1
|
Kriz R, Spettel K, Pichler A, Schefberger K, Sanz-Codina M, Lötsch F, Harrison N, Willinger B, Zeitlinger M, Burgmann H, Lagler H. In vitro resistance development gives insights into molecular resistance mechanisms against cefiderocol. J Antibiot (Tokyo) 2024; 77:757-767. [PMID: 39080477 PMCID: PMC11513634 DOI: 10.1038/s41429-024-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 10/29/2024]
Abstract
Cefiderocol, a novel siderophore cephalosporin, demonstrates promising in vitro activity against multidrug-resistant Gram-negative bacteria, including carbapenemase-producing strains. Nonetheless, only a few reports are available regarding the acquisition of resistance in clinical settings, primarily due to its recent usage. This study aimed to investigate cefiderocol resistance using an in vitro resistance development model to gain insights into the underlying molecular resistance mechanisms. Cefiderocol susceptible reference strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa) and a clinical Acinetobacter baumannii complex isolate were exposed to increasing cefiderocol concentrations using a high-throughput resistance development model. Cefiderocol susceptibility testing was performed using broth microdilution. Whole-genome sequencing was employed to identify newly acquired resistance mutations. Our in vitro resistance development model led to several clones of strains exhibiting cefiderocol resistance, with MIC values 8-fold to 512-fold higher than initial levels. In total, we found 42 different mutations in 26 genes, of which 35 could be described for the first time. Putative loss-of-function mutations were detected in the envZ, tonB, and cirA genes in 13 out of 17 isolates, leading to a decrease in cefiderocol influx. Other potential resistance mechanisms included multidrug efflux pumps (baeS, czcS, nalC), antibiotic-inactivating enzymes (ampR, dacB), and target mutations in penicillin-binding-protein genes (mrcB). This study reveals new insights into underlying molecular resistance mechanisms against cefiderocol. While mutations leading to reduced influx via iron transporters was the most frequent resistance mechanism, we also detected several other novel resistance mutations causing cefiderocol resistance.
Collapse
Affiliation(s)
- Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, Austria
| | - Kathrin Spettel
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alina Pichler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, Austria
- Pediatric Laboratory, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Schefberger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Maria Sanz-Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Lötsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nicole Harrison
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. PHARMACY 2024; 12:142. [PMID: 39311133 PMCID: PMC11417830 DOI: 10.3390/pharmacy12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
AmpC enzymes are a class of beta-lactamases produced by Gram-negative bacteria, including several Enterobacterales. When produced in sufficient amounts, AmpCs can hydrolyze third-generation cephalosporins (3GCs) and piperacillin/tazobactam, causing resistance. In Enterobacterales, the AmpC gene can be chromosomal- or plasmid-encoded. Some species, particularly Enterobacter cloacae complex, Klebsiella aerogenes, and Citrobacter freundii, harbor an inducible chromosomal AmpC gene. The expression of this gene can be derepressed during treatment with a beta-lactam, leading to AmpC overproduction and the consequent emergence of resistance to 3GCs and piperacillin/tazobactam during treatment. Because of this phenomenon, the use of carbapenems or cefepime is considered a safer option when treating these pathogens. However, many areas of uncertainty persist, including the risk of derepression related to each beta-lactam; the role of piperacillin/tazobactam compared to cefepime; the best option for severe or difficult-to-treat cases, such as high-inoculum infections (e.g., ventilator-associated pneumonia and undrainable abscesses); the role of de-escalation once clinical stability is obtained; and the best treatment for species with a lower risk of derepression during treatment (e.g., Serratia marcescens and Morganella morganii). The aim of this review is to collate the most relevant information about the microbiological properties of and therapeutic approach to AmpC-producing Enterobacterales in order to inform daily clinical practice.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, Ravenna Hospital, AUSL Romagna, 48100 Ravenna, Italy
| | - Irene Zaghi
- Department of Infectious Diseases, University Hospital of Galway, H91 Galway, Ireland;
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Cristini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Infectious Diseases Unit, Forlì and Cesena Hospitals, AUSL Romagna, 47121 Forlì and Cesena, Italy
| |
Collapse
|
4
|
Brauncajs M, Bielec F, Macieja A, Pastuszak-Lewandoska D. Cefiderocol - An effective antimicrobial for MDR infections but a challenge for routine antimicrobial susceptibility testing. Adv Med Sci 2024; 69:256-263. [PMID: 38782257 DOI: 10.1016/j.advms.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Cefiderocol is a novel cephalosporin-siderophore conjugate antibiotic that holds promise to thwart infections caused by multi-drug-resistant gram-negative bacilli. Its antibacterial activity against normally susceptible species is not affected by most β-lactamases, including metallo-β-lactamases. Due to the siderophore-mediated entry into the cell, the activity of cefiderocol is less affected by porin loss or active efflux resistance than many other β-lactam antibiotics. The aim of this study was to assess in vitro susceptibility to the cefiderocol of carbapenemase-producing gram-negative bacilli from clinical samples of hospitalized patients. MATERIALS AND METHODS We analyzed 102 clinical strains of carbapenemase-producing Enterobacterales and non-fermentives from hospital centers in Łódź, Poland. Antimicrobial susceptibility to cefiderocol was tested by the minimum inhibitory concentration test strips and disc diffusion methods. RESULTS The obtained results turned out to be ambiguous, and the area of technical uncertainty made their interpretation very difficult. CONCLUSIONS The cost of therapy with this antibiotic, and difficulties in interpreting the drug susceptibility are the limitations to the use of cefiderocol. Intensive work should be carried out to finally standardize an easily accessible and reliable method for the determination of susceptibility to cefiderocol.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland; Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland; Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland.
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
5
|
Dulanto Chiang A, Dekker JP. Efflux pump-mediated resistance to new beta lactam antibiotics in multidrug-resistant gram-negative bacteria. COMMUNICATIONS MEDICINE 2024; 4:170. [PMID: 39210044 PMCID: PMC11362173 DOI: 10.1038/s43856-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence and spread of bacteria resistant to commonly used antibiotics poses a critical threat to modern medical practice. Multiple classes of bacterial efflux pump systems play various roles in antibiotic resistance, and members of the resistance-nodulation-division (RND) transporter superfamily are among the most important determinants of efflux-mediated resistance in gram-negative bacteria. RND pumps demonstrate broad substrate specificities, facilitating extrusion of multiple chemical classes of antibiotics from the bacterial cell. Several newer beta-lactams and beta-lactam/beta-lactamase inhibitor combinations (BL/BLI) have been developed to treat infections caused by multidrug resistant bacteria. Here we review recent studies that suggest RND efflux pumps in clinically relevant gram-negative bacteria may play critical but underappreciated roles in the development of resistance to beta-lactams and novel BL/BLI combinations. Improved understanding of the genetic and structural basis of RND efflux pump-mediated resistance may identify new antibiotic targets as well as strategies to minimize the emergence of resistance.
Collapse
Affiliation(s)
- Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - John P Dekker
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Raro OHF, Bouvier M, Kerbol A, Poirel L, Nordmann P. MultiRapid ATB NP test for detecting concomitant susceptibility and resistance of last-resort novel antibiotics available to treat multidrug-resistant Enterobacterales infections. Int J Antimicrob Agents 2024; 64:107206. [PMID: 38754526 DOI: 10.1016/j.ijantimicag.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Recently developed therapeutics against Gram-negative bacteria include the β-lactam-β-lactamase inhibitor combinations ceftazidime-avibactam (CZA), meropenem-vaborbactam (MEV), and imipenem-relebatam (IPR), and the siderophore cephalosporin cefiderocol (FDC). The aim of this study was to develop a test for rapid identification of susceptibility/resistance to CZA, MEV, IPR, and FDC for Enterobacterales in a single test for rapid clinical decision making. METHODS The MultiRapid ATB NP test is based on the detection of glucose metabolism occurring after bacterial growth in the presence of defined concentrations of CZA, MEV, IPR, and FDC, followed by visual detection of colour change of the pH indicator red phenol (red to yellow) generated by the acidification of the medium upon bacterial growth. This test is performed in 96-well microplates. The MultiRapid ATB NP test was evaluated using 78 Enterobacterales isolates and compared to the reference method broth microdilution. RESULTS The MultiRapid ATB NP test displayed 97.0% (confidence interval [CI] 92.6-98.8) sensitivity, 97.7% (CI 94.3-99.1) specificity, and 97.4% (CI 95.0-98.7) accuracy. The results were obtained after 3 h of incubation at 35 °C ± 2 °C, representing at least a 15-h gain-of-time compared with currently used antimicrobial susceptibility testing methods. CONCLUSION The MultiRapid ATB NP test provided accurate results for the concomitant detection of susceptibility/resistance to CZA, MEV, IPR, and FDC in Enterobacterales, independent of the resistance mechanism. This test may be suitable for implementation in any microbiology routine laboratory.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Auriane Kerbol
- Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland; Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Gaillot S, Tortey AL, Kiener S, Bour M, Triponney P, Jeannot K, Potron A. Residue 148 of ADC enzyme affects cefiderocol susceptibility in Acinetobacter baumannii. Int J Antimicrob Agents 2024; 63:107188. [PMID: 38697580 DOI: 10.1016/j.ijantimicag.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Susie Gaillot
- Université de Franche-Comté, CNRS, Chrono-Environnement, Besançon, France
| | - Anna-Louise Tortey
- Université de Franche-Comté, CNRS, Chrono-Environnement, Besançon, France
| | - Salomé Kiener
- Université de Franche-Comté, CNRS, Chrono-Environnement, Besançon, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire Associé, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Pauline Triponney
- Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire Associé, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Katy Jeannot
- Université de Franche-Comté, CNRS, Chrono-Environnement, Besançon, France; Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire Associé, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Anaïs Potron
- Université de Franche-Comté, CNRS, Chrono-Environnement, Besançon, France; Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire Associé, Centre Hospitalier Universitaire de Besançon, Besançon, France.
| |
Collapse
|
8
|
Woods B, Schmitt L, Jankovic D, Kearns B, Scope A, Ren S, Srivastava T, Ku CC, Hamilton J, Rothery C, Bojke L, Sculpher M, Harnan S. Cefiderocol for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model. Health Technol Assess 2024; 28:1-238. [PMID: 38938145 PMCID: PMC11229178 DOI: 10.3310/ygwr4511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of cefiderocol in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform the National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods The health benefit of cefiderocol was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. The clinical effectiveness of cefiderocol relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. Patient-level costs and health outcomes of cefiderocol under various usage scenarios compared with alternative management strategies were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population values using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for cefiderocol. Results Among Enterobacterales isolates with the metallo-beta-lactamase resistance mechanism, the base-case network meta-analysis found that cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.32, 95% credible intervals 0.04 to 2.47), but the result was not statistically significant. The other treatments were also associated with lower susceptibility than colistin, but the results were not statistically significant. In the metallo-beta-lactamase Pseudomonas aeruginosa base-case network meta-analysis, cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.44, 95% credible intervals 0.03 to 3.94), but the result was not statistically significant. The other treatments were associated with no susceptibility. In the base case, patient-level benefit of cefiderocol was between 0.02 and 0.15 quality-adjusted life-years, depending on the site of infection, the pathogen and the usage scenario. There was a high degree of uncertainty surrounding the benefits of cefiderocol across all subgroups. There was substantial uncertainty in the number of infections that are suitable for treatment with cefiderocol, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time and rates of emergence of resistance. The population-level benefits varied substantially across the base-case scenarios, from 896 to 3559 quality-adjusted life-years over 20 years. Conclusion This work has provided quantitative estimates of the value of cefiderocol within its areas of expected usage within the NHS. Limitations Given existing evidence, the estimates of the value of cefiderocol are highly uncertain. Future work Future evaluations of antimicrobials would benefit from improvements to NHS data linkages; research to support appropriate synthesis of susceptibility studies; and application of routine data and decision modelling to assess enablement value. Study registration No registration of this study was undertaken. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment Policy Research Programme (NIHR award ref: NIHR135591), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 28. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Beth Woods
- Centre for Health Economics, University of York, York, UK
| | | | - Dina Jankovic
- Centre for Health Economics, University of York, York, UK
| | - Benjamin Kearns
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alison Scope
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Shijie Ren
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Tushar Srivastava
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Chu Chang Ku
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Jean Hamilton
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| | - Laura Bojke
- Centre for Health Economics, University of York, York, UK
| | - Mark Sculpher
- Centre for Health Economics, University of York, York, UK
| | - Sue Harnan
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Russo C, Mesini A, Mariani M, Tavella E, Sette C, Ugolotti E, Bartalucci C, Palmero C, Bandettini R, Castagnola E. Reduce susceptibility to cefiderocol in gram negative bacteria in children: Is hope already lost before it's even arrived? J Infect Public Health 2024; 17:624-631. [PMID: 38422857 DOI: 10.1016/j.jiph.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In last years the diffusion of carbapenem resistance in Gram-negative bacteria (CR-GNB) is increasing worldwide, mainly due to the expression of carbapenemases. Cefiderocol has molecular characteristics that ideally confers activity against all CR-GNB, but resistant strains have already been identified. We describe cefiderocol susceptibility profile among multi-drug resistant Gram-negative isolated from pediatric patients. METHODS Prospective, single pediatric center study, 1st January 2020-15th June 2023. All GNB carbapenemases producers or phenotypically carbapenem-resistant isolated in the study period were tested for cefiderocol susceptibility. Clinical and microbiological data were collected. A descriptive analysis was performed, comparing the groups of cefiderocol-resistant vs. cefiderocol-susceptible Enterobacterales and non-fermenting Gram-negative bacteria (NF-GNB). RESULTS Forty-seven GNB were tested for cefiderocol susceptibility; 38% were cefiderocol-resistant: 16/30 (52%) among Enterobacterales and 2/17 (12%) among NF-GNB. None of the patients were previously exposed to cefiderocol. Looking at Enterobacterales, resistance to ceftazidime/avibactam was higher among cefiderocol-resistant vs. cefiderocol-susceptible strains (62% vs 36%, respectively), as MBL expression (67% vs. 36%, respectively). Too few NF-GNB were cefiderocol-resistance to draw any conclusion. No difference in ICU admission and mortality was identified comparing cefiderocol-resistant vs. susceptible strains. Patients colonized/infected by cefiderocol-resistant strains had been previously hospitalized more frequently. CONCLUSION In our cohort cefiderocol resistance was mostly registered among Enterobacterales, and especially among MBL producers' strains (that were alongside resistant to ceftazidime/avibactam). This could be explained by the known possible cross resistance mechanism among ceftazidime/avibactam and cefiderocol. Also, correlation of cefiderocol-resistance with previous hospitalization could be associated with horizontal resistance transmission. Looking at our data, we believe that cefiderocol should be use cautiously, especially empirically and in monotherapy, due to the high resistance rate.
Collapse
Affiliation(s)
- Chiara Russo
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessio Mesini
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Marcello Mariani
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Tavella
- Laboratory of Microbiology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Claudia Sette
- Department of Pediatrics, Ospedale Ss. Annunziata, Taranto, Italy
| | | | - Claudia Bartalucci
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Candida Palmero
- Laboratory of Microbiology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberto Bandettini
- Laboratory of Microbiology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
10
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
11
|
Kawai A, Shropshire WC, Suzuki M, Borjan J, Aitken SL, Bachman WC, McElheny CL, Bhatti MM, Shields RK, Shelburne SA, Doi Y. Structural insights into the molecular mechanism of high-level ceftazidime-avibactam resistance conferred by CMY-185. mBio 2024; 15:e0287423. [PMID: 38179965 PMCID: PMC10865806 DOI: 10.1128/mbio.02874-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
β-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest β-lactam agents. CMY-185 is a CMY-2-like β-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest β-lactam agents with altered bulky side chains and rejecting the binding of β-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the β-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated β-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how β-lactamases may incrementally alter their structures to escape multiple advanced β-lactam agents.
Collapse
Affiliation(s)
- Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
| | - William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel L. Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William C. Bachman
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christi L. McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Micah M. Bhatti
- Division of Pathology/Lab Medicine, Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
12
|
Nordmann P, Bouvier M, Delaval A, Tinguely C, Poirel L, Sadek M. Rapid Detection of Ceftazidime/Avibactam Susceptibility/Resistance in Enterobacterales by Rapid CAZ/AVI NP Test. Emerg Infect Dis 2024; 30:255-261. [PMID: 38270160 PMCID: PMC10826745 DOI: 10.3201/eid3002.221398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
We developed a novel culture-based test, the Rapid CAZ/AVI NP test, for rapid identification of ceftazidime/avibactam susceptibility/resistance in Enterobacterales. This test is based on glucose metabolization upon bacterial growth in the presence of a defined concentration of ceftazidime/avibactam (128/53 μg/mL). Bacterial growth is visually detectable by a red to yellow color change of red phenol, a pH indicator. A total of 101 well characterized enterobacterial isolates were used to evaluate the test performance. This test showed positive percent agreement of 100% and negative percent agreement of 98.5% with overall percent agreement of 99%, by comparison with the MIC gradient strip test (Etest) taken as the reference standard method. The Rapid CAZ/AVI NP test had only 1.5% major errors and 0% extremely major errors. This test is rapid (result within 2 hours 45 minutes), reliable, affordable, easily interpretable, and easy to implement in clinical microbiology laboratories without requiring any specific equipment.
Collapse
|
13
|
Stracquadanio S, Nicolosi A, Privitera GF, Massimino M, Marino A, Bongiorno D, Stefani S. Role of transcriptomic and genomic analyses in improving the comprehension of cefiderocol activity in Acinetobacter baumannii. mSphere 2024; 9:e0061723. [PMID: 38078714 PMCID: PMC10826366 DOI: 10.1128/msphere.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 01/31/2024] Open
Abstract
The mechanisms of action and resistance of cefiderocol (FDC) in Acinetobacter baumannii are still not fully elucidated, but iron transport systems have been evoked in its entry into the cell to reach the penicillin-binding proteins (PBPs). To capture the dynamics of gene expression related to FDC action in various conditions, we report on the genomic and transcriptomic features of seven A. baumannii strains with different FDC susceptibility, focusing on the variants in genes associated with β-lactam resistance and the expression of the siderophore biosynthesis and transport systems acinetobactin and baumannoferrin. We also investigated the expression of the TonB energy transduction system (ETS) and siderophore receptors piuA and pirA. The four clinical samples belonged to the same clonal complex (CC2), and the two strains with the highest FDC MICs showed peculiar variants in PBP2 and ampC. Similarly, the two clinical strains with the lowest MICs shared variants in an outer membrane protein as well as ampC. Gene expression analyses highlighted the up-regulation of the acinetobactin and baumannoferrin genes in response to iron depletion and a down-regulation in the presence of high iron concentrations. In response to FDC, gene expression seemed strain-dependent, probably due to the different metabolic features of each strain. Overall, FDC activates the ETS, confirming the active import of the drug; baumannoferrin, more than acinetobactin, appeared stimulated by FDC in an iron-depleted medium. In conclusion, iron transport systems play a clear role in the FDC uptake, and their expression likely contributes to MIC variation together with β-lactam resistance determinants.IMPORTANCEAcinetobacter baumannii poses a threat to healthcare due to its ability to give difficult-to-treat infections as a consequence of our shortage of antibiotic molecules active on this multidrug-resistant bacterium. Cefiderocol (FDC) represents one of the few drugs active on A. baumannii, and to preserve its activity, this study explored the transcriptomic and genomic features of seven strains with varying susceptibility to FDC. Transcriptomic analyses revealed the different effects of FDC on iron transport systems, promoting mainly baumannoferrin expression-thus more likely related to FDC entry-and the energy transduction systems. These findings suggest that not all iron transport systems are equally involved in FDC entry into A. baumannii cells. Finally, mutations in PBPs and β-lactamases may contribute to the resistance onset. Overall, the study sheds light on the importance of iron availability and metabolic differences in FDC resistance, offering insights into understanding the evolution of resistance in A. baumannii strains.
Collapse
Affiliation(s)
- Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, Italy
| | - Alice Nicolosi
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, Italy
| | - Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Unit of Math and Comp Science, University of Catania, Catania, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Wang L, Zhu J, Chen L, Du H. Cefiderocol: Clinical application and emergence of resistance. Drug Resist Updat 2024; 72:101034. [PMID: 38134561 DOI: 10.1016/j.drup.2023.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Antibacterial drug resistance of gram-negative bacteria (GNB) results in high morbidity and mortality of GNB infection, seriously threaten human health globally. Developing new antibiotics has become the critical need for dealing with drug-resistant bacterial infections. Cefiderocol is an iron carrier cephalosporin that achieves drug accumulation through a unique "Trojan horse" strategy into the bacterial periplasm. It shows high antibacterial activity against multidrug-resistant (MDR) Enterobacteriaceae and MDR non-fermentative bacteria. The application of cefiderocol offers new hope for treating clinical drug-resistant bacterial infections. However, limited clinical data and uncertainties about its resistance mechanisms constrain the choice of its therapeutic use. This review aimed to summarize the clinical applications, drug resistance mechanisms, and co-administration of cefiderocol.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123 China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States; Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123 China.
| |
Collapse
|
15
|
Russo C, Humphries R. Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics (Basel) 2023; 12:1700. [PMID: 38136734 PMCID: PMC10740869 DOI: 10.3390/antibiotics12121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid emergence of multi-drug resistant Gram-negative pathogens has driven the introduction of novel β-lactam combination agents (BLCs) to the antibiotic market: ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and sulbactam-durlobactam. These agents are equipped with innovative mechanisms that confer broad Gram-negative activity, notably against certain challenging carbapenemases. While their introduction offers a beacon of hope, clinical microbiology laboratories must navigate the complexities of susceptibility testing for these agents due to their diverse activity profiles against specific β-lactamases and the possibility of acquired resistance mechanisms in some bacterial isolates. This review explores the complexities of these novel antimicrobial agents detailing the intricacies of their application, providing guidance on the nuances of susceptibility testing, interpretation, and result reporting in clinical microbiology laboratories.
Collapse
Affiliation(s)
| | - Romney Humphries
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
16
|
Shropshire WC, Endres BT, Borjan J, Aitken SL, Bachman WC, McElheny CL, Wu CT, Egge SL, Khan A, Miller WR, Bhatti MM, Saharasbhojane P, Kawai A, Shields RK, Shelburne SA, Doi Y. High-level ceftazidime/avibactam resistance in Escherichia coli conferred by the novel plasmid-mediated β-lactamase CMY-185 variant. J Antimicrob Chemother 2023; 78:2442-2450. [PMID: 37574665 PMCID: PMC10545501 DOI: 10.1093/jac/dkad249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVES To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY β-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY β-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.
Collapse
Affiliation(s)
- William C Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William C Bachman
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chin-Ting Wu
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, TX, USA
| | - Stephanie L Egge
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Ayesha Khan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA
| | - William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Micah M Bhatti
- Department of Laboratory Medicine, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pranoti Saharasbhojane
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ryan K Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
17
|
Shields RK, Kline EG, Squires KM, Van Tyne D, Doi Y. In vitro activity of cefiderocol against Pseudomonas aeruginosa demonstrating evolved resistance to novel β-lactam/β-lactamase inhibitors. JAC Antimicrob Resist 2023; 5:dlad107. [PMID: 37795425 PMCID: PMC10546814 DOI: 10.1093/jacamr/dlad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Background Cefiderocol demonstrates excellent activity against MDR Pseudomonas aeruginosa; however, the activity against isolates from patients previously treated with β-lactam agents is unknown. We aimed to determine the activity of cefiderocol against P. aeruginosa collected before and after treatment with traditional β-lactams and new β-lactam/β-lactamase inhibitors. Methods Cefiderocol MICs were determined in triplicate in iron-depleted cation-adjusted Mueller-Hinton broth and compared with β-lactam MICs tested by standard methods. All isolates underwent WGS analysis to identify mutations associated with resistance. Results One hundred and seventy-eight P. aeruginosa isolates were evaluated; 48% (86/178) were non-susceptible to ceftazidime/avibactam, ceftolozane/tazobactam and/or imipenem/relebactam. The cefiderocol MIC50 and MIC90 were 0.12 and 1 mg/L, respectively. Median cefiderocol MICs did not vary against isolates classified as MDR, XDR, or those non-susceptible to ceftazidime/avibactam, ceftolozane/tazobactam and/or imipenem/relebactam when compared with non-MDR isolates. Against isolates collected from patients previously treated with ceftolozane/tazobactam, cefiderocol MICs were increased 4-fold compared with baseline. Cross-resistance to cefiderocol was identified in 21% (3/14) of patients who developed treatment-emergent resistance to ceftolozane/tazobactam. Overall, 6% (11/178) of isolates demonstrated cefiderocol MICs ≥2 mg/L, which were disproportionately collected from patients previously treated with ceftolozane/tazobactam (73%; 8/11). Isolates with reduced cefiderocol susceptibility harboured mutations in ampC, tonB-dependent receptors, the response regulator pirR and ftsI. Conclusions Cefiderocol demonstrates excellent in vitro activity against P. aeruginosa isolates exposed to other novel β-lactam agents; however, some exceptions were identified. Cross-resistance between cefiderocol and ceftolozane/tazobactam was evident, but not with ceftazidime/avibactam or imipenem/relebactam. Reduced cefiderocol susceptibility was mediated by mutations in ampC and tonB-dependent receptors.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh, Pittsburgh, PA, USA
- Antibiotic Management Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ellen G Kline
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Squires
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yohei Doi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
18
|
Brakert L, Berneking L, Both A, Berinson B, Huang J, Aepfelbacher M, Wolschke C, Wichmann D, Rohde H. Rapid development of cefiderocol resistance in a carbapenem-resistant Pseudomonas aeruginosa isolate associated with mutations in the pyoverdine biosynthesis pathway. J Glob Antimicrob Resist 2023; 34:59-62. [PMID: 37379881 DOI: 10.1016/j.jgar.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Here we report the in vivo development of cefiderocol resistance within 11 days after therapy initiation in a critically ill patient with bloodstream infection, infection of peri-anal fistula, and pneumonia caused by a VIM-2 harbouring, carbapenem-resistant Pseudomonas aeruginosa. Compared to a cefiderocol-naïve P. aeruginosa blood culture isolate, agar diffusion susceptibility testing found a reduced cefiderocol inhibition zone diameter in a P. aeruginosa recovered from peri-anal abscess tissue cultures after initiation of cefiderocol therapy. Subsequent whole-genome sequencing suggested that both isolates were of clonal origin. Comparison of genomes found an accumulation of missense mutations within pvdP, pvdE, pvdJ, and pvdD (i.e. genes associated with biosynthesis of pyoverdine), the main siderophore produced by P. aeruginosa. Quantification of pyoverdine production under iron-depleted conditions showed a significantly (P = 0.0003) higher pyoverdine production by the cefiderocol-resistant isolate. While pyoverdine quantity alone appears not to be decisive for cefiderocol resistance, the reported case highlights the potentially rapid emergence of cefiderocol resistance in P. aeruginosa and points towards a potential involvement of iron up-take systems in this process.
Collapse
Affiliation(s)
- Luise Brakert
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany
| | - Laura Berneking
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany
| | - Anna Both
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany
| | - Benjamin Berinson
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center, Hamburg, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg, Germany.
| |
Collapse
|
19
|
Isler B, Vatansever C, Özer B, Çınar G, Aslan AT, Falconer C, Bauer MJ, Forde B, Şimşek F, Tülek N, Demirkaya H, Menekşe Ş, Akalin H, Balkan İİ, Aydın M, Tigen ET, Demir SK, Kapmaz M, Keske Ş, Doğan Ö, Arabacı Ç, Yağcı S, Hazırolan G, Bakır VO, Gönen M, Saltoğlu N, Azap A, Azap Ö, Akova M, Ergönül Ö, Can F, Paterson DL, Harris PNA. Higher rates of cefiderocol resistance among NDM producing Klebsiella bloodstream isolates applying EUCAST over CLSI breakpoints. Infect Dis (Lond) 2023; 55:607-613. [PMID: 37391868 DOI: 10.1080/23744235.2023.2226709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Cefiderocol is generally active against carbapenem-resistant Klebsiella spp. (CRK) with higher MICs against metallo-beta-lactamase producers. There is a variation in cefiderocol interpretive criteria determined by EUCAST and CLSI. Our objective was to test CRK isolates against cefiderocol and compare cefiderocol susceptibilities using EUCAST and CLSI interpretive criteria. METHODS A unique collection (n = 254) of mainly OXA-48-like- or NDM-producing CRK bloodstream isolates were tested against cefiderocol with disc diffusion (Mast Diagnostics, UK). Beta-lactam resistance genes and multilocus sequence types were identified using bioinformatics analyses on complete bacterial genomes. RESULTS Median cefiderocol inhibition zone diameter was 24 mm (interquartile range [IQR] 24-26 mm) for all isolates and 18 mm (IQR 15-21 mm) for NDM producers. We observed significant variability between cefiderocol susceptibilities using EUCAST and CLSI breakpoints, such that 26% and 2% of all isolates, and 81% and 12% of the NDM producers were resistant to cefiderocol using EUCAST and CLSI interpretive criteria, respectively. CONCLUSIONS Cefiderocol resistance rates among NDM producers are high using EUCAST criteria. Breakpoint variability may have significant implications on patient outcomes. Until more clinical outcome data are available, we suggest using EUCAST interpretive criteria for cefiderocol susceptibility testing.
Collapse
Affiliation(s)
- Burcu Isler
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Cansel Vatansever
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Berna Özer
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Güle Çınar
- Infectious Diseases and Clinical Microbiology, School of Medicine, Ankara University Ankara, Turkey
| | - Abdullah Tarık Aslan
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Caitlin Falconer
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Michelle J Bauer
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Brian Forde
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Funda Şimşek
- Infectious Diseases and Clinical Microbiology, University of Health Sciences, Ministry of Health Prof Dr Cemil Taşçıoğlu City Hospital, Istanbul, Turkey
| | - Necla Tülek
- Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Hamiyet Demirkaya
- Infectious Diseases and Clinical Microbiology, Ankara Hospital, Başkent University, Ankara, Turkey
| | - Şirin Menekşe
- Infectious Diseases, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Halis Akalin
- Infectious Diseases and Clinical Microbiology, School of Medicine, Uludağ University, Bursa, Turkey
| | - İlker İnanç Balkan
- Infectious Diseases and Clinical Microbiology, School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehtap Aydın
- Infectious Diseases and Clinical Microbiology, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Elif Tükenmez Tigen
- Infectious Diseases and Clinical Microbiology, Pendik Training and Research Hospital, Marmara University, Istanbul, Turkey
| | - Safiye Koçulu Demir
- Infectious Diseases and Clinical Microbiology, Demiroglu Bilim University, Istanbul, Turkey
| | - Mahir Kapmaz
- Infectious Diseases and Clinical Microbiology, Koç University Hospital, Istanbul, Turkey
| | - Şiran Keske
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
- Infectious Diseases, VKV American Hospital, Istanbul, Turkey
| | - Özlem Doğan
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Çiğdem Arabacı
- Clinical Microbiology, Ministry of Health Prof Dr Cemil Taşçıoğlu City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Serap Yağcı
- Clinical Microbiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Gülşen Hazırolan
- Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Veli Oğuzalp Bakır
- Graduate School of Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Mehmet Gönen
- Industrial Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Neşe Saltoğlu
- Infectious Diseases and Clinical Microbiology, School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Alpay Azap
- Infectious Diseases and Clinical Microbiology, School of Medicine, Ankara University Ankara, Turkey
| | - Özlem Azap
- Infectious Diseases and Clinical Microbiology, Ankara Hospital, Başkent University, Ankara, Turkey
| | - Murat Akova
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Önder Ergönül
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
- Koç University İş Bank Centre for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Füsun Can
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
- Koç University İş Bank Centre for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - David L Paterson
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Patrick N A Harris
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Ibrahim A, Bouvier M, Sadek M, Decousser JW, Poirel L, Nordmann P. A Selective Culture Medium for Screening Cefiderocol Resistance in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. J Clin Microbiol 2023; 61:e0188322. [PMID: 37338403 PMCID: PMC10358180 DOI: 10.1128/jcm.01883-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
Cefiderocol (FDC) is a siderophore cephalosporin with a broad spectrum of activity against many multidrug-resistant Gram-negative bacteria. Acquired resistance to FDC has been already reported among Gram-negative isolates, thus highlighting the need for rapid and accurate identification of such resistant pathogens, in order to control their spread. Therefore, the SuperFDC medium was developed to screen FDC-resistant Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. After testing several culture conditions, a selective medium was set up by supplementing an iron-depleted agar medium with 8 μg/mL of FDC and evaluated with a collection of 68 FDC-susceptible and 33 FDC-resistant Gram-negative isolates exhibiting a variety of β-lactam resistance mechanisms. The sensitivity and specificity of detection of this medium were evaluated at 97% and 100%, respectively. In comparison with the reference broth microdilution method, only 3% very major errors were found. In addition, excellent detection performances were obtained by testing spiked stools with a lower limit of detection ranging between 100 and 103 CFU/mL. The SuperFDC medium allows detection of FDC-resistant Gram-negative isolates regardless of their corresponding resistance mechanisms.
Collapse
Affiliation(s)
- Ahmad Ibrahim
- Clinical Microbiology Unit, Pasteur Institute of Lille, Lille, France
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute, Lille, France
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Mustafa Sadek
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jean-Winoc Decousser
- Equipe Opérationnelle d’Hygiène, Département Prévention, Diagnostic, Traitement des Infections, Hôpitaux Universitaires Henri-Mondor AP-HP, Créteil, France
- DYNAMYC, University Paris Est Creteil, Créteil, France
- DYNAMYC, EnvA, Maisons-Alfort, France
| | - Laurent Poirel
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute, Lille, France
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute, Lille, France
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Domingues S, Lima T, Saavedra MJ, Da Silva GJ. An Overview of Cefiderocol's Therapeutic Potential and Underlying Resistance Mechanisms. Life (Basel) 2023; 13:1427. [PMID: 37511802 PMCID: PMC10382032 DOI: 10.3390/life13071427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria José Saavedra
- CITAB-Inov4Agro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-AL4AnimalS, Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
22
|
Asrat H, Samaroo-Campbell J, Ata S, Quale J. Contribution of Iron-Transport Systems and β-Lactamases to Cefiderocol Resistance in Clinical Isolates of Acinetobacter baumannii Endemic to New York City. Antimicrob Agents Chemother 2023; 67:e0023423. [PMID: 37212653 PMCID: PMC10269113 DOI: 10.1128/aac.00234-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
The development of resistance to cefiderocol among multidrug resistant Acinetobacter baumannii has been attributed to downregulation in iron transport systems and a variety of β-lactamases. However, the precise contribution of each in clinical isolates remains to be determined. Sixteen clinical isolates with varying degrees of cefiderocol resistance were investigated. Susceptibility testing was performed with and without the presence of iron and avibactam. Expression of 10 iron transport systems and blaADC and blaOXA-51-type were analyzed by real time RT-PCR. The acquisition of a variety of β-lactamases was also determined. In 2 isolates the impact of silencing the blaADC gene was achieved using a target specific group II intron. For most resistant isolates, MICS for cefiderocol were similar with or without the presence of iron, and there was an overall decrease in expression of receptors (including pirA and piuA) involved in ferric uptake. However, expression of the ferrous uptake system (faoA) persisted. The addition of avibactam (4 μg/mL) lowered most cefiderocol MICs to 2 to 4 μg/mL. Most isolates possessed ADC-25 or ADC-33. Cefiderocol resistance correlated with over-expression of blaADC; silencing of this β-lactamase resulted in a ≥ 8-fold decrease in cefiderocol MICs. Over-expression of specific blaADC subtypes, in a background of generalized repression of ferric uptake systems, were consistent features in clinical isolates of cefiderocol-resistant A. baumannii.
Collapse
Affiliation(s)
- Habtamu Asrat
- Division of Infectious Diseases, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Subhan Ata
- Division of Infectious Diseases, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - John Quale
- Division of Infectious Diseases, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
23
|
Lasarte-Monterrubio C, Guijarro-Sánchez P, Vázquez-Ucha JC, Alonso-Garcia I, Alvarez-Fraga L, Outeda M, Martinez-Guitian M, Peña-Escolano A, Maceiras R, Lence E, González-Bello C, Arca-Suárez J, Bou G, Beceiro A. Antimicrobial Activity of Cefiderocol against the Carbapenemase-Producing Enterobacter cloacae Complex and Characterization of Reduced Susceptibility Associated with Metallo-β-Lactamase VIM-1. Antimicrob Agents Chemother 2023; 67:e0150522. [PMID: 37195077 PMCID: PMC10190674 DOI: 10.1128/aac.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.
Collapse
Affiliation(s)
- Cristina Lasarte-Monterrubio
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Isaac Alonso-Garcia
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Laura Alvarez-Fraga
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Michelle Outeda
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Marta Martinez-Guitian
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
- NANOBIOFAR, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Peña-Escolano
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Romina Maceiras
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Emilio Lence
- Centre for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centre for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jorge Arca-Suárez
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - German Bou
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Alejandro Beceiro
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| |
Collapse
|
24
|
Padovani M, Bertelli A, Corbellini S, Piccinelli G, Gurrieri F, De Francesco MA. In Vitro Activity of Cefiderocol on Multiresistant Bacterial Strains and Genomic Analysis of Two Cefiderocol Resistant Strains. Antibiotics (Basel) 2023; 12:antibiotics12040785. [PMID: 37107147 PMCID: PMC10135176 DOI: 10.3390/antibiotics12040785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Cefiderocol is a new siderophore cephalosporin that is effective against multidrug-resistant Gram-negative bacteria, including carbapenem-resistant strains. The aim of this study was to evaluate the activity of this new antimicrobial agent against a collection of pathogens using broth microdilution assays and to analyze the possible mechanism of cefiderocol resistance in two resistant Klebsiella pneumoniae isolates. One hundred and ten isolates were tested, comprising 67 Enterobacterales, two Acinetobacter baumannii, one Achromobacter xylosoxidans, 33 Pseudomonas aeruginosa and seven Stenotrophomonas maltophilia. Cefiderocol showed good in vitro activity, with an MIC < 2 μg/mL, and was able to inhibit 94% of the tested isolates. We observed a resistance rate of 6%. The resistant isolates consisted of six Klebsiella pneumoniae and one Escherichia coli, leading to a resistance rate of 10.4% among the Enterobacterales. Whole-genome sequencing analysis was performed on two cefiderocol-resistant Klebsiella pneumoniae isolates to investigate the possible mutations responsible for the observed resistance. Both strains belonged to ST383 and harbored different resistant and virulence genes. The analysis of genes involved in iron uptake and transport showed the presence of different mutations located in fhuA, fepA, iutA, cirA, sitC, apbC, fepG, fepC, fetB, yicI, yicJ, and yicL. Furthermore, for the first time, to the best of our knowledge, we described two Klebsiella pneumoniae isolates that synthesize a truncated fecA protein due to the transition from G to A, leading to a premature stop codon in the amino acid position 569, and a TonB protein carrying a 4-amino acid insertion (PKPK) after Lysine 103. In conclusion, our data show that cefiderocol is an effective drug against multidrug-resistant Gram-negative bacteria. However, the higher resistance rate observed in Enterobacterales underlines the need for active surveillance to limit the spread of these pathogens and to avoid the risks associated with the emergence of resistance to new drugs.
Collapse
Affiliation(s)
- Michela Padovani
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Anna Bertelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Silvia Corbellini
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Giorgio Piccinelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Francesca Gurrieri
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
25
|
Nichols WW, Lahiri SD, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: resistance in vitro. J Antimicrob Chemother 2023; 78:569-585. [PMID: 36702744 DOI: 10.1093/jac/dkac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article reviews resistance to ceftazidime/avibactam as an aspect of its primary pharmacology, linked thematically with recent reviews of the basic in vitro and in vivo translational biology of the combination (J Antimicrob Chemother 2022; 77: 2321-40 and 2341-52). In Enterobacterales or Pseudomonas aeruginosa, single-step exposures to 8× MIC of ceftazidime/avibactam yielded frequencies of resistance from <∼0.5 × 10-9 to 2-8 × 10-9, depending on the host strain and the β-lactamase harboured. β-Lactamase structural gene mutations mostly affected the avibactam binding site through changes in the Ω-loop: e.g. Asp179Tyr (D179Y) in KPC-2. Other mutations included ones proposed to reduce the permeability to ceftazidime and/or avibactam through changes in outer membrane structure, up-regulated efflux, or both. The existence, or otherwise, of cross-resistance between ceftazidime/avibactam and other antibacterial agents was also reviewed as a key element of the preclinical primary pharmacology of the new agent. Cross-resistance between ceftazidime/avibactam and other β-lactam-based antibacterial agents was caused by MBLs. Mechanism-based cross-resistance was not observed between ceftazidime/avibactam and fluoroquinolones, aminoglycosides or colistin. A low level of general co-resistance to ceftazidime/avibactam was observed in MDR Enterobacterales and P. aeruginosa. For example, among 2821 MDR Klebsiella spp., 3.4% were resistant to ceftazidime/avibactam, in contrast to 0.07% of 8177 non-MDR isolates. Much of this was caused by possession of MBLs. Among 1151 MDR, XDR and pandrug-resistant isolates of P. aeruginosa from the USA, 11.1% were resistant to ceftazidime/avibactam, in contrast to 3.0% of 7452 unselected isolates. In this case, the decreased proportion susceptible was not due to MBLs.
Collapse
Affiliation(s)
| | - Sushmita D Lahiri
- Infectious Diseases and Vaccines, Johnson & Johnson, Cambridge, MA, USA
| | | | | |
Collapse
|
26
|
Kaye KS, Naas T, Pogue JM, Rossolini GM. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect Dis Ther 2023; 12:777-806. [PMID: 36847998 PMCID: PMC10017908 DOI: 10.1007/s40121-023-00773-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) remain a significant public health threat, and, despite recent approvals, new antibiotics are needed. Severe infections caused by CRE, such as nosocomial pneumonia and bloodstream infections, are associated with a relatively high risk of morbidity and mortality. The recent approval of ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, plazomicin, eravacycline and cefiderocol has broadened the armamentarium for the treatment of patients with CRE infections. Cefiderocol is a siderophore cephalosporin with overall potent in vitro activity against CRE. It is taken up via iron transport channels through active transport, with some entry into bacteria through traditional porin channels. Cefiderocol is relatively stable against hydrolysis by most serine- and metallo-beta-lactamases, including KPC, NDM, VIM, IMP and OXA carbapenemases-the most frequent carbapenemases detected in CRE. The efficacy and safety of cefiderocol has been demonstrated in three randomised, prospective, parallel group or controlled clinical studies in patients at risk of being infected by multidrug-resistant or carbapenem-resistant Gram-negative bacteria. This paper reviews the in vitro activity, emergence of resistance, preclinical effectiveness, and clinical experience for cefiderocol, and its role in the management of patients with CRE infections.
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, CEA, University Paris-Saclay, Translational Research Building, Faculty of Medicine, Hopital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, and Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
27
|
Zhou J, Wang W, Liang M, Yu Q, Cai S, Lei T, Jiang Y, Du X, Zhou Z, Yu Y. A Novel CMY Variant Confers Transferable High-Level Resistance to Ceftazidime-Avibactam in Multidrug-Resistant Escherichia coli. Microbiol Spectr 2023; 11:e0334922. [PMID: 36786629 PMCID: PMC10100771 DOI: 10.1128/spectrum.03349-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Here, our objective was to explore the molecular mechanism underlying ceftazidime-avibactam resistance in a novel CMY-178 variant produced by the clinical Escherichia coli strain AR13438. The antibiotic susceptibility of the clinical isolate, its transconjugants, and its transformants harboring transferable blaCMY were determined by the agar dilution method. S1-PFGE, cloning experiments, and whole-genome sequencing (WGS) were performed to investigate the molecular characteristics of ceftazidime-avibactam resistance genes. Kinetic parameters were compared among the purified CMY variants. Structural modeling and molecular docking were performed to assess the affinity between the CMYs and drugs. The horizontal transferability of the plasmid was evaluated by a conjugation experiment. The fitness cost of the plasmid was analyzed by determining the maximal growth rate, the maximum optical density at 600 nm (OD600), and the duration of the lag phase. AR13438, a sequence type 457 E. coli strain, was resistant to multiple cephalosporins, piperacillin-tazobactam, and ceftazidime-avibactam at high levels and was susceptible to carbapenems. WGS and cloning experiments indicated that a novel CMY gene, blaCMY-178, was responsible for ceftazidime-avibactam resistance. Compared with the closely related CMY-172, CMY-178 had a nonsynonymous amino acid substitution at position 70 (Asn70Thr). CMY-178 increased the MICs of multiple cephalosporins and ceftazidime-avibactam compared with CMY-172. The kinetic constant Ki values of CMY-172 and CMY-178 against tazobactam were 2.12 ± 0.34 and 2.49 ± 0.51 μM, respectively. Structural modeling and molecular docking indicated a narrowing of the CMY-178 ligand-binding pocket and its entrance and a stronger positive charge at the pocket entrance compared with those observed with CMY-172. blaCMY-178 was located in a 96.9-kb IncI1-type plasmid, designated pAR13438_2, which exhibited high transfer frequency without a significant fitness cost. In conclusion, CMY-178 is a novel CMY variant that mediates high-level resistance to ceftazidime-avibactam by enhancing the ability to hydrolyze ceftazidime and reducing the affinity for avibactam. Notably, blaCMY-178 could be transferred horizontally at high frequency without fitness costs. IMPORTANCE Ceftazidime-avibactam is a novel β-lactam-β-lactamase inhibitor (BLBLI) combination with powerful activity against Enterobacterales isolates producing AmpC, such as CMY-like cephalosporinase. However, in recent years, CMY variants have been reported to confer ceftazidime-avibactam resistance. We reported a novel CMY variant, CMY-178, that confers high-level ceftazidime-avibactam resistance with potent transferability. Therefore, this resistance gene is a tremendous potential menace to public health and needs attention of clinicians.
Collapse
Affiliation(s)
- Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Liang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqi Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Du
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Nordmann P, Bouvier M, Poirel L, Sadek M. Rapid cefiderocol NP test for detection of cefiderocol susceptibility/resistance in Enterobacterales. J Antimicrob Chemother 2022; 77:3456-3461. [PMID: 36226737 DOI: 10.1093/jac/dkac340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cefiderocol is among the latest generation of commercialized antibiotics against a large variety of MDR Gram-negative bacteria including carbapenem-resistant Enterobacterales and non-fermenters such as Pseudomonas aeruginosa and Acinetobacter baumannii. Cefiderocol susceptibility testing, a key element for implementing rapidly a cefiderocol-based treatment, might be still challenging. OBJECTIVES To develop a rapid culture-based test, Rapid Cefiderocol NP test, for the identification of cefiderocol resistance among MDR Enterobacterales. METHODS The Rapid Cefiderocol NP test is based on glucose metabolization when bacterial growth occurs and the detection of bacterial growth in the presence of cefiderocol at 64 mg/L using iron-depleted CAMHB. Bacterial growth is visually detectable by a red-to-yellow colour change of red phenol, a pH indicator. A total of 74 clinical enterobacterial isolates from various clinical sources and of worldwide origin, among which 42 isolates were cefiderocol resistant, were used to evaluate the test performance. RESULTS The sensitivity and specificity of the test were found to be 98% and 91%, respectively, by comparison with the reference broth microdilution (BMD) method. All positive results were obtained within 3 h after incubation at 35°C ± 2°C, that is a gain of time of ca. 18 h (1 day) compared with currently used techniques for susceptibility testing (BMD method). CONCLUSIONS This novel test is rapid, highly sensitive, specific, easily interpretable, and easy to implement in routine microbiology laboratories. Such a test may rapidly and accurately provide the information needed for the implementation of adequate cefiderocol-based treatment.
Collapse
Affiliation(s)
- Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.,INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland.,Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.,INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland
| | - Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
29
|
Gijón Cordero D, Castillo-Polo JA, Ruiz-Garbajosa P, Cantón R. Antibacterial spectrum of cefiderocol. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 2:20-27. [PMID: 36193981 PMCID: PMC9632062 DOI: 10.37201/req/s02.03.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cefiderocol, a siderophore catechol cephalosporin, recently introduced in the market has been developed to enhance the in vitro activity of extended spectrum cephalosporins and to avoid resistance mechanisms affecting cephalosporins and carbapenems. The in vitro study of cefiderocol in the laboratory requires iron depleted media when MIC values are determined by broth microdilution. Disk diffusion presents good correlation with MIC values. In surveillance studies and in clinical trials it has been demonstrated excellent activity against Gram-negatives, including carbapenemase producers and non-fermenters such as Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia. Few cefiderocol resistant isolates have been found in surveillance studies. Resistance mechanisms are not directly associated with porin deficiency and or efflux pumps. On the contrary, they are related with gene mutations affecting iron transporters, AmpC mutations in the omega loop and with certain beta-lactamases such us KPC-variants determining also ceftazidime-avibactam resistance, certain infrequent extended-spectrum betalactamases (PER, BEL) and metallo-beta-lactamases (certain NDM variants and SPM enzyme).
Collapse
Affiliation(s)
| | | | | | - R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal. Carretera de Colmenar Km 91. 28034-Madrid. Spain.
| |
Collapse
|
30
|
Fröhlich C, Sørum V, Tokuriki N, Johnsen PJ, Samuelsen Ø. Evolution of β-lactamase-mediated cefiderocol resistance. J Antimicrob Chemother 2022; 77:2429-2436. [PMID: 35815680 PMCID: PMC9410664 DOI: 10.1093/jac/dkac221] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cefiderocol is a novel siderophore β-lactam with improved hydrolytic stability toward β-lactamases, including carbapenemases, achieved by combining structural moieties of two clinically efficient cephalosporins, ceftazidime and cefepime. Consequently, cefiderocol represents a treatment alternative for infections caused by MDR Gram-negatives. OBJECTIVES To study the role of cefiderocol on resistance development and on the evolution of β-lactamases from all Ambler classes, including KPC-2, CTX-M-15, NDM-1, CMY-2 and OXA-48. METHODS Directed evolution, using error-prone PCR followed by selective plating, was utilized to investigate how the production and the evolution of different β-lactamases cause changes in cefiderocol susceptibility determined using microbroth dilution assays (MIC and IC50). RESULTS We found that the expression of blaOXA-48 did not affect cefiderocol susceptibility. On the contrary, the expression of blaKPC-2, blaCMY-2, blaCTX-M-15 and blaNDM-1 substantially reduced cefiderocol susceptibility by 4-, 16-, 8- and 32-fold, respectively. Further, directed evolution on these enzymes showed that, with the acquisition of only 1-2 non-synonymous mutations, all β-lactamases were evolvable to further cefiderocol resistance by 2- (NDM-1, CTX-M-15), 4- (CMY-2), 8- (OXA-48) and 16-fold (KPC-2). Cefiderocol resistance development was often associated with collateral susceptibility changes including increased resistance to ceftazidime and ceftazidime/avibactam as well as functional trade-offs against different β-lactam drugs. CONCLUSIONS The expression of contemporary β-lactamase genes can potentially contribute to cefiderocol resistance development and the acquisition of mutations in these genes results in enzymes adapting to increasing cefiderocol concentrations. Resistance development caused clinically important cross-resistance, especially against ceftazidime and ceftazidime/avibactam.
Collapse
Affiliation(s)
| | - Vidar Sørum
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Pål Jarle Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
31
|
Simner PJ, Mostafa HH, Bergman Y, Ante M, Tekle T, Adebayo A, Beisken S, Dzintars K, Tamma PD. Progressive Development of Cefiderocol Resistance in Escherichia coli During Therapy is Associated With an Increase in blaNDM-5 Copy Number and Gene Expression. Clin Infect Dis 2022; 75:47-54. [PMID: 34618008 PMCID: PMC9402677 DOI: 10.1093/cid/ciab888] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND As cefiderocol is increasingly being prescribed in clinical practice, it is critical that we understand key mechanisms contributing to acquired resistance to this agent. METHODS We describe a patient with acute lymphoblastic leukemia and a New Delhi metallo-ß-lactamase (NDM)-5-producing Escherichia coli intra-abdominal infection in whom resistance to cefiderocol evolved approximately 2 weeks after the start of treatment. Through whole-genome sequencing (WGS), messenger RNA expression studies, and ethylenediaminetetraacetic acid inhibition analysis, we investigated the role of increased NDM-5 production and genetic mutations contributing to the development of cefiderocol resistance, using 5 sequential clinical E. coli isolates obtained from the patient. RESULTS In all 5 isolates, blaNDM-5 genes were identified. The minimum inhibitory concentrations for cefiderocol were 2, 4, and >32 μg/mL for isolates 1-2, 3, and 4-5, respectively. WGS showed that isolates 1-3 contained a single copy of the blaNDM-5 gene, whereas isolates 4 and 5 had 5 and 10 copies of the blaNDM-5 gene, respectively, on an IncFIA/FIB/IncFII plasmid. These findings were correlated with those of blaNDM-5 messenger RNA expression analysis, in which isolates 4 and 5 expressed blaNDM-5 1.7- and 2.8-fold, respectively, compared to, isolate 1. Synergy testing with the combination of ceftazidime-avibactam and aztreonam demonstrated expansion of the zone of inhibition between the disks for all isolates. The patient was successfully treated with this combination and remained infection free 1 year later. CONCLUSIONS The findings in our patient suggest that increased copy numbers of blaNDM genes through translocation events are used by Enterobacterales to evade cefiderocol-mediated cell death. The frequency of increased blaNDM-5 expression in contributing to cefiderocol resistance needs investigation.
Collapse
Affiliation(s)
- Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tsigereda Tekle
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ayomikun Adebayo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Kathryn Dzintars
- Department of Pharmacy, Johns Hopkins Hospital, Baltimore, Maryland, USAand
| | - Pranita D Tamma
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Lan P, Lu Y, Jiang Y, Wu X, Yu Y, Zhou J. Catecholate Siderophore Receptor CirA Impacts Cefiderocol Susceptibility in Klebsiella penumoniae. Int J Antimicrob Agents 2022; 60:106646. [DOI: 10.1016/j.ijantimicag.2022.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/08/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
|
33
|
Jean SS, Lee YL, Hsu CW, Hsueh PR. In vitro susceptibilities of isolates of potentially naturally inducible chromosomal AmpC-producing metallo-β-lactamase-negative carbapenem-resistant Enterobacterales species to ceftazidime-avibactam: Data from the Antimicrobial Testing Leadership and Surveillance Programme, 2012-2019. Int J Antimicrob Agents 2022; 60:106617. [PMID: 35718266 DOI: 10.1016/j.ijantimicag.2022.106617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/28/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
In total, 74,570 potentially naturally inducible chromosomal AmpC-producing (PNIC-AmpC) Enterobacterales isolates included in the Antimicrobial Testing Leadership and Surveillance Programme were obtained worldwide from 2012 to 2019 (22,503 from 2012 to 2014 and 52,067 from 2015 to 2019). One hundred seventeen and 711 isolates obtained in 2012-2014 and 2015-2019, respectively, were carbapenem-resistant Enterobacterales (PNIC-AmpC-CRE). The minimum inhibitory concentrations of ceftazidime-avibactam for these isolates against were determined using the broth microdilution method. Genes encoding different Ambler classes of β-lactamases were investigated using multiplex PCR. After 97 isolates harboring genes encoding metallo-β-lactamases (MβL) were excluded, 731 PNIC-AmpC MβL-negative CRE isolates (101 from 2012 to 2014 and 630 from 2015 to 2019) were included in this study. Enterobacter cloacae complex species, Escherichia coli, and Citrobacter freundii complex species accounted for 36.3% (n = 265), 30.4% (n = 222), and 11.8% (n = 86), respectively, followed by Providencia species (n = 72), Serratia species (n = 52), and Klebsiella aerogenes (n = 34). The resistance rates to ceftazidime-avibactam for the overall PNIC-AmpC MβL-negative CRE isolates differed markedly between the two periods (35.6% vs. 63.3%, P < 0.001). Similar trends were observed for the MβL-negative-CR-E. cloacae complex species (47.4% vs. 65.2%; P = 0.046) and MβL-negative-CR-E. coli (16.2% vs. 63.8%; P < 0.001) but not for MβL-negative-CR-C. freundii complex species (40% vs. 62%; P = 0.153). Amongst the PNIC-AmpC MβL-negative CRE isolates, resistance rates to ceftazidime-avibactam worsened. Caution should be taken when empirically prescribing ceftazidime-avibactam for infections caused by PNIC-AmpC-CRE before susceptibility data are available.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-Wang Hsu
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
34
|
Nichols WW, Bradford PA, Lahiri SD, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vitro translational biology. J Antimicrob Chemother 2022; 77:2321-2340. [PMID: 35665807 DOI: 10.1093/jac/dkac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous reviews of ceftazidime/avibactam have focused on in vitro molecular enzymology and microbiology or the clinically associated properties of the combination. Here we take a different approach. We initiate a series of linked reviews that analyse research on the combination that built the primary pharmacology data required to support the clinical and business risk decisions to perform randomized controlled Phase 3 clinical trials, and the additional microbiological research that was added to the above, and the safety and chemical manufacturing and controls data, that constituted successful regulatory licensing applications for ceftazidime/avibactam in multiple countries, including the USA and the EU. The aim of the series is to provide both a source of reference for clinicians and microbiologists to be able to use ceftazidime/avibactam to its best advantage for patients, but also a case study of bringing a novel β-lactamase inhibitor (in combination with an established β-lactam) through the microbiological aspects of clinical development and regulatory applications, updated finally with a review of resistance occurring in patients under treatment. This first article reviews the biochemistry, structural biology and basic microbiology of the combination, showing that avibactam inhibits the great majority of serine-dependent β-lactamases in Enterobacterales and Pseudomonas aeruginosa to restore the in vitro antibacterial activity of ceftazidime. Translation to efficacy against infections in vivo is reviewed in the second co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac172).
Collapse
|
35
|
Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060723. [PMID: 35740130 PMCID: PMC9220290 DOI: 10.3390/antibiotics11060723] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.
Collapse
|
36
|
Lan P, Lu Y, Chen Z, Wu X, Hua X, Jiang Y, Zhou J, Yu Y. Emergence of High-Level Cefiderocol Resistance in Carbapenem-Resistant Klebsiella pneumoniae from Bloodstream Infections in Patients with Hematologic Malignancies in China. Microbiol Spectr 2022; 10:e0008422. [PMID: 35323031 PMCID: PMC9045219 DOI: 10.1128/spectrum.00084-22] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cefiderocol is a novel siderophore cephalosporin exhibiting potent antimicrobial activities. Although cefiderocol has not been approved in China, resistance is emerging. A multicenter study was performed to evaluate the cefiderocol resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains from bloodstream infections in patients with hematologic malignancies in China. Clinical data analysis and whole-genome sequencing were conducted for collected cefiderocol-resistant CRKP strains. CRISPR-Cas9 system was employed to construct site-specific mutagenesis for gene cirA. Plasmid curing and cloning were performed to assess the effect of β-lactamases on cefiderocol resistance. Total 86 CRKP strains were collected. The MICs of cefiderocol ranged from 0.06 to >256 mg/L. Among four cefiderocol-nonsusceptible strains (4/86, 4.7%), two cefiderocol-resistant strains AR8538 (MIC = 32 mg/L) and AR8416 (MIC > 256 mg/L) were isolated from two patients with acute lymphocytic leukemia (frequency of resistance, 2/86, 2.3%). Metallo- and serine-β-lactamase inhibitors addition would decrease the MIC of cefiderocol from 32 to 1 mg/L in AR8538, which harbors blaSHV-12, blaDHA-1, and two copies of blaNDM-1 in different plasmids. Avibactam did not impact cefiderocol susceptibility of AR8416, which produces NDM-5. However, we found a deficient CirA in AR8416. Using the same K serotype strain D3, we proved CirA deficiency or carrying NDM individually reduced cefiderocol susceptibility, but their simultaneously existence rendered a high-level cefiderocol resistance. In summary, the resistance of CRKP against cefiderocol is mediated by multiple factors, including the deficiency of CirA, metallo- or serine-β-lactamases, while a high-level cefiderocol resistance could be rendered by the combined effect of NDM expression and CirA deficiency. IMPORTANCE Cefiderocol-resistant CRKP strains are emerging in bloodstream infections in Chinese patients with hematologic malignancies, although cefiderocol has not been approved for clinical use in China. Our study proved that the resistance of CRKP against cefiderocol is mediated by multiple factors, including the deficiency of CirA, metallo- or serine-β-lactamases, while a high-level cefiderocol resistance could be rendered by the combined effect of NDM expression and CirA deficiency. As NDM production is one of the most critical mechanisms resulting in carbapenem resistance, it would pose great challenges on the clinical efficacy of cefiderocol in future.
Collapse
Affiliation(s)
- Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqing Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
39
|
Drwiega EN, Griffith NC, Danziger LH. Pharmacokinetic evaluation of cefiderocol for the treatment of multidrug resistant Gram-negative infections. Expert Opin Drug Metab Toxicol 2022; 18:245-259. [PMID: 35594628 DOI: 10.1080/17425255.2022.2081148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cefiderocol is a siderophore cephalosporin antibiotic and first of its kind approved by the Food and Drug Administration for the treatment of complicated urinary tract infections (cUTI) and hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) in patients 18 years or older caused by susceptible organisms. Cefiderocol's unique mechanism of iron chelation improves Gram-negative membrane penetration as the bacteria's iron uptake mechanism recognizes the chelated iron antibiotic and iron for entry. This also allows for the evasion of cefiderocol from cell entry-related resistance mechanisms. AREAS COVERED This review covers the mechanism of action, resistance mechanisms, pharmacokinetics in various patient populations, and pharmacodynamics. Relevant literature evaluating efficacy and safety are discussed. EXPERT OPINION Limited treatment options are available for the treatment of carbapenem-resistantorganisms. Clinical trials have demonstrated that cefiderocol is no worse than alternative treatment options for cUTIs and HABP/VABP, but more data are currently available to support the use of beta-lactam beta-lactamase inhibitor agents, where susceptible. Mortality differences demonstrated in patients with pneumonia and bloodstream infections must further be explored and logistical and practical considerations regarding susceptibility testing and use as monotherapy vs. combination therapy must be considered prior to confidently recommending cefiderocol for regular use in systemic infections.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicaco, IL, USA
| | - Nicole C Griffith
- College of Pharmacy, University of Illinois at Chicago, Chicaco, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicaco, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
41
|
Klein S, Boutin S, Kocer K, Fiedler MO, Störzinger D, Weigand MA, Tan B, Richter D, Rupp C, Mieth M, Mehrabi A, Hackert T, Zimmermann S, Heeg K, Nurjadi D. Rapid Development of Cefiderocol Resistance in Carbapenem-resistant Enterobacter cloacae During Therapy Is Associated With Heterogeneous Mutations in the Catecholate Siderophore Receptor cirA. Clin Infect Dis 2022; 74:905-908. [PMID: 34079986 PMCID: PMC8906715 DOI: 10.1093/cid/ciab511] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
We report a case of resistance development toward cefiderocol in a patient with intra-abdominal and bloodstream infections caused by carbapenemase-producing Enterobacter cloacae within 21 days of cefiderocol therapy. Whole genome sequencing revealed heterogeneous mutations in the cirA gene, encoding a catecholate siderophore receptor, conferring phenotypic resistance to cefiderocol.
Collapse
Affiliation(s)
- Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg,Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg,Germany
| | - Kaan Kocer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg,Germany
| | - Mascha O Fiedler
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg,Germany
| | - Dominic Störzinger
- Pharmacy Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg,Germany
| | - Benjamin Tan
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg,Germany
| | - Daniel Richter
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg,Germany
| | - Christian Rupp
- Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg,Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg,Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg,Germany
| |
Collapse
|
42
|
Antimicrobial Treatment Options for Difficult-to-Treat Resistant Gram-Negative Bacteria Causing Cystitis, Pyelonephritis, and Prostatitis: A Narrative Review. Drugs 2022; 82:407-438. [PMID: 35286622 PMCID: PMC9057390 DOI: 10.1007/s40265-022-01676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Urinary tract infections, including cystitis, acute pyelonephritis, and prostatitis, are among the most common diagnoses prompting antibiotic prescribing. The rise in antimicrobial resistance over the past decades has led to the increasing challenge of urinary tract infections because of multidrug-resistant and "difficult-to-treat resistance" among Gram-negative bacteria. Recent advances in pharmacotherapy and medical microbiology are modernizing how these urinary tract infections are treated. Advances in pharmacotherapy have included not only the development and approval of novel antibiotics, such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, ceftolozane/tazobactam, cefiderocol, plazomicin, and glycylcyclines, but also the re-examination of the potential role of legacy antibiotics, including older aminoglycosides and tetracyclines. Recent advances in medical microbiology allow phenotypic and molecular mechanism of resistance testing, and thus antibiotic prescribing can be tailored to the mechanism of resistance in the infecting pathogen. Here, we provide a narrative review on the clinical and pre-clinical studies of drugs that can be used for difficult-to-treat resistant Gram-negative bacteria, with a particular focus on data relevant to the urinary tract. We also offer a pragmatic framework for antibiotic selection when encountering urinary tract infections due to difficult-to-treat resistant Gram-negative bacteria based on the organism and its mechanism of resistance.
Collapse
|
43
|
Simner PJ, Beisken S, Bergman Y, Ante M, Posch AE, Tamma PD. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb Drug Resist 2022; 28:161-170. [PMID: 34619049 PMCID: PMC8885434 DOI: 10.1089/mdr.2021.0095] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The objective of this study was to identify putative mechanisms contributing to baseline cefiderocol resistance among carbapenem-resistant Enterobacterales (CRE). We evaluated 56 clinical CRE isolates with no previous exposure to cefiderocol. Cefiderocol and comparator agent minimum inhibitory concentrations (MICs) were determined by broth microdilution. Short-read and/or long-read whole genome sequencing was pursued. Cefiderocol nonwild type (NWT; i.e., MICs ≥4 mg/L) CRE were compared with species-specific reference genomes and with cefiderocol wild type (WT) CRE isolates to identify genes or missense mutations, potentially contributing to elevated cefiderocol MICs. A total of 14 (25%) CRE isolates met cefiderocol NWT criteria. Of the 14 NWT isolates, various β-lactamases (e.g., carbapenemases in Klebsiella pneumoniae and AmpC β-lactamases in Enterobacter cloacae complex) in combination with permeability defects were associated with a ≥ 80% positive predictive value in identifying NWT isolates. Unique mutations in the sensor kinase gene baeS were identified among NWT isolates. Cefiderocol NWT isolates were more likely to be resistant to colistin than WT isolates (29% vs. 0%). Our findings suggest that no consistent antimicrobial resistance markers contribute to baseline cefiderocol resistance in CRE isolates and, rather, cefiderocol resistance results from a combination of heterogeneous mechanisms.
Collapse
Affiliation(s)
- Patricia J. Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yehudit Bergman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Yao J, Wang J, Chen M, Cai Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front Med (Lausanne) 2021; 8:741940. [PMID: 34950677 PMCID: PMC8688709 DOI: 10.3389/fmed.2021.741940] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment of multidrug-resistant (MDR) Gram-negative bacteria (GNB) infections has led to a global public health challenging due to the bacterial resistance and limited choices of antibiotics. Cefiderocol (CFDC), a novel siderophore cephalosporin possessed unique drug delivery systems and stability to β-lactamases, has the potential to become first-line therapy for most aggressive MDR Gram-negative pathogens infection. However, there have been reports of drug resistance in the course of using CFDC. This study provides an overview of the in-vitro and in-vivo activity of CFDC and potential resistance mechanism was also summarized. In general, CFDC shows excellent activity against a broad range of MDR GNB pathogens including Enterobacteriaceae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. The expressions of metallo-β-lactamases such as inosine 5'-monophosphate (IMP), Verona integron-mediated metallo-β-lactamase (VIM), and New Delhi metallo-β-lactamase (NDM) are associated with a higher resistance rate of CFDC. Carbapenem-resistant phenotype has little effect on the resistance rate, although the acquisition of a particular carbapenemase may affect the susceptibility of the pathogens to CFDC. For potential resistance mechanism, mutations in β-lactamases and TonB-dependent receptors, which assist CFDC entering bacteria, would increase a minimum inhibitory concentration (MIC)90 value of CFDC against MDR pathogens. Since the development of CFDC, resistance during its utilization has been reported thus, prudent clinical applications are still necessary to preserve the activity of CFDC.
Collapse
Affiliation(s)
- Jiahui Yao
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| |
Collapse
|
45
|
McElheny CL, Fowler EL, Iovleva A, Shields RK, Doi Y. In Vitro Evolution of Cefiderocol Resistance in an NDM-Producing Klebsiella pneumoniae Due to Functional Loss of CirA. Microbiol Spectr 2021; 9:e0177921. [PMID: 34756080 PMCID: PMC8579844 DOI: 10.1128/spectrum.01779-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
By serially exposing an NDM-producing Klebsiella pneumoniae clinical strain to cefiderocol, we obtained a mutant with cefiderocol MIC of >128 μg/ml. The mutant contained an early stop codon in the iron transporter gene cirA, and its complementation fully restored susceptibility. The cirA-deficient mutant was competed out by the parental strain in vitro, suggesting reduced fitness. IMPORTANCE Cefiderocol, a newly approved cephalosporin agent with an extensive spectrum of activity against Gram-negative bacteria, is a siderophore cephalosporin that utilizes iron transporters to access the bacterial periplasm. Loss of functional CirA, an iron transporter, has been associated with cefiderocol resistance. Here, we show that such genetic change can be selected under selective pressure and cause high-level cefiderocol resistance, but with a high fitness cost. Whether these resistant mutants can survive beyond selective pressure will inform stewardship of this agent in the clinic.
Collapse
Affiliation(s)
- Christi L. McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Erin L. Fowler
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
46
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Karlowsky JA, Kazmierczak KM, Valente MLNDF, Luengas EL, Baudrit M, Quintana A, Irani P, Stone GG, Sahm DF. In vitro activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa isolates collected in Latin America as part of the ATLAS global surveillance program, 2017-2019. Braz J Infect Dis 2021; 25:101647. [PMID: 34774471 PMCID: PMC9392196 DOI: 10.1016/j.bjid.2021.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022] Open
Abstract
The Antimicrobial Testing Leadership and Surveillance (ATLAS) global surveillance program collected clinical isolates of Enterobacterales (n = 8416) and Pseudomonas aeruginosa (n = 2521) from 41 medical centers in 10 Latin American countries from 2017 to 2019. In vitro activities of ceftazidime-avibactam and comparators were determined using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Overall, 98.1% of Enterobacterales and 86.9% of P. aeruginosa isolates were susceptible to ceftazidime-avibactam. When isolates were analyzed by country of origin, susceptibility to ceftazidime-avibactam for Enterobacterales ranged from 97.8% to 100% for nine of 10 countries (except Guatemala, 86.3% susceptible) and from 75.9% to 98.4% for P. aeruginosa in all 10 countries. For Enterobacterales, 100% of AmpC-positive, ESBL- and AmpC-positive, GES-type carbapenemase-positive, and OXA-48-like-positive isolates were ceftazidime-avibactam-susceptible as were 99.8%, 91.8%, and 74.7% of ESBL-positive, multidrug-resistant (MDR), and meropenem-nonsusceptible isolates. Among meropenem-nonsusceptible isolates of Enterobacterales, 24.4% (139/570) carried a metallo-β-lactamase (MBL); 83.3% of the remaining meropenem-nonsusceptible isolates carried another class of carbapenemase and 99.4% of those isolates were ceftazidime-avibactam-susceptible. Among meropenem-non-susceptible isolates of P. aeruginosa (n = 835), 25.6% carried MBLs; no acquired β-lactamase was identified in the majority of isolates (64.8%; 87.2% of those isolates were ceftazidime-avibactam-susceptible). Overall, clinical isolates of Enterobacterales collected in Latin America from 2017 to 2019 were highly susceptible to ceftazidime-avibactam, including isolates carrying ESBLs, AmpCs, and KPCs. Country-specific variation in susceptibility to ceftazidime-avibactam was more common among isolates of P. aeruginosa than Enterobacterales. The frequency of MBL-producers among Enterobacterales from Latin America was low (1.7% of all isolates; 146/8,416), but higher than reported in previous surveillance studies.
Collapse
Affiliation(s)
- James A Karlowsky
- University of Manitoba, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | | | | | | | | | | | - Paurus Irani
- Pfizer UK ltd, Walton Oaks, Tadworth, Surrey, UK
| | | | | |
Collapse
|
48
|
Abstract
Intravenous cefiderocol (Fetroja®; Fetcroja®) is the first siderophore cephalosporin approved for the treatment of adults with serious Gram-negative bacterial infections. Cefiderocol is stable against all four Ambler classes of β-lactamases (including metallo-β-lactamases) and exhibits excellent in vitro activity against many clinically relevant Gram-negative pathogens, including multidrug resistant strains. In randomized, double-blind clinical trials, cefiderocol was noninferior to imipenem/cilastatin for the treatment of complicated urinary tract infections (cUTI) and to meropenem for nosocomial pneumonia. Furthermore, in a pathogen-focused clinical trial in patients with carbapenem-resistant (CR) infections, cefiderocol showed comparable efficacy to best available therapy (BAT), albeit all-cause mortality rate was higher in the cefiderocol arm, the cause of which has not been established. Cefiderocol had a good tolerability and safety profile in clinical trials. Thus cefiderocol is a novel, emerging, useful addition to the current treatment options for adults with susceptible Gram-negative bacterial infections (including cUTI and nosocomial pneumonia) for whom there are limited treatment options.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
49
|
Senchyna F, Tamburini FB, Murugesan K, Watz N, Bhatt AS, Banaei N. Comparative genomics of Enterobacter cloacae complex before and after acquired clinical resistance to Ceftazidime-Avibactam. Diagn Microbiol Infect Dis 2021; 101:115511. [PMID: 34418822 DOI: 10.1016/j.diagmicrobio.2021.115511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022]
Abstract
Resistance to Ceftazidime-Avibactam in Enterobacter cloacae is poorly understood. Whole genome sequencing identified 6 variants in isolates collected from a patient before and after acquiring Ceftazidime-Avibactam resistance. This included a Phe396Leu mutation in acrB, a component of the AcrAB-TolC efflux pump, possibly mediating enhanced efflux of Ceftazidime and/ or Avibactam.
Collapse
Affiliation(s)
- Fiona Senchyna
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fiona B Tamburini
- Division of Hematology, Department of Medicine and Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Watz
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ami S Bhatt
- Division of Hematology, Department of Medicine and Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Abdul-Mutakabbir JC, Nguyen L, Maassen PT, Stamper KC, Kebriaei R, Kaye KS, Castanheira M, Rybak MJ. In Vitro Antibacterial Activity of Cefiderocol against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65:e0264620. [PMID: 34125590 PMCID: PMC8370208 DOI: 10.1128/aac.02646-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cefiderocol (CFDC), a novel siderophore cephalosporin, demonstrates strong activity against multidrug-resistant (MDR) Acinetobacter baumannii. Limited studies have evaluated CFDC alone and in combination with other Gram-negative antibiotics against MDR A. baumannii isolates. Susceptibility testing revealed lower CFDC MIC values (87% of MICs ≤ 4mg/liter) than the comparator Gram-negative agents. Six isolates, with elevated CFDC MICs (16 to 32 mg/liter) were selected for further experiments. Time-kill analyses presented with synergistic activity and beta-lactamase inhibitors increased CFDC susceptibility in each of the isolates.
Collapse
Affiliation(s)
- Jacinda C. Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Logan Nguyen
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Philip T. Maassen
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle C. Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Keith S. Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
| |
Collapse
|