1
|
Tao Y, Niu Q, Yao Y, Wang K, Dong H, Zhao X, Zeng Z, Li H. Qizhu Rougan Granules suppress liver fibrosis by inhibiting the expression of the P2Y14 receptor on hepatic stellate cells. Front Pharmacol 2025; 15:1528100. [PMID: 39850561 PMCID: PMC11755101 DOI: 10.3389/fphar.2024.1528100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Liver fibrosis is a globally prevalent chronic liver disease, often representing the advanced stage of various chronic liver conditions. Despite its widespread occurrence, there is currently no widely accepted or effective treatment for liver fibrosis. However, increasing evidence supports the efficacy of Traditional Chinese Medicine (TCM) in inhibiting the progression of fibrosis. In this study, we explored the effects and potential mechanisms of Qizhu-Ruogan-Granules (QZRG), a formulation from the Affiliated Hospital of the Chengdu University of TCM, on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Methods A total of 40 male C57BL/6J mice were randomly divided into five groups (n = 8 per group), with liver fibrosis induced by injecting 10% CCl4 for 15 weeks. From the 7th week onward, QZRG granules were administered orally to the treatment groups at low, medium, and high doses. To assess liver function, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured. Liver morphology and fibrosis were evaluated using hematoxylin-eosin (H&E) and Masson's trichrome staining, while gene and protein expression levels were analyzed through quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot techniques. Results The results showed that QZRG granules significantly reduced serum levels of AST, ALT, and ALP in CCl4-treated mice, alleviated liver damage, and reduced collagen accumulation. Furthermore, QZRG granules inhibited the expression of apoptosis-related proteins BAX, Caspase9, Caspase8, and Caspase3, while reducing P2Y14 expression in fibrotic liver tissues. Additionally, QZRG granules suppressed the proliferation of activated hepatic stellate cells. Conclusion Our findings suggest that QZRG granules may exert anti-fibrotic effects by downregulating P2Y14 expression and effectively slowing the progression of liver fibrosis.
Collapse
Affiliation(s)
- Yujing Tao
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qun Niu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqian Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kaixin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haijian Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zijian Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Hospital of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Xu X, Lu F, Wang Y, Liu S. Investigation on the mechanism of hepatotoxicity of dictamnine on juvenile zebrafish by integrating metabolomics and transcriptomics. Gene 2024; 930:148826. [PMID: 39154970 DOI: 10.1016/j.gene.2024.148826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Dictamnine(DIC), as the key pharmacological component of the classical Chinese herbal medicine cortex dictamni, possesses multiple pharmacological activities such as anti-microbial, anti-allergic, anti-cancer, and anti-inflammatory activities, however it is also the main toxicant of cortex dictamni induced hepatic damage, yet the underlying molecular mechanisms causing hepatic damage are still largely unknown. With the purpose of explore possibilities hepatotoxicity of dictamnine in zebrafish and to identify the key regulators and metabolites involved in the biological process, we administered zebrafish to dictamnine at a sub-lethal dose (
Collapse
Affiliation(s)
- Xiaomin Xu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
3
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
4
|
Wang S, Gao J, Yang M, Zhang G, Yin L, Tong X. OPN-Mediated Crosstalk Between Hepatocyte E4BP4 and Hepatic Stellate Cells Promotes MASH-Associated Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405678. [PMID: 39473081 DOI: 10.1002/advs.202405678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Indexed: 12/19/2024]
Abstract
Stressed hepatocytes promote liver fibrosis through communications with hepatic stellate cells (HSCs) during chronic liver injury. However, intra-hepatocyte players that facilitate such cell-to-cell communications are largely undefined. It is previously reported that hepatocyte E4BP4 is potently induced by ER stress and hepatocyte deletion of E4bp4 protects mice from high-fat diet-induced liver steatosis. Here how hepatocyte E4bp4 deficiency impacts the activation of HSCs and the progression toward MASH-associated liver fibrosis is examined. Hepatic E4BP4 is increased in mouse models of NASH diet- or CCl4-induced liver fibrosis. Hepatocyte-specific E4bp4 deletion protected mice against NASH diet-induced liver injury, inflammation, and fibrosis without impacting liver steatosis. Hepatocyte E4BP4 overexpression activated HSCs in a medium transfer experiment, whereas hepatocyte E4bp4 depletion did the opposite. RNA-Seq analysis identified the pro-fibrogenic factor OPN as a critical target of E4BP4 within hepatocytes. Antibody neutralization or shRNA depletion of Opn abrogated hepatocyte E4BP4-induced HSC activation. E4BP4 interacted with and stabilized YAP, an established activator of OPN. Loss of hepatic Yap blocked OPN induction in the liver of Ad-E4bp4-injected mice. Hepatocyte E4BP4 induces OPN via YAP to activate HSCs and promote liver fibrosis during diet-induced MASH. Inhibition of the hepatocyte E4BP4-OPN pathway could offer a novel therapeutic avenue for treating MASLD/MASH.
Collapse
Affiliation(s)
- Sujuan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan, 410011, P. R. China
| | - Jiashi Gao
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan, 410011, P. R. China
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Meichan Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 51008, P. R. China
- Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong, 51008, P. R. China
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| |
Collapse
|
5
|
Wen Z, Pramanik A, Lewicki SA, Jung YH, Gao ZG, Randle JCR, Breton S, Chen Z, Whitehead GS, Salvemini D, Cook DN, Jacobson KA. Chimeras Derived from a P2Y 14 Receptor Antagonist and UDP-Sugar Agonists for Potential Treatment of Inflammation. ACS Pharmacol Transl Sci 2024; 7:3255-3278. [PMID: 39421658 PMCID: PMC11480895 DOI: 10.1021/acsptsci.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Tethered glycoconjugates of a naphthalene- and piperidine-containing antagonist of the P2Y14 receptor (PPTN) were synthesized, and their nM receptor binding affinity was determined using a fluorescent tracer in hP2Y14R-expressing whole CHO cells. The rationale for preparing mono- and disaccharide conjugates of the antagonists was to explore the receptor binding site, which we know recognizes a glucose moiety on the native agonist (UDP-glucose), as well as enhance aqueous solubility and pharmacokinetics, including kidney excretion to potentially counteract sterile inflammation. Glycoconjugates with varied linker length, including PEG chains, were compared in hP2Y14R binding, suggesting that an optimal affinity (IC50, nM) in the piperidine series was achieved for triazolyl N-linked glucose conjugates having one (8a, MRS4872, 3.21) or two (7a, MRS4865, 2.40) methylene spacers. In comparison of different carbohydrate conjugates lacking a piperidine moiety but containing triazole spacers, optimal hP2Y14R affinity (IC50, nM) was achieved with N-linked glycosides of fucose 10f (6.19) and lactose 10h (1.88), and C-linked glucose 11a (5.30). Selected compounds were examined in mouse models of conditions known to be ameliorated by P2Y14R antagonists. Two glycoconjugates that lacked a piperidine moiety, N-linked glucose derivative 10a and the isomeric C-linked glucose derivative 11a, were protective in a mouse model of allergic asthma. Piperidine-containing glucose conjugate 7a of intermediate linker length and corresponding glucuronide 7b (MRS4866) protected against neuropathic pain. Thus, glycoconjugation of a known antagonist scaffold has produced less hydrophobic P2Y14R antagonists having substantial in vitro and in vivo activity.
Collapse
Affiliation(s)
- Zhiwei Wen
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asmita Pramanik
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sarah A. Lewicki
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Young-Hwan Jung
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John C. R. Randle
- Random
Walk Ventures, LLC, 108
Lincoln Street Unit 6B, Boston, Massachusetts 02111, United States
| | - Sylvie Breton
- Centre
de Recherche du CHU de Québec, Département d’Obstétrique,
de Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Laval, Québec G1 V 4G2, Canada
| | - Zhoumou Chen
- Department
of Pharmacology and Physiology and the Henry and Amelia Nasrallah
Center for Neuroscience, Saint Louis University
School of Medicine, 1402
South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Gregory S. Whitehead
- Immunity,
Inflammation and Disease Laboratory, National
Institute of Environmental Health Sciences, National Institutes of
Health, Research Triangle Park, North Carolina 27709, United States
| | - Daniela Salvemini
- Department
of Pharmacology and Physiology and the Henry and Amelia Nasrallah
Center for Neuroscience, Saint Louis University
School of Medicine, 1402
South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Donald N. Cook
- Immunity,
Inflammation and Disease Laboratory, National
Institute of Environmental Health Sciences, National Institutes of
Health, Research Triangle Park, North Carolina 27709, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Kim H, Kim SJ. 3D Bioprinting of Pig Macrophages and Human Cells Discovered the P2Y14 Receptor as a Mediator of Xenogenic Immune Responses. Immunol Invest 2024:1-16. [PMID: 39356134 DOI: 10.1080/08820139.2024.2411388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
BACKGROUND The survival rate of pig lung xenotransplantation (PLXTx) recipients is severely limited by intense xenogenic immune responses, necessitating further insights into xenogeneic immunity and the development of models to study the PLXTx immune response. METHODS We identified regulators of PLXTx immune response Using Gene ontology analysis. We assessed the metabolic changes and protein levels in 3D4/31 pig alveolar macrophages (PAMs) through flow cytometry and immunoblotting. To induce a xenogenic immune response, we co-cultured 3D4/31-PAMs with A549 human alveolar epithelial cells and evaluated cytokine expression using qRT-PCR. RESULTS Gene ontology analysis identified STAT1 and alveolar macrophages as contributors to lung autoimmunity and transplant rejection. In 3D4/31-PAMs, phorbol myristate acetate-induced glycogen accumulation and cyclooxygenase-2 expression were inhibited by the P2Y14 inhibitor PPTN. Co-culturing 3D4/31-PAMs with A549 human alveolar epithelial cells via 3D bioprinting resulted in a more pronounced inflammatory response than 2D co-culture, with increased expression of genes related to the P2Y14 cascade and inflammation. This inflammatory gene expression was prevented by PPTN treatment. CONCLUSION Based on these results, we propose alginate bioprinting as an in vitro model for PLXTx and suggest that P2Y14 is a key regulator of xenogeneic immune responses in PAMs.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
7
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
9
|
Akkız H, Gieseler RK, Canbay A. Liver Fibrosis: From Basic Science towards Clinical Progress, Focusing on the Central Role of Hepatic Stellate Cells. Int J Mol Sci 2024; 25:7873. [PMID: 39063116 PMCID: PMC11277292 DOI: 10.3390/ijms25147873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The burden of chronic liver disease is globally increasing at an alarming rate. Chronic liver injury leads to liver inflammation and fibrosis (LF) as critical determinants of long-term outcomes such as cirrhosis, liver cancer, and mortality. LF is a wound-healing process characterized by excessive deposition of extracellular matrix (ECM) proteins due to the activation of hepatic stellate cells (HSCs). In the healthy liver, quiescent HSCs metabolize and store retinoids. Upon fibrogenic activation, quiescent HSCs transdifferentiate into myofibroblasts; lose their vitamin A; upregulate α-smooth muscle actin; and produce proinflammatory soluble mediators, collagens, and inhibitors of ECM degradation. Activated HSCs are the main effector cells during hepatic fibrogenesis. In addition, the accumulation and activation of profibrogenic macrophages in response to hepatocyte death play a critical role in the initiation of HSC activation and survival. The main source of myofibroblasts is resident HSCs. Activated HSCs migrate to the site of active fibrogenesis to initiate the formation of a fibrous scar. Single-cell technologies revealed that quiescent HSCs are highly homogenous, while activated HSCs/myofibroblasts are much more heterogeneous. The complex process of inflammation results from the response of various hepatic cells to hepatocellular death and inflammatory signals related to intrahepatic injury pathways or extrahepatic mediators. Inflammatory processes modulate fibrogenesis by activating HSCs and, in turn, drive immune mechanisms via cytokines and chemokines. Increasing evidence also suggests that cellular stress responses contribute to fibrogenesis. Recent data demonstrated that LF can revert even at advanced stages of cirrhosis if the underlying cause is eliminated, which inhibits the inflammatory and profibrogenic cells. However, despite numerous clinical studies on plausible drug candidates, an approved antifibrotic therapy still remains elusive. This state-of-the-art review presents cellular and molecular mechanisms involved in hepatic fibrogenesis and its resolution, as well as comprehensively discusses the drivers linking liver injury to chronic liver inflammation and LF.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology and Hepatology, University of Bahçeşehir, Beşiktaş, Istanbul 34353, Turkey
| | - Robert K. Gieseler
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, In der Schornau 23–25, 44892 Bochum, Germany; (R.K.G.); (A.C.)
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, In der Schornau 23–25, 44892 Bochum, Germany; (R.K.G.); (A.C.)
| |
Collapse
|
10
|
Xue Y, Zhu W, Qiao F, Yang Y, Qiu J, Zou C, Gao Y, Zhang X, Li M, Shang Z, Gao Y, Huang L. Ba-Qi-Rougan formula alleviates hepatic fibrosis by suppressing hepatic stellate cell activation via the MSMP/CCR2/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118169. [PMID: 38621463 DOI: 10.1016/j.jep.2024.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yan Xue
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wanchun Zhu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fengjie Qiao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaohao Qiu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lingying Huang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Liu W, Mao S, Wang Y, Wang M, Li M, Sun M, Yao Y, Song C, Duan Y. Discovery of N-Substituted Acetamide Derivatives as Promising P2Y 14R Antagonists Using Molecular Hybridization Based on Crystallographic Overlay. J Med Chem 2024; 67:10233-10247. [PMID: 38874515 DOI: 10.1021/acs.jmedchem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
P2Y14 receptor (P2Y14R) is activated by uridine 5'-diphosphate-glucose, which is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2Y14R antagonists and the crystallographic overlap study between the reported P2Y14R antagonist compounds 6 and 9, a series of N-substituted-acetamide derivatives were designed, synthesized, and identified as novel and potent P2Y14R antagonists. The most potent antagonist, compound I-17 (N-(1H-benzo[d]imidazol-6-yl)-2-(4-bromophenoxy)acetamide, IC50 = 0.6 nM) without zwitterionic character, showed strong binding ability to P2Y14R, high selectivity, moderate oral bioactivity, and improved pharmacokinetic profiles. In vitro and in vivo evaluation demonstrated that compound I-17 had satisfactory inhibitory activity on the inflammatory response of monosodium urate (MSU)-induced acute gouty arthritis. I-17 decreased inflammatory factor release and cell pyroptosis through the NOD-like receptor family pyrin domain-containing 3 (NLRP3)/gasdermin D (GSDMD) signaling pathway. Thus, compound I-17, with potent P2Y14R antagonistic activity, in vitro and in vivo efficacy, and favorable bioavailability (F = 75%), could be a promising lead compound for acute gouty arthritis.
Collapse
Affiliation(s)
- Wenjin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Shuqiang Mao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuyang Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Mengyu Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Moran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
13
|
Cheng X, Cheng B, Jin R, Zheng H, Zhou J, Shan S. The role of circulating metabolites and gut microbiome in hypertrophic scar: a two-sample Mendelian randomization study. Arch Dermatol Res 2024; 316:315. [PMID: 38822918 DOI: 10.1007/s00403-024-03116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Hypertrophic scarring is a fibro-proliferative disorder caused by abnormal cutaneous wound healing. Circulating metabolites and the gut microbiome may be involved in the formation of these scars, but high-quality evidence of causality is lacking. To assess whether circulating metabolites and the gut microbiome contain genetically predicted modifiable risk factors for hypertrophic scar formation. Two-sample Mendelian randomization (MR) was performed using MR-Egger, inverse-variance weighting (IVW), Mendelian Randomization Pleiotropy RESidual Sum and Outlier, maximum likelihood, and weighted median methods. Based on the genome-wide significance level, genetically predicted uridine (P = 0.015, odds ratio [OR] = 1903.514, 95% confidence interval [CI] 4.280-846,616.433) and isovalerylcarnitine (P = 0.039, OR = 7.765, 95% CI 1.106-54.512) were positively correlated with hypertrophic scar risk, while N-acetylalanine (P = 0.013, OR = 7.98E-10, 95% CI 5.19E-17-0.012) and glycochenodeoxycholate (P = 0.021, OR = 0.021 95% CI 0.003-0.628) were negatively correlated. Gastranaerophilales and two unknown gut microbe species (P = 0.031, OR = 0.378, 95% CI 0.156-0.914) were associated with an decreased risk of hypertrophic scarring. Circulating metabolites and gut microbiome components may have either positive or negative causal effects on hypertrophic scar formation. The study provides new insights into strategies for diagnosing and limiting hypertrophic scarring.
Collapse
Affiliation(s)
- Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bin Cheng
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
14
|
Wu B, Shentu X, Nan H, Guo P, Hao S, Xu J, Shangguan S, Cui L, Cen J, Deng Q, Wu Y, Liu C, Song Y, Lin X, Wang Z, Yuan Y, Ma W, Li R, Li Y, Qian Q, Du W, Lai T, Yang T, Liu C, Ma X, Chen A, Xu X, Lai Y, Liu L, Esteban MA, Hui L. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat Genet 2024; 56:938-952. [PMID: 38627596 DOI: 10.1038/s41588-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Abstract
Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFβ in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.
Collapse
Affiliation(s)
- Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yan Wu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chang Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xiumei Lin
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Wen Ma
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ao Chen
- BGI Research, Shenzhen, China
| | - Xun Xu
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- China National GeneBank, BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
15
|
Li Z, Peng W, Zhou J, Shui S, Liu Y, Li T, Zhan X, Chen Y, Lan F, Ying B, Wu Y. Multidimensional Interactive Cascading Nanochips for Detection of Multiple Liver Diseases via Precise Metabolite Profiling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312799. [PMID: 38263756 DOI: 10.1002/adma.202312799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Indexed: 01/25/2024]
Abstract
It is challenging to detect and differentiate multiple diseases with high complexity/similarity from the same organ. Metabolic analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is a promising platform for disease diagnosis, while the enhanced property of its core nanomatrix materials has plenty of room for improvement. Herein, a multidimensional interactive cascade nanochip composed of iron oxide nanoparticles (FeNPs)/MXene/gold nanoparticles (AuNPs), IMG, is reported for serum metabolic profiling to achieve high-throughput detection of multiple liver diseases. MXene serves as a multi-binding site and an electron-hole source for ionization during NMALDI-MS analysis. Introduction of AuNPs with surface plasmon resonance (SPR) properties facilitates surface charge accumulation and rapid energy conversion. FeNPs are integrated into the MXene/Au nanocomposite to sharply reduce the thermal conductivity of the nanochip with negligible heat loss for strong thermally-driven desorption, and construct a multi-interaction proton transport pathway with MXene and AuNPs for strong ionization. Analysis of these enhanced serum fingerprint signals detected from the IMG nanochip through a neural network model results in differentiation of multiple liver diseases via a single pass and revelation of potential metabolic biomarkers. The promising method can rapidly and accurately screen various liver diseases, thus allowing timely treatment of liver diseases.
Collapse
Affiliation(s)
- Zhiyu Li
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Weili Peng
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Shaoxuan Shui
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yicheng Liu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Tan Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanyuan Chen
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2024:S2090-1232(24)00123-1. [PMID: 38565403 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Liu L, Ito T, Li B, Tani H, Okuzaki D, Motooka D, Miyazaki H, Ogino T, Nakamura S, Takeda K, Kayama H. The UDP-glucose/P2Y14 receptor axis promotes eosinophil-dependent large intestinal inflammation. Int Immunol 2024; 36:155-166. [PMID: 38108401 DOI: 10.1093/intimm/dxad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic disorder of the large intestine with inflammation and ulceration. The incidence and prevalence of UC have been rapidly increasing worldwide, but its etiology remains unknown. In patients with UC, the accumulation of eosinophils in the large intestinal mucosa is associated with increased disease activity. However, the molecular mechanism underlying the promotion of intestinal eosinophilia in patients with UC remains poorly understood. Here, we show that uridine diphosphate (UDP)-glucose mediates the eosinophil-dependent promotion of colonic inflammation via the purinergic receptor P2Y14. The expression of P2RY14 mRNA was upregulated in the large intestinal mucosa of patients with UC. The P2Y14 receptor ligand UDP-glucose was increased in the large intestinal tissue of mice administered dextran sodium sulfate (DSS). In addition, P2ry14 deficiency and P2Y14 receptor blockade mitigated DSS-induced colitis. Among the large intestinal immune cells and epithelial cells, eosinophils highly expressed P2ry14 mRNA. P2ry14-/- mice transplanted with wild-type bone marrow eosinophils developed more severe DSS-induced colitis compared with P2ry14-/- mice that received P2ry14-deficient eosinophils. UDP-glucose prolonged the lifespan of eosinophils and promoted gene transcription in the cells through P2Y14 receptor-mediated activation of ERK1/2 signaling. Thus, the UDP-glucose/P2Y14 receptor axis aggravates large intestinal inflammation by accelerating the accumulation and activation of eosinophils.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayoshi Ito
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Bo Li
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruka Tani
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hazuki Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Hisako Kayama
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
18
|
Liu C, Wang H, Han L, Zhu Y, Ni S, Zhi J, Yang X, Zhi J, Sheng T, Li H, Hu Q. Targeting P2Y 14R protects against necroptosis of intestinal epithelial cells through PKA/CREB/RIPK1 axis in ulcerative colitis. Nat Commun 2024; 15:2083. [PMID: 38453952 PMCID: PMC10920779 DOI: 10.1038/s41467-024-46365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Purinergic signaling plays a causal role in the pathogenesis of inflammatory bowel disease. Among purinoceptors, only P2Y14R is positively correlated with inflammatory score in mucosal biopsies of ulcerative colitis patients, nevertheless, the role of P2Y14R in ulcerative colitis remains unclear. Here, based on the over-expressions of P2Y14R in the intestinal epithelium of mice with experimental colitis, we find that male mice lacking P2Y14R in intestinal epithelial cells exhibit less intestinal injury induced by dextran sulfate sodium. Mechanistically, P2Y14R deletion limits the transcriptional activity of cAMP-response element binding protein through cAMP/PKA axis, which binds to the promoter of Ripk1, inhibiting necroptosis of intestinal epithelial cells. Furthermore, we design a hierarchical strategy combining virtual screening and chemical optimization to develop a P2Y14R antagonist HDL-16, which exhibits remarkable anti-colitis effects. Summarily, our study elucidates a previously unknown mechanism whereby P2Y14R participates in ulcerative colitis, providing a promising therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Lu Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shurui Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingke Zhi
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiping Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiayi Zhi
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Sheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
19
|
Zhang T, Wang C, Song A, Lei X, Li G, Sun H, Wang X, Geng Z, Shu G, Deng X. Water extract of earthworms mitigates mouse liver fibrosis by potentiating hepatic LKB1/Nrf2 axis to inhibit HSC activation and hepatocyte death. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117495. [PMID: 38016572 DOI: 10.1016/j.jep.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFβ1 were used as in vitro models. RESULTS WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFβ1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3β is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3β levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFβ1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3β/Nrf2 cascade and eliminated its protective effects against TGFβ1. CONCLUSIONS Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3β/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
20
|
Yu Z, Jiang T, Xu F, Zhang J, Hu Y, Cao J. Inhibiting Liver Autophagy and Promoting Hepatocyte Apoptosis by Schistosoma Japonicum Infection. Trop Med Infect Dis 2024; 9:42. [PMID: 38393131 PMCID: PMC10892706 DOI: 10.3390/tropicalmed9020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
We established a mouse model of Schistosoma japonicum infection in order to study the effects of the infection on hepatocyte autophagy and apoptosis. We also stimulated HepG2 cells with soluble egg antigens (SEA) in vitro. At two, four, and six weeks post-infection, quantitative real-time PCR and Western blot (WB) were used to detect liver expression levels of autophagy and apoptosis-related proteins. HepG2 cells were treated with different concentrations of SEA. The changes in the levels of autophagy-related proteins and HepG2 cell apoptosis were detected. The Lc3b, Beclin1, Atg7, and Atg12 mRNA levels were significantly lower at four and six weeks after infection than those in the uninfected group. At four and six weeks following infection, the levels of Beclin1, LC3BII/I, Atg7, and p62 proteins were considerably lower than those in the uninfected group. The protein levels of pro-apoptotic Bax and cleaved caspase 3 and fibrosis-related proteins α-SMA and collagen 3 in the liver post-infection were significantly higher than those in uninfected mice. HepG2 cells stimulated with SEA showed decreased levels of Beclin1, p62, and Atg7 proteins and significantly increased apoptosis rates. The findings demonstrated that following infection with S. japonicum, mice's liver fibrosis worsened, hepatic autophagy was suppressed, and hepatocyte apoptosis was encouraged.
Collapse
Affiliation(s)
- Zhihao Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China; (Z.Y.); (T.J.); (F.X.); (J.Z.)
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- World Health Organization Centre for Tropical Diseases, Shanghai 200025, China
| | - Tingting Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China; (Z.Y.); (T.J.); (F.X.); (J.Z.)
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- World Health Organization Centre for Tropical Diseases, Shanghai 200025, China
| | - Fangfang Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China; (Z.Y.); (T.J.); (F.X.); (J.Z.)
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- World Health Organization Centre for Tropical Diseases, Shanghai 200025, China
| | - Jing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China; (Z.Y.); (T.J.); (F.X.); (J.Z.)
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- World Health Organization Centre for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China; (Z.Y.); (T.J.); (F.X.); (J.Z.)
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- World Health Organization Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianping Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China; (Z.Y.); (T.J.); (F.X.); (J.Z.)
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- World Health Organization Centre for Tropical Diseases, Shanghai 200025, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
21
|
Yu JH, Choi MG, Lee NY, Kwon A, Lee E, Koo JH. Hepatocyte GPCR signaling regulates IRF3 to control hepatic stellate cell transdifferentiation. Cell Commun Signal 2024; 22:48. [PMID: 38233853 PMCID: PMC10795343 DOI: 10.1186/s12964-023-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Interferon Regulatory Factor 3 (IRF3) is a transcription factor that plays a crucial role in the innate immune response by recognizing and responding to foreign antigens. Recently, its roles in sterile conditions are being studied, as in metabolic and fibrotic diseases. However, the search on the upstream regulator for efficient pharmacological targeting is yet to be fully explored. Here, we show that G protein-coupled receptors (GPCRs) can regulate IRF3 phosphorylation through of GPCR-Gα protein interaction. RESULTS IRF3 and target genes were strongly associated with fibrosis markers in liver fibrosis patients and models. Conditioned media from MIHA hepatocytes overexpressing IRF3 induced fibrogenic activation of LX-2 hepatic stellate cells (HSCs). In an overexpression library screening using active mutant Gα subunits and Phos-tag immunoblotting, Gαs was found out to strongly phosphorylate IRF3. Stimulation of Gαs by glucagon or epinephrine or by Gαs-specific designed GPCR phosphorylated IRF3. Protein kinase A (PKA) signaling was primarily responsible for IRF3 phosphorylation and Interleukin 33 (IL-33) expression downstream of Gαs. PKA phosphorylated IRF3 on a previously unrecognized residue and did not require reported upstream kinases such as TANK-binding kinase 1 (TBK1). Activation of Gαs signaling by glucagon induced IL-33 production in hepatocytes. Conditioned media from the hepatocytes activated HSCs, as indicated by α-SMA and COL1A1 expression, and this was reversed by pre-treatment of the media with IL-33 neutralizing antibody. CONCLUSIONS Gαs-coupled GPCR signaling increases IRF3 phosphorylation through cAMP-mediated activation of PKA. This leads to an increase of IL-33 expression, which further contributes to HSC activation. Our findings that hepatocyte GPCR signaling regulates IRF3 to control hepatic stellate cell transdifferentiation provides an insight for understanding the complex intercellular communication during liver fibrosis progression and suggests therapeutic opportunities for the disease. Video Abstract.
Collapse
Affiliation(s)
- Jae-Hyun Yu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myeung Gi Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Na Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ari Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Euijin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Shi H, Moore MP, Wang X, Tabas I. Efferocytosis in liver disease. JHEP Rep 2024; 6:100960. [PMID: 38234410 PMCID: PMC10792655 DOI: 10.1016/j.jhepr.2023.100960] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
The process of dead cell clearance by phagocytic cells, called efferocytosis, prevents inflammatory cell necrosis and promotes resolution and repair. Defective efferocytosis contributes to the progression of numerous diseases in which cell death is prominent, including liver disease. Many gaps remain in our understanding of how hepatic macrophages carry out efferocytosis and how this process goes awry in various types of liver diseases. Thus far, studies have suggested that, upon liver injury, liver-resident Kupffer cells and infiltrating monocyte-derived macrophages clear dead cells, limit inflammation, and, through macrophage reprogramming, repair liver damage. However, in unusual settings, efferocytosis can promote liver disease. In this review, we will focus on efferocytosis in various types of acute and chronic liver diseases, including metabolic dysfunction-associated steatohepatitis. Understanding the mechanisms and consequences of efferocytosis by hepatic macrophages has the potential to shed new light on liver disease pathophysiology and to guide new treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mary P. Moore
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
23
|
Hong R, Tian X, Ma H, Ni H, Yang J, Bu W, Li T, Yang S, Li D, Liu M, Tan Y. Primary cilium-mediated signaling cascade suppresses age-related biliary fibrosis. J Cell Physiol 2023; 238:2600-2611. [PMID: 37683035 DOI: 10.1002/jcp.31113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
The primary cilium is increasingly recognized as a crucial player in the physiology of biliary epithelial cells (BECs). However, the precise role of primary cilia in the development of age-related biliary fibrosis remains unclear. Herein, using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis in BECs in aged mice leads to significant bile duct proliferation, augmented biliary fibrosis, and heightened indicators of liver injury. Our RNA-sequencing data revealed a dysregulation in genes associated with various biological processes such as bile secretion, fatty acid metabolism, and inflammation. Loss of primary cilia also significantly enhanced signaling pathways driving the development of biliary fibrosis. Our findings collectively suggest that loss of primary cilia in the BECs of aged mice initiates a cascade of signaling events that contribute to biliary fibrosis, highlighting the primary cilium as a potential therapeutic target in the treatment of fibrosing cholangiopathies.
Collapse
Affiliation(s)
- Renjie Hong
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyu Tian
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Te Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
25
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
27
|
Wu Y, Deng X, Wu Z, Liu D, Fu X, Tang L, He S, Lv J, Wang J, Li Q, Zhan T, Tang Z. Multilayer omics reveals the molecular mechanism of early infection of Clonorchis sinensis juvenile. Parasit Vectors 2023; 16:285. [PMID: 37587524 PMCID: PMC10428567 DOI: 10.1186/s13071-023-05891-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Clonorchiasis remains a non-negligible global zoonosis, causing serious socioeconomic burdens in endemic areas. Clonorchis sinensis infection typically elicits Th1/Th2 mixed immune responses during the course of biliary injury and periductal fibrosis. However, the molecular mechanism by which C. sinensis juvenile initially infects the host remains poorly understood. METHODS The BALB/c mouse model was established to study early infection (within 7 days) with C. sinensis juveniles. Liver pathology staining and observation as well as determination of biochemical enzymes, blood routine and cytokines in blood were conducted. Furthermore, analysis of liver transcriptome, proteome and metabolome changes was performed using multi-omics techniques. Statistical analyses were performed using Student's t-test. RESULTS Histopathological analysis revealed that liver injury, characterized by collagen deposition and inflammatory cell infiltration, occurred as early as 24 h of infection. Blood indicators including ALT, AST, WBC, CRP and IL-6 indicated that both liver injury and systemic inflammation worsened as the infection progressed. Proteomic data showed that apoptosis and junction-related pathways were enriched within 3 days of infection, indicating the occurrence of liver injury. Furthermore, proteomic and transcriptomic analysis jointly verified that the detoxification and antioxidant defense system was activated by enrichment of glutathione metabolism and cytochrome P450-related pathways in response to acute liver injury. Proteomic-based GO analysis demonstrated that biological processes such as cell deformation, proliferation, migration and wound healing occurred in the liver during the early infection. Correspondingly, transcriptomic results showed significant enrichment of cell cycle pathway on day 3 and 7. In addition, the KEGG analysis of multi-omics data demonstrated that numerous pathways related to immunity, inflammation, tumorigenesis and metabolism were enriched in the liver. Besides, metabolomic screening identified several metabolites that could promote inflammation and hepatobiliary periductal fibrosis, such as CA7S. CONCLUSIONS This study revealed that acute inflammatory injury was rapidly triggered by initial infection by C. sinensis juveniles in the host, accompanied by the enrichment of detoxification, inflammation, fibrosis, tumor and metabolism-related pathways in the liver, which provides a new perspective for the early intervention and therapy of clonorchiasis.
Collapse
Affiliation(s)
- Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, 530021, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases With Integrative Medicine, Nanning, 530021, China
| | - Dengyu Liu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaoyin Fu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lili Tang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Shanshan He
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jiahui Lv
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Jilong Wang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Tingzheng Zhan
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
28
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
29
|
Zhang JZ, Shi NR, Wu JS, Wang X, Illes P, Tang Y. UDP-glucose sensing P2Y 14R: A novel target for inflammation. Neuropharmacology 2023; 238:109655. [PMID: 37423482 DOI: 10.1016/j.neuropharm.2023.109655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Uridine 5'-diphosphoglucose (UDP-G) as a preferential agonist, but also other UDP-sugars, such as UDP galactose, function as extracellular signaling molecules under conditions of cell injury and apoptosis. Consequently, UDP-G is regarded to function as a damage-associated molecular pattern (DAMP), regulating immune responses. UDP-G promotes neutrophil recruitment, leading to the release of pro-inflammatory chemokines. As a potent endogenous agonist with the highest affinity for the P2Y14 receptor (R), it accomplishes an exclusive relationship between P2Y14Rs in regulating inflammation via cyclic adenosine monophosphate (cAMP), nod-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinases (MAPKs), and signal transducer and activator of transcription 1 (STAT1) pathways. In this review, we initially present a brief introduction into the expression and function of P2Y14Rs in combination with UDP-G. Subsequently, we summarize emerging roles of UDP-G/P2Y14R signaling pathways that modulate inflammatory responses in diverse systems, and discuss the underlying mechanisms of P2Y14R activation in inflammation-related diseases. Moreover, we also refer to the applications as well as effects of novel agonists/antagonists of P2Y14Rs in inflammatory conditions. In conclusion, due to the role of the P2Y14R in the immune system and inflammatory pathways, it may represent a novel target for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Ji-Zhou Zhang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Nan-Rui Shi
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jia-Si Wu
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xin Wang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
30
|
Guo PC, Zuo J, Huang KK, Lai GY, Zhang X, An J, Li JX, Li L, Wu L, Lin YT, Wang DY, Xu JS, Hao SJ, Wang Y, Li RH, Ma W, Song YM, Liu C, Liu CY, Dai Z, Xu Y, Sharma AD, Ott M, Ou-Yang Q, Huo F, Fan R, Li YY, Hou JL, Volpe G, Liu LQ, Esteban MA, Lai YW. Cell atlas of CCl 4-induced progressive liver fibrosis reveals stage-specific responses. Zool Res 2023; 44:451-466. [PMID: 36994536 PMCID: PMC10236302 DOI: 10.24272/j.issn.2095-8137.2023.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/11/2023] [Indexed: 03/12/2023] Open
Abstract
Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.
Collapse
Affiliation(s)
- Peng-Cheng Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Jing Zuo
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Ke-Ke Huang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Guang-Yao Lai
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong 510530, China
| | - Xiao Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Juan An
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xiu Li
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yi-Ting Lin
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dong-Ye Wang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiang-Shan Xu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Shi-Jie Hao
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Rong-Hai Li
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Wen Ma
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Yu-Mo Song
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Chang Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Chuan-Yu Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yan Xu
- Biotherapy Centre, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Qing Ou-Yang
- Department of Hepatobiliary Surgery and Liver Transplant Center, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China
| | - Feng Huo
- Department of Hepatobiliary Surgery and Liver Transplant Center, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Yong-Yin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Jin-Lin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari 70124, Italy
| | - Long-Qi Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Miguel A Esteban
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany. E-mail:
| | - Yi-Wei Lai
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China. E-mail:
| |
Collapse
|
31
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
32
|
Du L, Ji Y, Xin B, Zhang J, Lu LC, Glass CK, Feng GS. Shp2 Deficiency in Kupffer Cells and Hepatocytes Aggravates Hepatocarcinogenesis by Recruiting Non-Kupffer Macrophages. Cell Mol Gastroenterol Hepatol 2023; 15:1351-1369. [PMID: 36828281 PMCID: PMC10140795 DOI: 10.1016/j.jcmgh.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND & AIMS Complex communications between hepatocytes and Kupffer cells (KCs) are known to drive or suppress hepatocarcinogenesis, with controversial data in the literature. In previous experiments that aimed to decipher hepatocyte/KC interactions, we unexpectedly unveiled a tumor-suppressing effect of polyinosinic-polycytidylic acid, a widely used inducer of MX dynamin like GTPase 1 (Mx1)-cre expression, which questioned a theory of interleukin 1a/6 cytokine circuit in hepatocyte/KC communication. The goal of this study was to clarify the controversy and decipher unique functions of KCs and non-KC macrophages in liver tumorigenesis. METHODS We used the C-type lectin domain family 4 member F (Clec4f)-cre system to delete Src-homology 2 domain-containing tyrosine phosphatase 2 (Shp2)/protein tyrosine phosphatase nonreceptor 11 (Ptpn11) in KCs, and a combination of Clec4f-cre and adeno-associated virus-cre to delete Shp2 in KCs and hepatocytes to investigate the effects on hepatocellular carcinoma development and immune cell compositions/activities. RESULTS Ablating Shp2 in KCs generated a tumor-promoting niche, which was exacerbated further by concurrent removal of Shp2 in both KCs and hepatocytes. Shp2 deficiency induced KC apoptosis and decreased its numbers, which induced compensatory recruitment of bone marrow-derived monocytes into liver. These newly recruited monocytes differentiated into non-KC macrophages with tumor-associated macrophage function, leading to aggravated tumor progression through down-regulation of CD8 T cells. Tumor-associated macrophage blockade by anti-chemokine (C-C motif) ligand 2 (CCL2) antibody inhibited hepatocellular carcinoma progression, while depletion of all macrophages had a tumor-promoting effect by increasing myeloid-derived suppressor cells (M-MDSCs) and decreasing CD8 T cells. CONCLUSIONS Shp2 loss in KCs or hepatocytes generated a protumorigenic microenvironment, which was exacerbated by its removal in both cell types. These results show the complexity of intercellular signaling events in liver tumorigenesis and raises caution on the use of specific Shp2 inhibitor in liver cancer therapy. Transcript profiling: RNA sequencing data are available at Gene Expression Omnibus (GSE222594).
Collapse
Affiliation(s)
- Li Du
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichun Ji
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Bing Xin
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Jiemeng Zhang
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Li-Chun Lu
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California; Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Gen-Sheng Feng
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
33
|
Wiering L, Subramanian P, Hammerich L. Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2023; 15:1277-1292. [PMID: 36828280 PMCID: PMC10148161 DOI: 10.1016/j.jcmgh.2023.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a fast growing, chronic liver disease affecting ∼25% of the global population. Nonalcoholic fatty liver disease severity ranges from the less severe simple hepatic steatosis to the more advanced nonalcoholic steatohepatitis (NASH). The presence of NASH predisposes individuals to liver fibrosis, which can further progress to cirrhosis and hepatocellular carcinoma. This makes hepatic fibrosis an important indicator of clinical outcomes in patients with NASH. Hepatic stellate cell activation dictates fibrosis development during NASH. Here, we discuss recent advances in the analysis of the profibrogenic pathways and mediators of hepatic stellate cell activation and inactivation, which ultimately determine the course of disease in nonalcoholic fatty liver disease/NASH.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Linda Hammerich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
34
|
Zhou M, Liu C, Guo Y, Qian J, Wang Y, Zhang Z, Hao K, Jiang C, Hu Q. HQL6 serves as a novel P2Y 14 receptor antagonist to ameliorate acute gouty arthritis through inhibiting macrophage pyroptosis. Int Immunopharmacol 2023; 114:109507. [PMID: 36462336 DOI: 10.1016/j.intimp.2022.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Acute gouty arthritis (AGA) has been classified as an autoinflammatory disease caused by deposition of monosodium urate crystals (MSU), accompanied by swellingofjoint and severe pain. Limited clinical therapy and highincidence indicate that the development of effective drugs for AGA is an urgent need. Our previous study found that P2Y14 receptor (P2Y14R) was a potential target in anti-gout treatment through regulating pyroptosis of macrophages under exposure of MSU. Based on previous work, we carried out further structure modifications and led to a more effective antagonist HQL6 with IC50 of 3.007 nM. Extensive profiling of HQL6 has demonstrated that its high selectivity, good pharmacokinetic properties, and reliable in vivo anti-gout efficacy. Moreover, P2Y14R has been demonstrated to be the key target of HQL6 since the diminished effects on adenylate cyclase inhibitor-induced acute gouty arthritis in P2Y14R knockout rats. More importantly, results of single point mutant experiments exhibited that HQL6 might interact with Lys277 as favorable residue in the binding pocket of P2Y14R. Therefore, we confirmed that P2Y14R was a promising drug target for AGA, and HQL6 would be an available candidate for further drug development.
Collapse
Affiliation(s)
- Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jialong Qian
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuhang Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhenguo Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
35
|
Sun Q, Schwabe RF. Hepatic Stellate Cell Depletion and Genetic Manipulation. Methods Mol Biol 2023; 2669:207-220. [PMID: 37247062 DOI: 10.1007/978-1-0716-3207-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) exert key roles in the development of liver disease. Cell-specific genetic labeling, gene knockout and depletion are important for the understanding of the HSC in homeostasis and a wide range of diseases ranging from acute liver injury and liver regeneration to nonalcoholic liver disease and cancer. Here, we will review and compare different Cre-dependent and Cre-independent methods for genetic labeling, gene knockout, HSC tracing and depletion, and their applications to different disease models. We provide detailed protocols for each method including methods to confirm successful and efficient targeting of HSCs.
Collapse
Affiliation(s)
- Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
36
|
Zhan G, Liu J, Lin J, Chen J, Sun S, Maimaitiyiming Y, Hsu CH. Multifaceted Functions of RNA m6A Modification in Modulating Regulated Cell Death. RNA TECHNOLOGIES 2023:539-573. [DOI: 10.1007/978-3-031-36390-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Audet-Delage Y, Rouleau M, Villeneuve L, Guillemette C. The Glycosyltransferase Pathway: An Integrated Analysis of the Cell Metabolome. Metabolites 2022; 12:metabo12101006. [PMID: 36295907 PMCID: PMC9609030 DOI: 10.3390/metabo12101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sugar-dependent glycosyltransferases (UGTs) are critical to the homeostasis of endogenous metabolites and the detoxification of xenobiotics. Their impact on the cell metabolome remains unknown. Cellular metabolic changes resulting from human UGT expression were profiled by untargeted metabolomics. The abundant UGT1A1 and UGT2B7 were studied as UGT prototypes along with their alternative (alt.) splicing-derived isoforms displaying structural differences. Nineteen biochemical routes were modified, beyond known UGT substrates. Significant variations in glycolysis and pyrimidine pathways, and precursors of the co-substrate UDP-glucuronic acid were observed. Bioactive lipids such as arachidonic acid and endocannabinoids were highly enriched by up to 13.3-fold (p < 0.01) in cells expressing the canonical enzymes. Alt. UGT2B7 induced drastic and unique metabolic perturbations, including higher glucose (18-fold) levels and tricarboxylic acid cycle (TCA) cycle metabolites and abrogated the effects of the UGT2B7 canonical enzyme when co-expressed. UGT1A1 proteins promoted the accumulation of branched-chain amino acids (BCAA) and TCA metabolites upstream of the mitochondrial oxoglutarate dehydrogenase complex (OGDC). Alt. UGT1A1 exacerbated these changes, likely through its interaction with the OGDC component oxoglutarate dehydrogenase-like (OGDHL). This study expands the breadth of biochemical pathways associated with UGT expression and establishes extensive connectivity between UGT enzymes, alt. proteins and other metabolic processes.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296
| |
Collapse
|
38
|
Wallace SJ, Tacke F, Schwabe RF, Henderson NC. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep 2022; 4:100524. [PMID: 35845296 PMCID: PMC9284456 DOI: 10.1016/j.jhepr.2022.100524] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.
Collapse
Key Words
- BAs, bile acids
- CCL, C-C motif chemokine ligand
- CCR, C-C motif chemokine receptor
- CLD, chronic liver disease
- CTGF, connective tissue growth factor
- CXCL, C-X-C motif chemokine ligand
- CXCR, C-X-C motif chemokine receptor
- DAMP, damage-associated molecular pattern
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- HSCs, hepatic stellate cells
- IL, interleukin
- ILC, innate lymphoid cell
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MAIT, mucosal-associated invariant T
- MAMPS, microbiota-associated molecular patterns
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NK(T), natural killer (T)
- NLR, Nod like receptors
- Non-alcoholic fatty liver disease (NAFLD)
- PDGF, platelet-derived growth factor
- PFs, portal fibroblasts
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- VEGF, vascular endothelial growth factor
- antifibrotic therapies
- cellular interactome
- cirrhosis
- fibrosis
- single-cell genomics
Collapse
Affiliation(s)
- Sebastian J. Wallace
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Robert F. Schwabe
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| |
Collapse
|
39
|
Caron P, Van Long FN, Rouleau M, Bujold E, Fortin P, Mohammadi S, Lévesque É, Breton S, Guillemette C. A liquid chromatography-mass spectrometry assay for the quantification of nucleotide sugars in human plasma and urine specimens and its clinical application. J Chromatogr A 2022; 1677:463296. [DOI: 10.1016/j.chroma.2022.463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
40
|
Ray K. Danger! P2Y14 receptor links cell death to liver fibrosis. Nat Rev Gastroenterol Hepatol 2022; 19:349. [PMID: 35477989 DOI: 10.1038/s41575-022-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Katrina Ray
- Nature Reviews Gastroenterology & Hepatology, .
| |
Collapse
|