1
|
Xiang D, Yan X, Liu J, Zhou Y, Cui A, Wang Q, He X, Ma M, Huang J, Liu J, Yang X, Wang K. Magnetofluidic-Assisted Portable Automated Microfluidic Devices for Protein Detection. Anal Chem 2025; 97:1933-1940. [PMID: 39815389 DOI: 10.1021/acs.analchem.4c06384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone. In the device, the mixing of solutions and magnetic beads in the static chamber was enhanced by steel bead agitation, which improved the reaction efficiency. We demonstrate the performance of the device using myoglobin detection as an example. During the detection process, the plasma was separated from the whole blood sample using a homemade mini-centrifuge, and subsequently, the plasma, magnetic beads, and reagents were added to a magnetofluidic chip with multiple chambers. After the chip was loaded, the device was initiated with a smartphone App via Bluetooth. Then, the magnetic beads were shuttled through different chambers of the chip and multiple steps were completed automatically: first, the targets were separated and enriched using antibody-modified magnetic beads, followed by washing, binding with aptamer-functionalized G-quadruplex, signal amplifying (optional), and chromogenic reaction. Finally, the images of colored solutions were captured and processed by a smartphone to obtain the concentrations of myoglobin. The detection limits depended on the mode of signal conversion, which were 0.1 or 2.7 nM (with or without signal amplifying). With its simple operation, compact design, low cost, and ease of scalability, this automated detection device holds potential applications in human health, food safety, environmental monitoring, etc.
Collapse
Affiliation(s)
- Dongliu Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xueting Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jia Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Aiping Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingze Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Van Der Pol B. Overview of point-of-care diagnostic options for detection of chlamydia trachomatis: current technology and implementation considerations. Expert Rev Mol Diagn 2025:1-12. [PMID: 39817803 DOI: 10.1080/14737159.2025.2453505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Chlamydia trachomatis continues to be the most common bacterial infection worldwide and rates continue to increase despite long-standing control efforts. Point of care (POC) testing options may offer improvements in case finding that lead to improved control of this sexually transmitted infection (STI). AREAS COVERED This review will provide information on the three tests that have US Food and Drug Administration (FDA) clearance and describe assays in the developmental pipeline. The review will also provide implementation evaluations of the existing tests and offer suggestions about factors to consider prior to adoption of these or newer tests as they become available. EXPERT OPINION Technology is developing rapidly and may soon offer many choices of rapid diagnostic tools which can be used in clinical settings to detect chlamydial infections, particularly in underserved populations. The key to successful deployment of new tests will rest on data generated by implementation research to identify the features that create barriers or facilitate adoption of a new clinical paradigm.
Collapse
Affiliation(s)
- Barbara Van Der Pol
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Hu J, Chen L, Zhang P, Chen F, Li H, Hsieh K, Li S, Melendez JH, Wang T. Exploiting β-Lactams-Induced Lysis and DNA Fragmentation for Rapid Molecular Antimicrobial Susceptibility Testing of Neisseria Gonorrhoeae via Dual-Digital PCR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405272. [PMID: 39422167 PMCID: PMC11633544 DOI: 10.1002/advs.202405272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The evolution of antimicrobial resistance (AMR) presents substantial challenges to global medical health systems. Neisseria gonorrhoeae (N. gonorrhoeae), in particular, has developed resistance to all currently available antimicrobials. Addressing this issue necessitates not only discovering new antimicrobials but also deepening the understanding of bacterial responses to these agents, which can lead to new markers for rapid antimicrobial susceptibility testing (AST). Such advancements can enhance treatment outcomes and promote antimicrobial stewardship. In this study, single-cell techniques, including live-cell imaging, flow cytometry, and digital polymerase chain reaction (PCR) are utilized, to investigate the lysis dynamics and molecular features of N. gonorrhoeae upon exposure to β-lactam antimicrobials. Distinct patterns of bacterial lysis and DNA fragmentation are uncovered in susceptible strains. Leveraging these discoveries, a microfluidic dual-digital PCR approach that combines single-cell and single-molecule analyses, facilitate rapid and efficient phenotypic molecular AST for N. gonorrhoeae against β-lactams is developed. This proof-of-concept validation demonstrates the effectiveness of the method in accessing antimicrobial susceptibility across a range of bacterial strains, contributing valuable insights for advancing the battle against AMR.
Collapse
Affiliation(s)
- Jiumei Hu
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Liben Chen
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Pengfei Zhang
- Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - Fan‐En Chen
- Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - Hui Li
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Kuangwen Hsieh
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Sixuan Li
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Johan H. Melendez
- Division of Infectious DiseasesDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Tza‐Huei Wang
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreMD21205USA
- Institute for NanoBiotechnologyJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
4
|
Zhang J, Dong Z, Xu L, Han X, Sheng Z, Chen W, Zheng J, Lai D, Shen F. An Injection Molded SlipChip with Self-Sampling for Integrated Point-of-Care Testing of Human Papilloma Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406367. [PMID: 39320328 DOI: 10.1002/advs.202406367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
High-risk human papillomavirus (HPV) screening is crucial for cervical cancer prevention. However, laboratory-based nucleic acid amplification tests (NAATs) require costly equipment, designated lab space, and skilled personnel. Additionally, cervical swabs collected by healthcare professionals can be inconvenient, uncomfortable, and reduce privacy, limiting broader application and patient compliance. A SlipChip-based Integrated Point-of-Care (SIPOC) system featuring an injection-molded SlipChip is presented with preloaded reagents for nucleic acid extraction and a portable four-channel real-time quantitative PCR instrument for detection. This system incorporates a self-sampling method that allows participants to collect their own vaginal swabs, with the β-Globin gene as a control. After testing 130 participants for HPV-16 and HPV-18, 97.7% of the self-collected samples are valid. Among valid samples, 25 tested positive for HPV-16 and 9 for HPV-18. Compared to Roche's standard HPV PCR test, the SIPOC system shows 100% positive predictive value (PPV) for both HPV-16 and HPV-18 and negative predictive values (NPVs) of 99.0% and 99.1%, respectively. This system is promising for HPV screening in resource-limited settings and adaptable for other point-of-care NAAT applications, including home testing.
Collapse
Affiliation(s)
- Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhangli Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xu Han
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Weiyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jiayi Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Hefei Early Cancer Screening Innovation Technology Institute, Hefei Inovation Industrial Park, Wangjiang West Road, Hefei, China
| |
Collapse
|
5
|
Politza AJ, Liu T, Kshirsagar A, Dong M, Ahamed MA, Guan W. Development and validation of a portable device for lab-free versatile nucleic acid extraction. Biotechniques 2024; 76:505-515. [PMID: 39620898 DOI: 10.1080/07366205.2024.2427544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
Nucleic acid testing (NAT) has revolutionized diagnostics by providing precise, rapid, and scalable detection methods for diverse biological samples. These recent advancements satisfy the increasing demand for on-site diagnostics, yet sample preparation remains a significant bottleneck for achieving highly sensitive diagnostic assays. There is an unmet need for compatible, efficient, and lab-free sample preparation for point-of-care NAT. To address this, we developed a portable, lab-free, and battery-powered device for extracting nucleic acids. We explored using low centrifugal forces with existing commercial chemistry, demonstrating excellent performance. We designed and tested a battery-powered device to enable lab-free extractions, and verified reagents stored out to 6 months, suggesting exceptional deployment capabilities. We evaluated our device, comparing our results against those from a benchtop centrifuge across three types of samples: HIV RNA in buffer, HIV RNA in plasma, and SARS-CoV-2 RNA in saliva. The portable device demonstrated excellent agreement with the benchtop centrifuge, indicating high reliability. By providing an effective on-site sample preparation solution, the widespread adoption of low centrifugal extractions will improve the sensitivity and reliability of NAT and will positively impact other point-of-care technologies such as next generation sequencing (NGS), biomarker detection, and environmental monitoring.
Collapse
Affiliation(s)
- Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Aneesh Kshirsagar
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Weihua Guan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Hasnain AC, Stark A, Trick AY, Ma K, Hsieh K, Cheng Y, Meltzer SJ, Wang TH. Cancer Methylation Biomarker Detection in an Automated, Portable, Multichannel Magnetofluidic Platform. ACS NANO 2024; 18:12105-12116. [PMID: 38669469 DOI: 10.1021/acsnano.3c10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Early detection of cancer is critical to improving clinical outcomes, especially in territories with limited healthcare resources. DNA methylation biomarkers have shown promise in early cancer detection, but typical workflows require highly trained personnel and specialized equipment for manual and lengthy processing, limiting use in resource-constrained areas. As a potential solution, we introduce the Automated Cartridge-based Cancer Early Screening System (ACCESS), a compact, portable, multiplexed, automated platform that performs droplet magnetofluidic- and methylation-specific qPCR-based assays for the detection of DNA methylation cancer biomarkers. Development of ACCESS focuses on esophageal cancer, which is among the most prevalent cancers in low- and middle-income countries with extremely low survival rates. Upon implementing detection assays for two esophageal cancer methylation biomarkers within ACCESS, we demonstrated successful detection of both biomarkers from esophageal tumor tissue samples from eight esophageal cancer patients while showing specificity in paired normal esophageal tissue samples. These results illustrate ACCESS's potential as an amenable epigenetic diagnostic tool for resource-constrained areas toward early detection of esophageal cancer and potentially other malignancies.
Collapse
Affiliation(s)
- Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alejandro Stark
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ke Ma
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yulan Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Stephen J Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Colón Pérez J, Villarino Fernández RA, Domínguez Lago A, Treviño Castellano MM, Pérez del Molino Bernal ML, Sánchez Poza S, Torres-Sangiao E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms 2024; 12:884. [PMID: 38792714 PMCID: PMC11124187 DOI: 10.3390/microorganisms12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
It was in the 1800s when the first public publications about the infection and treatment of gonorrhoea were released. However, the first prevention programmes were only published a hundred years later. In the 1940s, the concept of vaccination was introduced into clinical prevention programmes to address early sulphonamide resistance. Since then, tons of publications on Neisseria gonorrhoeae are undisputed, around 30,000 publications today. Currently, the situation seems to be just as it was in the last century, nothing has changed or improved. So, what are we doing wrong? And more importantly, what might we do? The review presented here aims to review the current situation regarding the resistance mechanisms, prevention programmes, treatments, and vaccines, with the challenge of better understanding this special pathogen. The authors have reviewed the last five years of advancements, knowledge, and perspectives for addressing the Neisseria gonorrhoeae issue, focusing on new therapeutic alternatives.
Collapse
Affiliation(s)
- Julia Colón Pérez
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rosa-Antía Villarino Fernández
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Adrián Domínguez Lago
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Treviño Castellano
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Luisa Pérez del Molino Bernal
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sandra Sánchez Poza
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eva Torres-Sangiao
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Shao F, Li H, Hsieh K, Zhang P, Li S, Wang TH. Automated and miniaturized screening of antibiotic combinations via robotic-printed combinatorial droplet platform. Acta Pharm Sin B 2024; 14:1801-1813. [PMID: 38572105 PMCID: PMC10985126 DOI: 10.1016/j.apsb.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 04/05/2024] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis in need of novel solutions. To this end, antibiotic combination therapies, which combine multiple antibiotics for treatment, have attracted significant attention as a potential approach for combating AMR. To facilitate advances in antibiotic combination therapies, most notably in investigating antibiotic interactions and identifying synergistic antibiotic combinations however, there remains a need for automated high-throughput platforms that can create and examine antibiotic combinations on-demand, at scale, and with minimal reagent consumption. To address these challenges, we have developed a Robotic-Printed Combinatorial Droplet (RoboDrop) platform by integrating a programmable droplet microfluidic device that generates antibiotic combinations in nanoliter droplets in automation, a robotic arm that arranges the droplets in an array, and a camera that images the array of thousands of droplets in parallel. We further implement a resazurin-based bacterial viability assay to accelerate our antibiotic combination testing. As a demonstration, we use RoboDrop to corroborate two pairs of antibiotics with known interactions and subsequently identify a new synergistic combination of cefsulodin, penicillin, and oxacillin against a model E. coli strain. We therefore envision RoboDrop becoming a useful tool to efficiently identify new synergistic antibiotic combinations toward combating AMR.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Cannon CA, McLaughlin SE, Ramchandani MS. On The Horizon: Novel Approaches to Sexually Transmitted Infection Prevention. Med Clin North Am 2024; 108:403-418. [PMID: 38331488 DOI: 10.1016/j.mcna.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Rates of sexually transmitted infections (STIs), especially cases of infectious and congenital syphilis, are increasing in the United States. Novel strategies for STI prevention are being explored and include doxycycline post-exposure prophylaxis and the potential utility of vaccines against gonorrhea. Self-collection of samples and point of care testing for STI are increasingly being employed in a variety of settings. Both can improve uptake of screening and lead to earlier detection and treatment of incident STI in target populations. Overcoming existing regulatory issues and optimizing implementation of current evidence-based strategies will be key to maximizing future STI prevention efforts. Here we provide an update for primary care providers on selected new strategies for STI prevention either currently available or under development for possible future use.
Collapse
Affiliation(s)
- Chase A Cannon
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Public Health - Seattle & King County, 325 9th Avenue, Box 359777, Seattle, WA 98104, USA.
| | | | - Meena S Ramchandani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Public Health - Seattle & King County, 325 9th Avenue, Box 359777, Seattle, WA 98104, USA
| |
Collapse
|
10
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
11
|
Zhang J, Xu L, Sheng Z, Zheng J, Chen W, Hu Q, Shen F. Combination-Lock SlipChip Integrating Nucleic Acid Sample Preparation and Isothermal LAMP Amplification for the Detection of SARS-CoV-2. ACS Sens 2024; 9:646-653. [PMID: 38181090 DOI: 10.1021/acssensors.3c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Nucleic acid analysis with an easy-to-use workflow, high specificity and sensitivity, independence of sophisticated instruments, and accessibility outside of the laboratory is highly desirable for the detection and monitoring of infectious diseases. Integration of laboratory-quality sample preparation on a hand-held system is critical for performance. A SlipChip device inspired by the combination lock can perform magnetic bead-based nucleic acid extraction with several clockwise and counterclockwise rotations. A palm-sized base station was developed to assist sample preparation and provide thermal control of isothermal nucleic acid amplification without plug-in power. The loop-mediated isothermal amplification reaction can be performed with a colorimetric method and directly analyzed by the naked eye or with a mobile phone app. This system achieves good bead recovery during the sample preparation workflow and has minimal residue carryover from the lysis and elution buffers. Its performance is comparable to that of the standard laboratory protocol with real-time qPCR amplification methods. The entire workflow is completed in less than 35 min and the device can achieve 500 copies/mL sensitivity. Thirty clinical nasal swab samples were collected and tested with a sensitivity of 95% and a specificity of 100% for SARS-CoV-2. This combination-lock SlipChip provides a promising fast, easy-to-use nucleic acid test with bead-based sample preparation that produces laboratory-quality results for point-of-care settings, especially in home use applications.
Collapse
Affiliation(s)
- Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiayi Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Weiyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
12
|
Jin M, Trick AY, Totten M, Lee PW, Zhang SX, Wang TH. Streamlined instrument-free lysis for the detection of Candida auris. Sci Rep 2023; 13:21848. [PMID: 38071216 PMCID: PMC10710429 DOI: 10.1038/s41598-023-47220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The continued spread of Candida auris in healthcare facilities has increased the demand for widely available screening to aid in containment and inform treatment options. Current methods of detection can be unreliable and require bulky and expensive instruments to lyse and identify fungal pathogens. Here, we present a quick, low-cost, instrument-free method for lysis of C. auris suitable for streamlined sample processing with polymerase chain reaction (PCR) detection. Chemical, thermal, and bead beating lysis techniques were evaluated for lysis performance and compatibility with nucleic acid extraction and downstream PCR reactions. Using only 10 s of manual shaking with glass beads, this method demonstrated a limit of detection (LOD) of C. auris at 500 colony forming units per mL, a 20-fold improvement compared to the LOD without manual shaking, and a 60-fold reduction in time compared to common fungal lysis kits, all while maintaining repeatability and reproducibility across multiple users. This work highlights a simple method for increasing sensitivity and reducing turnaround time of PCR-based C. auris detection and exhibits promise for integration into point-of-care platforms towards real-time triage of colonized patients.
Collapse
Affiliation(s)
- Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Marissa Totten
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean X Zhang
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Khire TS, Gao W, Bales B, Hsieh K, Grossmann G, Park DJM, O’Keefe C, Brown-Countess A, Peterson S, Chen FE, Lenigk R, Trick A, Wang TH, Puleo C. Rapid Minimum Inhibitory Concentration (MIC) Analysis Using Lyophilized Reagent Beads in a Novel Multiphase, Single-Vessel Assay. Antibiotics (Basel) 2023; 12:1641. [PMID: 37998843 PMCID: PMC10669664 DOI: 10.3390/antibiotics12111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat fueled by incorrect (and overuse) of antibiotic drugs, giving rise to the evolution of multi- and extreme drug-resistant bacterial strains. The longer time to antibiotic administration (TTA) associated with the gold standard bacterial culture method has been responsible for the empirical usage of antibiotics and is a key factor in the rise of AMR. While polymerase chain reaction (PCR) and other nucleic acid amplification methods are rapidly replacing traditional culture methods, their scope has been restricted mainly to detect genotypic determinants of resistance and provide little to no information on phenotypic susceptibility to antibiotics. The work presented here aims to provide phenotypic antimicrobial susceptibility testing (AST) information by pairing short growth periods (~3-4 h) with downstream PCR assays to ultimately predict minimum inhibitory concentration (MIC) values of antibiotic treatment. To further simplify the dual workflows of the AST and PCR assays, these reactions are carried out in a single-vessel format (PCR tube) using novel lyophilized reagent beads (LRBs), which store dried PCR reagents along with primers and enzymes, and antibiotic drugs separately. The two reactions are separated in space and time using a melting paraffin wax seal, thus eliminating the need to transfer reagents across different consumables and minimizing user interactions. Finally, these two-step single-vessel reactions are multiplexed by using a microfluidic manifold that allows simultaneous testing of an unknown bacterial sample against different antibiotics at varying concentrations. The LRBs used in the microfluidic system showed no interference with the bacterial growth and PCR assays and provided an innovative platform for rapid point-of-care diagnostics (POC-Dx).
Collapse
Affiliation(s)
| | - Wei Gao
- GE Global Research, Niskayuna, NY 12309, USA (G.G.); (S.P.); (R.L.)
| | - Brian Bales
- GE Global Research, Niskayuna, NY 12309, USA (G.G.); (S.P.); (R.L.)
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (K.H.); (D.J.M.P.); (C.O.); (T.-H.W.)
| | - Greg Grossmann
- GE Global Research, Niskayuna, NY 12309, USA (G.G.); (S.P.); (R.L.)
| | - Dong Jin M. Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (K.H.); (D.J.M.P.); (C.O.); (T.-H.W.)
| | - Christine O’Keefe
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (K.H.); (D.J.M.P.); (C.O.); (T.-H.W.)
| | | | - Sara Peterson
- GE Global Research, Niskayuna, NY 12309, USA (G.G.); (S.P.); (R.L.)
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (F.-E.C.); (A.T.)
| | - Ralf Lenigk
- GE Global Research, Niskayuna, NY 12309, USA (G.G.); (S.P.); (R.L.)
| | - Alex Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (F.-E.C.); (A.T.)
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (K.H.); (D.J.M.P.); (C.O.); (T.-H.W.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (F.-E.C.); (A.T.)
| | | |
Collapse
|
14
|
Phillips LT, Witney AA, Furegato M, Laing KG, Zhou L, Sadiq ST. Time Required for Nanopore Whole-Genome Sequencing of Neisseria gonorrhoeae for Identification of Phylogenetic Relationships. J Infect Dis 2023; 228:1179-1188. [PMID: 37216766 PMCID: PMC10629711 DOI: 10.1093/infdis/jiad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health challenge. Limitations to AMR surveillance reporting, alongside reduction in culture-based susceptibility testing, has resulted in a need for rapid diagnostics and strain detection. We investigated Nanopore sequencing time, and depth, to accurately identify closely related N. gonorrhoeae isolates, compared to Illumina sequencing. METHODS N. gonorrhoeae strains collected from a London sexual health clinic were cultured and sequenced with MiSeq and MinION sequencing platforms. Accuracy was determined by comparing variant calls at 68 nucleotide positions (37 resistance-associated markers). Accuracy at varying MinION sequencing depths was determined through retrospective time-stamped read analysis. RESULTS Of 22 MinION-MiSeq pairs reaching sufficient sequencing depth, agreement of variant call positions passing quality control criteria was 185/185 (100%; 95% confidence interval [CI], 98.0%-100.0%), 502/503 (99.8%; 95% CI, 98.9%-99.9%), and 564/565 (99.8%; 95% CI, 99.0%-100.0%) at 10x, 30x, and 40x MinION depth, respectively. Isolates identified as closely related by MiSeq, within one yearly evolutionary distance of ≤5 single nucleotide polymorphisms, were accurately identified via MinION. CONCLUSIONS Nanopore sequencing shows utility as a rapid surveillance tool, identifying closely related N. gonorrhoeae strains, with just 10x sequencing depth, taking a median time of 29 minutes. This highlights its potential for tracking local transmission and AMR markers.
Collapse
Affiliation(s)
- Laura T Phillips
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Martina Furegato
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Ken G Laing
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Liqing Zhou
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - S Tariq Sadiq
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
- Infection Clinical Academic Group, St George's University Hospitals NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Politza AJ, Liu T, Guan W. Programmable magnetic robot (ProMagBot) for automated nucleic acid extraction at the point of need. LAB ON A CHIP 2023; 23:3882-3892. [PMID: 37551930 PMCID: PMC11218199 DOI: 10.1039/d3lc00545c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Upstream sample preparation remains the bottleneck for point-of-need nucleic acid testing due to its complexity and time-consuming nature. Sample preparation involves extracting, purifying, and concentrating nucleic acids from various matrices. These processes are critical for ensuring the accuracy and sensitivity of downstream nucleic acid amplification and detection. However, current sample preparation methods are often laboratory-based, requiring specialized equipment, trained personnel, and several hours of processing time. As a result, sample preparation often limits the speed, portability, and cost-effectiveness of point-of-need nucleic acid testing. A universal, field-deployable sample preparation device is highly desirable for this critical need and unmet challenge. Here we reported a handheld, battery-powered, reconfigurable, and field-deployable nucleic acid sample preparation device. A programmable electromagnetic actuator was developed to drive a magnetic robot (ProMagBot) in X/Y 2D space, such that various magnetic bead-based sample preparations can be readily translated from the laboratory to point-of-need settings. The control of the electromagnetic actuator requires only a 3-phase unipolar voltage in X and Y directions, and therefore, the motion space is highly scalable. We validated the ProMagBot device with a model application by extracting HIV viral RNAs from plasma samples using two widely used magnetic bead kits: ChargeSwitch and MagMAX beads. In both cases, the ProMagBot could successfully extract viral RNAs from 50 μL plasma samples containing as low as 102 copies of viral RNAs in 20 minutes. Our results demonstrated the ability of ProMagBot to prepare samples from complex mediums at the point of need. We believe such a device would enable rapid and robust sample preparation in various settings, including resource-limited or remote environments, and accelerate the development of next-generation point-of-need nucleic acid testing.
Collapse
Affiliation(s)
- Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
16
|
Sofia de Olazarra A, Chen FE, Wang TH, Wang SX. Rapid, Point-of-Care Host-Based Gene Expression Diagnostics Using Giant Magnetoresistive Biosensors. ACS Sens 2023; 8:2780-2790. [PMID: 37368357 DOI: 10.1021/acssensors.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Host-based gene expression analysis is a promising tool for a broad range of clinical applications, including rapid infectious disease diagnostics and real-time disease monitoring. However, the complex instrumentation requirements and slow turnaround-times associated with traditional gene expression analysis methods have hampered their widespread adoption at the point-of-care (POC). To overcome these challenges, we have developed an automated and portable platform that utilizes polymerase chain reaction (PCR) and giant magnetoresistive (GMR) biosensors to perform rapid multiplexed, targeted gene expression analysis at the POC. As proof-of-concept, we utilized our platform to amplify and measure the expression of four genes (HERC5, HERC6, IFI27, and IFIH1) that were previously shown to be upregulated in hosts infected with influenza viruses. The compact instrument conducted highly automated PCR amplification and GMR detection to measure the expression of the four genes in multiplex, then utilized Bluetooth communication to relay results to users on a smartphone application. To validate the platform, we tested 20 cDNA samples from symptomatic patients that had been previously diagnosed as either influenza-positive or influenza-negative using a RT-PCR virology panel. A non-parametric Mann-Whitney test revealed that day 0 (day of symptom onset) gene expression was significantly different between the two groups (p < 0.0001, n = 20). Hence, we preliminarily demonstrated that our platform could accurately discriminate between symptomatic influenza and non-influenza populations based on host gene expression in ∼30 min. This study not only establishes the potential clinical utility of our proposed assay and device for influenza diagnostics but it also paves the way for broadscale and decentralized implementation of host-based gene expression diagnostics at the POC.
Collapse
Affiliation(s)
- Ana Sofia de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94035, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, California 94035, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Manabe YC. The impact of COVID-19 pandemic on technologic and process innovation in point-of-care diagnostics for sexually transmitted infections. Clin Biochem 2023; 117:75-83. [PMID: 34808115 PMCID: PMC8604101 DOI: 10.1016/j.clinbiochem.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
The STI diagnostic landscape of FDA cleared tests for use at point-of-care (POC), as well as those emergency use authorized for COVID-19 are reviewed; some of these COVID-19 diagnostics may have platform potential as STI diagnostics. Finally, process innovation is described with self-collection and hub-and-spoke mail-in to reference lab models. Movement of Clinical Laboratory Improvement Amendments (CLIA)-waived POC tests to over-the-counter formats will make tests more accessible to consumers. Together with public health messaging, these measures could accelerate STI and COVID-19 syndemic diagnostic solutions.
Collapse
Affiliation(s)
- Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Riegler AN, Larsen N, Amerson-Brown MH. Point-of-Care Testing for Sexually Transmitted Infections. Clin Lab Med 2023; 43:189-207. [PMID: 37169442 DOI: 10.1016/j.cll.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Point-of-care testing for sexually transmitted infections is essential for controlling transmission and preventing sequelae in high-risk populations. Since the World Health Organization published the ASSURED criteria, point-of-care testing has improved for use in large population screening and rapid testing that prevents loss of clinical follow-up. Recent advancements have been advantageous for low-resource areas allowing testing at a minimal cost without reliable electricity or refrigeration. Point-of-care nucleic acid detection and amplification techniques are recommended, but are often inaccessible in low-resource areas. Future advancements in point-of-care diagnostic testing should focus on improving antibody-based assays, monitoring viral loads, and detecting antimicrobial resistance.
Collapse
Affiliation(s)
- Ashleigh N Riegler
- Department of Pathology, The University of Alabama at Birmingham, Marnix E. Heersink School of Medicine, 619 East 19th Street South, WP240J, Birmingham, AL 35249-7331, USA
| | - Natalie Larsen
- Department of Pathology, The University of Alabama at Birmingham, Marnix E. Heersink School of Medicine, 619 East 19th Street South, WP240J, Birmingham, AL 35249-7331, USA
| | - Megan H Amerson-Brown
- Department of Pathology, The University of Alabama at Birmingham, Marnix E. Heersink School of Medicine, 619 East 19th Street South, WP240J, Birmingham, AL 35249-7331, USA.
| |
Collapse
|
19
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Chen FE, Wang J, Nambiar AH, Hardick J, Melendez J, Trick AY, Wang TH. Point-of-Care Amenable Detection of Mycoplasma genitalium and Its Antibiotic Resistance Mutations. ACS Sens 2023; 8:1550-1557. [PMID: 36961769 PMCID: PMC11257175 DOI: 10.1021/acssensors.2c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Mycoplasma genitalium (MG) is an emerging sexually transmitted bacterium. Due to its fastidious and slow-growing nature, MG is difficult to detect through culture-based diagnostics. Like Neisseria gonorrheae, another bacterial pathogen linked to sexually transmitted infections (STIs), MG has developed resistance to macrolide and fluoroquinolone antibiotics used to treat STIs. The ability to detect MG and identify genomic mutations associated with antibiotic resistance simultaneously can enable antibiotic stewardship and mitigate the spread of antibiotic-resistant MG. Toward this end, we first developed a multiplexed probe-based PCR-melt assay that detects MG and the presence of macrolide resistance mutations in the 23S rRNA gene and fluoroquinolone resistance mutations in the parC gene. Each target was identified via its unique combination of fluorescence label and melting temperature. This approach allowed differentiation between the different types of mutations at the genes of interest. Following initial assay optimization, the assay was integrated into a droplet magnetofluidic cartridge used in a portable platform to integrate automated sample extraction, PCR amplification, and detection. Lastly, we demonstrated that the integrated assay and droplet magnetofluidic platform could detect MG and antibiotic resistance-associated mutations in clinical isolates spiked into urine samples in 40 min.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jonathan Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anju Haridas Nambiar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Justin Hardick
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Johan Melendez
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
21
|
Wilner OI, Yesodi D, Weizmann Y. Point-of-care nucleic acid tests: assays and devices. NANOSCALE 2023; 15:942-952. [PMID: 36515009 DOI: 10.1039/d2nr05385c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic (caused by the SARS_CoV_2 virus) has emphasized the need for quick, easy-to-operate, reliable, and affordable diagnostic tests and devices at the Point-of-Care (POC) for homes/fields/clinics. Such tests and devices will contribute significantly to the fight against the COVID-19 pandemic and any future infectious disease epidemic. Often, academic research studies and those from industry lack knowledge of each other's developments. Here, we introduced DNA Polymerase Chain Reaction (PCR) and isothermal amplification reactions and reviewed the current commercially available POC nucleic acid diagnostic devices. In addition, we reviewed the history and the recent advancements in an effort to develop reliable, quick, portable, cost-effective, and automatic point-of-care nucleic acid diagnostic devices, from sample to result. The purpose of this paper is to bridge the gap between academia and industry and to share important knowledge on this subject.
Collapse
Affiliation(s)
- Ofer I Wilner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
22
|
Ngo HT, Jin M, Trick AY, Chen FE, Chen L, Hsieh K, Wang TH. Sensitive and Quantitative Point-of-Care HIV Viral Load Quantification from Blood Using a Power-Free Plasma Separation and Portable Magnetofluidic Polymerase Chain Reaction Instrument. Anal Chem 2023; 95:1159-1168. [PMID: 36562405 PMCID: PMC11250783 DOI: 10.1021/acs.analchem.2c03897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Point-of-care (POC) HIV viral load (VL) tests are needed to enhance access to HIV VL testing in low- and middle-income countries (LMICs) and to enable HIV VL self-testing at home, which in turn have the potential to enhance the global management of the disease. While methods based on real-time reverse transcription-polymerase chain reaction (RT-PCR) are highly sensitive and quantitatively accurate, they often require bulky and expensive instruments, making applications at the POC challenging. On the other hand, although methods based on isothermal amplification techniques could be performed using low-cost instruments, they have shown limited quantitative accuracies, i.e., being only semiquantitative. Herein, we present a sensitive and quantitative POC HIV VL quantification method from blood that can be performed using a small power-free three-dimensional-printed plasma separation device and a portable, low-cost magnetofluidic real-time RT-PCR instrument. The plasma separation device, which is composed of a plasma separation membrane and an absorbent material, demonstrated 96% plasma separation efficiency per 100 μL of whole blood. The plasma solution was then processed in a magnetofluidic cartridge for automated HIV RNA extraction and quantification using the portable instrument, which completed 50 cycles of PCR in 15 min. Using the method, we achieved a limit of detection of 500 HIV RNA copies/mL, which is below the World Health Organization's virological failure threshold, and a good quantitative accuracy. The method has the potential for sensitive and quantitative HIV VL testing at the POC and at home self-testing.
Collapse
Affiliation(s)
- Hoan T Ngo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Although Cryptosporidium detection and typing techniques have improved dramatically in recent years, relatively little research has been conducted on point of care (POC) detection and typing tools. Therefore, the main purpose of the present review is to summarize and evaluate recent and emerging POC diagnostic methods for Cryptosporidium spp. RECENT FINDINGS Microscopy techniques such as light-emitting diode fluorescence microscopy with auramine-phenol staining (LED-AP), still have utility for (POC) diagnostics but require fluorescent microscopes and along with immunological-based techniques, suffer from lack of specificity and sensitivity. Molecular detection and typing tools offer higher sensitivity, specificity and speciation, but are currently too expensive for routine POC diagnostics. Isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) including a commercially available LAMP kit have been developed for Cryptosporidium but are prone to false positives. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas diagnostic technologies (CRISPRDx) have recently been combined with isothermal amplification to increase its specificity and sensitivity for detection and typing. Other emerging technologies including amplification-free CRISPR detection methods are currently being developed for Cryptosporidium using a smartphone to read the results. SUMMARY Many challenges are still exist in the development of POC diagnostics for Cryptosporidium. The ideal POC tool would be able to concentrate the pathogen prior to detection and typing, which is complicated and research in this area is still very limited. In the short-term, CRISPR-powered isothermal amplification lateral flow tools offer the best opportunity for POC Cryptosporidium species and subtype detection, with a fully integrated autonomous biosensor for the long-term goal.
Collapse
|
24
|
Euliano EM, Sklavounos AA, Wheeler AR, McHugh KJ. Translating diagnostics and drug delivery technologies to low-resource settings. Sci Transl Med 2022; 14:eabm1732. [PMID: 36223447 PMCID: PMC9716722 DOI: 10.1126/scitranslmed.abm1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diagnostics and drug delivery technologies engineered for low-resource settings aim to meet their technical design specifications using strategies that are compatible with limited equipment, infrastructure, and operator training. Despite many preclinical successes, very few of these devices have been translated to the clinic. Here, we identify factors that contribute to the clinical success of diagnostics and drug delivery systems for low-resource settings, including the need to engage key stakeholders at an early stage, and provide recommendations for the clinical translation of future medical technologies.
Collapse
Affiliation(s)
- Erin M. Euliano
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| | - Alexandros A. Sklavounos
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto; Toronto, Ontario M5S 3G9, Canada
| | - Kevin J. McHugh
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| |
Collapse
|
25
|
Kaushal S, Shrivastava S, Yun YR, Park Y, Thanh-Qui Nguyen T, Meeseepong M, Lee E, Jeon B, Gu MB, Yang S, Lee NE. Culture-Free Quantification of Bacteria Using Digital Fluorescence Imaging in a Tunable Magnetic Capturing Cartridge for Onsite Food Testing. ACS Sens 2022; 7:2188-2197. [PMID: 35930745 DOI: 10.1021/acssensors.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate, onsite detection of pathogenic bacteria from food matrices is required to rapidly respond to pathogen outbreaks. However, accurately detecting whole-cell bacteria in large sample volumes without an enrichment step remains a challenge. Therefore, bacterial samples must be concentrated, identified, and quantified. We developed a tunable magnetic capturing cartridge (TMCC) and combined it with a portable digital fluorescence reader for quick, onsite, quantitative detection of Staphylococcus aureus. The TMCC platform integrates an absorption pad impregnated with water-soluble polyvinyl alcohol (PVA) with an injection-molded polycarbonate (PC) plate that has a hard magnet on its back and an acrylonitrile-butadiene-styrene case. An S. aureus-specific antibody conjugated with magnetic nanoparticles was used to concentrate bacteria from a large-volume sample and capture bacteria within the TMCC. The retention time for capturing bacteria on the TMCC was adjusted by controlling the concentration and volume of the PVA solution. Concentrated bacterial samples bound to target-specific aptamer probes conjugated with quantum dots were loaded into the TMCC for a controlled time, followed by attachment of the bacteria to the PC plate and removal of unbound aptamer probes with wash buffer. The captured bacteria were quantified using a digital fluorescence reader equipped with an embedded program that automatically counts fluorescently tagged bacteria. The bacterial count made using the TMCC was comparable to a standard plate count (R2 = 0.9898), with assay sensitivity and specificity of 94.3 and 100%, respectively.
Collapse
Affiliation(s)
- Sandeep Kaushal
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Younghyeon Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Korea
| | - Thi Thanh-Qui Nguyen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Eunghyuk Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Byeungwoo Jeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,School of Mechanical Engineering, GIST, Gwangju 610005, Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
26
|
Chen FE, Trick AY, Hasnain AC, Hsieh K, Chen L, Shin DJ, Wang TH. Ratiometric PCR in a Portable Sample-to-Result Device for Broad-Based Pathogen Identification. Anal Chem 2022; 94:9372-9379. [PMID: 35730588 DOI: 10.1021/acs.analchem.2c01357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction (PCR)-based diagnostic testing is the gold standard method for pathogen identification (ID) with recent developments enabling automated PCR tests for point-of-care (POC) use. However, multiplexed identification of several pathogens in PCR assays typically requires optics for an equivalent number of fluorescence channels, increasing instrumentation's complexity and cost. In this study, we first developed ratiometric PCR that surpassed one target per color barrier to allow multiplexed identification while minimizing optical components for affordable POC use. We realized it by amplifying pathogenic targets with fluorescently labeled hydrolysis probes with a specific ratio of red-to-green fluorophores for each bacterial species. We then coupled ratiometric PCR and automated magnetic beads-based sample preparation within a thermoplastic cartridge and a portable droplet magnetofluidic platform. We named the integrated workflow POC-ratioPCR. We demonstrated that the POC-ratioPCR could detect one out of six bacterial targets related to urinary tract infections (UTIs) in a single reaction using only two-color channels. We further evaluated POC-ratioPCR using mock bacterial urine samples spiked with good agreement. The POC-ratioPCR presents a simple and effective method for enabling broad-based POC PCR identification of pathogens directly from crude biosamples with low optical instrumentation complexity.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dong Jin Shin
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
27
|
Feng L, Wu H, Yue H, Chu Y, Zhang J, Huang X, Pang S, Zhang L, Li Y, Wang W, Zou B, Zhou G. Multiplexed and Rapid AST for Escherichia coli Infection by Simultaneously Pyrosequencing Multiple Barcodes Each Specific to an Antibiotic Exposed to a Sample. Anal Chem 2022; 94:8633-8641. [PMID: 35675678 DOI: 10.1021/acs.analchem.2c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial susceptibility testing (AST) is an effective way to guide antibiotic selection. However, conventional culture-based phenotypic AST is time-consuming. The key point to shorten the test is to quantify the small change in the bacterial number after the antibiotic exposure. To achieve rapid AST, we proposed a combination of multiplexed PCR with barcoded pyrosequencing to significantly shorten the time for antibiotic exposure. First, bacteria exposed to each antibiotic were labeled with a unique barcode. Then, the pool of the barcoded products was amplified by PCR with a universal primer pair. Finally, barcodes in the amplicons were individually and quantitatively decoded by pyrosequencing. As pyrosequencing is able to discriminate as low as 5% variation in target concentrations, as short as 7.5 min was enough for cultivation to detect the susceptibility of Escherichia coli to an antibiotic. The barcodes enable more than six kinds of drugs or six kinds of concentrations of a drug to be tested at a time. The susceptibility of 6 antibiotics to 43 E. coli-positive samples from 482 clinical urine samples showed a consistency of 99.3% for drug-resistant samples and of 95.7% for drug-sensitive samples in comparison with the conventional method. In addition, the minimum inhibitory concentration (MIC) of 29 E. coli samples was successfully measured. The proposed AST is dye free (pyrosequencing), multiplexed (six antibiotics), fast (a half-working day for reporting the results), and able to detect the MIC, thus having a great potential for clinical use in quick antibiotic selection.
Collapse
Affiliation(s)
- Liying Feng
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Huijie Yue
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Likun Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Shen H, Chen X, Zeng L, Xu X, Tao Y, Kang S, Lu Y, Lian M, Yang C, Zhu Z. Magnetofluid-Integrated Multicolor Immunochip for Visual Analysis of Neutralizing Antibodies to SARS-CoV-2 Variants. Anal Chem 2022; 94:8458-8465. [PMID: 35658117 PMCID: PMC9211038 DOI: 10.1021/acs.analchem.2c01260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The global spread of SARS-CoV-2 virus has severely affected human health, life, and work. Vaccine immunization is considered to be an effective means to protect the body from infection. Therefore, timely analysis of the antibody level is helpful to identify people with low immune response or attenuated antibodies so as to carry out targeted and precise vaccine booster immunization. Herein, we develop a magnetofluid-integrated multicolor immunochip, as a sample-to-answer system in a fully enclosed space, for visual analysis of neutralizing antibodies of SARS-CoV-2. Generally, this chip adopts an innovative three-dimensional two-phase system that utilizes mineral oil to block the connection between reagent wells in the vertical direction and provides a wide interface for rapid and nondestructive shuttle of magnetic beads during the immunoassay. In order to obtain visualized signal output, gold nanorods with a size-dependent color effect are used as the colorful chromogenic substrates for evaluation of the antibody level. Using this chip, the neutralizing antibodies were successfully detected in vaccine-immunized volunteers with 83.3% sensitivity and 100% specificity. Furthermore, changes in antibody levels of the same individual over time were also reflected by the multicolor assay. Overall, benefiting from simple operation, airtight safety, and nonrequirement of external equipment, this platform can provide a new point-of-care testing strategy for alleviating the shortage of medical resources and promoting epidemic control in underdeveloped areas.
Collapse
Affiliation(s)
- Haicong Shen
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinying Chen
- Clinical
Laboratory, Xiamen University Hospital, Xiamen 361005, China
| | - Liuqing Zeng
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingzhou Tao
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siyin Kang
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yinzhu Lu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingjian Lian
- Clinical
Laboratory, The First Affiliated Hospital
of Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute
of Molecular Medicine, Department of Gastrointestinal Surgery, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University Shanghai, Shanghai 200127, China
| | - Zhi Zhu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
29
|
Trick AY, Chen F, Chen L, Lee P, Hasnain AC, Mostafa HH, Carroll KC, Wang T. Point-of-Care Platform for Rapid Multiplexed Detection of SARS-CoV-2 Variants and Respiratory Pathogens. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101013. [PMID: 35441089 PMCID: PMC9011450 DOI: 10.1002/admt.202101013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/20/2021] [Indexed: 05/25/2023]
Abstract
The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.
Collapse
Affiliation(s)
- Alexander Y. Trick
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Fan‐En Chen
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Liben Chen
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Pei‐Wei Lee
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | | | - Heba H. Mostafa
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Karen C. Carroll
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Tza‐Huei Wang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Institute for NanoBiotechnologyJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
30
|
de Olazarra AS, Cortade DL, Wang SX. From saliva to SNP: non-invasive, point-of-care genotyping for precision medicine applications using recombinase polymerase amplification and giant magnetoresistive nanosensors. LAB ON A CHIP 2022; 22:2131-2144. [PMID: 35537344 PMCID: PMC9156572 DOI: 10.1039/d2lc00233g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Genetic testing is considered a cornerstone of the precision medicine paradigm. Genotyping of single nucleotide polymorphisms (SNPs) has been shown to provide insights into several important issues, including therapy selection and drug responsiveness. However, a scarcity of widely deployable and cost-effective genotyping tools has limited the integration of precision medicine into routine clinical practice. The objective of our work was to develop a portable, cost-effective, and automated platform that performs SNP genotyping at the point-of-care (POC). Using recombinase polymerase amplification (RPA) and giant magnetoresistive (GMR) nanosensors, we present a highly automated and multiplexed point-of-care platform that utilizes direct saliva for the qualitative genotyping of four SNPs (rs4633, rs4680, rs4818, rs6269) along the catechol-O-methyltransferase gene (COMT), which is associated with the modulation of pain sensitivity and perioperative opioid use. Using this approach, we successfully amplify, detect, and genotype all four of the SNPs, demonstrating 100% accordance between the experimental results obtained using the automated RPA and GMR genotyping assay and the results obtained using a COMT PCR genotyping assay that was formerly validated using pyrosequencing. This automated, portable, and multiplexed RPA and GMR assay shows great promise as a solution for SNP genotyping at the POC and reinforces the broad applications of magnetic nanotechnology in biomedicine.
Collapse
Affiliation(s)
| | - Dana Lee Cortade
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Melendez JH, Hardick J, Onzia A, Yu T, Kyambadde P, Parkes-Ratanshi R, Nakku-Joloba E, Kiragga A, Manabe YC, Hamill MM. Retrospective Analysis of Ugandan Men with Urethritis Reveals Mycoplasma genitalium and Associated Macrolide Resistance. Microbiol Spectr 2022; 10:e0230421. [PMID: 35412392 PMCID: PMC9045240 DOI: 10.1128/spectrum.02304-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
The rising rates of antimicrobial resistance (AMR) in Mycoplasma genitalium globally and the association of this sexually transmitted infection (STI) with cervicitis, urethritis, and HIV are potentially of great public health concern. Data on the epidemiology of M. genitalium in men in sub-Saharan Africa are limited. We sought to determine the prevalence of M. genitalium and macrolide resistance in men with urethritis in Kampala, Uganda. Self-collected penile-meatal swabs and/or urine samples from men with symptomatic urethritis (n = 250) were retrospectively analyzed for the presence of M. genitalium and macrolide resistance markers with the Aptima M. genitalium and ResistancePlus M. genitalium assays. Additionally, demographic and STI coinfection data were used to investigate associations with M. genitalium infection. M. genitalium was detected in 12.8% (32/250) of individuals; 40.6% (n = 13) had M. genitalium monoinfection. Mutations associated with macrolide resistance were detected in 10.7% (3/28) of participants. Coinfection with Neisseria gonorrhoeae was common (41.0%), but M. genitalium was more prevalent in participants without N. gonorrhoeae coinfection (P = 0.001). M. genitalium is common in Ugandan men with urethritis both as a monoinfection and as a coinfection with other curable STIs. Macrolide resistance was present and warrants further research on treatment outcomes and the association between untreated M. genitalium and subsequent morbidity. IMPORTANCE Mycoplasma genitalium is a common sexually transmitted infection associated with urethritis in men. Little is known about M. genitalium infection in men with urethritis in Uganda. We report that 12% of participants in this study were positive for M. genitalium and that resistance to azithromycin, a macrolide antibiotic, is present. Furthermore, we show that either self-collected penile-meatal swabs or urine can be used for detection of M. genitalium.
Collapse
Affiliation(s)
- Johan H. Melendez
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Justin Hardick
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Annet Onzia
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Tong Yu
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Peter Kyambadde
- Ministry of Health, National Sexually Transmitted Infections Control Program, Kampala, Uganda
| | | | - Edith Nakku-Joloba
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Agnes Kiragga
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Yukari C. Manabe
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew M. Hamill
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Smart toilets for monitoring COVID-19 surges: passive diagnostics and public health. NPJ Digit Med 2022; 5:39. [PMID: 35354937 PMCID: PMC8967843 DOI: 10.1038/s41746-022-00582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
|
33
|
Lee PW, Totten M, Chen L, Chen FE, Trick AY, Shah K, Ngo HT, Jin M, Hsieh K, Zhang SX, Wang TH. A Portable Droplet Magnetofluidic Device for Point-of-Care Detection of Multidrug-Resistant Candida auris. Front Bioeng Biotechnol 2022; 10:826694. [PMID: 35425764 PMCID: PMC9003015 DOI: 10.3389/fbioe.2022.826694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that can cause severe and deadly infections. To date, C. auris has spurred outbreaks in healthcare settings in thirty-three countries across five continents. To control and potentially prevent its spread, there is an urgent need for point-of-care (POC) diagnostics that can rapidly screen patients, close patient contacts, and surveil environmental sources. Droplet magnetofluidics (DM), which leverages nucleic acid-binding magnetic beads for realizing POC-amenable nucleic acid detection platforms, offers a promising solution. Herein, we report the first DM device—coined POC.auris—for POC detection of C. auris. As part of POC.auris, we have incorporated a handheld cell lysis module that lyses C. auris cells with 2 min hands-on time. Subsequently, within the palm-sized and automated DM device, C. auris and control DNA are magnetically extracted and purified by a motorized magnetic arm and finally amplified via a duplex real-time quantitative PCR assay by a miniaturized rapid PCR module and a miniaturized fluorescence detector—all in ≤30 min. For demonstration, we use POC.auris to detect C. auris isolates from 3 major clades, with no cross reactivity against other Candida species and a limit of detection of ∼300 colony forming units per mL. Taken together, POC.auris presents a potentially useful tool for combating C. auris.
Collapse
Affiliation(s)
- Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Marissa Totten
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Y. Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kushagra Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Hoan Thanh Ngo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kuangwen Hsieh, ; Sean X. Zhang, ; Tza-Huei Wang,
| | - Sean X. Zhang
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Correspondence: Kuangwen Hsieh, ; Sean X. Zhang, ; Tza-Huei Wang,
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kuangwen Hsieh, ; Sean X. Zhang, ; Tza-Huei Wang,
| |
Collapse
|
34
|
Trick AY, Ngo HT, Nambiar AH, Morakis MM, Chen FE, Chen L, Hsieh K, Wang TH. Filtration-assisted magnetofluidic cartridge platform for HIV RNA detection from blood. LAB ON A CHIP 2022; 22:945-953. [PMID: 35088790 PMCID: PMC9035341 DOI: 10.1039/d1lc00820j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to detect and quantify HIV RNA in blood is essential to sensitive detection of infections and monitoring viremia throughout treatment. Current options for point-of-care HIV diagnosis (i.e. lateral flow rapid tests) lack sensitivity for early detection and are unable to quantify viral load. HIV RNA diagnostics typically require extensive pre-processing of blood to isolate plasma and extract nucleic acids, in addition to expensive equipment for conducting nucleic acid amplification and fluorescence detection. Therefore, molecular HIV diagnostics is still mainly limited to clinical laboratories and there is an unmet need for high sensitivity point-of-care screening and at-home HIV viral load quantification. In this work, we outline a streamlined workflow for extraction of plasma from whole blood coupled with HIV RNA extraction and quantitative polymerase chain reaction (qPCR) in a portable magnetofluidic cartridge platform for use at the point-of-care. Viral particles were isolated from blood using manual filtration through a 3D-printed filter module in seconds followed by automated nucleic acid capture, purification, and transfer to qPCR using magnetic beads. Both nucleic acid extraction and qPCR were integrated within cartridges using compact instrumentation consisting of a motorized magnet arm, miniaturized thermocycler, and image-based fluorescence detection. We demonstrated detection down to 1000 copies of HIV viral particles from whole blood in <30 minutes.
Collapse
Affiliation(s)
- Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Hoan Thanh Ngo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anju H Nambiar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Marisa M Morakis
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
36
|
Zhang P, Chen L, Hu J, Trick AY, Chen FE, Hsieh K, Zhao Y, Coleman B, Kruczynski K, Pisanic TR, Heaney CD, Clarke WA, Wang TH. Magnetofluidic immuno-PCR for point-of-care COVID-19 serological testing. Biosens Bioelectron 2022; 195:113656. [PMID: 34600203 PMCID: PMC8458161 DOI: 10.1016/j.bios.2021.113656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 01/18/2023]
Abstract
Serological tests play an important role in the fight against Coronavirus Disease 2019 (COVID-19), including monitoring the dynamic immune response after vaccination, identifying past infection and determining community infection rate. Conventional methods for serological testing, such as enzyme-linked immunosorbent assays and chemiluminescence immunoassays, provide reliable and sensitive antibody detection but require sophisticated laboratory infrastructure and/or lengthy assay time. Conversely, lateral flow immunoassays are suitable for rapid point-of-care tests but have limited sensitivity. Here, we describe the development of a rapid and sensitive magnetofluidic immuno-PCR platform that can address the current gap in point-of-care serological testing for COVID-19. Our magnetofluidic immuno-PCR platform automates a magnetic bead-based, single-binding, and one-wash immuno-PCR assay in a palm-sized magnetofluidic device and delivers results in ∼30 min. In the device, a programmable magnetic arm attracts and transports magnetically-captured antibodies through assay reagents pre-loaded in a companion plastic cartridge, and a miniaturized thermocycler and a fluorescence detector perform immuno-PCR to detect the antibodies. We evaluated our magnetofluidic immuno-PCR with 108 clinical serum/plasma samples and achieved 93.8% (45/48) sensitivity and 98.3% (59/60) specificity, demonstrating its potential as a rapid and sensitive point-of-care serological test for COVID-19.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jiumei Hu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Branch Coleman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kate Kruczynski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Thomas R Pisanic
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - William A Clarke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
37
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
38
|
Chen FE, Lee PW, Trick AY, Park JS, Chen L, Shah K, Mostafa H, Carroll KC, Hsieh K, Wang TH. Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device. Biosens Bioelectron 2021; 190:113390. [PMID: 34171821 PMCID: PMC8170879 DOI: 10.1016/j.bios.2021.113390] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
In the fight against COVID-19, there remains an unmet need for point-of-care (POC) diagnostic testing tools that can rapidly and sensitively detect the causative SARS-CoV-2 virus to control disease transmission and improve patient management. Emerging CRISPR-Cas-assisted SARS-CoV-2 detection assays are viewed as transformative solutions for POC diagnostic testing, but their lack of streamlined sample preparation and full integration within an automated and portable device hamper their potential for POC use. We report herein POC-CRISPR - a single-step CRISPR-Cas-assisted assay that incoporates sample preparation with minimal manual operation via facile magnetic-based nucleic acid concentration and transport. Moreover, POC-CRISPR has been adapted into a compact thermoplastic cartridge within a palm-sized yet fully-integrated and automated device. During analytical evaluation, POC-CRISPR was able detect 1 genome equivalent/μL SARS-CoV-2 RNA from a sample volume of 100 μL in < 30 min. When evaluated with 27 unprocessed clinical nasopharyngeal swab eluates that were pre-typed by standard RT-qPCR (Cq values ranged from 18.3 to 30.2 for the positive samples), POC-CRISPR achieved 27 out of 27 concordance and could detect positive samples with high SARS-CoV-2 loads (Cq < 25) in 20 min.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joon Soo Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kushagra Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Heba Mostafa
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
39
|
Chen L, Wen K, Chen FE, Trick AY, Liu H, Shao S, Yu W, Hsieh K, Wang Z, Shen J, Wang TH. Portable Magnetofluidic Device for Point-of-Need Detection of African Swine Fever. Anal Chem 2021; 93:10940-10946. [PMID: 34319068 DOI: 10.1021/acs.analchem.1c01814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With a nearly 100% mortality rate, African swine fever (ASF) has devastated the pork industry in many countries. Without a vaccine in sight, mitigation rests on rapid diagnosis and immediately depopulating infected or exposed animals. Unfortunately, current tests require centralized laboratories with well-trained personnel, take days to report the results, and thus do not meet the need for such rapid diagnosis. In response, we developed a portable, sample-to-answer device that allows for ASF detection at the point of need in <30 min. The device employs droplet magnetofluidics to automate DNA purification from blood, tissue, or swab samples and utilizes fast thermal cycling to perform real-time quantitative polymerase chain reaction (qPCR), all within an inexpensive disposable cartridge. We evaluated its diagnostic performance at six farms and slaughter facilities. The device exhibits high diagnostic accuracy with a positive percent agreement of 92.2% and a negative percent agreement of 93.6% compared with a lab-based reference qPCR test.
Collapse
Affiliation(s)
- Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hebin Liu
- Beijing Mingrida Science & Technology Development Co., Ltd., Beijing 100095, China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Stone L. A PROMPT response to STIs. Nat Rev Urol 2021; 18:384. [PMID: 34127836 DOI: 10.1038/s41585-021-00492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
|
42
|
Trick AY, Chen FE, Chen L, Lee PW, Hasnain AC, Mostafa HH, Carroll KC, Wang TH. Magnetofluidic platform for rapid multiplexed screening of SARS-CoV-2 variants and respiratory pathogens. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.10.21256995. [PMID: 34013284 PMCID: PMC8132258 DOI: 10.1101/2021.05.10.21256995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/µL SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates ( n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva ( n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.
Collapse
Affiliation(s)
- Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|