1
|
Almeida Júnior ASD, Freitas Viana Leal MM, Marques DSC, Silva ALD, Souza Bezerra RD, Siqueira de Souza YF, Mendonça Silveira ME, Santos FA, Alves LC, de Lima Aires A, Cruz Filho IJD, do Carmo Alves de Lima M. Therapeutic potential of hydantoin and thiohydantoin compounds against Schistosoma mansoni: An integrated in vitro, DNA, ultrastructural, and ADMET in silico approach. Mol Biochem Parasitol 2024; 260:111646. [PMID: 38950658 DOI: 10.1016/j.molbiopara.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
The study aimed to conduct in vitro biological assessments of hydantoin and thiohydantoin compounds against mature Schistosoma mansoni worms, evaluate their cytotoxic effects and predict their pharmacokinetic parameters using computational methods. The compounds showed low in vitro cytotoxicity and were not considered hemolytic. Antiparasitic activity against adult S. mansoni worms was tested with all compounds at concentrations ranging from 200 to 6.25 μM. Compounds SC01, SC02, and SC03 exhibited low activity. Compounds SC04, SC05, SC06 and SC07 caused 100 % mortality within 24 h of incubation at a concentration of 100 and 200 μM. Thiohydantoin SC04 exhibited the highest activity, resulting in 100 % mortality after 24 h of incubation at a concentration of 50 μM and IC50 of 28 µM. In the ultrastructural analysis (SEM), the compound SC04 (200 µM) induced integumentary changes, formation of integumentary blisters, and destruction of tubercles and spicules. Therefore, the SC04 compound shows promise as an antiparasitic against S. mansoni.
Collapse
Affiliation(s)
- Antônio Sérgio de Almeida Júnior
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Mayse Manuele Freitas Viana Leal
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil.
| | - Anekécia Lauro da Silva
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Rafael de Souza Bezerra
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Yandra Flaviana Siqueira de Souza
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Maria Eduardade Mendonça Silveira
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Fábio Ab Santos
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - Luiz Carlos Alves
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - André de Lima Aires
- Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| |
Collapse
|
2
|
Henthorn CR, McCusker P, Clec’h WL, Chevalier FD, Anderson TJ, Zamanian M, Chan JD. Transcriptional phenotype of the anti-parasitic benzodiazepine meclonazepam on the blood fluke Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620505. [PMID: 39554156 PMCID: PMC11565718 DOI: 10.1101/2024.10.29.620505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
There are limited control measures for the disease schistosomiasis, despite the fact that infection with parasitic blood flukes affects hundreds of millions of people worldwide. The current treatment, praziquantel, has been in use since the 1980's and there is a concern that drug resistance may emerge with continued monotherapy. Given the need for additional antischistosomal drugs, we have re-visited an old lead, meclonazepam. In comparison to praziquantel, there has been relatively little work on its antiparasitic mechanism. Recent findings indicate that praziquantel and meclonazepam act through distinct receptors, making benzodiazepines a promising chemical series for further exploration. Previous work has profiled the transcriptional changes evoked by praziquantel treatment. Here, we examine in detail schistosome phenotypes evoked by in vitro and in vivo meclonazepam treatment. These data confirm that meclonazepam causes extensive tegument damage and directly kills parasites, as measured by pro-apoptotic caspase activation. In vivo meclonazepam exposure results in differential expression of many genes that are divergent in parasitic flatworms, as well as several gene products implicated in blood feeding and regulation of hemostasis in other parasites. Many of these transcripts are also differentially expressed with praziquantel exposure, which may reflect a common schistosome response to the two drugs. However, despite these similarities in drug response, praziquantel-resistant parasites retain susceptibility to meclonazepam's schistocidal effects. These data provide new insight into the mechanism of antischistosomal benzodiazepines, resolving similarities and differences with the current frontline therapy, praziquantel.
Collapse
Affiliation(s)
- Clair R. Henthorn
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Winka Le Clec’h
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Frédéric D. Chevalier
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Global Health Institute, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
3
|
JUTZELER KS, PLATT RN, DIAZ R, MORALES M, LE CLEC’H W, CHEVALIER FD, ANDERSON TJ. Abundant genetic variation is retained in many laboratory schistosome populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619418. [PMID: 39484487 PMCID: PMC11526883 DOI: 10.1101/2024.10.21.619418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Schistosomes are obligately sexual blood flukes that can be maintained in the laboratory using freshwater snails as intermediate and rodents as definitive hosts. The genetic composition of laboratory schistosome populations is poorly understood: whether genetic variation has been purged due to serial inbreeding or retained is unclear. We sequenced 19 - 24 parasites from each of five laboratory Schistosoma mansoni populations and compared their genomes with published exome data from four S. mansoni field populations. We found abundant genomic variation (0.897 - 1.22 million variants) within laboratory populations: these retained on average 49% (π = 3.27e-04 - 8.94e-04) of the nucleotide diversity observed in the four field parasite populations (π = 1.08e-03 - 2.2e-03). However, the pattern of variation was very different in laboratory and field populations. Tajima's D was positive in all laboratory populations except SmBRE, indicative of recent population bottlenecks, but negative in all field populations. Current effective population size estimates of laboratory populations were lower (2 - 258) compared to field populations (3,174 - infinity). The distance between markers at which linkage disequilibrium (LD) decayed to 0.5 was longer in laboratory populations (59 bp - 180 kb) compared to field populations (9 bp - 9.5 kb). SmBRE was the least variable; this parasite also shows low fitness across the lifecycle, consistent with inbreeding depression. The abundant genetic variation present in most laboratory schistosome populations has several important implications: (i) measurement of parasite phenotypes, such as drug resistance, using laboratory parasite populations will determine average values and underestimate trait variation; (ii) genome-wide association studies (GWAS) can be conducted in laboratory schistosome populations by measuring phenotypes and genotypes of individual worms; (iii) genetic drift may lead to divergence in schistosome populations maintained in different laboratories. We conclude that the abundant genetic variation retained within many laboratory schistosome populations can provide valuable, untapped opportunities for schistosome research.
Collapse
Affiliation(s)
- Kathrin S. JUTZELER
- Host parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
- UT Health, Microbiology, Immunology & Molecular Genetics, San Antonio, TX 78229
| | - Roy N. PLATT
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Robbie DIAZ
- Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Madison MORALES
- Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Winka LE CLEC’H
- Host parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Frédéric D. CHEVALIER
- Host parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Timothy J.C. ANDERSON
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| |
Collapse
|
4
|
Ardini M, Aboagye SY, Petukhova VZ, Kastrati I, Ippoliti R, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. The "Doorstop Pocket" In Thioredoxin Reductases─An Unexpected Druggable Regulator of the Catalytic Machinery. J Med Chem 2024; 67:15947-15967. [PMID: 39250602 DOI: 10.1021/acs.jmedchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, 60153 Maywood, Illinois 60153, United States
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
5
|
Itoh K, Nakahara H, Takashino A, Hara A, Katsuno A, Abe Y, Mizuguchi T, Karaki F, Hirayama S, Nagai K, Seki R, Sato N, Okuyama K, Hashimoto M, Tokunaga K, Ishida H, Mikami F, Kwofie KD, Kawada H, Lin B, Nunomura K, Kanai T, Hatta T, Tsuji N, Haruta J, Fujii H. Anti-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis. RSC Med Chem 2024; 15:d4md00599f. [PMID: 39399310 PMCID: PMC11467761 DOI: 10.1039/d4md00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the anti-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of anti-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with N,N,N',N'-tetraalkyldiaminomethane in the presence of an IrIII complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent anti-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.
Collapse
Affiliation(s)
- Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Hiroki Nakahara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Atsushi Takashino
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Aya Hara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Akiho Katsuno
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Abe
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Reiko Seki
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Noriko Sato
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kazuki Okuyama
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Masashi Hashimoto
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University 2665-1 Nakano-machi Hachioji Tokyo 192-0015 Japan
| | - Hitoshi Ishida
- Graduate School of Science and Engineering, Department of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Kofi Dadzie Kwofie
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Hayato Kawada
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Bangzhong Lin
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Kazuto Nunomura
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Toshio Kanai
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Junichi Haruta
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
6
|
Mian MY, Sharmin D, Mondal P, Belayet JB, Hossain MM, McCusker P, Ryan KT, Fedorov AY, Green HA, Ericksen SS, Zamanian M, Tiruveedhula VVNPB, Cook JM, Chan JD. Development of non-sedating benzodiazepines with in vivo antischistosomal activity. Antimicrob Agents Chemother 2024; 68:e0036924. [PMID: 39136467 PMCID: PMC11373208 DOI: 10.1128/aac.00369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 09/05/2024] Open
Abstract
The neglected tropical disease schistosomiasis infects over 200 million people worldwide and is treated with just one broad-spectrum antiparasitic drug (praziquantel). Alternative drugs are needed in the event of emerging praziquantel resistance or treatment failure. One promising lead that has shown efficacy in animal models and a human clinical trial is the benzodiazepine meclonazepam, discovered by Roche in the 1970s. Meclonazepam was not brought to market because of dose-limiting sedative side effects. However, the human target of meclonazepam that causes sedation (GABAARs) is not orthologous to the parasite targets that cause worm death. Therefore, we were interested in whether the structure of meclonazepam could be modified to produce antiparasitic benzodiazepines that do not cause host sedation. We synthesized 18 meclonazepam derivatives with modifications at different positions on the benzodiazepine ring system and tested them for in vitro antiparasitic activity. This identified five compounds that progressed to in vivo screening in a murine model, two of which cured parasite infections with comparable potency to meclonazepam. When these two compounds were administered to mice that were run on the rotarod test, both were less sedating than meclonazepam. These findings demonstrate the proof of concept that meclonazepam analogs can be designed with an improved therapeutic index and point to the C3 position of the benzodiazepine ring system as a logical site for further structure-activity exploration to further optimize this chemical series.
Collapse
Affiliation(s)
- Md Yeunus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
- Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
- Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Prithu Mondal
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
- Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jawad Bin Belayet
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
- Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - M. Mahmun Hossain
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
- Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Paul McCusker
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kaetlyn T. Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander Y. Fedorov
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heather A. Green
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Spencer S. Ericksen
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
- Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - John D. Chan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
7
|
Berger DJ, Park SK, Crellen T, Vianney TJ, Kabatereine NB, Cotton JA, Sanya R, Elliot A, Tukahebwa EM, Adriko M, Standley CJ, Gouvras A, Kinung'hi S, Haas H, Rabone M, Emery A, Lamberton PHL, Webster BL, Allan F, Buddenborg S, Berriman M, Marchant JS, Doyle SR, Webster JP. Extensive transmission and variation in a functional receptor for praziquantel resistance in endemic Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610291. [PMID: 39257780 PMCID: PMC11383708 DOI: 10.1101/2024.08.29.610291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mass-drug administration (MDA) of human populations using praziquantel monotherapy has become the primary strategy for controlling and potentially eliminating the major neglected tropical disease schistosomiasis. To understand how long-term MDA impacts schistosome populations, we analysed whole-genome sequence data of 570 Schistosoma mansoni samples (and the closely related outgroup species, S. rodhaini) from eight countries incorporating both publicly-available sequence data and new parasite material. This revealed broad-scale genetic structure across countries but with extensive transmission over hundreds of kilometres. We characterised variation across the transient receptor potential melastatin ion channel, TRPMPZQ, a target of praziquantel, which has recently been found to influence praziquantel susceptibility. Functional profiling of TRPMPZQ variants found in endemic populations identified four mutations that reduced channel sensitivity to praziquantel, indicating standing variation for resistance. Analysis of parasite infrapopulations sampled from individuals pre- and post-treatment identified instances of treatment failure, further indicative of potential praziquantel resistance. As schistosomiasis is targeted for elimination as a public health problem by 2030 in all currently endemic countries, and even interruption of transmission in selected African regions, we provide an in-depth genomic characterisation of endemic populations and an approach to identify emerging praziquantel resistance alleles.
Collapse
Affiliation(s)
- Duncan J Berger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Thomas Crellen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Narcis B Kabatereine
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Richard Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Alison Elliot
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Edridah M Tukahebwa
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Adriko
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Claire J Standley
- Center for Global Health Science and Security, Georgetown University, 3900 Reservoir Rd NW, Washington DC 20007, USA
| | - Anouk Gouvras
- Global Schistosomiasis Alliance, Podium Space - Ealing Cross, 85 Uxbridge Road, London, W5 5BW, UK
| | - Safari Kinung'hi
- National Institute for Medical Research (NIMR) Mwanza Centre, P.O Box 1462, Mwanza, United Republic of Tanzania
| | | | - Muriel Rabone
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Aidan Emery
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Poppy H L Lamberton
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Bonnie L Webster
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Fiona Allan
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Sarah Buddenborg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Current address: School of Institute of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Herts, UK
| |
Collapse
|
8
|
Zhou A, Zhang W, Ge X, Liu Q, Luo F, Xu S, Hu W, Lu Y. Characterizing genetic variation on the Z chromosome in Schistosoma japonicum reveals host-parasite co-evolution. Parasit Vectors 2024; 17:207. [PMID: 38720339 PMCID: PMC11080191 DOI: 10.1186/s13071-024-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.
Collapse
Affiliation(s)
- An Zhou
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xueling Ge
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Jutzeler KS, Le Clec'h W, Chevalier FD, Anderson TJC. Contribution of parasite and host genotype to immunopathology of schistosome infections. Parasit Vectors 2024; 17:203. [PMID: 38711063 PMCID: PMC11073996 DOI: 10.1186/s13071-024-06286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.
Collapse
Affiliation(s)
- Kathrin S Jutzeler
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA.
- UT Health, Microbiology, Immunology & Molecular Genetics, San Antonio, TX, 78229, USA.
| | - Winka Le Clec'h
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA
| | - Frédéric D Chevalier
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA.
| |
Collapse
|
10
|
Jardim Poli P, Fischer-Carvalho A, Tahira AC, Chan JD, Verjovski-Almeida S, Sena Amaral M. Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure. Noncoding RNA 2024; 10:27. [PMID: 38668385 PMCID: PMC11053911 DOI: 10.3390/ncrna10020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ.
Collapse
Affiliation(s)
- Pedro Jardim Poli
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Ana Carolina Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - John D. Chan
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53792, USA;
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| |
Collapse
|
11
|
Golenser J, Birman I, Gold D. Considering ivermectin for treatment of schistosomiasis. Parasitol Res 2024; 123:180. [PMID: 38592544 PMCID: PMC11003930 DOI: 10.1007/s00436-024-08178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Because of recent reports of praziquantel resistance in schistosome infections, there have been suggestions to employ ivermectin as a possible alternative, especially as its chemical composition is different from that of praziquantel, so cross-resistance is not expected. In order to ascertain possible damage and elimination of worms, we used ivermectin by oral gavage in infected mice, at a high dose (30.1 mg/kg, bordering toxicity). We also tested the efficacy of the drug at various times postinfection (PI), to check on possible effect on young and mature stages of the parasites. Thus, we treated mice on days 21 and 22 or on days 41 and 42 and even on days 21, 22, 41, and 42 PI. None of the treatment regimens resulted in cure rates or signs of lessened pathology in the mice. We also compared the effect of ivermectin to that of artemisone, an artemisinin derivative which had served us in the past as an effective anti-schistosome drug, and there was a stark difference in the artemisone's efficacy compared to that of ivermectin; while ivermectin was not effective, artemisone eliminated most of the worms, prevented egg production and granulomatous inflammatory response. We assume that the reported lack of activity of ivermectin, in comparison with praziquantel and artemisinins, originates from the difference in their mode of action. In wake of our results, we suggest that ivermectin is not a suitable drug for treatment of schistosomiasis.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| | - Ida Birman
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Daniel Gold
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
13
|
Chevalier FD, Le Clec’h W, Berriman M, Anderson TJ. A single locus determines praziquantel response in Schistosoma mansoni. Antimicrob Agents Chemother 2024; 68:e0143223. [PMID: 38289079 PMCID: PMC10916369 DOI: 10.1128/aac.01432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/13/2024] Open
Abstract
We previously performed a genome-wide association study (GWAS) to identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two quantitative trait loci situated on chromosomes 2 and 3. We reanalyzed this GWAS using the latest (version 10) genome assembly showing that a single locus on chromosome 3, rather than two independent loci, determines drug response. These results reveal that PZQ response is monogenic and demonstrates the importance of high-quality genomic information.
Collapse
Affiliation(s)
- Frédéric D. Chevalier
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Winka Le Clec’h
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Matthew Berriman
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
14
|
Coffeng LE, Stolk WA, de Vlas SJ. Predicting the risk and speed of drug resistance emerging in soil-transmitted helminths during preventive chemotherapy. Nat Commun 2024; 15:1099. [PMID: 38321011 PMCID: PMC10847116 DOI: 10.1038/s41467-024-45027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Control of soil-transmitted helminths relies heavily on regular large-scale deworming of high-risk groups (e.g., children) with benzimidazole derivatives. Although drug resistance has not yet been documented in human soil-transmitted helminths, regular deworming of cattle and sheep has led to widespread benzimidazole resistance in veterinary helminths. Here we predict the population dynamics of human soil-transmitted helminth infections and drug resistance during 20 years of regular preventive chemotherapy, using an individual-based model. With the current preventive chemotherapy strategy of mainly targeting children in schools, drug resistance may evolve in soil-transmitted helminths within a decade. More intense preventive chemotherapy strategies increase the prospects of soil-transmitted helminths elimination, but also increase the speed at which drug efficacy declines, especially when implementing community-based preventive chemotherapy (population-wide deworming). If during the last decade, preventive chemotherapy against soil-transmitted helminths has led to resistance, we may not have detected it as drug efficacy has not been structurally monitored, or incorrectly so. These findings highlight the need to develop and implement strategies to monitor and mitigate the evolution of benzimidazole resistance.
Collapse
Affiliation(s)
- Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Marchant JS. Progress interrogating TRPMPZQ as the target of praziquantel. PLoS Negl Trop Dis 2024; 18:e0011929. [PMID: 38358948 PMCID: PMC10868838 DOI: 10.1371/journal.pntd.0011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The drug praziquantel (PZQ) has served as the long-standing drug therapy for treatment of infections caused by parasitic flatworms. These encompass diseases caused by parasitic blood, lung, and liver flukes, as well as various tapeworm infections. Despite a history of clinical usage spanning over 4 decades, the parasite target of PZQ has long resisted identification. However, a flatworm transient receptor potential ion channel from the melastatin subfamily (TRPMPZQ) was recently identified as a target for PZQ action. Here, recent experimental progress interrogating TRPMPZQ is evaluated, encompassing biochemical, pharmacological, genetic, and comparative phylogenetic data that highlight the properties of this ion channel. Various lines of evidence that support TRPMPZQ being the therapeutic target of PZQ are presented, together with additional priorities for further research into the mechanism of action of this important clinical drug.
Collapse
Affiliation(s)
- Jonathan S. Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
16
|
Gandasegui J, Power RI, Curry E, Lau DCW, O'Neill CM, Wolstenholme A, Prichard R, Šlapeta J, Doyle SR. Genome structure and population genomics of the canine heartworm Dirofilaria immitis. Int J Parasitol 2024; 54:89-98. [PMID: 37652224 DOI: 10.1016/j.ijpara.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
The heartworm, Dirofilaria immitis, is a filarial parasitic nematode responsible for significant morbidity and mortality in wild and domesticated canids. Resistance to macrocyclic lactone drug prevention represents a significant threat to parasite control and has prompted investigations to understand the genetic determinants of resistance. This study aimed to improve the genomic resources of D. immitis to enable a more precise understanding of how genetic variation is distributed within and between parasite populations worldwide, which will inform the likelihood and rate by which parasites, and in turn, resistant alleles, might spread. We have guided the scaffolding of a recently published genome assembly for D. immitis (ICBAS_JMDir_1.0) using the chromosomal-scale reference genomes of Brugia malayi and Onchocerca volvulus, resulting in an 89.5 Mb assembly composed of four autosomal- and one sex-linked chromosomal-scale scaffolds representing 99.7% of the genome. Publicly available and new whole-genome sequencing data from 32 D. immitis samples from Australia, Italy and the USA were assessed using principal component analysis, nucleotide diversity (Pi) and absolute genetic divergence (Dxy) to characterise the global genetic structure and measure within- and between-population diversity. These population genetic analyses revealed broad-scale genetic structure among globally diverse samples and differences in genetic diversity between populations; however, fine-scale subpopulation analysis was limited and biased by differences between sample types. Finally, we mapped single nucleotide polymorphisms previously associated with macrocyclic lactone resistance in the new genome assembly, revealing the physical linkage of high-priority variants on chromosome 3, and determined their frequency in the studied populations. This new chromosomal assembly for D. immitis now allows for a more precise investigation of selection on genome-wide genetic variation and will enhance our understanding of parasite transmission and the spread of genetic variants responsible for resistance to treatment.
Collapse
Affiliation(s)
- Javier Gandasegui
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, Spain.
| | - Rosemonde I Power
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Emily Curry
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Daisy Ching-Wai Lau
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Connor M O'Neill
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Adrian Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Roger Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Stephen R Doyle
- Wellcome Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom.
| |
Collapse
|
17
|
Mian MY, Sharmin D, Mondal P, Belayet JB, Hossain MM, McCusker P, Ryan KT, Fedorov AY, Green HA, Ericksen SS, Zamanian M, Tiruveedhula VVNPB, Cook JM, Chan JD. Development of non-sedating antischistosomal benzodiazepines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577323. [PMID: 38352313 PMCID: PMC10862742 DOI: 10.1101/2024.01.26.577323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The neglected tropical disease schistosomiasis infects over 200 million people worldwide and is treated with just one broad spectrum antiparasitic drug (praziquantel). Alternative drugs are needed in the event of emerging praziquantel resistance or treatment failure. One promising lead that has shown efficacy in animal models and a human clinical trial is the benzodiazepine meclonazepam, discovered by Roche in the 1970's. Meclonazepam was not brought to market because of dose-limiting sedative side effects. However, the human target of meclonazepam that causes sedation (GABAARs) are not orthologous to the parasite targets that cause worm death. Therefore, we were interested in whether the structure of meclonazepam could be modified to produce antiparasitic benzodiazepines that do not cause host sedation. We synthesized 18 meclonazepam derivatives with modifications at different positions on the benzodiazepine ring system and tested them for in vitro antiparasitic activity. This identified five compounds that progressed to in vivo screening in a murine model, two of which cured parasite infections with comparable potency to meclonazepam. When these two compounds were administered to mice that were run on the rotarod test, both were less sedating than meclonazepam. These findings demonstrate the proof of concept that meclonazepam analogs can be designed with an improved therapeutic index, and point to the C3 position of the benzodiazepine ring system as a logical site for further structure-activity exploration to further optimize this chemical series.
Collapse
Affiliation(s)
- Md Yeunus Mian
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Prithu Mondal
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jawad Bin Belayet
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - M Mahmun Hossain
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kaetlyn T. Ryan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Alexander Y Fedorov
- UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Heather A Green
- UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Spencer S. Ericksen
- UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - V. V. N. Phani Babu Tiruveedhula
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - John D. Chan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
18
|
Jutzeler KS, LeClec'h W, Chevalier FD, Anderson TJC. Contribution of parasite and host genotype to immunopathology of schistosome infections. RESEARCH SQUARE 2024:rs.3.rs-3858151. [PMID: 38313261 PMCID: PMC10836121 DOI: 10.21203/rs.3.rs-3858151/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.
Collapse
|
19
|
JUTZELER KS, CLEC’H WLE, CHEVALIER FD, ANDERSON TJ. Contribution of parasite and host genotype to immunopathology of schistosome infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574230. [PMID: 38260613 PMCID: PMC10802613 DOI: 10.1101/2024.01.12.574230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.
Collapse
Affiliation(s)
- Kathrin S. JUTZELER
- Host Parasite Interaction program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
- UT Health, Microbiology, Immunology & Molecular Genetics, San Antonio, TX 78229
| | - Winka LE CLEC’H
- Host Parasite Interaction program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Frédéric D. CHEVALIER
- Host Parasite Interaction program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Timothy J.C. ANDERSON
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| |
Collapse
|
20
|
LoVerde PT. Schistosomiasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:75-105. [PMID: 39008264 DOI: 10.1007/978-3-031-60121-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Schistosomiasis is a major cause of morbidity in the world and almost 800 million people worldwide are at risk for schistosomiasis; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects more than 250 million people in 78 countries of the world and is responsible for some 280,000-500,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and the current research advances.
Collapse
Affiliation(s)
- Philip T LoVerde
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
21
|
Sprague DJ, Kaethner M, Park SK, Rohr CM, Harris JL, Maillard D, Spangenberg T, Lundström-Stadelmann B, Marchant JS. The Anthelmintic Activity of Praziquantel Analogs Correlates with Structure-Activity Relationships at TRPM PZQ Orthologs. ACS Med Chem Lett 2023; 14:1537-1543. [PMID: 37970586 PMCID: PMC10641913 DOI: 10.1021/acsmedchemlett.3c00350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
The anthelmintic drug praziquantel remains a key clinical therapy for treating various diseases caused by parasitic flatworms. The parasite target of praziquantel has remained undefined despite longstanding usage in the clinic, although a candidate ion channel target, named TRPMPZQ, has recently been identified. Intriguingly, certain praziquantel derivatives show different activities against different parasites: for example, some praziquantel analogs are considerably more active against cestodes than against schistosomes. Here we interrogate whether the different activities of praziquantel analogs against different parasites are also reflected by unique structure-activity relationships at the TRPMPZQ channels found in these different organisms. To do this, several praziquantel analogs were synthesized and functionally profiled against schistosome and cestode TRPMPZQ channels. Data demonstrate that structure-activity relationships are closely mirrored between parasites and their TRPMPZQ orthologs, providing further support for TRPMPZQ as the therapeutically relevant target of praziquantel.
Collapse
Affiliation(s)
- Daniel J. Sprague
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Program
in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Marc Kaethner
- Institute
of Parasitology, Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Berne, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, 3012 Berne, Switzerland
| | - Sang-Kyu Park
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Claudia M. Rohr
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jade L. Harris
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - David Maillard
- Central
Process Development - Downstream Processing Services, Merck Electronics KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Thomas Spangenberg
- Global Health
Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Britta Lundström-Stadelmann
- Institute
of Parasitology, Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Berne, Switzerland
- Multidisciplinary
Center for Infectious Diseases, University
of Bern, 3012 Berne, Switzerland
| | - Jonathan S. Marchant
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
22
|
Chevalier FD, Clec’h WL, Berriman M, Anderson TJ. A single locus determines praziquantel response in Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565202. [PMID: 37961217 PMCID: PMC10635054 DOI: 10.1101/2023.11.01.565202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We previously performed a genome-wide association study (GWAS) to identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two quantitative trait loci (QTL) situated on chromosome 2 and chromosome 3. We reanalyzed this GWAS using the latest (v10) genome assembly showing that a single locus on chromosome 3, rather than two independent loci, determines drug response. These results reveal that praziquantel response is monogenic and demonstrates the importance of high-quality genomic information.
Collapse
Affiliation(s)
- Frédéric D. Chevalier
- Host-Pathogen Interactions program, Texas Biomedical Research Institute; San Antonio, TX 78227, USA
| | - Winka Le Clec’h
- Host-Pathogen Interactions program, Texas Biomedical Research Institute; San Antonio, TX 78227, USA
| | - Matthew Berriman
- School of Infection and Immunity, University of Glasgow; Glasgow G12 8TA, UK
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute; San Antonio, TX 78227, USA
| |
Collapse
|
23
|
Gomes BF, Senger MR, Moreira-Filho JT, de Vasconcellos FJ, Dantas RF, Owens R, Andrade CH, Neves BJ, Silva-Junior FP. Discovery of new Schistosoma mansoni aspartyl protease inhibitors by structure-based virtual screening. Mem Inst Oswaldo Cruz 2023; 118:e230031. [PMID: 37672425 PMCID: PMC10481938 DOI: 10.1590/0074-02760230031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 μM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 μM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.
Collapse
Affiliation(s)
- Bárbara Figueira Gomes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - José Teófilo Moreira-Filho
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Planejamento de Fármacos e Modelagem Molecular, Goiânia, GO, Brasil
| | - Fabio Jorge de Vasconcellos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Raymond Owens
- University of Oxford and Rosalind Franklin Institute, Oxfordshire, UK
| | - Carolina Horta Andrade
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Planejamento de Fármacos e Modelagem Molecular, Goiânia, GO, Brasil
| | - Bruno Junior Neves
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Quimioinformática, Goiânia, GO, Brasil
| | - Floriano Paes Silva-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
24
|
Wit J, Dilks CM, Zhang G, Guisbert KSK, Zdraljevic S, Guisbert E, Andersen EC. Praziquantel inhibits Caenorhabditis elegans development and species-wide differences might be cct-8-dependent. PLoS One 2023; 18:e0286473. [PMID: 37561720 PMCID: PMC10414639 DOI: 10.1371/journal.pone.0286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Gaotian Zhang
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Karen S. Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
25
|
Trippler L, Knopp S, Welsche S, Webster BL, Stothard JR, Blair L, Allan F, Ame SM, Juma S, Kabole F, Ali SM, Rollinson D, Pennance T. The long road to schistosomiasis elimination in Zanzibar: A systematic review covering 100 years of research, interventions and control milestones. ADVANCES IN PARASITOLOGY 2023; 122:71-191. [PMID: 37657854 DOI: 10.1016/bs.apar.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Zanzibar is among the few places in sub-Saharan Africa where interruption of Schistosoma transmission seems an achievable goal. Our systematic review identifies and discusses milestones in schistosomiasis research, control and elimination efforts in Zanzibar over the past 100 years. The search in online databases, libraries, and the World Health Organization Archives revealed 153 records published between May 1928 and August 2022. The content of records was summarised to highlight the pivotal work leading towards urogenital schistosomiasis elimination and remaining research gaps. The greatest achievement following 100 years of schistosomiasis interventions and research is undoubtedly the improved health of Zanzibaris, exemplified by the reduction in Schistosoma haematobium prevalence from>50% historically down to<5% in 2020, and the absence of severe morbidities. Experiences from Zanzibar have contributed to global schistosomiasis guidelines, whilst also revealing challenges that impede progression towards elimination. Challenges include: transmission heterogeneity requiring micro-targeting of interventions, post-treatment recrudescence of infections in transmission hotspots, biological complexity of intermediate host snails, emergence of livestock Schistosoma species complicating surveillance whilst creating the risk for interspecies hybridisation, insufficient diagnostics performance for light intensity infections and female genital schistosomiasis, and a lack of acceptable sanitary alternatives to freshwater bodies. Our analysis of the past revealed that much can be achieved in the future with practical implementation of integrated interventions, alongside operational research. With continuing national and international commitments, interruption of S. haematobium transmission across both islands is within reach by 2030, signposting the future demise of urogenital schistosomiasis across other parts of sub-Saharan Africa.
Collapse
Affiliation(s)
- Lydia Trippler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Bonnie L Webster
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | | | | | - Fiona Allan
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; University of St Andrews, St Andrews, United Kingdom
| | - Shaali Makame Ame
- Neglected Diseases Programme, Zanzibar Ministry of Health, Lumumba, Unguja, United Republic of Tanzania
| | - Saleh Juma
- Neglected Diseases Programme, Zanzibar Ministry of Health, Mkoroshoni, Pemba, United Republic of Tanzania
| | - Fatma Kabole
- Neglected Diseases Programme, Zanzibar Ministry of Health, Lumumba, Unguja, United Republic of Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory - Ivo de Carneri, Wawi, Chake Chake, Pemba, United Republic of Tanzania
| | - David Rollinson
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; Global Schistosomiasis Alliance, London, United Kingdom
| | - Tom Pennance
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; Western University of Health Sciences, Lebanon, OR, United States.
| |
Collapse
|
26
|
Xu J, Dong LL, Sun H, Huang P, Zhang RZ, Wang XY, Sun DQ, Xia CM. Small change, big difference: A promising praziquantel derivative designated P96 with broad-spectrum antischistosomal activity for chemotherapy of schistosomiasis japonica. PLoS Negl Trop Dis 2023; 17:e0011215. [PMID: 37410790 DOI: 10.1371/journal.pntd.0011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Praziquantel (PZQ) has been the first line antischistosomal drug for all species of Schistosoma, and the only available drug for schistosomiasis japonica, without any alternative drugs since the 1980s. However, PZQ cannot prevent reinfection, and cannot cure schistosomiasis thoroughly because of its poor activity against juvenile schistosomes. In addition, reliance on a single drug is extremely dangerous, the development and spread of resistance to PZQ is becoming a great concern. Therefore, development of novel drug candidates for treatment and control of schistosomiasis is urgently needed. METHODOLOGYS/PRINCIPAL FINDINGS One of the PZQ derivative christened P96 with the substitution of cyclohexyl by cyclopentyl was synthesized by School of Pharmaceutical Sciences of Shandong University. We investigated the in vitro and in vivo activities of P96 against different developmental stages of S. japonicum. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of P96 in vitro. Both mouse and rabbit models were employed to evaluate schistosomicidal efficacy of P96 in vivo. Besides calculation of worm reduction rate and egg reduction rate, quantitative real-time PCR was used to evaluate the in vivo antischistosomal activity of P96 at molecular level. In vitro, after 24h exposure, P96 demonstrated the highest activities against both juvenile and adult worm of S. japonicum in comparison to PZQ. The antischistosomal efficacy was concentration-dependent, with P96 at 50μM demonstrating the most evident schistosomicidal effect. Scanning electron microscopy demonstrated that P96 caused more severe damages to schistosomula and adult worm tegument compared to PZQ. In vivo, our results showed that P96 was effective against S. japonicum at all developmental stages. Notably, its efficacy against young stage worms was significantly improved compared to PZQ. Moreover, P96 retained the high activity comparable to PZQ against the adult worm of S. japonicum. CONCLUSIONS P96 is a promising drug candidate for chemotherapy of schistosomiasis japonica, which has broad spectrum of action against various developmental stage, potentially addressing the deficiency of PZQ. It might be promoted as a drug candidate for use either alone or in combination with PZQ for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Jing Xu
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Jiangsu Province, P.R. China
| | - Lan-Lan Dong
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
| | - Huan Sun
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
| | - Ping Huang
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Jiangsu Province, P.R. China
| | - Run-Ze Zhang
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
| | - Xin-Yi Wang
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
| | - De-Qun Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Qingyi Town, Mianyang City, Sichuan Province, P. R. China
| | - Chao-Ming Xia
- Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu Province, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Jiangsu Province, P.R. China
| |
Collapse
|
27
|
Chulkov EG, Isaeva E, Stucky CL, Marchant JS. Use the force, fluke: Ligand-independent gating of Schistosoma mansoni ion channel TRPM PZQ. Int J Parasitol 2023; 53:427-434. [PMID: 36610555 PMCID: PMC10258140 DOI: 10.1016/j.ijpara.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023]
Abstract
The parasitic flatworm ion channel, TRPMPZQ, is a non-selective cation channel that mediates Ca2+ entry and membrane depolarization when activated by the anthelmintic drug, praziquantel (PZQ). TRPMPZQ is conserved in all platyhelminth genomes scrutinized to date, with the sensitivity of TRPMPZQ in any particular flatworm correlating with the overall sensitivity of the worm to PZQ. Conservation of this channel suggests it plays a role in flatworm physiology, but the nature of the endogenous cues that activate this channel are currently unknown. Here, we demonstrate that TRPMPZQ is activated in a ligand-independent manner by membrane stretch, with the electrophysiological signature of channel opening events being identical whether evoked by negative pressure, or by PZQ. TRPMPZQ is therefore a multimodal ion channel gated by both physical and chemical cues. The mechanosensitivity of TRPMPZQ is one route for endogenous activation of this ion channel that holds relevance for schistosome physiology given the persistent pressures and mechanical cues experienced throughout the parasite life cycle.
Collapse
Affiliation(s)
- Evgeny G Chulkov
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.
| |
Collapse
|
28
|
Padalino G, Coghlan A, Pagliuca G, Forde-Thomas JE, Berriman M, Hoffmann KF. Using ChEMBL to Complement Schistosome Drug Discovery. Pharmaceutics 2023; 15:1359. [PMID: 37242601 PMCID: PMC10220823 DOI: 10.3390/pharmaceutics15051359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Schistosomiasis is one of the most important neglected tropical diseases. Until an effective vaccine is registered for use, the cornerstone of schistosomiasis control remains chemotherapy with praziquantel. The sustainability of this strategy is at substantial risk due to the possibility of praziquantel insensitive/resistant schistosomes developing. Considerable time and effort could be saved in the schistosome drug discovery pipeline if available functional genomics, bioinformatics, cheminformatics and phenotypic resources are systematically leveraged. Our approach, described here, outlines how schistosome-specific resources/methodologies, coupled to the open-access drug discovery database ChEMBL, can be cooperatively used to accelerate early-stage, schistosome drug discovery efforts. Our process identified seven compounds (fimepinostat, trichostatin A, NVP-BEP800, luminespib, epoxomicin, CGP60474 and staurosporine) with ex vivo anti-schistosomula potencies in the sub-micromolar range. Three of those compounds (epoxomicin, CGP60474 and staurosporine) also demonstrated potent and fast-acting ex vivo effects on adult schistosomes and completely inhibited egg production. ChEMBL toxicity data were also leveraged to provide further support for progressing CGP60474 (as well as luminespib and TAE684) as a novel anti-schistosomal compound. As very few compounds are currently at the advanced stages of the anti-schistosomal pipeline, our approaches highlight a strategy by which new chemical matter can be identified and quickly progressed through preclinical development.
Collapse
Affiliation(s)
- Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | | | | | - Matthew Berriman
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK;
| | - Karl F. Hoffmann
- The Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth SY23 3DA, UK;
| |
Collapse
|
29
|
Thorn CS, Maness RW, Hulke JM, Delmore KE, Criscione CD. Population genomics of helminth parasites. J Helminthol 2023; 97:e29. [PMID: 36927601 DOI: 10.1017/s0022149x23000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.
Collapse
Affiliation(s)
- C S Thorn
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - R W Maness
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - J M Hulke
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - K E Delmore
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
30
|
Docampo R. Praziquantel target validation of a Ca 2+ permeable channel in schistosomes. Cell Calcium 2023; 110:102698. [PMID: 36682342 DOI: 10.1016/j.ceca.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States of America.
| |
Collapse
|
31
|
Ryan KT, Wheeler NJ, Kamara IK, Johnson H, Humphries JE, Zamanian M, Chan JD. Phenotypic Profiling of Macrocyclic Lactones on Parasitic Schistosoma Flatworms. Antimicrob Agents Chemother 2023; 67:e0123022. [PMID: 36695583 PMCID: PMC9933704 DOI: 10.1128/aac.01230-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Macrocyclic lactones are front-line therapies for parasitic roundworm infections; however, there are no comprehensive studies on the activity of this drug class against parasitic flatworms. Ivermectin is well known to be inactive against flatworms. However, the structure-activity relationship of macrocyclic lactones may vary across phyla, and it is entirely possible other members of this drug class do in fact show antiparasitic activity on flatworms. For example, there are several reports hinting at the anti-schistosomal activity of doramectin and moxidectin. To explore this class further, we developed an automated imaging assay combined with measurement of lactate levels from worm media. This assay was applied to the screening of 21 macrocyclic lactones (avermectins, milbemycins, and others such as spinosyns) against adult schistosomes. These in vitro assays identified several macrocyclic lactones (emamectin, milbemycin oxime, and the moxidectin metabolite 23-ketonemadectin) that caused contractile paralysis and lack of lactate production. Several of these were also active against miracidia, which infect the snail intermediate host. Hits prioritized from these in vitro assays were administered to mice harboring patent schistosome infections. However, no reduction in worm burden was observed. Nevertheless, these data show the utility of a multiplexed in vitro screening platform to quantitatively assess drug action and exclude inactive compounds from a chemical series before proceeding to in vivo studies. While the prototypical macrocyclic lactone ivermectin displays minimal activity against adult Schistosoma mansoni, this family of compounds does contain schistocidal compounds which may serve as a starting point for development of new anti-flatworm chemotherapies.
Collapse
Affiliation(s)
- Kaetlyn T. Ryan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, Wisconsin, USA
| | - Isaac K. Kamara
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| | - Hailey Johnson
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
32
|
Baltrušis P, Halvarsson P, Charvet CL, Höglund J. The presence and relative frequency detection of the levamisole-resistance-associated S168T substitution in hco-acr-8 in Haemonchus contortus. Int J Parasitol Drugs Drug Resist 2023; 21:91-95. [PMID: 36774659 PMCID: PMC9945773 DOI: 10.1016/j.ijpddr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Parasitic sheep nematodes, among which Haemonchus contortus is often considered to be the most clinically important, exact a significant toll on the animals, not least because of their capacity to evolve drug resistance. Despite decades of research, our understanding of the mechanism of resistance to compounds such as levamisole is fairly limited, which therefore constrains our ability to develop sensitive and efficient molecular diagnostic tools for rapid and accurate resistance detection in field settings. Herein, we investigated the presence and frequency of the newly reported, levamisole-resistance-associated, mutation, yielding a S168T substitution in exon 4 of hco-acr-8, in six different phenotypically described isolates (three susceptible and three resistant), three Swedish field isolates and eight larvae culture samples, the latter two of which originated on farms where levamisole showed complete parasite elimination. For this purpose, we created both an allele-specific and droplet digital PCR approaches and found the mutated allele to be present only in the Kokstad isolate, whereas the other five as well as both the Swedish isolates and larvae cultures displayed only the non-mutated, serine-encoding, allele. While the finding of only the non-mutated allele in the phenotypically susceptible and Swedish isolate and larvae culture samples seemed sensible, we speculate that for the other two phenotypically resistant isolates, different (perhaps secondary) variants are responsible for conferring the resistance to levamisole phenotype, given the polygenic nature of levamisole resistance. All in all, despite the limited number of samples tested here, the mutation causing the S168T substitution in hco-acr-8 represents a plausible levamisole resistance-associated variant in, at least, some isolates of H. contortus.
Collapse
Affiliation(s)
- Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Papaiakovou M, Fraija-Fernández N, James K, Briscoe AG, Hall A, Jenkins TP, Dunn J, Levecke B, Mekonnen Z, Cools P, Doyle SR, Cantacessi C, Littlewood DTJ. Evaluation of genome skimming to detect and characterise human and livestock helminths. Int J Parasitol 2023; 53:69-79. [PMID: 36641060 DOI: 10.1016/j.ijpara.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023]
Abstract
The identification of gastrointestinal helminth infections of humans and livestock almost exclusively relies on the detection of eggs or larvae in faeces, followed by manual counting and morphological characterisation to differentiate species using microscopy-based techniques. However, molecular approaches based on the detection and quantification of parasite DNA are becoming more prevalent, increasing the sensitivity, specificity and throughput of diagnostic assays. High-throughput sequencing, from single PCR targets through to the analysis of whole genomes, offers significant promise towards providing information-rich data that may add value beyond traditional and conventional molecular approaches; however, thus far, its utility has not been fully explored to detect helminths in faecal samples. In this study, low-depth whole genome sequencing, i.e. genome skimming, has been applied to detect and characterise helminth diversity in a set of helminth-infected human and livestock faecal material. The strengths and limitations of this approach are evaluated using three methods to characterise and differentiate metagenomic sequencing data based on (i) mapping to whole mitochondrial genomes, (ii) whole genome assemblies, and (iii) a comprehensive internal transcribed spacer 2 (ITS2) database, together with validation using quantitative PCR (qPCR). Our analyses suggest that genome skimming can successfully identify most single and multi-species infections reported by qPCR and can provide sufficient coverage within some samples to resolve consensus mitochondrial genomes, thus facilitating phylogenetic analyses of selected genera, e.g. Ascaris spp. Key to this approach is both the availability and integrity of helminth reference genomes, some of which are currently contaminated with bacterial and host sequences. The success of genome skimming of faecal DNA is dependent on the availability of vouchered sequences of helminths spanning both taxonomic and geographic diversity, together with methods to detect or amplify minute quantities of parasite nucleic acids in mixed samples.
Collapse
Affiliation(s)
- Marina Papaiakovou
- Natural History Museum, Cromwell Road, London, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Natalia Fraija-Fernández
- Natural History Museum, Cromwell Road, London, UK; Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Katherine James
- Natural History Museum, Cromwell Road, London, UK; Interdisciplinary Computing and Complex BioSystems, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew G Briscoe
- Natural History Museum, Cromwell Road, London, UK; NatureMetrics, Surrey Research Park, Guildford, UK
| | - Andie Hall
- Natural History Museum, Cromwell Road, London, UK
| | - Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julia Dunn
- Department of Infectious Disease Epidemiology, Imperial College, London W2 1PG, UK
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Zeleke Mekonnen
- Jimma University Institute of Health (JUIH), Jimma, Ethiopia
| | - Piet Cools
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | | | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
34
|
Planarians to schistosomes: an overview of flatworm cell-types and regulators. J Helminthol 2023; 97:e7. [PMID: 36644809 DOI: 10.1017/s0022149x22000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.
Collapse
|
35
|
Natural variation in the binding pocket of a parasitic flatworm TRPM channel resolves the basis for praziquantel sensitivity. Proc Natl Acad Sci U S A 2023; 120:e2217732120. [PMID: 36574686 PMCID: PMC9910428 DOI: 10.1073/pnas.2217732120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The drug praziquantel (PZQ) is the key clinical therapy for treating schistosomiasis and other infections caused by parasitic flatworms. A schistosome target for PZQ was recently identified- a transient receptor potential ion channel in the melastatin subfamily (TRPMPZQ)-however, little is known about the properties of TRPMPZQ in other parasitic flatworms. Here, TRPMPZQ orthologs were scrutinized from all currently available parasitic flatworm genomes. TRPMPZQ is present in all parasitic flatworms, and the consensus PZQ binding site was well conserved. Functional profiling of trematode, cestode, and a free-living flatworm TRPMPZQ ortholog revealed differing sensitives (~300-fold) of these TRPMPZQ channels toward PZQ, which matched the varied sensitivities of these different flatworms to PZQ. Three loci of variation were defined across the parasitic flatworm TRPMPZQ pocketome with the identity of an acidic residue in the TRP domain acting as a gatekeeper residue impacting PZQ residency within the TRPMPZQ ligand binding pocket. In trematodes and cyclophyllidean cestodes, which display high sensitivity to PZQ, this TRP domain residue is an aspartic acid which is permissive for potent activation by PZQ. However, the presence of a glutamic acid residue found in other parasitic and free-living flatworm TRPMPZQ was associated with lower sensitivity to PZQ. The definition of these different binding pocket architectures explains why PZQ shows high therapeutic effectiveness against specific fluke and tapeworm infections and will help the development of better tailored therapies toward other parasitic infections of humans, livestock, and fish.
Collapse
|
36
|
Yang WB, Luo F, Zhang W, Sun CS, Tan C, Zhou A, Hu W. Inhibition of signal peptidase complex expression affects the development and survival of Schistosoma japonicum. Front Cell Infect Microbiol 2023; 13:1136056. [PMID: 36936776 PMCID: PMC10020623 DOI: 10.3389/fcimb.2023.1136056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Schistosomiasis, the second most neglected tropical disease defined by the WHO, is a significant zoonotic parasitic disease infecting approximately 250 million people globally. This debilitating disease has seriously threatened public health, while only one drug, praziquantel, is used to control it. Because of this, it highlights the significance of identifying more satisfactory target genes for drug development. Protein translocation into the endoplasmic reticulum (ER) is vital to the subsequent localization of secretory and transmembrane proteins. The signal peptidase complex (SPC) is an essential component of the translocation machinery and functions to cleave the signal peptide sequence (SP) of secretory and membrane proteins entering the ER. Inhibiting the expression of SPC can lead to the abolishment or weaker cleavage of the signal peptide, and the accumulation of uncleaved protein in the ER would affect the survival of organisms. Despite the evident importance of SPC, in vivo studies exploring its function have yet to be reported in S. japonicum. Methods The S. japonicum SPC consists of four proteins: SPC12, SPC18, SPC22 and SPC25. RNA interference was used to investigate the impact of SPC components on schistosome growth and development in vivo. qPCR and in situ hybridization were applied to localize the SPC25 expression. Mayer's carmalum and Fast Blue B staining were used to observe morphological changes in the reproductive organs of dsRNA-treated worms. The effect of inhibitor treatment on the worm's viability and pairing was also examined in vitro. Results Our results showed that RNAi-SPC delayed the worm's normal development and was even lethal for schistosomula in vivo. Among them, the expression of SPC25 was significantly higher in the developmental stages of the reproductive organs in schistosomes. Moreover, SPC25 possessed high expression in the worm tegument, testes of male worms and the ovaries and vitellarium of female worms. The SPC25 knockdown led to the degeneration of reproductive organs, such as the ovaries and vitellarium of female worms. The SPC25 exhaustion also reduced egg production while reducing the pathological damage of the eggs to the host. Additionally, the SPC-related inhibitor AEBSF or suppressing the expression of SPC25 also impacted cultured worms' pairing and viability in vitro. Conclusions These data demonstrate that SPC is necessary to maintain the development and reproduction of S. japonicum. This research provides a promising anti-schistosomiasis drug target and discovers a new perspective on preventing worm fecundity and maturation.
Collapse
Affiliation(s)
- Wen-Bin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Cheng-Song Sun
- Central Laboratory, Anhui Provincial Institute of Parasitic Diseases, Anhui, China
| | - Cong Tan
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - An Zhou
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wei Hu,
| |
Collapse
|
37
|
Beesley NJ, Cwiklinski K, Allen K, Hoyle RC, Spithill TW, La Course EJ, Williams DJL, Paterson S, Hodgkinson JE. A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance. PLoS Pathog 2023; 19:e1011081. [PMID: 36701396 PMCID: PMC9904461 DOI: 10.1371/journal.ppat.1011081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/07/2023] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field.
Collapse
Affiliation(s)
- Nicola J Beesley
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krystyna Cwiklinski
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Katherine Allen
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca C Hoyle
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Australia
| | | | - Diana J L Williams
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Steve Paterson
- Centre for Genomic Research, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane E Hodgkinson
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
38
|
Nogueira RA, Lira MGS, Licá ICL, Frazão GCCG, Dos Santos VAF, Filho ACCM, Rodrigues JGM, Miranda GS, Carvalho RC, Nascimento FRF. Praziquantel: An update on the mechanism of its action against schistosomiasis and new therapeutic perspectives. Mol Biochem Parasitol 2022; 252:111531. [PMID: 36375598 DOI: 10.1016/j.molbiopara.2022.111531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.
Collapse
Affiliation(s)
- Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Education, Federal Institute of Education, Science and Technology of Maranhão, Zé Doca, MA, Brazil
| | - Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - Vitor Augusto Ferreira Dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Silva Miranda
- Department of Education, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, MA, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
39
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
40
|
Nikolakis ZL, Adams RH, Wade KJ, Lund AJ, Carlton EJ, Castoe TA, Pollock DD. Prospects for genomic surveillance for selection in schistosome parasites. FRONTIERS IN EPIDEMIOLOGY 2022; 2:932021. [PMID: 38455290 PMCID: PMC10910990 DOI: 10.3389/fepid.2022.932021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 03/09/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by multiple parasitic Schistosoma species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved. We discuss the theory of genomic analyses to detect selection, identify experimental designs for such analyses, and review studies that have applied these approaches to schistosomes. We then consider the biological characteristics of schistosomes that are expected to respond to selection, particularly those that may be impacted by control programs. Examples include drug resistance, host specificity, and life history traits, and we review our current understanding of specific genes that underlie them in schistosomes. We also discuss how inherent features of schistosome reproduction and demography pose substantial challenges for effective identification of these traits and their genomic bases. We conclude by discussing how genomic surveillance for selection should be designed to improve understanding of schistosome biology, and how the parasite changes in response to selection.
Collapse
Affiliation(s)
- Zachary L. Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Richard H. Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Kristen J. Wade
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrea J. Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Elizabeth J. Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
41
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
42
|
Vianney TJ, Berger DJ, Doyle SR, Sankaranarayanan G, Serubanja J, Nakawungu PK, Besigye F, Sanya RE, Holroyd N, Allan F, Webb EL, Elliott AM, Berriman M, Cotton JA. Genome-wide analysis of Schistosoma mansoni reveals limited population structure and possible praziquantel drug selection pressure within Ugandan hot-spot communities. PLoS Negl Trop Dis 2022; 16:e0010188. [PMID: 35981002 PMCID: PMC9426917 DOI: 10.1371/journal.pntd.0010188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Populations within schistosomiasis control areas, especially those in Africa, are recommended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly understood, and is limited by a lack of high-resolution genetic data on the population structure of parasites within these control areas. We generated whole-genome sequence data from 174 individual miracidia collected from both children and adults from fishing communities on islands in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four years, including samples collected immediately before and four weeks after treatment. Genome variation within and between samples was characterised and we investigated genomic signatures of natural selection acting on these populations that could be due to PZQ treatment. The parasite population on these islands was more diverse than found in nearby villages on the lake shore. We saw little or no genetic differentiation between villages, or between the groups of villages with different treatment intensity, but slightly higher genetic diversity within the pre-treatment compared to post-treatment parasite populations. We identified classes of genes significantly enriched within regions of the genome with evidence of recent positive selection among post-treatment and intensively treated parasite populations. The differential selection observed in post-treatment and pre-treatment parasite populations could be linked to any reduced susceptibility of parasites to praziquantel treatment.
Collapse
Affiliation(s)
- Tushabe John Vianney
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Duncan J. Berger
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Joel Serubanja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Prossy Kabuubi Nakawungu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Fred Besigye
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Health and Systems for Health Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Emily L. Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
43
|
Guzman MA, Rugel A, Alwan SN, Tarpley R, Taylor AB, Chevalier FD, Wendt GR, Collins JJ, Anderson TJC, McHardy SF, LoVerde PT. Schistosome Sulfotransferases: Mode of Action, Expression and Localization. Pharmaceutics 2022; 14:1416. [PMID: 35890311 PMCID: PMC9323829 DOI: 10.3390/pharmaceutics14071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Oxamniquine (OXA) is a prodrug activated by a sulfotransferase (SULT) that was only active against Schistosoma mansoni. We have reengineered OXA to be effective against S. haematobium and S. japonicum. Three derivatives stand out, CIDD-0066790, CIDD-0072229, and CIDD-0149830 as they kill all three major human schistosome species. However, questions remain. Is the OXA mode of action conserved in derivatives? RNA-interference experiments demonstrate that knockdown of the SmSULT, ShSULT, and SjSULT results in resistance to CIDD-0066790. Confirming that the OXA-derivative mode of action is conserved. Next is the level of expression of the schistosome SULTs in each species, as well as changes in SULT expression throughout development in S. mansoni. Using multiple tools, our data show that SmSULT has higher expression compared to ShSULT and SjSULT. Third, is the localization of SULT in the adult, multicellular eucaryotic schistosome species. We utilized fluorescence in situ hybridization and uptake of radiolabeled OXA to determine that multiple cell types throughout the adult schistosome worm express SULT. Thus, we hypothesize the ability of many cells to express the sulfotransferase accounts for the ability of the OXA derivatives to kill adult worms. Our studies demonstrate that the OXA derivatives are able to kill all three human schistosome species and thus will be a useful complement to PZQ.
Collapse
Affiliation(s)
- Meghan A. Guzman
- Department of Microbiology and Immunology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.G.); (A.R.)
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX 78229, USA; (S.N.A.); (A.B.T.)
| | - Anastasia Rugel
- Department of Microbiology and Immunology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.G.); (A.R.)
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX 78229, USA; (S.N.A.); (A.B.T.)
| | - Sevan N. Alwan
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX 78229, USA; (S.N.A.); (A.B.T.)
| | - Reid Tarpley
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249, USA; (R.T.); (S.F.M.)
| | - Alexander B. Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX 78229, USA; (S.N.A.); (A.B.T.)
| | - Frédéric D. Chevalier
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - George R. Wendt
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; (G.R.W.); (J.J.C.III)
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; (G.R.W.); (J.J.C.III)
| | - Timothy J. C. Anderson
- Disease Intervention & Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Stanton F. McHardy
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249, USA; (R.T.); (S.F.M.)
| | - Philip T. LoVerde
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX 78229, USA; (S.N.A.); (A.B.T.)
- Department of Pathology and Laboratory Medicine, University of Texas Health, San Antonio, TX 78229, USA
| |
Collapse
|
44
|
NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022; 479:1165-1180. [PMID: 35593185 DOI: 10.1042/bcj20210784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme - the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochemical characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The Km values of the two enzymes for NAD at physiological pH differ: SmNPP5, Km=340µM±44; SmNACE, Km=49µM±4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form nicotinamide mononucleotide (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and adenosine diphosphate ribose (ADPR). Each enzyme can process the other's reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic analysis of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chemical inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection.
Collapse
|
45
|
Platt RN, Le Clec'h W, Chevalier FD, McDew‐White M, LoVerde PT, Ramiro de Assis R, Oliveira G, Kinung'hi S, Djirmay AG, Steinauer ML, Gouvras A, Rabone M, Allan F, Webster BL, Webster JP, Emery AM, Rollinson D, Anderson TJC. Genomic analysis of a parasite invasion: Colonization of the Americas by the blood fluke Schistosoma mansoni. Mol Ecol 2022; 31:2242-2263. [PMID: 35152493 PMCID: PMC9305930 DOI: 10.1111/mec.16395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.
Collapse
Affiliation(s)
- Roy N. Platt
- Texas Biomedical Research InstituteSan AntonioTexasUSA
| | | | | | | | | | | | - Guilherme Oliveira
- Centro de Pesquisas René Rachou—Fiocruz/MGBelo HorizonteBrazil
- Instituto Tecnológico ValeBelémBrazil
| | | | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL)NiameyNiger
| | | | | | | | - Fiona Allan
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Bonnie L. Webster
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Joanne P. Webster
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Aidan M. Emery
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - David Rollinson
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | | |
Collapse
|
46
|
Cotton JA, Doyle SR. A genetic TRP down the channel to praziquantel resistance. Trends Parasitol 2022; 38:351-352. [PMID: 35246385 DOI: 10.1016/j.pt.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
The anthelmintic praziquantel (PZQ) is an essential tool in controlling schistosomiasis, so reports of reduced PZQ efficacy are of great public health concern. Le Clec'h et al. recently identified a gene responsible for PZQ resistance in experimentally selected resistant Schistosoma mansoni. The importance of this locus in natural infections remains to be established.
Collapse
Affiliation(s)
- James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
47
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
48
|
Park SK, Friedrich L, Yahya NA, Rohr CM, Chulkov EG, Maillard D, Rippmann F, Spangenberg T, Marchant JS. Mechanism of praziquantel action at a parasitic flatworm ion channel. Sci Transl Med 2021; 13:eabj5832. [PMID: 34936384 DOI: 10.1126/scitranslmed.abj5832] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Lukas Friedrich
- Computational Chemistry and Biology, Global Research & Development, Discovery Technologies, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Nawal A Yahya
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.,Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA
| | - Claudia M Rohr
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Evgeny G Chulkov
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - David Maillard
- Central Process Development - Downstream Processing Services, Merck Performance Materials, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Friedrich Rippmann
- Computational Chemistry and Biology, Global Research & Development, Discovery Technologies, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| |
Collapse
|