve and bionic limbs. This interface utilizes a shape memory polymer buckle that can be easily implanted on a severed nerve and make contact with both the nerve and the muscle graft after RPNI formation. It is demonstrated that this interface can simultaneously record different signal information via the RPNI and the nerve, as well as stimulate them separately, inducing different responses. Furthermore, it is shown that this interface can record naturally evoked signals from a walking rabbit and use them to control a robotic leg. The long-term functionality and biocompatibility of this interface in rabbits are evaluated for up to 29 weeks, confirming its promising potential for enhancing prosthetic control.
Collapse
Affiliation(s)
- Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Hyung Hwa Jeong
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Heejae Shin
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Changsik John Pak
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Jeongmok Cho
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Yongwoo Kim
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Donggeon Kim
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Taehyeon Kim
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Hoijun Kim
- Graduate School of Smart ConvergenceKwangwoon UniversitySeoul01897South Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Soonchul Kwon
- Graduate School of Smart ConvergenceKwangwoon UniversitySeoul01897South Korea
| | - Joon Pio Hong
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Hyunsuk Peter Suh
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| |
Collapse
|
17
|
Kim D, Triolo R, Charkhkar H. Plantar somatosensory restoration enhances gait, speed perception, and motor adaptation. Sci Robot 2023; 8:eadf8997. [PMID: 37820003 DOI: 10.1126/scirobotics.adf8997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Lower limb loss is a major insult to the body's nervous and musculoskeletal systems. Despite technological advances in prosthesis design, artificial limbs are not yet integrated into the body's physiological systems. Therefore, lower limb amputees (LLAs) experience lower balance confidence, higher fear of falls, and impaired gait compared with their able-bodied peers (ABs). Previous studies have demonstrated that restored sensations perceived as originating directly from the missing limb via neural interfaces improve balance and performance in certain ambulatory tasks; however, the effects of such evoked sensations on neural circuitries involved in the locomotor activity are not well understood. In this work, we investigated the effects of plantar sensation elicited by peripheral nerve stimulation delivered by multicontact nerve cuff electrodes on gait symmetry and stability, speed perception, and motor adaptation. We found that restored plantar sensation increased stance time and propulsive force on the prosthetic side, improved gait symmetry, and yielded an enhanced perception of prosthetic limb movement. Our results show that the locomotor adaptation among LLAs with plantar sensation became similar to that of ABs. These findings suggest that our peripheral nerve-based approach to elicit plantar sensation directly affects central nervous pathways involved in locomotion and motor adaptation during walking. Our neuroprosthesis provided a unique model to investigate the role of somatosensation in the lower limb during walking and its effects on perceptual recalibration after a locomotor adaptation task. Furthermore, we demonstrated how plantar sensation in LLAs could effectively increase mobility, improve walking dynamics, and possibly reduce fall risks.
Collapse
Affiliation(s)
- Daekyoo Kim
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
- Department of Physical Education, Korea University, Seoul 02841, Korea
| | - Ronald Triolo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Borda L, Gozzi N, Preatoni G, Valle G, Raspopovic S. Automated calibration of somatosensory stimulation using reinforcement learning. J Neuroeng Rehabil 2023; 20:131. [PMID: 37752607 PMCID: PMC10523674 DOI: 10.1186/s12984-023-01246-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The identification of the electrical stimulation parameters for neuromodulation is a subject-specific and time-consuming procedure that presently mostly relies on the expertise of the user (e.g., clinician, experimenter, bioengineer). Since the parameters of stimulation change over time (due to displacement of electrodes, skin status, etc.), patients undergo recurrent, long calibration sessions, along with visits to the clinics, which are inefficient and expensive. To address this issue, we developed an automatized calibration system based on reinforcement learning (RL) allowing for accurate and efficient identification of the peripheral nerve stimulation parameters for somatosensory neuroprostheses. METHODS We developed an RL algorithm to automatically select neurostimulation parameters for restoring sensory feedback with transcutaneous electrical nerve stimulation (TENS). First, the algorithm was trained offline on a dataset comprising 49 subjects. Then, the neurostimulation was then integrated with a graphical user interface (GUI) to create an intuitive AI-based mapping platform enabling the user to autonomously perform the sensation characterization procedure. We assessed the algorithm against the performance of both experienced and naïve and of a brute force algorithm (BFA), on 15 nerves from five subjects. Then, we validated the AI-based platform on six neuropathic nerves affected by distal sensory loss. RESULTS Our automatized approach demonstrated the ability to find the optimal values of neurostimulation achieving reliable and comfortable elicited sensations. When compared to alternatives, RL outperformed the naïve and BFA, significantly decreasing the time for mapping and the number of delivered stimulation trains, while improving the overall quality. Furthermore, the RL algorithm showed performance comparable to trained experimenters. Finally, we exploited it successfully for eliciting sensory feedback in neuropathic patients. CONCLUSIONS Our findings demonstrated that the AI-based platform based on a RL algorithm can automatically and efficiently calibrate parameters for somatosensory nerve stimulation. This holds promise to avoid experts' employment in similar scenarios, thanks to the merging between AI and neurotech. Our RL algorithm has the potential to be used in other neuromodulation fields requiring a mapping process of the stimulation parameters. TRIAL REGISTRATION ClinicalTrial.gov (Identifier: NCT04217005).
Collapse
Affiliation(s)
- Luigi Borda
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland.
| |
Collapse
|
19
|
Eftekari SC, Sears L, Moura SP, Garelick S, Donnelly DT, Shaffrey EC, Dingle AM. A framework for understanding prosthetic embodiment for the plastic surgeon. J Plast Reconstr Aesthet Surg 2023; 84:469-486. [PMID: 37418846 DOI: 10.1016/j.bjps.2023.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Plastic surgeons play a critical role in the management of amputations and are uniquely positioned to improve the lives and functional abilities of patients with limb loss. The embodiment of a prosthesis describes how effectively it replaces a missing limb and is an important aspect of patient care. Despite its importance, the current prosthetics literature lacks a formal definition of embodiment, and descriptions are often vague or incomplete. In this narrative review, we assess the current literature on prosthetic embodiment to explore the main mechanisms of embodiment and how each allows a prosthesis to interface with the human body. In doing so, we provide a comprehensive, holistic framework for understanding this concept.
Collapse
Affiliation(s)
- Sahand C Eftekari
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lucas Sears
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Steven P Moura
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sydney Garelick
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - D'Andrea T Donnelly
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ellen C Shaffrey
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
20
|
Lanfranco RC, Chancel M, Ehrsson HH. Quantifying body ownership information processing and perceptual bias in the rubber hand illusion. Cognition 2023; 238:105491. [PMID: 37178590 DOI: 10.1016/j.cognition.2023.105491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Bodily illusions have fascinated humankind for centuries, and researchers have studied them to learn about the perceptual and neural processes that underpin multisensory channels of bodily awareness. The influential rubber hand illusion (RHI) has been used to study changes in the sense of body ownership - that is, how a limb is perceived to belong to one's body, which is a fundamental building block in many theories of bodily awareness, self-consciousness, embodiment, and self-representation. However, the methods used to quantify perceptual changes in bodily illusions, including the RHI, have mainly relied on subjective questionnaires and rating scales, and the degree to which such illusory sensations depend on sensory information processing has been difficult to test directly. Here, we introduce a signal detection theory (SDT) framework to study the sense of body ownership in the RHI. We provide evidence that the illusion is associated with changes in body ownership sensitivity that depend on the information carried in the degree of asynchrony of correlated visual and tactile signals, as well as with perceptual bias and sensitivity that reflect the distance between the rubber hand and the participant's body. We found that the illusion's sensitivity to asynchrony is remarkably precise; even a 50 ms visuotactile delay significantly affected body ownership information processing. Our findings conclusively link changes in a complex bodily experience such as body ownership to basic sensory information processing and provide a proof of concept that SDT can be used to study bodily illusions.
Collapse
Affiliation(s)
- Renzo C Lanfranco
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Chancel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Psychology and Neurocognition Lab, Université Grenoble-Alpes, Grenoble, France
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Valette R, Gonzalez-Vargas J, Dosen S. The impact of walking on the perception of multichannel electrotactile stimulation in individuals with lower-limb amputation and able-bodied participants. J Neuroeng Rehabil 2023; 20:108. [PMID: 37592336 PMCID: PMC10436512 DOI: 10.1186/s12984-023-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND One of the drawbacks of lower-limb prostheses is that they do not provide explicit somatosensory feedback to their users. Electrotactile stimulation is an attractive technology to restore such feedback because it enables compact solutions with multiple stimulation points. This allows stimulating a larger skin area to provide more information concurrently and modulate parameters spatially as well as in amplitude. However, for effective use, electrotactile stimulation needs to be calibrated and it would be convenient to perform this procedure while the subject is seated. However, amplitude and spatial perception can be affected by motion and/or physical coupling between the residual limb and the socket. In the present study, we therefore evaluated and compared the psychometric properties of multichannel electrotactile stimulation applied to the thigh/residual limb during sitting versus walking. METHODS The comprehensive assessment included the measurement of the sensation and discomfort thresholds (ST & DT), just noticeable difference (JND), number of distinct intervals (NDI), two-point discrimination threshold (2PD), and spatial discrimination performance (SD). The experiment involved 11 able-bodied participants (4 females and 7 males; 29.2 ± 3.8 years), 3 participants with transtibial amputation, and 3 participants with transfemoral amputation. RESULTS In able-bodied participants, the results were consistent for all the measured parameters, and they indicated that both amplitude and spatial perception became worse during walking. More specifically, ST and DT increased significantly during walking vs. sitting (2.90 ± 0.82 mA vs. 2.00 ± 0.52 mA; p < 0.001 for ST and 7.74 ± 0.84 mA vs. 7.21 ± 1.30 mA; p < 0.05 for DT) and likewise for the JND (22.47 ± 12.21% vs. 11.82 ± 5.07%; p < 0.01), while the NDI became lower (6.46 ± 3.47 vs. 11.27 ± 5.18 intervals; p < 0.01). Regarding spatial perception, 2PD was higher during walking (69.78 ± 17.66 mm vs. 57.85 ± 14.87 mm; p < 0.001), while the performance of SD was significantly lower (56.70 ± 10.02% vs. 64.55 ± 9.44%; p < 0.01). For participants with lower-limb amputation, the ST, DT, and performance in the SD assessment followed the trends observed in the able-bodied population. The results for 2PD and JND were however different and subject-specific. CONCLUSION The conducted evaluation demonstrates that electrotactile feedback should be calibrated in the conditions in which it will be used (e.g., during walking). The calibration during sitting, while more convenient, might lead to an overly optimistic (or in some cases pessimistic) estimate of sensitivity. In addition, the results underline that calibration is particularly important in people affected by lower-limb loss to capture the substantial variability in the conditions of the residual limb and prosthesis setup. These insights are important for the implementation of artificial sensory feedback in lower-limb prosthetics applications.
Collapse
Affiliation(s)
- Romain Valette
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
22
|
Mancioppi G, Rovini E, Fiorini L, Zeghari R, Gros A, Manera V, Robert P, Cavallo F. Mild cognitive impairment identification based on motor and cognitive dual-task pooled indices. PLoS One 2023; 18:e0287380. [PMID: 37531347 PMCID: PMC10395992 DOI: 10.1371/journal.pone.0287380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVE This study investigates the possibility of adopting motor and cognitive dual-task (MCDT) approaches to identify subjects with mild cognitive impairment (MCI) and subjective cognitive impairment (SCI). METHODS The upper and lower motor performances of 44 older adults were assessed using the SensHand and SensFoot wearable system during three MCDTs: forefinger tapping (FTAP), toe-tapping heel pin (TTHP), and walking 10 m (GAIT). We developed five pooled indices (PIs) based on these MCDTs, and we included them, along with demographic data (age) and clinical scores (Frontal Assessment Battery (FAB) scores), in five logistic regression models. RESULTS Models which consider cognitively normal adult (CNA) vs MCI subjects have accuracies that range from 67% to 78%. The addition of clinical scores stabilised the accuracies, which ranged from 85% to 89%. For models which consider CNA vs SCI vs MCI subjects, there are great benefits to considering all three regressors (age, FAB score, and PIs); the overall accuracies of the three-class models range between 50% and 59% when just PIs and age are considered, whereas the overall accuracy increases by 18% when all three regressors are utilised. CONCLUSION Logistic regression models that consider MCDT PIs and age have been effective in distinguishing between CNA and MCI subjects. The inclusion of clinical scores increased the models' accuracy. Particularly high performances in distinguishing among CNA, SCI, and MCI subjects were obtained by the TTHP PI. This study suggests that a broader framework for MCDTs, which should encompass a greater selection of motor tasks, could provide clinicians with new appropriate tools.
Collapse
Affiliation(s)
- Gianmaria Mancioppi
- The Department of Industrial Engineering, University of Florence, Florence, Italy
| | - Erika Rovini
- The Department of Industrial Engineering, University of Florence, Florence, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Laura Fiorini
- The Department of Industrial Engineering, University of Florence, Florence, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Radia Zeghari
- The CoBTeK, Université Côte d'Azur (UCA), Nice, France
- Nice University Hospital, Public Health Department, Côte d'Azur University, Nice, France
| | - Auriane Gros
- The CoBTeK, Université Côte d'Azur (UCA), Nice, France
- Association Innovation Alzheimer, Nice, France
- Department of Speech Therapy (Departement d'Orthophonie, DON), Université Côte d'Azur, Nice, France
- Centre Hospitalier Universitaire de Nice, Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Mémoire Ressources et Recherche, Université Côte d'Azur, Nice, France
| | - Valeria Manera
- The CoBTeK, Université Côte d'Azur (UCA), Nice, France
- Association Innovation Alzheimer, Nice, France
- Department of Speech Therapy (Departement d'Orthophonie, DON), Université Côte d'Azur, Nice, France
| | - Philippe Robert
- The CoBTeK, Université Côte d'Azur (UCA), Nice, France
- Association Innovation Alzheimer, Nice, France
- Centre Hospitalier Universitaire de Nice, Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Mémoire Ressources et Recherche, Université Côte d'Azur, Nice, France
| | - Filippo Cavallo
- The Department of Industrial Engineering, University of Florence, Florence, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| |
Collapse
|
23
|
Sun H, He C, Vujaklija I. Design trends in actuated lower-limb prosthetic systems: a narrative review. Expert Rev Med Devices 2023; 20:1157-1172. [PMID: 37925668 DOI: 10.1080/17434440.2023.2279999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Actuated lower limb prostheses, including powered (active) and semi-active (quasi-passive) joints, are endowed with controllable power and/or impedance, which can be advantageous to limb impairment individuals by improving locomotion mechanics and reducing the overall metabolic cost of ambulation. However, an increasing number of commercial and research-focused options have made navigating this field a daunting task for users, researchers, clinicians, and professionals. AREAS COVERED The present paper provides an overview of the latest trends and developments in the field of actuated lower-limb prostheses and corresponding technologies. Following a gentle summary of essential gait features, we introduce and compare various actuated prosthetic solutions in academia and the market designed to provide assistance at different levels of impairments. Correspondingly, we offer insights into the latest developments of sockets and suspension systems, before finally discussing the established and emerging trends in surgical approaches aimed at improving prosthetic experience through enhanced physical and neural interfaces. EXPERT OPINION The ongoing challenges and future research opportunities in the field are summarized for exploring potential avenues for development of next generation of actuated lower limb prostheses. In our opinions, a closer multidisciplinary integration can be found in the field of actuated lower-limb prostheses in the future.
Collapse
Affiliation(s)
- Haoran Sun
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, P.R. China
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Chaoming He
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, P.R. China
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
24
|
Ciotti F, Cimolato A, Valle G, Raspopovic S. Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization. PLoS Comput Biol 2023; 19:e1011184. [PMID: 37228174 DOI: 10.1371/journal.pcbi.1011184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Peripheral nerve stimulation is being investigated as a therapeutic tool in several clinical scenarios. However, the adopted devices have restricted ability to obtain desired outcomes with tolerable off-target effects. Recent promising solutions are not yet employed in clinical practice due to complex required surgeries, lack of long-term stability, and implant invasiveness. Here, we aimed to design a neural interface to address these issues, specifically dimensioned for pudendal and sacral nerves to potentially target sexual, bladder, or bowel dysfunctions. We designed the adaptable intrafascicular radial electrode (AIR) through realistic computational models. They account for detailed human anatomy, inhomogeneous anisotropic conductance, following the trajectories of axons along curving and branching fascicles, and detailed biophysics of axons. The model was validated against available experimental data. Thanks to computationally efficient geometry-based selectivity estimations we informed the electrode design, optimizing its dimensions to obtain the highest selectivity while maintaining low invasiveness. We then compared the AIR with state-of-the-art electrodes, namely InterStim leads, multipolar cuffs and transversal intrafascicular multichannel electrodes (TIME). AIR, comprising a flexible substrate, surface active sites, and radially inserted intrafascicular needles, is designed to be implanted in a few standard steps, potentially enabling fast implants. It holds potential for repeatable stimulation outcomes thanks to its radial structural symmetry. When compared in-silico, AIR consistently outperformed cuff electrodes and InterStim leads in terms of recruitment threshold and stimulation selectivity. AIR performed similarly or better than a TIME, with quantified less invasiveness. Finally, we showed how AIR can adapt to different nerve sizes and varying shapes while maintaining high selectivity. The AIR electrode shows the potential to fill a clinical need for an effective peripheral nerve interface. Its high predicted performance in all the identified requirements was enabled by a model-based approach, readily applicable for the optimization of electrode parameters in any peripheral nerve stimulation scenario.
Collapse
Affiliation(s)
- Federico Ciotti
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Andrea Cimolato
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Giacomo Valle
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Stanisa Raspopovic
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Prasanna S, D'Abbraccio J, Filosa M, Ferraro D, Cesini I, Spigler G, Aliperta A, Dell'Agnello F, Davalli A, Gruppioni E, Crea S, Vitiello N, Mazzoni A, Oddo CM. Uneven Terrain Recognition Using Neuromorphic Haptic Feedback. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094521. [PMID: 37177725 PMCID: PMC10181691 DOI: 10.3390/s23094521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.
Collapse
Affiliation(s)
- Sahana Prasanna
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Jessica D'Abbraccio
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Mariangela Filosa
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Davide Ferraro
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Ilaria Cesini
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Giacomo Spigler
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Andrea Aliperta
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Filippo Dell'Agnello
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Angelo Davalli
- Centro Protesi INAIL (Italian National Institute for Insurance against Accidents at Work), 40054 Budrio, Italy
| | - Emanuele Gruppioni
- Centro Protesi INAIL (Italian National Institute for Insurance against Accidents at Work), 40054 Budrio, Italy
| | - Simona Crea
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Calogero Maria Oddo
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
26
|
Cimolato A, Ciotti F, Kljajić J, Valle G, Raspopovic S. Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience 2023; 26:106248. [PMID: 36923003 PMCID: PMC10009292 DOI: 10.1016/j.isci.2023.106248] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Peripheral nerve stimulation in amputees achieved the restoration of touch, but not proprioception, which is critical in locomotion. A plausible reason is the lack of means to artificially replicate the complex activity of proprioceptors. To uncover this, we coupled neuromuscular models from ten subjects and nerve histologies from two implanted amputees to develop ProprioStim: a framework to encode proprioception by electrical evoking neural activity in close agreement with natural proprioceptive activity. We demonstrated its feasibility through non-invasive stimulation on seven healthy subjects comparing it with standard linear charge encoding. Results showed that ProprioStim multichannel stimulation was felt more natural, and hold promises for increasing accuracy in knee angle tracking, especially in future implantable solutions. Additionally, we quantified the importance of realistic 3D-nerve models against extruded models previously adopted for further design and validation of novel neurostimulation encoding strategies. ProprioStim provides clear guidelines for the development of neurostimulation policies restoring natural proprioception.
Collapse
Affiliation(s)
- Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- Rehab Technologies Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Federico Ciotti
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Jelena Kljajić
- Institute Mihajlo Pupin, Belgrade, 11060, Serbia
- School of Electrical Engineering, University of Belgrade, Belgrade, 11120, Serbia
| | - Giacomo Valle
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
27
|
Preatoni G, Dell’Eva F, Valle G, Pedrocchi A, Raspopovic S. Reshaping the full body illusion through visuo-electro-tactile sensations. PLoS One 2023; 18:e0280628. [PMID: 36724146 PMCID: PMC9891501 DOI: 10.1371/journal.pone.0280628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/04/2023] [Indexed: 02/02/2023] Open
Abstract
The physical boundaries of our body do not define what we perceive as self. This malleable representation arises from the neural integration of sensory information coming from the environment. Manipulating the visual and haptic cues produces changes in body perception, inducing the Full Body Illusion (FBI), a vastly used approach to exploring humans' perception. After pioneering FBI demonstrations, issues arose regarding its setup, using experimenter-based touch and pre-recorded videos. Moreover, its outcome measures are based mainly on subjective reports, leading to biased results, or on heterogeneous objective ones giving poor consensus on their validity. To address these limitations, we developed and tested a multisensory platform allowing highly controlled experimental conditions, thanks to the leveraged use of innovative technologies: Virtual Reality (VR) and Transcutaneous Electrical Nerve Stimulation (TENS). This enabled a high spatial and temporal precision of the visual and haptic cues, efficiently eliciting FBI. While it matched the classic approach in subjective measures, our setup resulted also in significant results for all objective measurements. Importantly, FBI was elicited when all 4 limbs were multimodally stimulated but also in a single limb condition. Our results behoove the adoption of a comprehensive set of measures, introducing a new neuroscientific platform to investigate body representations.
Collapse
Affiliation(s)
- Greta Preatoni
- Department of Health Sciences and Technology, Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Francesca Dell’Eva
- NearLab, Department of Electronics Information and Bioengineering and We-Cobot Interdept, Lab, Politecnico di Milano, Milano, Italy
| | - Giacomo Valle
- Department of Health Sciences and Technology, Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics Information and Bioengineering and We-Cobot Interdept, Lab, Politecnico di Milano, Milano, Italy
| | - Stanisa Raspopovic
- Department of Health Sciences and Technology, Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
29
|
Kruppa C, Benner S, Brinkemper A, Aach M, Reimertz C, Schildhauer TA. [New technologies and robotics]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2023; 126:9-18. [PMID: 36515725 DOI: 10.1007/s00113-022-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The development of increasingly more complex computer and electromotor technologies enables the increasing use and expansion of robot-assisted systems in trauma surgery rehabilitation; however, the currently available devices are rarely comprehensively applied but are often used within pilot projects and studies. Different technological approaches, such as exoskeletal systems, functional electrical stimulation, soft robotics, neurorobotics and brain-machine interfaces are used and combined to read and process the communication between, e.g., residual musculature or brain waves, to transfer them to the executing device and to enable the desired execution.Currently, the greatest amount of evidence exists for the use of exoskeletal systems with different modes of action in the context of gait and stance rehabilitation in paraplegic patients; however, their use also plays a role in the rehabilitation of fractures close to the hip joint and endoprosthetic care. So-called single joint systems are also being tested in the rehabilitation of functionally impaired extremities, e.g., after knee prosthesis implantation. At this point, however, the current data situation is still too limited to be able to make a clear statement about the use of these technologies in the trauma surgery "core business" of rehabilitation after fractures and other joint injuries.For rehabilitation after limb amputation, in addition to the further development of myoelectric prostheses, the current development of "sentient" prostheses is of great interest. The use of 3D printing also plays a role in the production of individualized devices.Due to the current progress of artificial intelligence in all fields, ground-breaking further developments and widespread application possibilities in the rehabilitation of trauma patients are to be expected.
Collapse
Affiliation(s)
- Christiane Kruppa
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland.
| | - Sebastian Benner
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Alexis Brinkemper
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Mirko Aach
- Chirurgische Klinik und Poliklinik, Abteilung für Rückenmarkverletzte, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Christoph Reimertz
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Thomas A Schildhauer
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
30
|
Katic N, Siqueira RK, Cleland L, Strzalkowski N, Bent L, Raspopovic S, Saal H. Modeling foot sole cutaneous afferents: FootSim. iScience 2022; 26:105874. [PMID: 36636355 PMCID: PMC9829801 DOI: 10.1016/j.isci.2022.105874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
While walking and maintaining balance, humans rely on cutaneous feedback from the foot sole. Electrophysiological recordings reveal how this tactile feedback is represented in neural afferent populations, but obtaining them is difficult and limited to stationary conditions. We developed the FootSim model, a realistic replication of mechanoreceptor activation in the lower limb. The model simulates neural spiking responses to arbitrary mechanical stimuli from the combined population of all four types of mechanoreceptors innervating the foot sole. It considers specific mechanics of the foot sole skin tissue, and model internal parameters are fitted using human microneurography recording dataset. FootSim can be exploited for neuroscientific insights, to understand the overall afferent activation in dynamic conditions, and for overcoming the limitation of currently available recording techniques. Furthermore, neuroengineers can use the model as a robust in silico tool for neuroprosthetic applications and for designing biomimetic stimulation patterns starting from the simulated afferent neural responses.
Collapse
Affiliation(s)
- Natalija Katic
- School of Electrical Engineering, University of Belgrade, 11 000 Belgrade, Serbia
- The Mihajlo Pupin Institute, University of Belgrade, 11 060 Belgrade, Serbia
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Rodrigo Kazu Siqueira
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | - Luke Cleland
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | | | - Leah Bent
- Neurophysiology Lab, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- Corresponding author
| | - Hannes Saal
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
- Corresponding author
| |
Collapse
|
31
|
Segil JL, Roldan LM, Graczyk EL. Measuring embodiment: A review of methods for prosthetic devices. Front Neurorobot 2022; 16:902162. [PMID: 36590084 PMCID: PMC9797051 DOI: 10.3389/fnbot.2022.902162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The development of neural interfaces to provide improved control and somatosensory feedback from prosthetic limbs has initiated a new ability to probe the various dimensions of embodiment. Scientists in the field of neuroprosthetics require dependable measures of ownership, body representation, and agency to quantify the sense of embodiment felt by patients for their prosthetic limbs. These measures are critical to perform generalizable experiments and compare the utility of the new technologies being developed. Here, we review outcome measures used in the literature to evaluate the senses of ownership, body-representation, and agency. We categorize these existing measures based on the fundamental psychometric property measured and whether it is a behavioral or physiological measure. We present arguments for the efficacy and pitfalls of each measure to guide better experimental designs and future outcome measure development. The purpose of this review is to aid prosthesis researchers and technology developers in understanding the concept of embodiment and selecting metrics to assess embodiment in their research. Advances in the ability to measure the embodiment of prosthetic devices have far-reaching implications in the improvement of prosthetic limbs as well as promoting a broader understanding of ourselves as embodied agents.
Collapse
Affiliation(s)
- Jacob L. Segil
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Leah Marie Roldan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Emily L. Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
32
|
A review of user needs to drive the development of lower limb prostheses. J Neuroeng Rehabil 2022; 19:119. [PMCID: PMC9636812 DOI: 10.1186/s12984-022-01097-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract
Background
The development of bionic legs has seen substantial improvements in the past years but people with lower-limb amputation still suffer from impairments in mobility (e.g., altered balance and gait control) due to significant limitations of the contemporary prostheses. Approaching the problem from a human-centered perspective by focusing on user-specific needs can allow identifying critical improvements that can increase the quality of life. While there are several reviews of user needs regarding upper limb prostheses, a comprehensive summary of such needs for those affected by lower limb loss does not exist.
Methods
We have conducted a systematic review of the literature to extract important needs of the users of lower-limb prostheses. The review included 56 articles in which a need (desire, wish) was reported explicitly by the recruited people with lower limb amputation (N = 8149).
Results
An exhaustive list of user needs was collected and subdivided into functional, psychological, cognitive, ergonomics, and other domain. Where appropriate, we have also briefly discussed the developments in prosthetic devices that are related to or could have an impact on those needs. In summary, the users would like to lead an independent life and reintegrate into society by coming back to work and participating in social and leisure activities. Efficient, versatile, and stable gait, but also support to other activities (e.g., sit to stand), contribute to safety and confidence, while appearance and comfort are important for the body image. However, the relation between specific needs, objective measures of performance, and overall satisfaction and quality of life is still an open question.
Conclusions
Identifying user needs is a critical step for the development of new generation lower limb prostheses that aim to improve the quality of life of their users. However, this is not a simple task, as the needs interact with each other and depend on multiple factors (e.g., mobility level, age, gender), while evolving in time with the use of the device. Hence, novel assessment methods are required that can evaluate the impact of the system from a holistic perspective, capturing objective outcomes but also overall user experience and satisfaction in the relevant environment (daily life).
Collapse
|
33
|
Go GT, Lee Y, Seo DG, Lee TW. Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201864. [PMID: 35925610 DOI: 10.1002/adma.202201864] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Requirements and recent advances in research on organic neuroelectronics are outlined herein. Neuroelectronics such as neural interfaces and neuroprosthetics provide a promising approach to diagnose and treat neurological diseases. However, the current neural interfaces are rigid and not biocompatible, so they induce an immune response and deterioration of neural signal transmission. Organic materials are promising candidates for neural interfaces, due to their mechanical softness, excellent electrochemical properties, and biocompatibility. Also, organic nervetronics, which mimics functional properties of the biological nerve system, is being developed to overcome the limitations of the complex and energy-consuming conventional neuroprosthetics that limit long-term implantation and daily-life usage. Examples of organic materials for neural interfaces and neural signal recordings are reviewed, recent advances of organic nervetronics that use organic artificial synapses are highlighted, and then further requirements for neuroprosthetics are discussed. Finally, the future challenges that must be overcome to achieve ideal organic neuroelectronics for next-generation neuroprosthetics are discussed.
Collapse
Affiliation(s)
- Gyeong-Tak Go
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongjun Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
34
|
Valle G. Peripheral neurostimulation for encoding artificial somatosensations. Eur J Neurosci 2022; 56:5888-5901. [PMID: 36097134 PMCID: PMC9826263 DOI: 10.1111/ejn.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The direct neural stimulation of peripheral or central nervous systems has been shown as an effective tool to treat neurological conditions. The electrical activation of the nervous sensory pathway can be adopted to restore the artificial sense of touch and proprioception in people suffering from sensory-motor disorders. The modulation of the neural stimulation parameters has a direct effect on the electrically induced sensations, both when targeting the somatosensory cortex and the peripheral somatic nerves. The properties of the artificial sensations perceived, as their location, quality and intensity are strongly dependent on the direct modulation of pulse width, amplitude and frequency of the neural stimulation. Different sensory encoding schemes have been tested in patients showing distinct effects and outcomes according to their impact on the neural activation. Here, I reported the most adopted neural stimulation strategies to artificially encode somatosensation into the peripheral nervous system. The real-time implementation of these strategies in bionic devices is crucial to exploit the artificial sensory feedback in prosthetics. Thus, neural stimulation becomes a tool to directly communicate with the human nervous system. Given the importance of adding artificial sensory information to neuroprosthetic devices to improve their control and functionality, the choice of an optimal neural stimulation paradigm could increase the impact of prosthetic devices on the quality of life of people with sensorimotor disabilities.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and TechnologyInstitute for Robotics and Intelligent Systems, ETH ZürichZürichSwitzerland
| |
Collapse
|
35
|
Cognitive benefits of using non-invasive compared to implantable neural feedback. Sci Rep 2022; 12:16696. [PMID: 36202893 PMCID: PMC9537330 DOI: 10.1038/s41598-022-21057-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
A non-optimal prosthesis integration into an amputee’s body schema suggests some important functional and health consequences after lower limb amputation. These include low perception of a prosthesis as a part of the body, experiencing it as heavier than the natural limb, and cognitively exhausting use for users. Invasive approaches, exploiting the surgical implantation of electrodes in residual nerves, improved prosthesis integration by restoring natural and somatotopic sensory feedback in transfemoral amputees. A non-invasive alternative that avoids surgery would reduce costs and shorten certification time, significantly increasing the adoption of such systems. To explore this possibility, we compared results from a non-invasive, electro-cutaneous stimulation system to outcomes observed with the use of implants in above the knee amputees. This non-invasive solution was tested in transfemoral amputees through evaluation of their ability to perceive and recognize touch intensity and locations, or movements of a prosthesis, and its cognitive integration (through dual task performance and perceived prosthesis weight). While this managed to evoke the perception of different locations on the artificial foot, and closures of the leg, it was less performant than invasive solutions. Non-invasive stimulation induced similar improvements in dual motor and cognitive tasks compared to neural feedback. On the other hand, results demonstrate that remapped, evoked sensations are less informative and intuitive than the neural evoked somatotopic sensations. The device therefore fails to improve prosthesis embodiment together with its associated weight perception. This preliminary evaluation meaningfully highlights the drawbacks of non-invasive systems, but also demonstrates benefits when performing multiple tasks at once. Importantly, the improved dual task performance is consistent with invasive devices, taking steps towards the expedited development of a certified device for widespread use.
Collapse
|
36
|
Valle G, Aiello G, Ciotti F, Cvancara P, Martinovic T, Kravic T, Navarro X, Stieglitz T, Bumbasirevic M, Raspopovic S. Multifaceted understanding of human nerve implants to design optimized electrodes for bioelectronics. Biomaterials 2022; 291:121874. [DOI: 10.1016/j.biomaterials.2022.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
|
37
|
Kumar S, Bhowmik S. Potential use of natural fiber-reinforced polymer biocomposites in knee prostheses: a review on fair inclusion in amputees. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Risso G, Bassolino M. Assess and rehabilitate body representations via (neuro)robotics: An emergent perspective. Front Neurorobot 2022; 16:964720. [PMID: 36160286 PMCID: PMC9498221 DOI: 10.3389/fnbot.2022.964720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The perceptions of our own body (e.g., size and shape) do not always coincide with its real characteristics (e.g., dimension). To track the complexity of our perception, the concept of mental representations (model) of the body has been conceived. Body representations (BRs) are stored in the brain and are maintained and updated through multiple sensory information. Despite being altered in different clinical conditions and being tightly linked with self-consciousness, which is one of the most astonishing features of the human mind, the BRs and, especially, the underlying mechanisms and functions are still unclear. In this vein, here we suggest that (neuro)robotics can make an important contribution to the study of BRs. The first section of the study highlights the potential impact of robotics devices in investigating BRs. Far to be exhaustive, we illustrate major examples of its possible exploitation to further improve the assessment of motor, haptic, and multisensory information building up the BRs. In the second section, we review the main evidence showing the contribution of neurorobotics-based (multi)sensory stimulation in reducing BRs distortions in various clinical conditions (e.g., stroke, amputees). The present study illustrates an emergent multidisciplinary perspective combining the neuroscience of BRs and (neuro)robotics to understand and modulate the perception and experience of one's own body. We suggest that (neuro)robotics can enhance the study of BRs by improving experimental rigor and introducing new experimental conditions. Furthermore, it might pave the way for the rehabilitation of altered body perceptions.
Collapse
Affiliation(s)
- Gaia Risso
- School of Health Sciences, Haute École spécialisée de Suisse occidentale (HES-SO) Valais-Wallis, Sion, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
- Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Michela Bassolino
- School of Health Sciences, Haute École spécialisée de Suisse occidentale (HES-SO) Valais-Wallis, Sion, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
- Laboratoire MySpace, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Gonzalez M, Bismuth A, Lee C, Chestek CA, Gates DH. Artificial referred sensation in upper and lower limb prosthesis users: a systematic review. J Neural Eng 2022; 19:10.1088/1741-2552/ac8c38. [PMID: 36001115 PMCID: PMC9514130 DOI: 10.1088/1741-2552/ac8c38] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022]
Abstract
Objective.Electrical stimulation can induce sensation in the phantom limb of individuals with amputation. It is difficult to generalize existing findings as there are many approaches to delivering stimulation and to assessing the characteristics and benefits of sensation. Therefore, the goal of this systematic review was to explore the stimulation parameters that effectively elicited referred sensation, the qualities of elicited sensation, and how the utility of referred sensation was assessed.Approach.We searched PubMed, Web of Science, and Engineering Village through January of 2022 to identify relevant papers. We included papers which electrically induced referred sensation in individuals with limb loss and excluded papers that did not contain stimulation parameters or outcome measures pertaining to stimulation. We extracted information on participant demographics, stimulation approaches, and participant outcomes.Main results.After applying exclusion criteria, 49 papers were included covering nine stimulation methods. Amplitude was the most commonly adjusted parameter (n= 25), followed by frequency (n= 22), and pulse width (n= 15). Of the 63 reports of sensation quality, most reported feelings of pressure (n= 52), paresthesia (n= 48), or vibration (n= 40) while less than half (n= 29) reported a sense of position or movement. Most papers evaluated the functional benefits of sensation (n= 33) using force matching or object identification tasks, while fewer papers quantified subjective measures (n= 16) such as pain or embodiment. Only 15 studies (36%) observed percept intensity, quality, or location over multiple sessions.Significance.Most studies that measured functional performance demonstrated some benefit to providing participants with sensory feedback. However, few studies could experimentally manipulate sensation location or quality. Direct comparisons between studies were limited by variability in methodologies and outcome measures. As such, we offer recommendations to aid in more standardized reporting for future research.
Collapse
Affiliation(s)
- Michael Gonzalez
- Department of Robotics, University of Michigan, Ann Arbor, MI, United States of America
| | - Alex Bismuth
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
40
|
Chee L, Valle G, Marazzi M, Preatoni G, Haufe FL, Xiloyannis M, Riener R, Raspopovic S. Optimally-calibrated non-invasive feedback improves amputees' metabolic consumption, balance and walking confidence. J Neural Eng 2022; 19. [PMID: 35944515 DOI: 10.1088/1741-2552/ac883b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Lower-limb amputees suffer from a variety of health problems, including higher metabolic consumption and low mobility. These conditions are linked to the lack of a natural sensory feedback from their prosthetic device, which forces them to adopt compensatory walking strategies that increase fatigue. Recently, both invasive (i.e. requiring a surgery) and non-invasive approaches have been able to provide artificial sensations via neurostimulation, inducing multiple functional and cognitive benefits. Implants helped to improve patient mobility and significantly reduce their metabolic consumption. A wearable, non-invasive alterative that provides similar useful health benefits, would eliminate the surgery related risks and costs thereby increasing the accessibility and the spreading of such neurotechnologies. APPROACH Here, we present a non-invasive sensory feedback system exploiting an optimally-calibrated (JND-based) electro-cutaneous stimulation to encode intensity-modulated foot-ground and knee angle information personalized to the user's just noticeable perceptual threshold. This device was holistically evaluated in three transfemoral amputees by examination of metabolic consumption while walking outdoors, walking over different inclinations on a treadmill indoors, and balance maintenance in reaction to unexpected perturbation on a treadmill indoors. We then collected spatio-temporal parameters (i.e. gait dynamic and kinematics), and self-reported prosthesis confidence while the patients were walking with and without the sensory feedback. MAIN RESULTS This non-invasive sensory feedback system, encoding different distinctly perceived levels of tactile and knee flexion information, successfully enabled subjects to decrease metabolic consumption while walking and increase prosthesis confidence. Remarkably, more physiological walking strategies and increased stability in response to external perturbations were observed while walking with the sensory feedback. SIGNIFICANCE The health benefits observed with the use of this non-invasive device, previously only observed exploiting invasive technologies, takes an important step towards the development of a practical, non-invasive alternative to restoring sensory feedback in leg amputees.
Collapse
Affiliation(s)
- Lauren Chee
- ETH Zurich, Tannenstrasse 1, Zurich, Zürich, 8092, SWITZERLAND
| | - Giacomo Valle
- ETH Zürich, Tannenstrasse 1, TAN E2, Zurich, Zurich, 8092, SWITZERLAND
| | - Michele Marazzi
- ETH Zürich, Tannenstrasse 1, Zurich, Zurich, 8092, SWITZERLAND
| | - Greta Preatoni
- ETH Zürich, Tannenstrasse 1, TAN E2, Zurich, Zurich, 8092, SWITZERLAND
| | - Florian L Haufe
- ETH Zürich, Tannenstrasse 1, TAN E5, Zurich, Zurich, 8092, SWITZERLAND
| | | | - Robert Riener
- ETH Zürich, Tannenstrasse 1, TAN E5, Zurich, Zurich, 8092, SWITZERLAND
| | - Stanisa Raspopovic
- ETH Zürich, Tannenstrasse 1, TAN E2, Zurich, Zurich, ZH, 8092, SWITZERLAND
| |
Collapse
|
41
|
Song H, Israel EA, Gutierrez-Arango S, Teng AC, Srinivasan SS, Freed LE, Herr HM. Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation. COMMUNICATIONS MEDICINE 2022; 2:97. [PMID: 35942078 PMCID: PMC9356003 DOI: 10.1038/s43856-022-00162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Elucidating underlying mechanisms in subject-specific motor control and perception after amputation could guide development of advanced surgical and neuroprosthetic technologies. In this study, relationships between preserved agonist-antagonist muscle strain within the residual limb and preserved motor control and perception capacity are investigated. Methods Fourteen persons with unilateral transtibial amputations spanning a range of ages, etiologies, and surgical procedures underwent evaluations involving free-space mirrored motions of their lower limbs. Research has shown that varied motor control in biologically intact limbs is executed by the activation of muscle synergies. Here, we assess the naturalness of phantom joint motor control postamputation based on extracted muscle synergies and their activation profiles. Muscle synergy extraction, degree of agonist-antagonist muscle strain, and perception capacity are estimated from electromyography, ultrasonography, and goniometry, respectively. Results Here, we show significant positive correlations (P < 0.005-0.05) between sensorimotor responses and residual limb agonist-antagonist muscle strain. Identified trends indicate that preserving even 20-26% of agonist-antagonist muscle strain within the residuum compared to a biologically intact limb is effective in preserving natural motor control postamputation, though preserving limb perception capacity requires more (61%) agonist-antagonist muscle strain preservation. Conclusions The results suggest that agonist-antagonist muscle strain is a characteristic, readily ascertainable residual limb structural feature that can help explain variability in amputation outcome, and agonist-antagonist muscle strain preserving surgical amputation strategies are one way to enable more effective and biomimetic sensorimotor control postamputation.
Collapse
Affiliation(s)
- Hyungeun Song
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Erica A. Israel
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
| | | | - Ashley C. Teng
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Shriya S. Srinivasan
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Lisa E. Freed
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Hugh M. Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard Medical School, Cambridge, MA USA
| |
Collapse
|
42
|
Rodrigues KA, Moreira JVDS, Pinheiro DJLL, Dantas RLM, Santos TC, Nepomuceno JLV, Nogueira MARJ, Cavalheiro EA, Faber J. Embodiment of a virtual prosthesis through training using an EMG-based human-machine interface: Case series. Front Hum Neurosci 2022; 16:870103. [PMID: 35992955 PMCID: PMC9387771 DOI: 10.3389/fnhum.2022.870103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic strategies capable of inducing and enhancing prosthesis embodiment are a key point for better adaptation to and acceptance of prosthetic limbs. In this study, we developed a training protocol using an EMG-based human-machine interface (HMI) that was applied in the preprosthetic rehabilitation phase of people with amputation. This is a case series with the objective of evaluating the induction and enhancement of the embodiment of a virtual prosthesis. Six men and a woman with unilateral transfemoral traumatic amputation without previous use of prostheses participated in the study. Participants performed a training protocol with the EMG-based HMI, composed of six sessions held twice a week, each lasting 30 mins. This system consisted of myoelectric control of the movements of a virtual prosthesis immersed in a 3D virtual environment. Additionally, vibrotactile stimuli were provided on the participant’s back corresponding to the movements performed. Embodiment was investigated from the following set of measurements: skin conductance response (affective measurement), crossmodal congruency effect (spatial perception measurement), ability to control the virtual prosthesis (motor measurement), and reports before and after the training. The increase in the skin conductance response in conditions where the virtual prosthesis was threatened, recalibration of the peripersonal space perception identified by the crossmodal congruency effect, ability to control the virtual prosthesis, and participant reports consistently showed the induction and enhancement of virtual prosthesis embodiment. Therefore, this protocol using EMG-based HMI was shown to be a viable option to achieve and enhance the embodiment of a virtual prosthetic limb.
Collapse
Affiliation(s)
- Karina Aparecida Rodrigues
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Karina Aparecida Rodrigues,
| | - João Vitor da Silva Moreira
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Daniel José Lins Leal Pinheiro
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Lantyer Marques Dantas
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Thaís Cardoso Santos
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - João Luiz Vieira Nepomuceno
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | | | - Esper Abrão Cavalheiro
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Jean Faber
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
43
|
Mancioppi G, Fiorini L, Rovini E, Zeghari R, Gros A, Manera V, Roberr P, Cavallo F. A New Motor and Cognitive Dual-Task Approach Based on Foot Tapping for The Identification of Mild Cognitive Impairment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3231-3234. [PMID: 36086031 DOI: 10.1109/embc48229.2022.9871345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigates the adoption of innovative Motor and Cognitive Dual-Task (MCDT) based on the combination of increasing motor and cognitive tasks to discern between subjects with Mild Cognitive Impairment (MCI) and Cognitively Normal Adults (CNA). We aim to adopt new MCDT protocols and to compare their performance against the gold standard (a walking based MCDT, called GAIT). 27 older adults have been assessed through a customized wearable system during 4 MCDTs. We developed as many pooled indices (PIs), based on MCDTs perfomance, demographic data, and clinical scores. We use these parameters as regressors in 4 different logistic regression models. The regression models that encompassed features from innovative MCDT overcame the gold standard classification performance. In particular, models based on the heel tapping and the alternate heel-toe tapping reach the best outputs, namely +8% of accuracy if compared to the gold standard (a walking task). The use of logistic regression models based on MCDT PI have been effective in discerning between CNA vs MCI. Our results suggest that the gold standard MCDT may represents a too demanding exercise to highlight differences between CNA and MCI. It seems that MCDT based on an intermediate level of motor difficulty could represent the sweet spot for the identification of MCI against CNA. Clinical relevance- The combination of innovative digital devices and innovative approach on data analysis (PIs) opened a new scenarios to the early detection and prediction of dementia. Their use would standardize the assessment procedure, lightening the physician from the burden of cumbersome testing sessions. This study suggests that a broader framework for MCDT, which should encompass an ampler selection of motor tasks with different possibilities in terms of difficulties levels, could provide clinicians with a new appropriate set of tools for the early detection of dementia.
Collapse
|
44
|
Subjective Distance Estimates and Sense of Agency in Robotic Wheelchair Control. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sense of agency (SoA) refers to an individual’s awareness of their own actions. SoA studies seek to find objective indicators for the feeling of agency. These indicators, being related to the feeling of control, have practical application in vehicle design. However, they have not been investigated for actions related to the agent’s body movement inherent to steering a vehicle. In our study, participants operated a robotic wheelchair under three conditions: active control by a participant, direct control by the experimenter and remote control by the experimenter. In each trial, a participant drove the wheelchair until a sound signal occurred, after which they stopped the wheelchair and estimated the travelled distance. The subjective estimates were significantly greater when participants operated the wheelchair by themselves. This result contrasts with observations under static settings in previous studies. In an additional study on the electroencephalographic response to a sound presented at a random time after movement onset, the observed latencies in the N1 component implied that participants might have a higher sense of control when they drove the wheelchair. The proposed methodology might become useful to indirectly assess the degree of operator control of a vehicle, primarily in the field of rehabilitation technologies.
Collapse
|
45
|
Multisensory Integration in Bionics: Relevance and Perspectives. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-022-00350-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of review
The goal of the review is to highlight the growing importance of multisensory integration processes connected to bionic limbs and somatosensory feedback restoration.
Recent findings
Restoring quasi-realistic sensations by means of neurostimulation has been shown to provide functional and motor benefits in limb amputees. In the recent past, cognitive processes linked to the artificial sense of touch seemed to play a crucial role for a full prosthesis integration and acceptance.
Summary
Artificial sensory feedback implemented in bionic limbs enhances the cognitive integration of the prosthetic device in amputees. The multisensory experience can be measured and must be considered in the design of novel somatosensory neural prostheses where the goal is to provide a realistic sensory experience to the prosthetic user. The correct integration of these sensory signals will guarantee higher-level cognitive benefits as a better prosthesis embodiment and a reduction of perceived limb distortions.
Collapse
|
46
|
Multisensory stimulation decreases phantom limb distortions and is optimally integrated. iScience 2022; 25:104129. [PMID: 35391829 PMCID: PMC8980810 DOI: 10.1016/j.isci.2022.104129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/16/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
The multisensory integration of signals from different senses is crucial to develop an unambiguous percept of the environment and our body. Losing a limb causes drastic changes in the body, sometimes causing pain and distorted phantom limb perception. Despite the debate over why these phenomena arise, some researchers suggested that they might be linked to an impairment of multisensory signals inflow and integration. Therefore, reestablishing optimally integrated sensory feedback could be crucial. The related benefits on sensory performance and body self-representation are still to be demonstrated, particularly in lower-limb amputees. We present a multisensory framework combining Virtual reality and electro-cutaneous stimulation that allows the optimal integration of visuo-tactile stimuli in lower-limb amputees even if nonspatially matching. We also showed that this multisensory stimulation allowed faster sensory processing, higher embodiment, and reductions in phantom limb distortions. Our findings support the development of multisensory rehabilitation approaches, restoring a correct body representation. Multisensory platform combining virtual reality and electro-cutaneous stimulation. Leg amputees optimally integrate nonspatially matching visuo-tactile stimulation. Multisensory stimulation allows faster information processing and higher embodiment. Phantom limb distortions are reduced after multisensory stimulation.
Collapse
|
47
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
48
|
Zbinden J, Lendaro E, Ortiz-Catalan M. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. J Neuroeng Rehabil 2022; 19:37. [PMID: 35346251 PMCID: PMC8962549 DOI: 10.1186/s12984-022-01006-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
The term embodiment has become omnipresent within prosthetics research and is often used as a metric of the progress made in prosthetic technologies, as well as a hallmark for user acceptance. However, despite the frequent use of the term, the concept of prosthetic embodiment is often left undefined or described incongruently, sometimes even within the same article. This terminological ambiguity complicates the comparison of studies using embodiment as a metric of success, which in turn hinders the advancement of prosthetics research. To resolve these terminological ambiguities, we systematically reviewed the used definitions of embodiment in the prosthetics literature. We performed a thematic analysis of the definitions and found that embodiment is often conceptualized in either of two frameworks based on body representations or experimental phenomenology. We concluded that treating prosthetic embodiment within an experimental phenomenological framework as the combination of ownership and agency allows for embodiment to be a quantifiable metric for use in translational research. To provide a common reference and guidance on how to best assess ownership and agency, we conducted a second systematic review, analyzing experiments and measures involving ownership and agency. Together, we highlight a pragmatic definition of prosthetic embodiment as the combination of ownership and agency, and in an accompanying article, we provide a perspective on a multi-dimensional framework for prosthetic embodiment. Here, we concluded by providing recommendations on metrics that allow for outcome comparisons between studies, thereby creating a common reference for further discussions within prosthetics research.
Collapse
Affiliation(s)
- Jan Zbinden
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Lendaro
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Operational Area 3, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
49
|
Pasluosta C, Kiele P, Čvančara P, Micera S, Aszmann OC, Stieglitz T. Bidirectional bionic limbs: a perspective bridging technology and physiology. J Neural Eng 2022; 19. [PMID: 35132954 DOI: 10.1088/1741-2552/ac4bff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Precise control of bionic limbs relies on robust decoding of motor commands from nerves or muscles signals and sensory feedback from artificial limbs to the nervous system by interfacing the afferent nerve pathways. Implantable devices for bidirectional communication with bionic limbs have been developed in parallel with research on physiological alterations caused by an amputation. In this perspective article, we question whether increasing our effort on bridging these technologies with a deeper understanding of amputation pathophysiology and human motor control may help to overcome pressing stalls in the next generation of bionic limbs.
Collapse
Affiliation(s)
- C Pasluosta
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - P Kiele
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - P Čvančara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - S Micera
- School of Engineering, École Polytechnique Fédérale de Lausanne, Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.,The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - O C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna; Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Valle G, Iberite F, Strauss I, D'Anna E, Granata G, Di Iorio R, Stieglitz T, Raspopovic S, Petrini FM, Rossini PM, Micera S. A Psychometric Platform to Collect Somatosensory Sensations for Neuroprosthetic Use. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:619280. [PMID: 35047903 PMCID: PMC8757828 DOI: 10.3389/fmedt.2021.619280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Somatosensory neuroprostheses exploit invasive and non-invasive feedback technologies to restore sensorimotor functions lost to disease or trauma. These devices use electrical stimulation to communicate sensory information to the brain. A sensation characterization procedure is thus necessary to determine the appropriate stimulation parameters and to establish a clear personalized map of the sensations that can be restored. Several questionnaires have been described in the literature to collect the quality, type, location, and intensity of the evoked sensations, but there is still no standard psychometric platform. Here, we propose a new psychometric system containing previously validated questionnaires on evoked sensations, which can be applied to any kind of somatosensory neuroprosthesis. The platform collects stimulation parameters used to elicit sensations and records subjects' percepts in terms of sensation location, type, quality, perceptual threshold, and intensity. It further collects data using standardized assessment questionnaires and scales, performs measurements over time, and collects phantom limb pain syndrome data. The psychometric platform is user-friendly and provides clinicians with all the information needed to assess the sensory feedback. The psychometric platform was validated with three trans-radial amputees. The platform was used to assess intraneural sensory feedback provided through implanted peripheral nerve interfaces. The proposed platform could act as a new standardized assessment toolbox to homogenize the reporting of results obtained with different technologies in the field of somatosensory neuroprosthetics.
Collapse
Affiliation(s)
- Giacomo Valle
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | | | - Ivo Strauss
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Edoardo D'Anna
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Bioengineering, Lausanne, Switzerland
| | - Giuseppe Granata
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Policlinic A. Gemelli Foundation, Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Di Iorio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Policlinic A. Gemelli Foundation, Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Stanisa Raspopovic
- Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Francesco M Petrini
- Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Paolo M Rossini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Policlinic A. Gemelli Foundation, Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Bioengineering, Lausanne, Switzerland
| |
Collapse
|