1
|
Lyu S, Mao Y, Zhang Y, Yu T, Yang X, Zhu H, Deng S. Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14568. [PMID: 39377156 DOI: 10.1111/ppl.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.
Collapse
Affiliation(s)
- Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yaping Mao
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tianli Yu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuangang Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Liu Y, Li C, Qin A, Deng W, Chen R, Yu H, Wang Y, Song J, Zeng L. Genome-wide identification and transcriptome profiling expression analysis of the U-box E3 ubiquitin ligase gene family related to abiotic stress in maize (Zea mays L.). BMC Genomics 2024; 25:132. [PMID: 38302871 PMCID: PMC10832145 DOI: 10.1186/s12864-024-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.
Collapse
Affiliation(s)
- Yongle Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- College of Life Sciences, Nanjing University, Nanjing, 210095, People's Republic of China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Wenli Deng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
3
|
Yi SY, Nekrasov V, Ichimura K, Kang SY, Shirasu K. Plant U-box E3 ligases PUB20 and PUB21 negatively regulate pattern-triggered immunity in Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:7. [PMID: 38265485 DOI: 10.1007/s11103-023-01409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
KEY MESSAGE Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.
Collapse
Affiliation(s)
- So Young Yi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, UK
| | - Kazuya Ichimura
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, 32439, Republic of Korea.
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
4
|
Mukherjee S, Chakraborty M, Msengi EN, Haubner J, Zhang J, Jellinek MJ, Carlson HL, Pyles K, Ulmasov B, Lutkewitte AJ, Carpenter D, McCommis KS, Ford DA, Finck BN, Neuschwander-Tetri BA, Chakraborty A. Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo. Mol Metab 2023; 75:101767. [PMID: 37429524 PMCID: PMC10368927 DOI: 10.1016/j.molmet.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A's targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza N Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Matthew J Jellinek
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kelly Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andrew J Lutkewitte
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
5
|
Jiang L, Lin Y, Wang L, Peng Y, Yang M, Jiang Y, Hou G, Liu X, Li M, Zhang Y, Zhang Y, Chen Q, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-wide identification and expression profiling reveal the regulatory role of U-box E3 ubiquitin ligase genes in strawberry fruit ripening and abiotic stresses resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1171056. [PMID: 37035055 PMCID: PMC10078948 DOI: 10.3389/fpls.2023.1171056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The plant U-box (PUB) proteins are a type of E3 ubiquitin ligases well known for their functions in response to various stresses. They are also related to fruit development and ripening. However, PUB members possess such roles that remain unclear in strawberry. In this study, 155 PUB genes were identified in octoploid strawberry and classified into four groups. Their promoters possessed a variety of cis-acting elements, most of which are associated with abiotic stresses, followed by phytohormones response and development. Protein-protein interaction analysis suggested that FaU-box members could interact with each other as well as other proteins involved in hormone signaling and stress resistance. Transcriptome-based and RT-qPCR expression analysis revealed the potential involvement of FaU-box genes in resistance to stresses and fruit ripening. Of these, FaU-box98 and FaU-box136 were positively while FaU-box52 was negatively related to strawberry ripening. FaU-box98 comprehensively participated in resistance of ABA, cold, and salt, while FaU-box83 and FaU-box136 were broadly associated with drought and salt stresses. FaU-box18 and FaU-box52 were ABA-specific; FaU-box3 was specific to salt stress. In addition, the functional analysis of a randomly selected FaU-box (FaU-box127) showed that the transient overexpression of FaU-box127 promoted the ripening of strawberry fruit, along with significant changes in the expression levels of some ripening-related genes and the content of organic acid and soluble sugar. Overall, these findings provided comprehensive information about the FaU-box gene family and identified the potential FaU-box members participating in stress resistance and strawberry fruit ripening regulation.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Knockout Mutants of OsPUB7 Generated Using CRISPR/Cas9 Revealed Abiotic Stress Tolerance in Rice. Int J Mol Sci 2023; 24:ijms24065338. [PMID: 36982409 PMCID: PMC10048836 DOI: 10.3390/ijms24065338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Plants produce and accumulate stress-resistant substances when exposed to abiotic stress, which involves a protein conversion mechanism that breaks down stress-damaged proteins and supplies usable amino acids. Eukaryotic protein turnover is mostly driven by the ubiquitination pathway. Among the three enzymes required for protein degradation, E3 ubiquitin ligase plays a pivotal role in most cells, as it determines the specificity of ubiquitination and selects target proteins for degradation. In this study, to investigate the function of OsPUB7 (Plant U-box gene in Oryza sativa), we constructed a CRISPR/Cas9 vector, generated OsPUB7 gene-edited individuals, and evaluated resistance to abiotic stress using gene-edited lines. A stress-tolerant phenotype was observed as a result of drought and salinity stress treatment in the T2 OsPUB7 gene-edited null lines (PUB7-GE) lacking the T-DNA. In addition, although PUB7-GE did not show any significant change in mRNA expression analysis, it showed lower ion leakage and higher proline content than the wild type (WT). Protein–protein interaction analysis revealed that the expression of the genes (OsPUB23, OsPUB24, OsPUB66, and OsPUB67) known to be involved in stress increased in PUB7-GE and this, by forming a 1-node network with OsPUB66 and OsPUB7, acted as a negative regulator of drought and salinity stress. This result provides evidence that OsPUB7 will be a useful target for both breeding and future research on drought tolerance/abiotic stress in rice.
Collapse
|
7
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
8
|
Stanley AE, Menkir A, Ifie B, Paterne AA, Unachukwu NN, Meseka S, Mengesha WA, Bossey B, Kwadwo O, Tongoona PB, Oladejo O, Sneller C, Gedil M. Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines. Sci Rep 2021; 11:24193. [PMID: 34921181 PMCID: PMC8683441 DOI: 10.1038/s41598-021-03566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Striga hermonthica is a widespread, destructive parasitic plant that causes substantial yield loss to maize productivity in sub-Saharan Africa. Under severe Striga infestation, yield losses can range from 60 to 100% resulting in abandonment of farmers’ lands. Diverse methods have been proposed for Striga management; however, host plant resistance is considered the most effective and affordable to small-scale famers. Thus, conducting a genome-wide association study to identify quantitative trait nucleotides controlling S. hermonthica resistance and mining of relevant candidate genes will expedite the improvement of Striga resistance breeding through marker-assisted breeding. For this study, 150 diverse maize inbred lines were evaluated under Striga infested and non-infested conditions for two years and genotyped using the genotyping-by-sequencing platform. Heritability estimates of Striga damage ratings, emerged Striga plants and grain yield, hereafter referred to as Striga resistance-related traits, were high under Striga infested condition. The mixed linear model (MLM) identified thirty SNPs associated with the three Striga resistance-related traits based on the multi-locus approaches (mrMLM, FASTmrMLM, FASTmrEMMA and pLARmEB). These SNPs explained up to 14% of the total phenotypic variation. Under non-infested condition, four SNPs were associated with grain yield, and these SNPs explained up to 17% of the total phenotypic variation. Gene annotation of significant SNPs identified candidate genes (Leucine-rich repeats, putative disease resistance protein and VQ proteins) with functions related to plant growth, development, and defense mechanisms. The marker-effect prediction was able to identify alleles responsible for predicting high yield and low Striga damage rating in the breeding panel. This study provides valuable insight for marker validation and deployment for Striga resistance breeding in maize.
Collapse
Affiliation(s)
- A E Stanley
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana.,International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - A Menkir
- International Institute of Tropical Agriculture, Ibadan, Nigeria.
| | - B Ifie
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
| | - A A Paterne
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - N N Unachukwu
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - S Meseka
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - W A Mengesha
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - B Bossey
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - O Kwadwo
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
| | - P B Tongoona
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
| | - O Oladejo
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - C Sneller
- Ohio Agriculture Research and Development Center, Ohio State University, Wooster, OH, USA
| | - M Gedil
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
9
|
Cheng J, Zhou S, Yang K, Yu H, Chen R, Zeng L, Li H, Wang Y, Song J. Identification of RNA helicases in Medicago truncatula and their expression patterns under abiotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2283-2296. [PMID: 34744366 PMCID: PMC8526662 DOI: 10.1007/s12298-021-01087-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 05/29/2023]
Abstract
UNLABELLED RNA helicase catalyzes the denaturation of DNA or the unwinding of double-stranded RNA. It is vital to RNA splicing, transport, editing, degradation and the initiation of protein translation. However, the function of RNA helicase in Medicago truncatula has rarely been reported. In this study, 170 putative RNA helicase genes were identified in the M. truncatula genome, and classified into three subfamilies based on the presence of either a DEAD-box (52 genes), DEAH-box (38 genes), or DExD/H-box (80 genes) in their coding regions. Additionally, conserved helicase_C domains and other functional domains (e.g., the HA2, DUF, and ZnF domains) were also present in these genes. Chromosomal mapping and synteny analyses showed that there were tandem and segment duplications of RNA helicase genes. Furthermore, transcriptome and real-time PCR analysis showed that the expression of 35 RNA helicase genes was affected by abiotic stress. To be specific, 17, 12 and 19 genes were regulated by salt, drought and cold stress, respectively. It is worth noting that MtDEAD8, MtDEAH3, MtDExD/H18 and MtDExD/H23 responded to all three types of stress. These results provide valuable information for understanding the RNA helicase genes in M. truncatula and their abiotic stress-related functions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01087-y.
Collapse
Affiliation(s)
- Jie Cheng
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Songsong Zhou
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, 330032 People’s Republic of China
| | - Kun Yang
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Hongyang Yu
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Rongrong Chen
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Liming Zeng
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002 People’s Republic of China
| | - Yihua Wang
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
- College of Science, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Jianbo Song
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| |
Collapse
|
10
|
Paul A, Srinivasan N. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights. Proteins 2020; 88:1620-1638. [PMID: 32667690 DOI: 10.1002/prot.25981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Protein Kinase-Like Non-Kinases (PKLNKs), commonly known as "pseudokinases", are homologous to eukaryotic Ser/Thr/Tyr protein kinases (PKs) but lack the crucial aspartate residue in the catalytic loop, indispensable for phosphotransferase activity. Therefore, they are predicted to be "catalytically inactive" enzyme homologs. Analysis of protein-kinase like sequences from Arabidopsis thaliana led to the identification of more than 120 pseudokinases lacking catalytic aspartate, majority of which are closely related to the plant-specific receptor-like kinase family. These pseudokinases engage in different biological processes, enabled by their diverse domain architectures and specific subcellular localizations. Structural comparison of pseudokinases with active and inactive conformations of canonical PKs, belonging to both plant and animal origin, revealed unique structural differences. The currently available crystal structures of pseudokinases show that the loop topologically equivalent to activation segment of PKs adopts a distinct-folded conformation, packing against the pseudoenzyme core, in contrast to the extended and inhibitory geometries observed for active and inactive states, respectively, of catalytic PKs. Salt-bridge between ATP-binding Lys and DFG-Asp as well as hydrophobic interactions between the conserved nonpolar residue C-terminal to the equivalent DFG motif and nonpolar residues in C-helix mediate such a conformation in pseudokinases. This results in enhanced solvent accessibility of the pseudocatalytic loop in pseudokinases that can possibly serve as an interacting surface while associating with other proteins. Specifically, our analysis identified several residues that may be involved in pseudokinase regulation and hints at the repurposing of pseudocatalytic residues to achieve mechanistic control over noncatalytic functions of pseudoenzymes.
Collapse
Affiliation(s)
- Anindita Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
11
|
Hu H, Dong C, Sun D, Hu Y, Xie J. Genome-Wide Identification and Analysis of U-Box E3 Ubiquitin⁻Protein Ligase Gene Family in Banana. Int J Mol Sci 2018; 19:E3874. [PMID: 30518127 PMCID: PMC6321073 DOI: 10.3390/ijms19123874] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022] Open
Abstract
The U-box gene family is a family of genes which encode U-box domain-containing proteins. However, little is known about U-box genes in banana (Musa acuminata). In this study, 91 U-box genes were identified in banana based on its genome sequence. The banana U-box genes were distributed across all 12 chromosomes at different densities. Phylogenetic analysis of U-box genes from banana, Arabidopsis, and rice suggested that they can be clustered into seven subgroups (I⁻VII), and most U-box genes had a closer relationship between banana and rice relative to Arabidopsis. Typical U-box domains were found in all identified MaU-box genes through the analysis of conserved motifs. Four conserved domains were found in major banana U-box proteins. The MaU-box gene family had the highest expression in the roots at the initial fruit developmental stage. The MaU-box genes exhibited stronger response to drought than to salt and low temperatures. To the best of our knowledge, this report is the first to perform genome-wide identification and analysis of the U-box gene family in banana, and the results should provide valuable information for better understanding of the function of U-box in banana.
Collapse
Affiliation(s)
- Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| | - Chen Dong
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| | - Dequan Sun
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| |
Collapse
|
12
|
Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. Int J Mol Sci 2018; 19:ijms19113576. [PMID: 30428531 PMCID: PMC6274744 DOI: 10.3390/ijms19113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
Protein ubiquitylation plays a central role in eukaryotic cell physiology. It is involved in several regulatory processes, ranging from protein folding or degradation, subcellular localization of proteins, vesicular trafficking and endocytosis to DNA repair, cell cycle, innate immunity, autophagy, and apoptosis. As such, it is reasonable that pathogens have developed a way to exploit such a crucial system to enhance their virulence against the host. Hence, bacteria have evolved a wide range of effectors capable of mimicking the main players of the eukaryotic ubiquitin system, in particular ubiquitin ligases, by interfering with host physiology. Here, we give an overview of this topic and, in particular, we detail and discuss the mechanisms developed by pathogenic bacteria to hijack the host ubiquitination system for their own benefit.
Collapse
|
13
|
Song J, Mo X, Yang H, Yue L, Song J, Mo B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS One 2017; 12:e0182402. [PMID: 28771553 PMCID: PMC5542650 DOI: 10.1371/journal.pone.0182402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Armstrong SR, Wu H, Wang B, Abuetabh Y, Sergi C, Leng RP. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System. Int J Mol Sci 2016; 17:ijms17122041. [PMID: 27929429 PMCID: PMC5187841 DOI: 10.3390/ijms17122041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.
Collapse
Affiliation(s)
- Stephen R Armstrong
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Hong Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Benfan Wang
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada.
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
15
|
Jean-Charles PY, Freedman NJ, Shenoy SK. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:339-69. [PMID: 27378762 DOI: 10.1016/bs.pmbts.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Arrestin1 and β-arrestin2 are homologous adaptor proteins that are ubiquitously expressed in mammalian cells. They belong to a four-member family of arrestins that regulate the vast family of seven-transmembrane receptors that couple to heterotrimeric G proteins (7TMRs or GPCRs), and that modulate 7TMR signal transduction. β-Arrestins were originally identified in the context of signal inhibition via the 7TMRs because they competed with and thereby blocked G protein coupling to 7TMRs. Currently, in addition to their role as desensitizers of signaling, β-arrestins are appreciated as multifunctional adaptors that mediate trafficking and signal transduction of not only 7TMRs, but a growing list of additional receptors, ion channels, and nonreceptor proteins. β-Arrestins' interactions with their multifarious partners are based on their dynamic conformational states rather than particular domain-domain interactions. β-Arrestins adopt activated conformations upon 7TMR association. In addition, β-arrestins undergo various posttranslational modifications that are choreographed by activated 7TMRs, including phosphorylation, ubiquitination, acetylation, nitrosylation, and SUMOylation. Ubiquitination of β-arrestins is critical for their high-affinity interaction with 7TMRs as well as with endocytic adaptor proteins and signaling kinases. β-Arrestins also function as critical adaptors for ubiquitination and deubiquitination of various cellular proteins, and thereby affect the longevity of signal transducers and the intensity of signal transmission.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States
| | - N J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States.
| |
Collapse
|
16
|
Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K. Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 2015; 5:16264. [PMID: 26537429 PMCID: PMC4633681 DOI: 10.1038/srep16264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Animal personality and coping styles are basic concepts for evaluating animal welfare. Struggling response of piglets in so-called backtests early in life reflects their coping strategy. Behavioral reactions of piglets in backtests have a moderate heritability, but their genetic basis largely remains unknown. Here, latency, duration and frequency of struggling attempts during one-minute backtests were repeatedly recorded of piglets at days 5, 12, 19, and 26. A genome-wide association study for backtest traits revealed 465 significant SNPs (FDR ≤ 0.05) mostly located in QTL (quantitative trait locus) regions on chromosome 3, 5, 12 and 16. In order to capture genes in these regions, 37 transcripts with significant SNPs were selected for expressionQTL analysis in the hypothalamus. Eight genes (ASGR1, CPAMD8, CTC1, FBXO39, IL19, LOC100511790, RAD51B, UBOX5) had cis- and five (RANGRF, PER1, PDZRN3, SH2D4B, LONP2) had trans-expressionQTL. In particular, for PER1, with known physiological implications for maintenance of circadian rhythms, a role in coping behavior was evidenced by confirmed association in an independent population. For CTC1 a cis-expression QTL and the consistent relationship of gene polymorphism, mRNA expression level and backtest traits promoted its link to coping style. GWAS and eQTL analyses uncovered positional and functional gene candidates for coping behavior.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Joachim Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Birger Puppe
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manfred Schwerin
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
17
|
Wang Y, Zheng Z, Zhang J, Wang Y, Kong R, Liu J, Zhang Y, Deng H, Du X, Ke Y. A Novel Retinoblastoma Protein (RB) E3 Ubiquitin Ligase (NRBE3) Promotes RB Degradation and Is Transcriptionally Regulated by E2F1 Transcription Factor. J Biol Chem 2015; 290:28200-28213. [PMID: 26442585 DOI: 10.1074/jbc.m115.655597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 12/25/2022] Open
Abstract
Retinoblastoma protein (RB) plays critical roles in tumor suppression and is degraded through the proteasomal pathway. However, E3 ubiquitin ligases responsible for proteasome-mediated degradation of RB are largely unknown. Here we characterize a novel RB E3 ubiquitin ligase (NRBE3) that binds RB and promotes RB degradation. NRBE3 contains an LXCXE motif and bound RB in vitro. NRBE3 interacted with RB in cells when proteasome activity was inhibited. NRBE3 promoted RB ubiquitination and degradation via the ubiquitin-proteasome pathway. Importantly, purified NRBE3 ubiquitinated recombinant RB in vitro, and a U-box was identified as essential for its E3 activity. Surprisingly, NRBE3 was transcriptionally activated by E2F1/DP1. Consequently, NRBE3 affected the cell cycle by promoting G1/S transition. Moreover, NRBE3 was up-regulated in breast cancer tissues. Taken together, we identified NRBE3 as a novel ubiquitin E3 ligase for RB that might play a role as a potential oncoprotein in human cancers.
Collapse
Affiliation(s)
- Yingshuang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Zongfang Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Jingyi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)
| | - You Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Ruirui Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Jiangying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Ying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Hongkui Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaojuan Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
18
|
Cho SK, Bae H, Ryu MY, Wook Yang S, Kim WT. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana. Biochem Biophys Res Commun 2015; 464:994-999. [PMID: 26188517 DOI: 10.1016/j.bbrc.2015.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 11/17/2022]
Abstract
Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress.
Collapse
Affiliation(s)
- Seok Keun Cho
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Hansol Bae
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Moon Young Ryu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Seong Wook Yang
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | - Woo TaeK Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea.
| |
Collapse
|
19
|
Genome-wide survey and expression analysis of the PUB family in Chinese cabbage (Brassica rapa ssp. pekinesis). Mol Genet Genomics 2015; 290:2241-60. [DOI: 10.1007/s00438-015-1075-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
20
|
Kubori T, Hubber AM, Nagai H. Hijacking the host proteasome for the temporal degradation of bacterial effectors. Methods Mol Biol 2014; 1197:141-52. [PMID: 25172279 DOI: 10.1007/978-1-4939-1261-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To establish infection, intracellular pathogens need to modulate host cellular processes. Modulation of host processes is achieved by the action of various "effector proteins" which are delivered from the bacteria to the host cell cytosol. In order to orchestrate host cell reprogramming, the function of effectors inside host cells is regulated both temporally and spatially. In eukaryotes one of the most prominent processes used to degrade proteins is the ubiquitin-proteasome system. Recently it has emerged that the intracellular pathogen Legionella pneumophila is able to achieve temporal regulation of an effector using the ubiquitin-proteasome system. After establishing its replicative niche, the L. pneumophila effector SidH is degraded by the host proteasome. Most remarkably another effector protein LubX is able to mimic the function of an eukaryotic E3 ubiquitin ligase and polyubiquitinates SidH, targeting it for degradation. In this paper we describe a method to detect the polyubiquitin-modified forms of SidH in vitro and in vivo. Analyzing the temporal profile of polyubiquitination and degradation of bacterial effectors aids towards our understanding of how bacteria hijack host systems.
Collapse
Affiliation(s)
- Tomoko Kubori
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
21
|
Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, Han X, Zhang Z, Yan J, Zheng Y, Yue B, Qiu F. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 2013; 8:e79305. [PMID: 24244474 PMCID: PMC3828346 DOI: 10.1371/journal.pone.0079305] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 09/22/2013] [Indexed: 11/19/2022] Open
Abstract
Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL), QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging), 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1) were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.
Collapse
Affiliation(s)
- Khalid A. Osman
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Juanhua Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Feng Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuesong Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianbin Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bing Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Kommaddi RP, Shenoy SK. Arrestins and protein ubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:175-204. [PMID: 23764054 DOI: 10.1016/b978-0-12-394440-5.00007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adaptor proteins, β-arrestins 1 and 2, were originally identified as inhibitors of G protein signaling at the seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors or GPCRs). Subsequent studies have established β-arrestins as critical multifunctional 7TMR adaptors that mediate receptor trafficking and activate G protein-independent signaling pathways. 7TMR activation leads not only to the recruitment of arrestin proteins upon phosphorylation by GPCR kinases but also to β-arrestin ubiquitination. This posttranslational modification of β-arrestin is appended by specific E3 ubiquitin ligases and reversed by deubiquitinases, which are also recruited in a receptor- and agonist-specific manner. β-Arrestin ubiquitination allows it to form protein complexes with activated 7TMRs, endocytic proteins such as clathrin, and phosphorylated ERK1/2. β-Arrestin ubiquitination is dependent on its activated conformation and likely regulates timing and subcellular localization of various protein interactions during receptor trafficking and signaling. β-Arrestins also serve as adaptors that escort E3 ubiquitin ligases to mediate ubiquitination of a wide list of substrate proteins including 7TMRs and provide an added layer of regulation for defining substrate specificity in the cellular ubiquitination pathway.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
23
|
Nagai H, Kubori T. Purification and characterization of legionella U-box-type E3 ubiquitin ligase. Methods Mol Biol 2013; 954:347-54. [PMID: 23150407 DOI: 10.1007/978-1-62703-161-5_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacterial virulence proteins often mimic host eukaryotic proteins to modify or disturb host cellular -pathways. Increasing lines of evidence show that many bacterial effector proteins have E3 ubiquitin ligase activity. The effector protein LubX is one such bacterial E3 ubiquitin ligase. We describe here the method to purify soluble LubX protein using GST-tag and Escherichia coli overexpression systems. Using the purified protein together with recombinant ubiquitin, E1, and E2 enzymes, ubiquitin ligase activity is analyzed by the in vitro ubiquitination assay.
Collapse
Affiliation(s)
- Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | |
Collapse
|
24
|
Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A, Ren J, Xue Y. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 2012; 41:D445-51. [PMID: 23172288 PMCID: PMC3531133 DOI: 10.1093/nar/gks1103] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.
Collapse
Affiliation(s)
- Tianshun Gao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mao X, Gluck N, Chen B, Starokadomskyy P, Li H, Maine GN, Burstein E. COMMD1 (copper metabolism MURR1 domain-containing protein 1) regulates Cullin RING ligases by preventing CAND1 (Cullin-associated Nedd8-dissociated protein 1) binding. J Biol Chem 2011; 286:32355-65. [PMID: 21778237 PMCID: PMC3173175 DOI: 10.1074/jbc.m111.278408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Indexed: 11/06/2022] Open
Abstract
Cullin RING ligases (CRLs), the most prolific class of ubiquitin ligase enzymes, are multimeric complexes that regulate a wide range of cellular processes. CRL activity is regulated by CAND1 (Cullin-associated Nedd8-dissociated protein 1), an inhibitor that promotes the dissociation of substrate receptor components from the CRL. We demonstrate here that COMMD1 (copper metabolism MURR1 domain-containing 1), a factor previously found to promote ubiquitination of various substrates, regulates CRL activation by antagonizing CAND1 binding. We show that COMMD1 interacts with multiple Cullins, that the COMMD1-Cul2 complex cannot bind CAND1, and that, conversely, COMMD1 can actively displace CAND1 from CRLs. These findings highlight a novel mechanism of CRL activation and suggest that CRL regulation may underlie the pleiotropic activities of COMMD1.
Collapse
Affiliation(s)
- Xicheng Mao
- From the Departments of Internal Medicine and
| | - Nathan Gluck
- the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
- the Department of Biochemistry, School of Medicine, Hebrew University, 91120 Jerusalem, Israel, and
| | - Baozhi Chen
- From the Departments of Internal Medicine and
| | | | - Haiying Li
- From the Departments of Internal Medicine and
| | - Gabriel N. Maine
- From the Departments of Internal Medicine and
- the Department of Clinical Pathology, William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Ezra Burstein
- From the Departments of Internal Medicine and
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Han X, Du H, Massiah MA. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein. J Mol Biol 2011; 407:505-20. [PMID: 21296087 DOI: 10.1016/j.jmb.2011.01.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/24/2010] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
Abstract
Human MID1 (midline-1) is a microtubule-associated protein that is postulated to target the catalytic subunit of protein phosphatase 2A for degradation. It binds alpha4 that then recruits the catalytic subunit of protein phosphatase 2A. As a member of the TRIM (tripartite motif) family, MID1 has three consecutive zinc-binding domains-RING (really interesting new gene), Bbox1, and Bbox2-that have similar ββα-folds. Here, we describe the in vitro characterization of these domains individually and in tandem. We observed that the RING domain exhibited greater ubiquitin (Ub) E3 ligase activity compared to the Bbox domains. The amount of autopolyubiquitinated products with RING-Bbox1 and RING-Bbox1-Bbox2 domains in tandem was significantly greater than those of the individual domains. However, no polyubiquitinated products were observed for the Bbox1-Bbox domains in tandem. Using mutants of Ub, we observed that these MID1 domain constructs facilitate Ub chain elongation via Lys63 of Ub. In addition, we observed that the high-molecular-weight protein products were primarily due to polyubiquitination at one site (Lys154) on the Bbox1 domain of the RING-Bbox1 and RING-Bbox1-Bbox2 constructs. We observed that MID1 E3 domains could interact with multiple E2-conjugating enzymes. Lastly, a 45-amino-acid peptide derived from the C-terminus of alpha4 that binds tightly to Bbox1 was observed to be monoubiquitinated in the assay and appears to down-regulate the amount of polyubiquitinated products formed. These studies shed light on MID1 E3 ligase activity and show how its three zinc-binding domains can contribute to MID1's overall function.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
27
|
Kubori T, Shinzawa N, Kanuka H, Nagai H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 2010; 6:e1001216. [PMID: 21151961 PMCID: PMC2996335 DOI: 10.1371/journal.ppat.1001216] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022] Open
Abstract
Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of "metaeffector," a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein.
Collapse
Affiliation(s)
- Tomoko Kubori
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Naoaki Shinzawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hirotaka Kanuka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Vander Kooi CW, Ren L, Xu P, Ohi MD, Gould KL, Chazin WJ. The Prp19 WD40 domain contains a conserved protein interaction region essential for its function. Structure 2010; 18:584-93. [PMID: 20462492 DOI: 10.1016/j.str.2010.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 01/03/2023]
Abstract
Prp19 is a member of the WD40 repeat family of E3 ubiquitin ligases and a conserved eukaryotic RNA splicing factor essential for activation and stabilization of the spliceosome. To understand the role of the WD40 repeat domain of Prp19 we have determined its structure using X-ray crystallography. The domain has a distorted seven bladed WD40 architecture with significant asymmetry due to irregular packing of blades one and seven into the core of the WD40 domain. Structure-based mutagenesis identified a highly conserved surface centered around blade five that is required for the physical interaction between Prp19 and Cwc2, another essential splicing factor. This region is found to be required for Prp19 function and yeast viability. Experiments in vitro and in vivo demonstrate that two molecules of Cwc2 bind to the Prp19 tetramer. These coupled structural and functional studies provide a model for the functional architecture of Prp19.
Collapse
Affiliation(s)
- Craig W Vander Kooi
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 2010; 24:1434-47. [PMID: 20595234 DOI: 10.1101/gad.1925010] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spliceosome, a dynamic assembly of proteins and RNAs, catalyzes the excision of intron sequences from nascent mRNAs. Recent work has suggested that the activity and composition of the spliceosome are regulated by ubiquitination, but the underlying mechanisms have not been elucidated. Here, we report that the spliceosomal Prp19 complex modifies Prp3, a component of the U4 snRNP, with nonproteolytic K63-linked ubiquitin chains. The K63-linked chains increase the affinity of Prp3 for the U5 snRNP component Prp8, thereby allowing for the stabilization of the U4/U6.U5 snRNP. Prp3 is deubiquitinated by Usp4 and its substrate targeting factor, the U4/U6 recycling protein Sart3, which likely facilitates ejection of U4 proteins from the spliceosome during maturation of its active site. Loss of Usp4 in cells interferes with the accumulation of correctly spliced mRNAs, including those for alpha-tubulin and Bub1, and impairs cell cycle progression. We propose that the reversible ubiquitination of spliceosomal proteins, such as Prp3, guides rearrangements in the composition of the spliceosome at distinct steps of the splicing reaction.
Collapse
Affiliation(s)
- Eun Joo Song
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for degradation by a multisubunit complex called the proteasome. Linkage of ubiquitin to protein substrates is highly specific and occurs through a series of well-orchestrated enzymatic steps. The UPP regulates neurotransmitter receptors, protein kinases, synaptic proteins, transcription factors, and other molecules critical for synaptic plasticity. Accumulating evidence indicates that the operation of the UPP in neurons is not homogeneous and is subject to tightly managed local regulation in different neuronal subcompartments. Investigations on both invertebrate and vertebrate model systems have revealed local roles for enzymes that attach ubiquitin to substrate proteins, as well as for enzymes that remove ubiquitin from substrates. The proteasome also has been shown to possess disparate functions in different parts of the neuron. Here I give a broad overview of the role of the UPP in synaptic plasticity and highlight the local roles and regulation of the proteolytic pathway in neurons.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
31
|
Qian SB, Waldron L, Choudhary N, Klevit RE, Chazin WJ, Patterson C. Engineering a ubiquitin ligase reveals conformational flexibility required for ubiquitin transfer. J Biol Chem 2009; 284:26797-802. [PMID: 19648119 DOI: 10.1074/jbc.m109.032334] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ubiquitination regulates numerous cellular functions in eukaryotes. The prevailing view about the role of RING or U-box ubiquitin ligases (E3) is to provide precise positioning between the attached substrate and the ubiquitin-conjugating enzyme (E2). However, the mechanism of ubiquitin transfer remains obscure. Using the carboxyl terminus of Hsc70-interacting protein as a model E3, we show herein that although U-box binding is required, it is not sufficient to trigger the transfer of ubiquitin onto target substrates. Furthermore, additional regions of the E3 protein that have no direct contact with E2 play critical roles in mediating ubiquitin transfer from E2 to attached substrates. By combining computational structure modeling and protein engineering approaches, we uncovered a conformational flexibility of E3 that is required for substrate ubiquitination. Using an engineered version of the carboxyl terminus of Hsc70-interacting protein ubiquitin ligase as a research tool, we demonstrate a striking flexibility of ubiquitin conjugation that does not affect substrate specificity. Our results not only reveal conformational changes of E3 during ubiquitin transfer but also provide a promising approach to custom-made E3 for targeted proteolysis.
Collapse
Affiliation(s)
- Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
32
|
Zeng LR, Park CH, Venu RC, Gough J, Wang GL. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. MOLECULAR PLANT 2008; 1:800-15. [PMID: 19825583 DOI: 10.1093/mp/ssn044] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ubiquitin ligases play a central role in determining the specificity of the ubiquitination system by selecting a myriad of appropriate candidate proteins for modification. The U-box is a recently identified, ubiquitin ligase activity-related protein domain that shows greater presence in plants than in other organisms. In this study, we identified 77 putative U-box proteins from the rice genome using a battery of whole genome analysis algorithms. Most of the U-box protein genes are expressed, as supported by the identification of their corresponding expressed sequence tags (ESTs), full-length cDNAs, or massively parallel signature sequencing (MPSS) tags. Using the same algorithms, we identified 61 U-box proteins from the Arabidopsis genome. The rice and Arabidopsis U-box proteins were classified into nine major classes based on their domain compositions. Comparison between rice and Arabidopsis U-box proteins indicates that the majority of rice and Arabidopsis U-box proteins have the same domain organizations. The inferred phylogeny established the homology between rice and Arabidopsis U-box/ARM proteins. Cell death assay using the rice protoplast system suggests that one rice U-box gene, OsPUB51, might act as a negative regulator of cell death signaling. In addition, the selected U-box proteins were found to be functional E3 ubiquitin ligases. The identification and analysis of rice U-box proteins hereby at the genomic level will help functionally characterize this class of E3 ubiquitin ligase in the future.
Collapse
Affiliation(s)
- Li-Rong Zeng
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
33
|
Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol Dis 2008; 40:200-10. [DOI: 10.1016/j.bcmd.2007.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 01/10/2023]
|
34
|
Abstract
CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic reticulum (ER). More than 70% of patients harbor the ΔF508 CFTR mutation that causes misfolding of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS. Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the 26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the application of ‘corrector’ drugs that aid CFTR folding, shielding it from the UPS machinery. Corrector molecules elevate cellular CFTR protein levels by protecting the protein from degradation and aiding folding, promoting its maturation and localization to the apical plasma membrane. Combinatory application of corrector drugs with activator molecules that enhance CFTR Cl- ion channel activity offers significant potential for treatment of CF patients. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Emma L Turnbull
- Department of Cell and Developmental Biology, 526 Taylor Hall, Mason Farm Road, UNC-Chapel Hill School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
35
|
Jones DC, Wein MN, Glimcher LH. Schnurri-3: A Key Regulator of Postnatal Skeletal Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 602:1-13. [DOI: 10.1007/978-0-387-72009-8_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, Inatome R, Yanagi S. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 2006; 25:3618-26. [PMID: 16874301 PMCID: PMC1538564 DOI: 10.1038/sj.emboj.7601249] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/29/2006] [Indexed: 11/08/2022] Open
Abstract
In this study, we have identified a novel mitochondrial ubiquitin ligase, designated MITOL, which is localized in the mitochondrial outer membrane. MITOL possesses a Plant Homeo-Domain (PHD) motif responsible for E3 ubiquitin ligase activity and predicted four-transmembrane domains. MITOL displayed a rapid degradation by autoubiquitination activity in a PHD-dependent manner. HeLa cells stably expressing a MITOL mutant lacking ubiquitin ligase activity or MITOL-deficient cells by small interfering RNA showed an aberrant mitochondrial morphology such as fragmentation, suggesting the enhancement of mitochondrial fission by MITOL dysfunction. Indeed, a dominant-negative expression of Drp1 mutant blocked mitochondrial fragmentation induced by MITOL depletion. We found that MITOL associated with and ubiquitinated mitochondrial fission protein hFis1 and Drp1. Pulse-chase experiment showed that MITOL overexpression increased turnover of these fission proteins. In addition, overexpression phenotype of hFis1 could be reverted by MITOL co-overexpression. Our finding indicates that MITOL plays a critical role in mitochondrial dynamics through the control of mitochondrial fission proteins.
Collapse
Affiliation(s)
- Ryo Yonashiro
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Satoshi Ishido
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan. Tel.: +81 45 503 7022; Fax: +81 45 503 7021; E-mail:
| | - Shinkou Kyo
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Eiji Goto
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Yohei Matsuki
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Mari Ohmura-Hoshino
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kiyonao Sada
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Hak Hotta
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Hirohei Yamamura
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
- Department of Genome Science, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan. Tel.: +81 42 676 7146; Fax: +81 42 676 4149; E-mail:
| |
Collapse
|
37
|
Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 2006; 16:413-26. [PMID: 16699537 DOI: 10.1038/sj.cr.7310053] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Post-translational modification is central to protein stability and to the modulation of protein activity. Various types of protein modification, such as phosphorylation, methylation, acetylation, myristoylation, glycosylation, and ubiquitination, have been reported. Among them, ubiquitination distinguishes itself from others in that most of the ubiquitinated proteins are targeted to the 26S proteasome for degradation. The ubiquitin/26S proteasome system constitutes the major protein degradation pathway in the cell. In recent years, the importance of the ubiquitination machinery in the control of numerous eukaryotic cellular functions has been increasingly appreciated. Increasing number of E3 ubiquitin ligases and their substrates, including a variety of essential cellular regulators have been identified. Studies in the past several years have revealed that the ubiquitination system is important for a broad range of plant developmental processes and responses to abiotic and biotic stresses. This review discusses recent advances in the functional analysis of ubiquitination-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Li-Rong Zeng
- Department of Plant Pathology and Plant Molecular Biology and Biotechnology Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
38
|
Vander Kooi CW, Ohi MD, Rosenberg JA, Oldham ML, Newcomer ME, Gould KL, Chazin WJ. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry 2006; 45:121-30. [PMID: 16388587 PMCID: PMC2570371 DOI: 10.1021/bi051787e] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prp19 is an essential splicing factor and a member of the U-box family of E3 ubiquitin ligases. Prp19 forms a tetramer via a central coiled-coil domain. Here, we show the U-box domain of Prp19 exists as a dimer within the context of the Prp19 tetramer. A high-resolution structure of the homodimeric state of the Prp19 U-box was determined by X-ray crystallography. Mutation of the U-box dimer interface abrogates U-box dimer formation and is lethal in vivo. The structure of the U-box dimer enables construction of a complete model of Prp19 providing insights into how the tetrameric protein functions as an E3 ligase. Finally, comparison of the Prp19 U-box homodimer with the heterodimeric complex of BRCA1/BARD1 RING-finger domains uncovers a common architecture for a family of oligomeric U-box and RING-finger E3 ubiquitin ligases, which has mechanistic implications for E3 ligase-mediated polyubiquitination and E4 polyubiquitin ligases.
Collapse
Affiliation(s)
- Craig W Vander Kooi
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J Biol Chem 2005; 280:38673-81. [PMID: 16169850 DOI: 10.1074/jbc.m507986200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The cytoplasm is protected against the perils of protein misfolding by two mechanisms: molecular chaperones (which facilitate proper folding) and the ubiquitin-proteasome system, which regulates degradation of misfolded proteins. CHIP (carboxyl terminus of Hsp70-interacting protein) is an Hsp70-associated ubiquitin ligase that participates in this process by ubiquitylating misfolded proteins associated with cytoplasmic chaperones. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. Using a proteomics approach, we have identified BAG2, a previously uncharacterized BAG domain-containing protein, as a common component of CHIP holocomplexes in vivo. Binding assays indicate that BAG2 associates with CHIP as part of a ternary complex with Hsc70, and BAG2 colocalizes with CHIP under both quiescent conditions and after heat shock. In vitro and in vivo ubiquitylation assays indicate that BAG2 is an efficient and specific inhibitor of CHIP-dependent ubiquitin ligase activity. This activity is due, in part, to inhibition of interactions between CHIP and its cognate ubiquitin-conjugating enzyme, UbcH5a, which may in turn be facilitated by ATP-dependent remodeling of the BAG2-Hsc70-CHIP heterocomplex. The association of BAG2 with CHIP provides a cochaperone-dependent regulatory mechanism for preventing unregulated ubiquitylation of misfolded proteins by CHIP.
Collapse
Affiliation(s)
- Qian Dai
- Carolina Cardiovascular Biology Center and the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7126, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Feng P, Scott CW, Cho NH, Nakamura H, Chung YH, Monteiro MJ, Jung JU. Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation. Mol Cell Biol 2004; 24:3938-48. [PMID: 15082787 PMCID: PMC387769 DOI: 10.1128/mcb.24.9.3938-3948.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogens exploit host machinery to establish an environment that favors their propagation. Because of their pivotal roles in cellular physiology, protein degradation pathways are common targets for viral proteins. Protein-linking integrin-associated protein and cytoskeleton 1 (PLIC1), also called ubiquilin, contains an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain. PLIC1 is proposed to function as a regulator of the ubiquitination complex and proteasome machinery. Kaposi's sarcoma-associated herpesvirus (KSHV) contains a small membrane protein, K7, that protects cells from apoptosis induced by various stimuli. We report here that cellular PLIC1 is a K7-interacting protein and that the central hydrophobic region of K7 and the carboxy-terminal UBA domain of PLIC1 are responsible for their interaction. Cellular PLIC1 formed a dimer and bound efficiently to polyubiquitinated proteins through its carboxy-terminal UBA domain, and this activity correlated with its ability to stabilize cellular I kappa B protein. In contrast, K7 interaction prevented PLIC1 from forming a dimer and binding to polyubiquitinated proteins, leading to the rapid degradation of I kappa B. Furthermore, K7 expression promoted efficient degradation of the p53 tumor suppressor, resulting in inhibition of p53-mediated apoptosis. These results indicate that KSHV K7 targets a regulator of the ubiquitin- and proteasome-mediated degradation machinery to deregulate cellular protein turnover, which potentially provides a favorable environment for viral reproduction.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Magnifico A, Ettenberg S, Yang C, Mariano J, Tiwari S, Fang S, Lipkowitz S, Weissman AM. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J Biol Chem 2003; 278:43169-77. [PMID: 12907674 DOI: 10.1074/jbc.m308009200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cbl proteins have RING finger-dependent ubiquitin ligase (E3) activity that is essential for down-regulation of tyrosine kinases. Here we establish that two WW domain HECT E3s, Nedd4 and Itch, bind Cbl proteins and target them for proteasomal degradation. This is dependent on the E3 activity of the HECT E3s but not on that of Cbl. Consistent with these observations, in cells expressing the epidermal growth factor receptor, Nedd4 reverses Cbl-b effects on receptor down-regulation, ubiquitylation, and proximal events in signaling. Cbl-b also targets active Src for degradation in cells, and Nedd4 similarly reverses Cbl-mediated Src degradation. These findings establish that RING finger E3s can be substrates, not only for autoubiquitylation but also for ubiquitylation by HECT E3s and suggest an additional level of regulation for Cbl substrates including protein-tyrosine kinases.
Collapse
Affiliation(s)
- Alessandra Magnifico
- Regulation of Protein Function Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:861-9. [PMID: 12805616 PMCID: PMC167026 DOI: 10.1104/pp.103.020800] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 03/04/2003] [Accepted: 03/24/2003] [Indexed: 05/19/2023]
Abstract
The Arabidopsis gene AtCHIP encodes a protein with three tetratricopeptide repeats and a U-box domain, which is structurally similar to the animal CHIP proteins, a new class of E3 ubiquitin ligases. Like animal CHIP proteins, AtCHIP has E3 ubiquitin ligase activity in vitro. AtCHIP is a single-copy gene, and its transcript is up-regulated by several stress conditions such as low and high temperatures. However, increased AtCHIP expression alone was not correlated with increased stress tolerance; in fact, overexpression of AtCHIP in Arabidopsis rendered plants more sensitive to both low- and high-temperature treatments. Higher electrolyte leakage was observed in leaves of AtCHIP overexpression plants after chilling temperature treatment, suggesting that membrane function is likely impaired in these plants under such a condition. These results indicate that AtCHIP plays an important role in plant cellular metabolism under temperature stress conditions.
Collapse
Affiliation(s)
- Juqiang Yan
- Department of Biological Sciences, Texas Tech University, Lubbock 79409, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ, Gould KL. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Mol Biol 2003; 10:250-5. [PMID: 12627222 PMCID: PMC5881891 DOI: 10.1038/nsb906] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 01/15/2003] [Indexed: 11/08/2022]
Abstract
The structure of the U-box in the essential Saccharomyces cerevisiae pre-mRNA splicing factor Prp19p has been determined by NMR. The conserved zinc-binding sites supporting the cross-brace arrangement in RING-finger domains are replaced by hydrogen-bonding networks in the U-box. These hydrogen-bonding networks are necessary for the structural stabilization and activity of the U-box. A conservative Val-->Ile point mutation in the Prp19p U-box domain leads to pre-mRNA splicing defects in vivo. NMR analysis of this mutant shows that the substitution disrupts structural integrity of the U-box domain. Furthermore, comparison of the Prp19p U-box domain with known RING-E2 complex structures demonstrates that both U-box and RING-fingers contain a conserved interaction surface. Mutagenesis of residues at this interface, while not perturbing the structure of the U-box, abrogates Prp19p function in vivo. These comparative structural and functional analyses imply that the U-box and its associated ubiquitin ligase activity are critical for Prp19p function in vivo.
Collapse
Affiliation(s)
- Melanie D Ohi
- Howard Hughes Medical Institute School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
44
|
Gregory RC, Taniguchi T, D'Andrea AD. Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol 2003; 13:77-82. [PMID: 12507559 DOI: 10.1016/s1044-579x(02)00102-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome characterized by multiple congenital anomalies, bone marrow failure, and cellular sensitivity to mitomycin C (MMC). To date, six FA genes have been cloned, and the encoded proteins function in a novel pathway. The FA pathway is required for the normal cellular response to DNA damage. Following DNA damage, the pathway is activated, leading to monoubiquitination of the FA protein, FANCD2, and its targeting to subnuclear foci. Disruption of the FA pathway results in the absence of FANCD2 nuclear foci, leading to the cellular and clinical abnormalities of FA. Here, we review the recent studies describing the regulated monoubiquitination of the FANCD2 protein and discuss the interaction of the FA pathway with other DNA damage response pathways.
Collapse
Affiliation(s)
- Richard C Gregory
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Mayer 640, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Xu Z, Kukekov NV, Greene LA. POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 2003; 22:252-61. [PMID: 12514131 PMCID: PMC140096 DOI: 10.1093/emboj/cdg021] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report that the multidomain protein POSH (plenty of SH3s) acts as a scaffold for the JNK pathway of neuronal death. This pathway consists of a sequential cascade involving activated Rac1/Cdc42, mixed-lineage kinases (MLKs), MAP kinase kinases (MKKs) 4 and 7, c-Jun N-terminal kinases (JNKs) and c-Jun, and is required for neuronal death induced by various means including nerve growth factor (NGF) deprivation. In addition to binding GTP-Rac1 as described previously, we find that POSH binds MLKs both in vivo and in vitro, and complexes with MKKs 4 and 7 and with JNKs. POSH overexpression promotes apoptotic neuronal death and this is suppressed by dominant-negative forms of MLKs, MKK4/7 and c-Jun, and by an MLK inhibitor. Moreover, a POSH antisense oligonucleotide and a POSH small interfering RNA (siRNA) suppress c-Jun phosphorylation and neuronal apoptosis induced by NGF withdrawal. Thus, POSH appears to function as a scaffold in a multiprotein complex that links activated Rac1 and downstream elements of the JNK apoptotic cascade.
Collapse
Affiliation(s)
| | | | - Lloyd A. Greene
- Department of Pathology and Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
Corresponding author e-mail: Z.Xu and N.V.Kukekov contributed equally to this work
| |
Collapse
|
46
|
Hansen DV, Hsu JY, Kaiser BK, Jackson PK, Eldridge AG. Control of the centriole and centrosome cycles by ubiquitination enzymes. Oncogene 2002; 21:6209-21. [PMID: 12214251 DOI: 10.1038/sj.onc.1205824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David V Hansen
- Programs in Chemical Biology and Cancer Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California, CA 94305-5324, USA
| | | | | | | | | |
Collapse
|
47
|
|