1
|
Seront E, Queisser A, Boon LM, Vikkula M. Molecular landscape and classification of vascular anomalies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:700-708. [PMID: 39644020 DOI: 10.1182/hematology.2024000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Vascular malformations, which result from anomalies in angiogenesis, include capillary, lymphatic, venous, arteriovenous, and mixed malformations and affect specific vessel types. Historically, treatments such as sclerotherapy and surgery have shown limited efficacy in complicated cases. Most vascular malformations occur sporadically, but some can be inherited. They result from mutations similar to oncogenic alterations, activating pathways such as PI3K-AKT-mTOR or Ras-MAPK-ERK. Recognizing these parallels, we highlight the potential of targeted molecular inhibitors, repurposing anticancer drugs for the treatment of vascular malformations. This case-based review explores recent developments in precision medicine for slow-flow and fast-flow vascular malformation.
Collapse
Affiliation(s)
- Emmanuel Seront
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Institut Roi Albert II, Department of Medical Oncology, Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium
| | - Angela Queisser
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Division of Plastic Surgery, Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Ratnam LA, Mills M, Wale A, Howroyd LR, Itkin M, Howe FA, Gordon K, Mansour S, Ostergaard P, Mortimer PS. The utility of dynamic contrast-enhanced intranodal magnetic resonance lymphangiography (MRL) in the investigation of primary lymphatic anomalies. Clin Radiol 2024; 79:e1180-e1188. [PMID: 39003166 PMCID: PMC11584322 DOI: 10.1016/j.crad.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 07/15/2024]
Abstract
AIM The aim of this study was to describe the technique of DCMRL to identify central lymphatic abnormalities in patients with primary lymphatic anomalies and discuss utility of the findings. MATERIALS AND METHODS Twenty-eight patients with primary lymphatic abnormalities underwent dynamic magnetic resonance imaging (MRI) following injection of gadolinium directly into inguinal lymph nodes at a tertiary lymphovascular referral center. RESULTS Technical success was achieved in 23 patients (82.1%). Pathological imaging findings included obstructed, hypoplastic, or absent lymphatic channels with collateralization/rerouting or reflux of flow, lymphangiectasia, lymphatic pseudoaneurysms, and lymph leaks. Protocol modifications for improved imaging are highlighted including technical aspects of lymph node injection, image acquisition and MRI parameters. In two patients, imaging findings warranted embolization of the abnormal lymphatic channels with subsequent symptomatic improvement. CONCLUSION DCMRL has been shown to be a safe, reproducible technique in patients with primary lymphatic anomalies enabling imaging of the central lymphatic system.
Collapse
Affiliation(s)
- L A Ratnam
- Department of Radiology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK; Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK.
| | - M Mills
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - A Wale
- Department of Radiology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK; Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - L R Howroyd
- Department of Radiology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK; Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - M Itkin
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, USA
| | - F A Howe
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - K Gordon
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK; Dermatology and Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - S Mansour
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK; South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - P Ostergaard
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - P S Mortimer
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK; Dermatology and Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| |
Collapse
|
3
|
Weidner J, Fiedler K, Schulze-Becking M, Sentner CP, Korenke C, Heep A. Case Report: MDFIC gene mutation resulting in central conducting lymphatic anomaly facilitates group A Streptococcus sepsis. Front Pediatr 2024; 12:1367532. [PMID: 39386015 PMCID: PMC11461237 DOI: 10.3389/fped.2024.1367532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background Central conducting lymphatic anomaly (CCLA) is a heterogeneous disorder characterized by structural anomalies in the main collecting lymphatic vasculature. These anomalies result in chronic chylous leaks, causing issues such as congenital hydrothorax and potentially impairing the normal immune response. Recently, mutations in the MyoD family inhibitor domain-containing (MDFIC) gene have been identified as a cause of CCLA. Group A Streptococcus infections are common, and timely identification of patients at risk for severe complications is crucial. Case presentation Here, we present the case of a 13-year-old female patient with CCLA associated with an MDFIC mutation, who suffered from a severe group A Streptococcus sepsis. Initially, the patient was unresponsive to aggressive fluid resuscitation. Although the course of the sepsis was severe, standardized treatment according to the surviving sepsis campaign proved effective in stabilizing the patient. Discussion The patient's MDFIC mutation may have contributed to the severe clinical course of the sepsis. It is theorized that this mutation affects the function of the immune system both indirectly, by causing CCLA, and directly, by potentially influencing transcriptional activity in immune cells. More research on the effect of MDFIC mutations on immune responses is required.
Collapse
Affiliation(s)
- Johannes Weidner
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
- School VI-School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Kai Fiedler
- Section of Neonatology and Pediatric Intensive Care, Department of Pediatrics, School VI-School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Mechthild Schulze-Becking
- Section of Neonatology and Pediatric Intensive Care, Department of Pediatrics, School VI-School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christiaan Peter Sentner
- Section of Neonatology and Pediatric Intensive Care, Department of Pediatrics, School VI-School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christoph Korenke
- Section of Pediatric Neurology, Department of Pediatrics, School VI-School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Axel Heep
- Section of Neonatology and Pediatric Intensive Care, Department of Pediatrics, School VI-School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Jin C, Su S, Yu S, Zhang Y, Chen K, Xiang M, Ma H. Essential Roles of PIEZO1 in Mammalian Cardiovascular System: From Development to Diseases. Cells 2024; 13:1422. [PMID: 39272994 PMCID: PMC11394449 DOI: 10.3390/cells13171422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Mechanical force is the basis of cardiovascular development, homeostasis, and diseases. The perception and response of mechanical force by the cardiovascular system are crucial. However, the molecular mechanisms mediating mechanotransduction in the cardiovascular system are not yet understood. PIEZO1, a novel transmembrane mechanosensitive cation channel known for its regulation of touch sensation, has been found to be widely expressed in the mammalian cardiovascular system. In this review, we elucidate the role and mechanism of PIEZO1 as a mechanical sensor in cardiovascular development, homeostasis, and disease processes, including embryo survival, angiogenesis, cardiac development repair, vascular inflammation, lymphangiogenesis, blood pressure regulation, cardiac hypertrophy, cardiac fibrosis, ventricular remodeling, and heart failure. We further summarize chemical molecules targeting PIEZO1 for potential translational applications. Finally, we address the controversies surrounding emergent concepts and challenges in future applications.
Collapse
Affiliation(s)
- Chengjiang Jin
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng’an Su
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Zhang
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Kaijie Chen
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Meixiang Xiang
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hong Ma
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
5
|
Alpaslan M, Fastré E, Mestre S, van Haeringen A, Repetto GM, Keymolen K, Boon LM, Belva F, Giacalone G, Revencu N, Sznajer Y, Riches K, Keeley V, Mansour S, Gordon K, Martin-Almedina S, Dobbins S, Ostergaard P, Quere I, Brouillard P, Vikkula M. Pathogenic variants in HGF give rise to childhood-to-late onset primary lymphoedema by loss of function. Hum Mol Genet 2024; 33:1250-1261. [PMID: 38676400 PMCID: PMC11227619 DOI: 10.1093/hmg/ddae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Developmental and functional defects in the lymphatic system are responsible for primary lymphoedema (PL). PL is a chronic debilitating disease caused by increased accumulation of interstitial fluid, predisposing to inflammation, infections and fibrosis. There is no cure, only symptomatic treatment is available. Thirty-two genes or loci have been linked to PL, and another 22 are suggested, including Hepatocyte Growth Factor (HGF). We searched for HGF variants in 770 index patients from the Brussels PL cohort. We identified ten variants predicted to cause HGF loss-of-function (six nonsense, two frameshifts, and two splice-site changes; 1.3% of our cohort), and 14 missense variants predicted to be pathogenic in 17 families (2.21%). We studied co-segregation within families, mRNA stability for non-sense variants, and in vitro functional effects of the missense variants. Analyses of the mRNA of patient cells revealed degradation of the nonsense mutant allele. Reduced protein secretion was detected for nine of the 14 missense variants expressed in COS-7 cells. Stimulation of lymphatic endothelial cells with these 14 HGF variant proteins resulted in decreased activation of the downstream targets AKT and ERK1/2 for three of them. Clinically, HGF-associated PL was diverse, but predominantly bilateral in the lower limbs with onset varying from early childhood to adulthood. Finally, aggregation study in a second independent cohort underscored that rare likely pathogenic variants in HGF explain about 2% of PL. Therefore, HGF signalling seems crucial for lymphatic development and/or maintenance in human beings and HGF should be included in diagnostic genetic screens for PL.
Collapse
Affiliation(s)
- Murat Alpaslan
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Elodie Fastré
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Sandrine Mestre
- Department of vascular medicine, Hospital Saint-Eloi, University Hospital of Montpellier, Avenue Augustin Fliche 80, Montpellier 34090, France
| | - Arie van Haeringen
- Leiden University Medical Center, Albinusdreef 2, Leiden 2333, the Netherlands
| | - Gabriela M Repetto
- Clinica Alemana Universidad del Desarrollo, Av Plaza 680, Las Condes, Lo Barnechea, Región Metropolitana 7710167, Chile
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Florence Belva
- Department of Lymphatic Surgery, AZ Sint-Maarten Hospital, VASCERN PPL European Reference Centre, Liersesteenweg 435, Mechelen 2800, Belgium
| | - Guido Giacalone
- Department of Lymphatic Surgery, AZ Sint-Maarten Hospital, VASCERN PPL European Reference Centre, Liersesteenweg 435, Mechelen 2800, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Yves Sznajer
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Katie Riches
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Rd, Derby DE22 3NE, United Kingdom
| | - Vaughan Keeley
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Rd, Derby DE22 3NE, United Kingdom
- University of Nottingham Medical School, Nottingham, East Block, Lenton, Nottingham NG7 2UH, United Kingdom
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Silvia Martin-Almedina
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Isabelle Quere
- Department of vascular medicine, Hospital Saint-Eloi, University Hospital of Montpellier, Avenue Augustin Fliche 80, Montpellier 34090, France
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, Wavre 1300, Belgium
| |
Collapse
|
6
|
Borst AJ, Britt A, Adams DM. Complex lymphatic anomalies: Molecular landscape and medical management. Semin Pediatr Surg 2024; 33:151422. [PMID: 38833763 DOI: 10.1016/j.sempedsurg.2024.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The lymphatic system is one of the most essential and complex systems in the human body. Disorders that affect the development or function of the lymphatic system can lead to multi-system complications and life-long morbidity. The past two decades have seen remarkable progress in our knowledge of the basic biology and function of the lymphatic system, the molecular regulators of lymphatic development, and description of disorders associated with disrupted lymphangiogensis. In this chapter we will touch on the clinical features of complex lymphatic anomalies, new molecular knowledge of the drivers of these disorders, and novel developmental therapeutics for lymphatic disease.
Collapse
Affiliation(s)
- Alexandra J Borst
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Allison Britt
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise M Adams
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
8
|
Bowman C, Rockson SG. Genetic causes of lymphatic disorders: recent updates on the clinical and molecular aspects of lymphatic disease. Curr Opin Cardiol 2024; 39:170-177. [PMID: 38483006 DOI: 10.1097/hco.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The lymphatic system facilitates several key functions that limit significant morbidity and mortality. Despite the impact and burden of lymphatic disorders, there are many remaining disorders whose genetic substrate remains unknown. The purpose of this review is to provide an update on the genetic causes of lymphatic disorders, while reporting on newly proposed clinical classifications of lymphatic disease. RECENT FINDINGS We reviewed several new mutations in genes that have been identified as potential causes of lymphatic disorders including: MDFIC, EPHB 4 , and ANGPT2. Furthermore, the traditional St. George's Classification system for primary lymphatic anomalies has been updated to reflect the use of genetic testing, both as a tool for the clinical identification of lymphatic disease and as a method through which new sub-classifications of lymphatic disorders have been established within this framework. Finally, we highlighted recent clinical studies that have explored the impact of therapies such as sirolimus, ketoprofen, and acebilustat on lymphatic disorders. SUMMARY Despite a growing body of evidence, current literature demonstrates a persistent gap in the number of known genes responsible for lymphatic disease entities. Recent clinical classification tools have been introduced in order to integrate traditional symptom- and time-based diagnostic approaches with modern genetic classifications, as highlighted in the updated St. George's classification system. With the introduction of this novel approach, clinicians may be better equipped to recognize established disease and, potentially, to identify novel causal mutations. Further research is needed to identify additional genetic causes of disease and to optimize current clinical tools for diagnosis and treatment.
Collapse
Affiliation(s)
- Catharine Bowman
- Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
9
|
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, Vickovic S. Tissue and cellular spatiotemporal dynamics in colon aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590125. [PMID: 38712088 PMCID: PMC11071407 DOI: 10.1101/2024.04.22.590125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.
Collapse
Affiliation(s)
- Aidan C. Daly
- New York Genome Center, New York, NY, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Britta Lötstedt
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nemanja Marjanovic
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olena Kuksenko
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | - Eugene Drokhlyansky
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel K Griffin
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Bowman C, Rockson SG. The Role of Inflammation in Lymphedema: A Narrative Review of Pathogenesis and Opportunities for Therapeutic Intervention. Int J Mol Sci 2024; 25:3907. [PMID: 38612716 PMCID: PMC11011271 DOI: 10.3390/ijms25073907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Lymphedema is a chronic and progressive disease of the lymphatic system characterized by inflammation, increased adipose deposition, and tissue fibrosis. Despite early hypotheses identifying lymphedema as a disease of mechanical lymphatic disruption alone, the progressive inflammatory nature underlying this condition is now well-established. In this review, we provide an overview of the various inflammatory mechanisms that characterize lymphedema development and progression. These mechanisms contribute to the acute and chronic phases of lymphedema, which manifest clinically as inflammation, fibrosis, and adiposity. Furthermore, we highlight the interplay between current therapeutic modalities and the underlying inflammatory microenvironment, as well as opportunities for future therapeutic development.
Collapse
Affiliation(s)
- Catharine Bowman
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stanley G. Rockson
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
12
|
Petkova M, Ferby I, Mäkinen T. Lymphatic malformations: mechanistic insights and evolving therapeutic frontiers. J Clin Invest 2024; 134:e172844. [PMID: 38488007 PMCID: PMC10940090 DOI: 10.1172/jci172844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ingvar Ferby
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Han S, Lee JE, Kang S, So M, Jin H, Lee JH, Baek S, Jun H, Kim TY, Lee YS. Standigm ASK™: knowledge graph and artificial intelligence platform applied to target discovery in idiopathic pulmonary fibrosis. Brief Bioinform 2024; 25:bbae035. [PMID: 38349059 PMCID: PMC10862655 DOI: 10.1093/bib/bbae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Standigm ASK™ revolutionizes healthcare by addressing the critical challenge of identifying pivotal target genes in disease mechanisms-a fundamental aspect of drug development success. Standigm ASK™ integrates a unique combination of a heterogeneous knowledge graph (KG) database and an attention-based neural network model, providing interpretable subgraph evidence. Empowering users through an interactive interface, Standigm ASK™ facilitates the exploration of predicted results. Applying Standigm ASK™ to idiopathic pulmonary fibrosis (IPF), a complex lung disease, we focused on genes (AMFR, MDFIC and NR5A2) identified through KG evidence. In vitro experiments demonstrated their relevance, as TGFβ treatment induced gene expression changes associated with epithelial-mesenchymal transition characteristics. Gene knockdown reversed these changes, identifying AMFR, MDFIC and NR5A2 as potential therapeutic targets for IPF. In summary, Standigm ASK™ emerges as an innovative KG and artificial intelligence platform driving insights in drug target discovery, exemplified by the identification and validation of therapeutic targets for IPF.
Collapse
Affiliation(s)
- Seokjin Han
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Ji Eun Lee
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, 03760, Seoul, Republic of Korea
| | - Seolhee Kang
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Minyoung So
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Hee Jin
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, 03760, Seoul, Republic of Korea
| | - Jang Ho Lee
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Sunghyeob Baek
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Hyungjin Jun
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Tae Yong Kim
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Yun-Sil Lee
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, 03760, Seoul, Republic of Korea
| |
Collapse
|
14
|
Alpaslan M, Mestré-Godin S, Lay A, Giacalone G, Helaers R, Adham S, Kovacsik H, Guillemard S, Mercier E, Boon L, Revencu N, Brouillard P, Quere I, Vikkula M. Ureteropelvic junction obstruction with primary lymphoedema associated with CELSR1 variants. J Med Genet 2023; 60:1161-1168. [PMID: 37225411 DOI: 10.1136/jmg-2023-109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Primary lymphoedema (PL) is a chronic, debilitating disease caused by developmental and functional defects of the lymphatic system. It is marked by an accumulation of interstitial fluid, fat and tissue fibrosis. There is no cure. More than 50 genes and genetic loci have been linked to PL. We sought to study systematically cell polarity signalling protein Cadherin Epidermal Growth Factor Laminin G Seven-pass G-type Receptor 1 (CELSR1) variants linked to PL. METHODS We investigated 742 index patients from our PL cohort using exome sequencing. RESULTS We identified nine variants predicted to cause CELSR1 loss of function. Four of them were tested for nonsense-mediated mRNA decay, but none was observed. Most of the truncated CELSR1 proteins would lack the transmembrane domain, if produced. The affected individuals had puberty/late-onset PL on lower extremities. The variants had a statistically significant difference in penetrance between female patients (87%) and male patients (20%). Eight variant carriers had a kidney anomaly, mostly in the form of ureteropelvic junction obstruction, which has not been associated with CELSR1 before. CELSR1 is located in the 22q13.3 deletion locus of the Phelan-McDermid syndrome. As variable renal defects are often seen in patients with the Phelan-McDermid syndrome, CELSR1 may be the long-sought gene for the renal defects. CONCLUSION PL associated with a renal anomaly suggests a CELSR1-related cause.
Collapse
Affiliation(s)
- Murat Alpaslan
- Human Molecular Genetics, de Duve Institute, Brussels, Belgium
| | - Sandrine Mestré-Godin
- Department of vascular medicine, CHU Montpellier, Montpellier, France
- IDESP - Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - Aurélie Lay
- Department of vascular medicine, CHU Montpellier, Montpellier, France
| | - Guido Giacalone
- Department of Lymphatic Surgery, VASCERN PPL European Reference Centre, General Hospital Sint-Maarten, Mechelen, Belgium
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Brussels, Belgium
| | - Salma Adham
- Department of vascular medicine, CHU Montpellier, Montpellier, France
- IDESP - Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - Hélène Kovacsik
- Department of vascular medicine, CHU Montpellier, Montpellier, France
| | - Sophie Guillemard
- Department of Nuclear Medicine, Montpellier Regional Cancer Institute, Montpellier, France
| | - Erick Mercier
- IDESP - Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
- Hematology Laboratory, University Hospital Centre Nimes, Nimes, France
| | - Laurence Boon
- Human Molecular Genetics, de Duve Institute, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Nicole Revencu
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | - Isabelle Quere
- Department of vascular medicine, CHU Montpellier, Montpellier, France
- IDESP - Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Brussels, Belgium
- WELBIO, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
15
|
Zhou Z, Martinac B. Mechanisms of PIEZO Channel Inactivation. Int J Mol Sci 2023; 24:14113. [PMID: 37762415 PMCID: PMC10531961 DOI: 10.3390/ijms241814113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
PIEZO channels PIEZO1 and PIEZO2 are the newly identified mechanosensitive, non-selective cation channels permeable to Ca2+. In higher vertebrates, PIEZO1 is expressed ubiquitously in most tissues and cells while PIEZO2 is expressed more specifically in the peripheral sensory neurons. PIEZO channels contribute to a wide range of biological behaviors and developmental processes, therefore driving significant attention in the effort to understand their molecular properties. One prominent property of PIEZO channels is their rapid inactivation, which manifests itself as a decrease in channel open probability in the presence of a sustained mechanical stimulus. The lack of the PIEZO channel inactivation is linked to various mechanopathologies emphasizing the significance of studying this PIEZO channel property and the factors affecting it. In the present review, we discuss the mechanisms underlying the PIEZO channel inactivation, its modulation by the interaction of the channels with lipids and/or proteins, and how the changes in PIEZO inactivation by the channel mutations can cause a variety of diseases in animals and humans.
Collapse
Affiliation(s)
- Zijing Zhou
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia;
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
16
|
Zhou Z, Ma X, Lin Y, Cheng D, Bavi N, Secker GA, Li JV, Janbandhu V, Sutton DL, Scott HS, Yao M, Harvey RP, Harvey NL, Corry B, Zhang Y, Cox CD. MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels. Science 2023; 381:799-804. [PMID: 37590348 DOI: 10.1126/science.adh8190] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.
Collapse
Affiliation(s)
- Zijing Zhou
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaonuo Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiechang Lin
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Navid Bavi
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Genevieve A Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Drew L Sutton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | - Hamish S Scott
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Science, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Yixiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
17
|
Li D, Sheppard SE, March ME, Battig MR, Surrey LF, Srinivasan AS, Matsuoka LS, Tian L, Wang F, Seiler C, Dayneka J, Borst AJ, Matos MC, Paulissen SM, Krishnamurthy G, Nriagu B, Sikder T, Casey M, Williams L, Rangu S, O'Connor N, Thomas A, Pinto E, Hou C, Nguyen K, Pellegrino da Silva R, Chehimi SN, Kao C, Biroc L, Britt AD, Queenan M, Reid JR, Napoli JA, Low DM, Vatsky S, Treat J, Smith CL, Cahill AM, Snyder KM, Adams DM, Dori Y, Hakonarson H. Genomic profiling informs diagnoses and treatment in vascular anomalies. Nat Med 2023; 29:1530-1539. [PMID: 37264205 PMCID: PMC11184491 DOI: 10.1038/s41591-023-02364-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Vascular anomalies are malformations or tumors of the blood or lymphatic vasculature and can be life-threatening. Although molecularly targeted therapies can be life-saving, identification of the molecular etiology is often impeded by lack of accessibility to affected tissue samples, mosaicism or insufficient sequencing depth. In a cohort of 356 participants with vascular anomalies, including 104 with primary complex lymphatic anomalies (pCLAs), DNA from CD31+ cells isolated from lymphatic fluid or cell-free DNA from lymphatic fluid or plasma underwent ultra-deep sequencing thereby uncovering pathogenic somatic variants down to a variant allele fraction of 0.15%. A molecular diagnosis, including previously undescribed genetic causes, was obtained in 41% of participants with pCLAs and 72% of participants with other vascular malformations, leading to a new medical therapy for 63% (43/69) of participants and resulting in improvement in 63% (35/55) of participants on therapy. Taken together, these data support the development of liquid biopsy-based diagnostic techniques to identify previously undescribed genotype-phenotype associations and guide medical therapy in individuals with vascular anomalies.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark R Battig
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abhay S Srinivasan
- Division of Interventional Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leticia S Matsuoka
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fengxiang Wang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph Seiler
- Zebrafish Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jill Dayneka
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexandra J Borst
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mary C Matos
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott M Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Ganesh Krishnamurthy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bede Nriagu
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tamjeed Sikder
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melissa Casey
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lydia Williams
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sneha Rangu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora O'Connor
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexandria Thomas
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin Pinto
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Samar N Chehimi
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charlly Kao
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Biroc
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Allison D Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Queenan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Janet R Reid
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph A Napoli
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David M Low
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seth Vatsky
- Division of Interventional Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Treat
- Section of Dermatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher L Smith
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anne Marie Cahill
- Division of Interventional Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristen M Snyder
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denise M Adams
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoav Dori
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Grenier JM, Borst AJ, Sheppard SE, Snyder KM, Li D, Surrey LF, Al-Ibraheemi A, Weber DR, Treat JR, Smith CL, Laje P, Dori Y, Adams DM, Acord M, Srinivasan AS. Pathogenic variants in PIK3CA are associated with clinical phenotypes of kaposiform lymphangiomatosis, generalized lymphatic anomaly, and central conducting lymphatic anomaly. Pediatr Blood Cancer 2023; 70:e30419. [PMID: 37194624 PMCID: PMC11340265 DOI: 10.1002/pbc.30419] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Complex lymphatic anomalies are debilitating conditions characterized by aberrant development of the lymphatic vasculature (lymphangiogenesis). Diagnosis is typically made by history, examination, radiology, and histologic findings. However, there is significant overlap between conditions, making accurate diagnosis difficult. Recently, genetic analysis has been offered as an additional diagnostic modality. Here, we describe four cases of complex lymphatic anomalies, all with PIK3CA variants but with varying clinical phenotypes. Identification of PIK3CA resulted in transition to a targeted inhibitor, alpelisib. These cases highlight the genetic overlap between phenotypically diverse lymphatic anomalies.
Collapse
Affiliation(s)
- Jeremy M. Grenier
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Borst
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Kristen M. Snyder
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lea F. Surrey
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - David R. Weber
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James R. Treat
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher L. Smith
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pablo Laje
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yoav Dori
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Denise M. Adams
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael Acord
- Division of Interventional Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abhay S. Srinivasan
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Interventional Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Genomic autopsy to identify underlying causes of pregnancy loss and perinatal death. Nat Med 2023; 29:180-189. [PMID: 36658419 DOI: 10.1038/s41591-022-02142-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.
Collapse
|
20
|
Genomic autopsy offers answers for pregnancy loss and perinatal death. Nat Med 2023; 29:41-42. [PMID: 36670297 DOI: 10.1038/s41591-022-02143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Liu M, Smith CL, Biko DM, Li D, Pinto E, O'Connor N, Skraban C, Zackai EH, Hakonarson H, Dori Y, Sheppard SE. Genetics etiologies and genotype phenotype correlations in a cohort of individuals with central conducting lymphatic anomaly. Eur J Hum Genet 2022; 30:1022-1028. [PMID: 35606495 PMCID: PMC9436962 DOI: 10.1038/s41431-022-01123-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a heterogenous disorder caused by disruption of central lymphatic flow that may result in dilation or leakage of central lymphatic channels. There is also a paucity of known genetic diagnoses associated with CCLA. We hypothesized that specific genetic syndromes would have distinct lymphatic patterns and this would allow us to more precisely define CCLA. As a first step toward "precision lymphology", we defined the genetic conditions associated with CCLA by performing a retrospective cohort study. Individuals receiving care through the Jill and Mark Fishman Center for Lymphatic Disorders at the Children's Hospital of Philadelphia between 2016 and 2019 were included if they had a lymphangiogram and clinical genetic testing performed and consented to a clinical registry. In our cohort of 115 participants, 26% received a molecular diagnosis from standard genetic evaluation. The most common genetic etiologies were germline and mosaic RASopathies, chromosomal abnormalities including Trisomy 21 and 22q11.2 deletion syndrome, and PIEZO1-related lymphatic dysplasia. Next, we analyzed the dynamic contrast magnetic resonance lymphangiograms and found that individuals with germline and mosaic RASopathies, mosaic KRASopathies, PIEZO1-related lymphatic dysplasia, and Trisomy 21 had distinct central lymphatic flow phenotypes. Our research expands the genetic conditions associated with CCLA and genotype-lymphatic phenotype correlations. Future descriptions of CCLA should include both genotype (if known) and phenotype to provide more information about disease (gene-CCLA). This should be considered for updated classifications of CCLA by the International Society of Vascular Anomalies.
Collapse
Affiliation(s)
- Mandi Liu
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher L Smith
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin Pinto
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora O'Connor
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoav Dori
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|
22
|
Solorzano E, Alejo AL, Ball HC, Magoline J, Khalil Y, Kelly M, Safadi FF. Osteopathy in Complex Lymphatic Anomalies. Int J Mol Sci 2022; 23:ijms23158258. [PMID: 35897834 PMCID: PMC9332568 DOI: 10.3390/ijms23158258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Complex Lymphatic Anomalies (CLA) are lymphatic malformations with idiopathic bone and soft tissue involvement. The extent of the abnormal lymphatic presentation and boney invasion varies between subtypes of CLA. The etiology of these diseases has proven to be extremely elusive due to their rarity and irregular progression. In this review, we compiled literature on each of the four primary CLA subtypes and discuss their clinical presentation, lymphatic invasion, osseous profile, and regulatory pathways associated with abnormal bone loss caused by the lymphatic invasion. We highlight key proliferation and differentiation pathways shared between lymphatics and bone and how these systems may interact with each other to stimulate lymphangiogenesis and cause bone loss.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Joseph Magoline
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Yusuf Khalil
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Michael Kelly
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44243, USA
- Correspondence: ; Tel.: +1-330-325-6619
| |
Collapse
|