1
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024:dkae344. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Shad A, Rewell SSJ, Macowan M, Gandasasmita N, Wang J, Chen K, Marsland B, O'Brien TJ, Li J, Semple BD. Modelling lung infection with Klebsiella pneumoniae after murine traumatic brain injury. J Neuroinflammation 2024; 21:122. [PMID: 38720343 PMCID: PMC11080247 DOI: 10.1186/s12974-024-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.
Collapse
Affiliation(s)
- Ali Shad
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Natasha Gandasasmita
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
| | - Jiping Wang
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ke Chen
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ben Marsland
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia.
- Alfred Health, Prahran, VIC, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
4
|
Tan X, Huang Y, Rana A, Singh N, Abbey TC, Chen H, Toth PT, Bulman ZP. Optimization of an in vitro Pseudomonas aeruginosa Biofilm Model to Examine Antibiotic Pharmacodynamics at the Air-Liquid Interface. NPJ Biofilms Microbiomes 2024; 10:16. [PMID: 38429317 PMCID: PMC10907394 DOI: 10.1038/s41522-024-00483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Pseudomonas aeruginosa is an important cause of lower respiratory tract infections, such as ventilator-associated bacterial pneumonia (VABP). Using inhaled antibiotics to treat VABP can achieve high drug concentrations at the infection site while minimizing systemic toxicities. Despite the theoretical advantages, clinical trials have failed to show a benefit for inhaled antibiotic therapy in treating VABP. A potential reason for this discordance is the presence of biofilm-embedded bacteria in lower respiratory tract infections. Drug selection and dosing are often based on data from bacteria grown planktonically. In the present study, an in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model was optimized to evaluate the activity of simulated epithelial lining fluid exposures of inhaled and intravenous doses of polymyxin B and tobramycin against two P. aeruginosa strains. Antibiotic activity was also determined against the P. aeruginosa strains grown planktonically. Our study revealed that inhaled antibiotic exposures were more active than their intravenous counterparts across biofilm and planktonic populations. Inhaled exposures of polymyxin B and tobramycin exhibited comparable activity against planktonic P. aeruginosa. Although inhaled polymyxin B exposures were initially more active against P. aeruginosa biofilms (through 6 h), tobramycin was more active by the end of the experiment (48 h). Together, these data slightly favor the use of inhaled tobramycin for VABP caused by biofilm-forming P. aeruginosa that are not resistant to either antibiotic. The optimized in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model may be beneficial for the development of novel anti-biofilm agents or to optimize antibiotic dosing for infections such as VABP.
Collapse
Affiliation(s)
- Xing Tan
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Amisha Rana
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Taylor C Abbey
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Hui Chen
- Mass Spectrometry Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Peter T Toth
- Fluorescence Imaging Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
5
|
Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, Liu XF. Antimicrobial resistance crisis: could artificial intelligence be the solution? Mil Med Res 2024; 11:7. [PMID: 38254241 PMCID: PMC10804841 DOI: 10.1186/s40779-024-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is a global public health threat, and the World Health Organization (WHO) has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed. The discovery and introduction of novel antibiotics are time-consuming and expensive. According to WHO's report of antibacterial agents in clinical development, only 18 novel antibiotics have been approved since 2014. Therefore, novel antibiotics are critically needed. Artificial intelligence (AI) has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics. Here, we first summarized recently marketed novel antibiotics, and antibiotic candidates in clinical development. In addition, we systematically reviewed the involvement of AI in antibacterial drug development and utilization, including small molecules, antimicrobial peptides, phage therapy, essential oils, as well as resistance mechanism prediction, and antibiotic stewardship.
Collapse
Affiliation(s)
- Guang-Yu Liu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dan Yu
- National Key Discipline of Pediatrics Key Laboratory of Major Diseases in Children Ministry of Education, Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Mei-Mei Fan
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ze-Yu Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Xiao-Fen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Wu Z, Zhang S, Cao Y, Wang Q, Sun K, Zheng X. Comparison of the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of ventilator-associated pneumonia caused by carbapenem-resistant gram-negative bacteria: a retrospective cohort study. Front Pharmacol 2023; 14:1209063. [PMID: 37663252 PMCID: PMC10470629 DOI: 10.3389/fphar.2023.1209063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: To investigate the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of VAP caused by CR-GNB. Additionally, among patients treated with nebulized polymyxin monotherapy, we compared the clinical efficacy and toxicity of polymyxin B and polymyxin E. Methods: This study was a single-center, retrospective study. Included patients received aerosolized polymyxin for at least 72 h with or without intravenous polymyxin for the management of CR-GNB VAP. The primary endpoint was clinical cure at the end of polymyxin therapy. Secondary endpoints included AKI incidence, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, and all-cause ICU mortality. Results: 39 patients treated with nebulized polymyxin monotherapy were assigned to the NL-polymyxin group. 39 patients treated with nebulized polymyxin combined with intravenous use of polymyxin were assigned to the IV-NL-polymyxin group. Among the NL-polymyxin group, 19 patients were treated with polymyxin B and 20 with polymyxin E. The clinical baseline characteristics before admission to the ICU and before nebulization of polymyxin were similar between the two groups. No differences were found between the two study groups in terms of microorganism distribution, VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU and all-cause ICU mortality. Similarly, survival analysis did not differ between the two groups (χ2 = 3.539, p = 0.06). AKI incidence was higher in the IV-NL-polymyxin group. When comparing the clinical efficacy and toxicity to polymyxin B and polymyxin E, there was no difference between the two groups in terms of VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, SOFA score, CPIS, AKI incidence and all-cause ICU mortality. Conclusion: Our study found that nebulized polymyxin monotherapy was non-inferior to combination therapy with intravenous polymyxin in treating CR-GNB-VAP. Furthermore, we observed no differences in clinical efficacy or related toxic side effects between polymyxin B and polymyxin E during nebulized polymyxin therapy as monotherapy. However, future prospective studies with larger sample sizes are required to confirm these findings.
Collapse
Affiliation(s)
- Zhenping Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siying Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yelin Cao
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyu Wang
- Department of Critical Care Medicine, The People’s Hospital of Jinyun Country, Lishui, China
| | - Keyuan Sun
- Department of Critical Care Medicine, The People’s Hospital of Jinyun Country, Lishui, China
| | - Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Jiao Y, Yan J, Vicchiarelli M, Sutaria DS, Lu P, Reyna Z, Spellberg B, Bonomo RA, Drusano GL, Louie A, Luna BM, Bulitta JB. Individual Components of Polymyxin B Modeled via Population Pharmacokinetics to Design Humanized Dosage Regimens for a Bloodstream and Lung Infection Model in Immune-Competent Mice. Antimicrob Agents Chemother 2023; 67:e0019723. [PMID: 37022153 PMCID: PMC10190254 DOI: 10.1128/aac.00197-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael Vicchiarelli
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zeferino Reyna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brad Spellberg
- Los Angeles County-USC (LAC+USC) Medical Center, Los Angeles, California, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Deparment of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
- Deparment of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Tang T, Li Y, Xu P, Zhong Y, Yang M, Ma W, Xiang D, Zhang B, Zhou Y. Optimization of polymyxin B regimens for the treatment of carbapenem-resistant organism nosocomial pneumonia: a real-world prospective study. Crit Care 2023; 27:164. [PMID: 37106370 PMCID: PMC10142183 DOI: 10.1186/s13054-023-04448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Polymyxin B is the first-line therapy for Carbapenem-resistant organism (CRO) nosocomial pneumonia. However, clinical data for its pharmacokinetic/pharmacodynamic (PK/PD) relationship are limited. This study aimed to investigate the relationship between polymyxin B exposure and efficacy for the treatment of CRO pneumonia in critically ill patients, and to optimize the individual dosing regimens. METHODS Patients treated with polymyxin B for CRO pneumonia were enrolled. Blood samples were assayed using a validated high-performance liquid chromatography-tandem mass spectrometry method. Population PK analysis and Monte Carlo simulation were performed using Phoenix NLME software. Logistic regression analyses and receiver operating characteristic (ROC) curve were employed to identify the significant predictors and PK/PD indices of polymyxin B efficacy. RESULTS A total of 105 patients were included, and the population PK model was developed based on 295 plasma concentrations. AUCss,24 h/MIC (AOR = 0.97, 95% CI 0.95-0.99, p = 0.009), daily dose (AOR = 0.98, 95% CI 0.97-0.99, p = 0.028), and combination of inhaled polymyxin B (AOR = 0.32, 95% CI 0.11-0.94, p = 0.039) were independent risk factors for polymyxin B efficacy. ROC curve showed that AUCss,24 h/MIC is the most predictive PK/PD index of polymyxin B for the treatment of nosocomial pneumonia caused by CRO, and the optimal cutoff point value was 66.9 in patients receiving combination therapy with another antimicrobial. Model-based simulation suggests that the maintaining daily dose of 75 and 100 mg Q12 h could achieve ≥ 90% PTA of this clinical target at MIC values ≤ 0.5 and 1 mg/L, respectively. For patients unable to achieve the target concentration by intravenous administration, adjunctive inhalation of polymyxin B would be beneficial. CONCLUSIONS For CRO pneumonia, daily dose of 75 and 100 mg Q12 h was recommended for clinical efficacy. Inhalation of polymyxin B is beneficial for patients who cannot achieve the target concentration by intravenous administration.
Collapse
Affiliation(s)
- Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Ying Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Yang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanjun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yangang Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
9
|
Hasan MJ, Sumi CD, Huq SMR, Anam AM, Rabbani R. Aerosolized Plus Intravenous Polymyxin B Versus Colistin in the Treatment of Pandrug-Resistant Klebsiella Pneumonia-mediated Ventilator-Associated Pneumonia: A Retrospective Cohort Study in Bangladesh. J Crit Care Med (Targu Mures) 2023; 9:106-115. [PMID: 37593252 PMCID: PMC10429625 DOI: 10.2478/jccm-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/12/2023] [Indexed: 08/19/2023] Open
Abstract
Background Pandrug-resistant Klebsiella pneumoniae ventilator associated pneumonia (VAP) is associated with high rate of mortality in intensive care unit (ICU) and has been recognized as a difficult-to-treat infection worldwide. Polymyxin B or colistin-based combination therapies are frequently used worldwide though microbial eradication rate is not promising. Aim The aim of this study is to compare the clinical outcome of intravenous with aerosolized polymyxin B versus colistin in the treatment of pandrug-resistant K. pneumoniae VAP. Methods This retrospective cohort study was conducted on 222 mechanically ventilated patients admitted from May 11, 2019 to October 19, 2020. K. pneumoniae isolates were resistant to all available antibiotics, including polymyxins in culture sensitivity tests. As treatment, polymyxin B and colistin was administered in intravenous and aerosolized form concurrently twice daily in 106 patients and 116 patients in PMB and CLN group, respectively for 14 days. Survival rate, safety, and clinical outcomes were compared among the groups. The Cox proportional-hazard model was performed to calculate hazard ratio (HR) with 95% confidence intervals (CI). Results Patients in PMB group showed more microbial eradication than the patients CLN group [68.1% (n=116)/83% (n=106), respectively; P <0.05). The median day of intubation and ICU stay in PMB group was shorter than that in CLN group [10 (IQR: 9-12.25) vs. 14 (IQR: 11-19), P <0.05; 12 (IQR: 10-14) vs. 15 (IQR: 9-18.5), P=0.072, respectively] with reduced 60-day all-cause mortality rate [15% (n=106) vs. 21.55% (n=116)]. Polymyxin B improved survival compared to colistin (multivariate HR: 0.662; 95% CI=0.359-1.222, P=0.195). Conclusions Concurrent administration of intravenous and aerosolized polymyxin B in patients with pandrug-resistant K. pneumoniae-associated VAP revealed better microbial eradication, reduced the length of intubation and ICU stay, and improved survival rate compared to colistin.
Collapse
Affiliation(s)
| | | | | | | | - Raihan Rabbani
- Internal Medicine and ICU, Square Hospitals Ltd., Dhaka, Bangladesh
| |
Collapse
|
10
|
Lu X, Zhong C, Liu Y, Ye H, Qu J, Zong Z, Lv X. Efficacy and safety of polymyxin E sulfate in the treatment of critically ill patients with carbapenem-resistant organism infections. Front Med (Lausanne) 2022; 9:1067548. [PMID: 36643845 PMCID: PMC9834999 DOI: 10.3389/fmed.2022.1067548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Polymyxins are currently the last line of defense in the treatment of carbapenem-resistant organisms (CRO). As a kind of polymyxin available for clinical use in China, we aim to explore the efficacy and safety of colistin sulfate (Polymyxin E sulfate, PES) in this study. Methods This real-world retrospective study included 119 patients diagnosed with CRO infection and treated with PES for more than 72 h, from May 2020 to July 2022 at West China Hospital. The primary outcome was clinical efficacy at the end of treatment, and secondary outcomes included microbial response, in-hospital mortality and incidence of nephrotoxicity. Results The effective clinical and microbiological responses were 53.8% and 49.1%, respectively. And the in-hospital mortality was 27.7%. Only 9.2% of patients occurred with PES-related nephrotoxicity. Multivariate analysis revealed that duration of PES was an independent predictor of effective therapy, while age-adjusted Charlson comorbidity index (aCCI) and post-treatment PCT(p-PCT) were independent risk factors for poor outcome. Conclusions PES can be a salvage treatment for CRO-induced infections with favorable efficacy and low nephrotoxicity. The treatment duration of PES, aCCI and p-PCT were factors related to the clinical effectiveness of PES.
Collapse
|
11
|
Yu Z, Liu X, Du X, Chen H, Zhao F, Zhou Z, Wang Y, Zheng Y, Bergen PJ, Li X, Sun R, Fang L, Li W, Fan Y, Wu H, Guo B, Li J, Yu Y, Zhang J. Pharmacokinetics/pharmacodynamics of polymyxin B in patients with bloodstream infection caused by carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2022; 13:975066. [PMID: 36588676 PMCID: PMC9800617 DOI: 10.3389/fphar.2022.975066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Polymyxin B is a last-line therapy for carbapenem-resistant microorganisms. However, a lack of clinical pharmacokinetic/pharmacodynamic (PK/PD) data has substantially hindered dose optimization and breakpoint setting. Methods: A prospective, multi-center clinical trial was undertaken with polymyxin B [2.5 mg/kg loading dose (3-h infusion), 1.25 mg/kg/12 h maintenance dose (2-h infusion)] for treatment of carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI). Safety, clinical and microbiological efficacy were evaluated. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to determine the concentrations of polymyxin B in blood samples. Population pharmacokinetic (PK) modeling and Monte Carlo simulations were conducted to examine the susceptibility breakpoint for polymyxin B against BSI caused by CRKP. Results: Nine patients were enrolled and evaluated for safety. Neurotoxicity (5/9), nephrotoxicity (5/9), and hyperpigmentation (1/9) were recorded. Blood cultures were negative within 3 days of commencing therapy in all 8 patients evaluated for microbiological efficacy, and clinical cure or improvement occurred in 6 of 8 patients. Cmax and Cmin following the loading dose were 5.53 ± 1.80 and 1.62 ± 0.41 mg/L, respectively. With maintenance dosing, AUCss,24 h was 79.6 ± 25.0 mg h/L and Css,avg 3.35 ± 1.06 mg/L. Monte Carlo simulations indicated that a 1 mg/kg/12-hourly maintenance dose could achieve >90% probability of target attainment (PTA) for isolates with minimum inhibitory concentration (MIC) ≤1 mg/L. PTA dropped substantially for MICs ≥2 mg/L, even with a maximally recommended daily dose of 1.5 mg/kg/12-hourly. Conclusion: This is the first clinical PK/PD study evaluating polymyxin B for BSI. These results will assist to optimize polymyxin B therapy and establish its breakpoints for CRKP BSI.
Collapse
Affiliation(s)
- Zhenwei Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxing Du
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiying Chen
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhihui Zhou
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zheng
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Phillip J. Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xi Li
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Renhua Sun
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Li Fang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Yunsong Yu, ; Jing Zhang,
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China,*Correspondence: Yunsong Yu, ; Jing Zhang,
| |
Collapse
|
12
|
Zhang J, Diao S, Liu Y, Wang H, Liu Y, Zhu S, Feng K, Tang X, Oo C, Zhu P, Lv Z, Yu M, Sy SKB, Zhu Y. The combination effect of meropenem/sulbactam/polymyxin-B on the pharmacodynamic parameters for mutant selection windows against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 2022; 13:1024702. [PMID: 36483204 PMCID: PMC9723340 DOI: 10.3389/fmicb.2022.1024702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 01/25/2023] Open
Abstract
The objective of this study was to evaluate whether combinations of sulbactam, meropenem, and polymyxin-B could reduce or close the gap of mutant selection window (MSW) of individual antibiotics against Acinetobacter baumannii harboring OXA-23. MICs of three antimicrobials used alone and in combination (meropenem/polymyxin-B or meropenem/polymyxin-B/sulbactam) were obtained in 11 clinical isolates and mutant prevention concentrations were determined in 4 of the 11 isolates. All isolates were resistant to meropenem or polymyxin-B. Combining meropenem and polymyxin-B with or without sulbactam resulted in synergistic bactericidal activities. Pharmacokinetic (PK) simulations of drug concentrations in the blood and epithelial lining fluid coupled with pharmacodynamic (PD) evaluations revealed that the fractions of time over the 24-h in terms of free drug concentration within the MSW (fTMSW) and above the MPC (fT>MPC) were optimized by combination therapy. The resultant clinical regimens of meropenem, polymyxin-B, and sulbactam evaluated in the PK-PD analysis were 2 g q8h, 2.5 mg/kg loading dose followed by 1.5 mg/kg q12h, and 3 g q8h, respectively, in patients with normal renal function. Subsequent corresponding equivalent exposure regimens would depend on the extent of renal failure. The overall results indicate that combination antibiotics consisting of sulbactam/meropenem/polymyxin-B can confer potential efficacy against A. baumannii harboring OXA-23, and reduce the opportunity for bacteria to develop further resistance. This study provides a framework for pharmacodynamic evaluation of drug-resistant mutant suppression in an antimicrobial co-administration setting. The results thereby lay the groundwork for additional studies and future clinical confirmation is warranted.
Collapse
Affiliation(s)
- Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuo Diao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yanfei Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongxiang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Yuwei Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kun Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Charles Oo
- SunLife Biopharma, Morris Plains, NJ, United States
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Zhihua Lv, ; Mingming Yu,
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Zhihua Lv, ; Mingming Yu,
| | - Sherwin K. B. Sy
- Department of Statistics, State University of Maringá, Maringá, Brazil
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Zhu S, Song C, Zhang J, Diao S, Heinrichs TM, Martins FS, Lv Z, Zhu Y, Yu M, Sy SKB. Effects of amikacin, polymyxin-B, and sulbactam combination on the pharmacodynamic indices of mutant selection against multi-drug resistant Acinetobacter baumannii. Front Microbiol 2022; 13:1013939. [PMID: 36338049 PMCID: PMC9632654 DOI: 10.3389/fmicb.2022.1013939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022] Open
Abstract
Amikacin and polymyxins as monotherapies are ineffective against multidrug-resistant Acinetobacter baumannii at the clinical dose. When polymyxins, aminoglycosides, and sulbactam are co-administered, the combinations exhibit in vitro synergistic activities. The minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in 11 and 5 clinical resistant isolates of A. baumannii harboring OXA-23, respectively, in order to derive the fraction of time over the 24-h wherein the free drug concentration was within the mutant selection window (fTMSW) and the fraction of time that the free drug concentration was above the MPC (fT>MPC) from simulated pharmacokinetic profiles. The combination of these three antibiotics can confer susceptibility in multi-drug resistant A. baumannii and reduce the opportunity for bacteria to develop further resistance. Clinical intravenous dosing regimens of amikacin, polymyxin-B, and sulbactam were predicted to optimize fTMSW and fT>MPC from drug exposures in the blood. Mean fT>MPC were ≥ 60% and ≥ 80% for amikacin and polymyxin-B, whereas mean fTMSW was reduced to <30% and <15%, respectively, in the triple antibiotic combination. Due to the low free drug concentration of amikacin and polymyxin-B simulated in the epithelial lining fluid, the two predicted pharmacodynamic parameters in the lung after intravenous administration were not optimal even in the combination therapy setting.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuo Diao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tobias M. Heinrichs
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Frederico S. Martins
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhihua Lv,
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Mingming Yu,
| | - Sherwin K. B. Sy
- Department of Statistics, State University of Maringá, Paraná, Brazil
- Sherwin K. B. Sy,
| |
Collapse
|
14
|
Rouby JJ, Zhu Y, Torres A, Rello J, Monsel A. Aerosolized polymyxins for ventilator-associated pneumonia caused by extensive drug resistant Gram-negative bacteria: class, dose and manner should remain the trifecta. Ann Intensive Care 2022; 12:97. [PMID: 36251177 PMCID: PMC9576828 DOI: 10.1186/s13613-022-01068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jean-Jacques Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance-Publique Hôpitaux de Paris, Sorbonne University of Paris, Paris, France.
| | - Yinggang Zhu
- Department of Pulmonary and Critical Care Medicine, Hua-Dong Hospital, Fudan University, Shanghai, China
| | - Antoni Torres
- Department of Pneumology, SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Rello
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Clinical Research & Innovation in Pneumonia & Sepsis, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Clinical Research, CHU Nîmes, Université Montpellier-Nîmes, Nîmes, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance-Publique Hôpitaux de Paris, Sorbonne University of Paris, Paris, France.,Unité mixte de recherche (UMR)-S 959, Immunology-Immunopathology-Immunotherapy (I3), Institut National de La Santé et de La Recherche Médicale (INSERM), Paris, France.,Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
15
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Front Microbiol 2022; 13:988728. [PMID: 36160241 PMCID: PMC9493352 DOI: 10.3389/fmicb.2022.988728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|
16
|
Liu J, Shao M, Xu Q, Liu F, Pan X, Wu J, Xiong L, Wu Y, Tian M, Yao J, Huang S, Zhang L, Chen Y, Zhang S, Wen Z, Du H, TaoWang, Liu Y, Li W, Xu Y, Teboul JL, Chen D. Low-dose intravenous plus inhaled versus intravenous polymyxin B for the treatment of extensive drug-resistant Gram-negative ventilator-associated pneumonia in the critical illnesses: a multi-center matched case-control study. Ann Intensive Care 2022; 12:72. [PMID: 35934730 PMCID: PMC9357592 DOI: 10.1186/s13613-022-01033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background The mortality of extensively drug-resistant Gram-negative (XDR GN) bacilli-induced ventilator-associated pneumonia (VAP) is extremely high. The purpose of this study was to compare the efficacy and safety of inhaled (IH) plus intravenous (IV) polymyxin B versus IV polymyxin B in XDR GN bacilli VAP patients. Methods A retrospective multi-center observational cohort study was performed at eight ICUs between January 1st 2018, and January 1st 2020 in China. Data from all patients treated with polymyxin B for a microbiologically confirmed VAP were analyzed. The primary endpoint was the clinical cure of VAP. The favorable clinical outcome, microbiological outcome, VAP-related mortality and all-cause mortality during hospitalization, and side effects related with polymyxin B were secondary endpoints. Favorable clinical outcome included clinical cure or clinical improvement. Results 151 patients and 46 patients were treated with IV polymyxin B and IH plus IV polymyxin B, respectively. XDR Klebsiella pneumoniae was the main isolated pathogen (n = 83, 42.1%). After matching on age (± 5 years), gender, septic shock, and Apache II score (± 4 points) when polymyxin B was started, 132 patients were included. 44 patients received simultaneous IH plus IV polymyxin B and 88 patients received IV polymyxin B. The rates of clinical cure (43.2% vs 27.3%, p = 0.066), bacterial eradication (36.4% vs 23.9%, p = 0.132) as well as VAP-related mortality (27.3% vs 34.1%, p = 0.428), all-cause mortality (34.1% vs 42.0%, p = 0.378) did not show any significant difference between the two groups. However, IH plus IV polymyxin B therapy was associated with improved favorable clinical outcome (77.3% vs 58.0%, p = 0.029). Patients in the different subgroups (admitted with medical etiology, infected with XDR K. pneumoniae, without bacteremia, with immunosuppressive status) were with odd ratios (ORs) in favor of the combined therapy. No patient required polymyxin B discontinuation due to adverse events. Additional use of IH polymyxin B (aOR 2.63, 95% CI 1.06, 6.66, p = 0.037) was an independent factor associated with favorable clinical outcome. Conclusions The addition of low-dose IH polymyxin B to low-dose IV polymyxin B did not provide efficient clinical cure and bacterial eradication in VAP caused by XDR GN bacilli. Keypoints Additional use of IH polymyxin B was the sole independent risk factor of favorable clinical outcome. Patients in the different subgroups were with HRs substantially favoring additional use of IH polymyxin B. No patients required polymyxin B discontinuation due to adverse events. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01033-5.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital, No.12 Lingyin Road, HangZhou, 310015, China
| | - Fen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, No.17, YongwaiZheng Street, Nanchang, 330006, Jiangxi, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510010, China
| | - Lihong Xiong
- Department of Intensive Care Unit, The Second People's Hospital of Shenzhen, Futian District, Sungang West Road, Shenzhen, 3002518035, China
| | - Yueming Wu
- Emergency and Critical Care Center, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jianying Yao
- Department of Intensive Care Unit, The First People's Hospital of KunShan, No 91, Qianjin Road, KunShan, 215300, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - TaoWang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Wenzhe Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yan Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jean-Louis Teboul
- Service de Médecine-Intensive Réanimation, Hôpital Bicêtre, AP-HP. Université Paris-Saclay, Inserm UMR 999, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China.
| |
Collapse
|
17
|
Polymyxin Induces Significant Transcriptomic Perturbations of Cellular Signalling Networks in Human Lung Epithelial Cells. Antibiotics (Basel) 2022; 11:antibiotics11030307. [PMID: 35326770 PMCID: PMC8944768 DOI: 10.3390/antibiotics11030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Inhaled polymyxins are increasingly used to treat pulmonary infections caused by multidrug-resistant Gram-negative pathogens. We have previously shown that apoptotic pathways, autophagy and oxidative stress are involved in polymyxin-induced toxicity in human lung epithelial cells. In the present study, we employed human lung epithelial cells A549 treated with polymyxin B as a model to elucidate the complex interplay of multiple signalling networks underpinning cellular responses to polymyxin toxicity. Polymyxin B induced toxicity (1.0 mM, 24 h) in A549 cells was assessed by flow cytometry and transcriptomics was performed using microarray. Polymyxin B induced cell death was 19.0 ± 4.2% at 24 h. Differentially expressed genes (DEGs) between the control and polymyxin B treated cells were identified with Student’s t-test. Pathway analysis was conducted with KEGG and Reactome and key hub genes related to polymyxin B induced toxicity were examined using the STRING database. In total we identified 899 DEGs (FDR < 0.01), KEGG and Reactome pathway analyses revealed significantly up-regulated genes related to cell cycle, DNA repair and DNA replication. NF-κB and nucleotide-binding oligomerization domain-like receptor (NOD) signalling pathways were identified as markedly down-regulated genes. Network analysis revealed the top 5 hub genes (i.e., degree) affected by polymyxin B treatment were PLK1(48), CDK20 (46), CCNA2 (42), BUB1 (40) and BUB1B (37). Overall, perturbations of cell cycle, DNA damage and pro-inflammatory NF-κB and NOD-like receptor signalling pathways play key roles in polymyxin-induced toxicity in human lung epithelial cells. Noting that NOD-like receptor signalling represents a group of key sensors for microorganisms and damage in the lung, understanding the mechanism of polymyxin-induced pulmonary toxicity will facilitate the optimisation of polymyxin inhalation therapy in patients.
Collapse
|
18
|
The Susceptibility of MDR- K. Pneumoniae To Polymyxin B Plus Its Nebulised Form Versus Polymyxin B Alone in Critically Ill South Asian Patients. J Crit Care Med (Targu Mures) 2021; 7:28-36. [PMID: 34722901 PMCID: PMC8519379 DOI: 10.2478/jccm-2020-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Critically ill patients in intensive care units are at high risk of dying not only from the severity of their illness but also from secondary causes such as hospital-acquired infections. USA national medical record-data show that approximately 10% of patients on mechanical ventilation in an intensive care unit developed ventilator-associated pneumonia. Polymyxin B has been used intravenously in the treatment of multi-drug resistant gram-negative infections, either as a monotherapy or with other potentially effective antibiotics, and the recent international guidelines have emphasised the use of nebulised polymyxin B together with intravenous polymyxin B to gain the optimum clinical outcome in ventilator-associated pneumonia cases caused by multi-drug resistant gram-negative infections. Methods One hundred and seventy-eight patients with ventilator-associated pneumonia due to multi-drug resistant K. pneumoniae were identified during the study period. Following the inclusion and exclusion criteria, 121 patients were enrolled in the study and randomly allocated to two study groups. Group 1 patients were treated with intravenous Polymyxin B plus nebulised polymyxin B (n=64) and Group 2 patients with intravenous Polymyxin B alone (n=57). The study aimed to compare the use of Polymyxin B plus its nebulised form to polymyxin B alone, in the treatment of MDR-K. pneumoniae associated ventilator-associated pneumonia in critically ill patients. Results In Group 1, a complete clearance of K. pneumoniae was found in fifty-nine patients (92.1%; n=64) compared to forty patients (70.1%, n=57) in the Group 2 (P<0.003). The average time till extubation was significantly higher in Group 2 compared to Group 1 (P<0.05). The total length-of-stay in the ICU was significantly higher in Group 2 compared to Group 1. (P<0.05). These results support the view that the Polymyxin B dual-route regime may be considered as an appropriate antibiotic therapy, in critically ill South Asian patients with ventilator-associated pneumonia.
Collapse
|
19
|
Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa. Int J Pharm 2021; 610:121160. [PMID: 34624446 DOI: 10.1016/j.ijpharm.2021.121160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.
Collapse
|
20
|
Giacobbe DR, Karaiskos I, Bassetti M. How do we optimize the prescribing of intravenous polymyxins to increase their longevity and efficacy in critically ill patients? Expert Opin Pharmacother 2021; 23:5-8. [PMID: 34399631 DOI: 10.1080/14656566.2021.1961743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
21
|
Sadecki PW, Balboa SJ, Lopez LR, Kedziora KM, Arthur JC, Hicks LM. Evolution of Polymyxin Resistance Regulates Colibactin Production in Escherichia coli. ACS Chem Biol 2021; 16:1243-1254. [PMID: 34232632 PMCID: PMC8601121 DOI: 10.1021/acschembio.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complex reservoir of metabolite-producing bacteria in the gastrointestinal tract contributes tremendously to human health and disease. Bacterial composition, and by extension gut metabolomic composition, is undoubtably influenced by the use of modern antibiotics. Herein, we demonstrate that polymyxin B, a last resort antibiotic, influences the production of the genotoxic metabolite colibactin from adherent-invasive Escherichia coli (AIEC) NC101. Colibactin can promote colorectal cancer through DNA double stranded breaks and interstrand cross-links. While the structure and biosynthesis of colibactin have been elucidated, chemical-induced regulation of its biosynthetic gene cluster and subsequent production of the genotoxin by E. coli are largely unexplored. Using a multiomic approach, we identified that polymyxin B stress enhances the abundance of colibactin biosynthesis proteins (Clb's) in multiple pks+ E. coli strains, including pro-carcinogenic AIEC, NC101; the probiotic strain, Nissle 1917; and the antibiotic testing strain, ATCC 25922. Expression analysis via qPCR revealed that increased transcription of clb genes likely contributes to elevated Clb protein levels in NC101. Enhanced production of Clb's by NC101 under polymyxin stress matched an increased production of the colibactin prodrug motif, a proxy for the mature genotoxic metabolite. Furthermore, E. coli with a heightened tolerance for polymyxin induced greater mammalian DNA damage, assessed by quantification of γH2AX staining in cultured intestinal epithelial cells. This study establishes a key link between the polymyxin B stress response and colibactin production in pks+ E. coli. Ultimately, our findings will inform future studies investigating colibactin regulation and the ability of seemingly innocuous commensal microbes to induce host disease.
Collapse
Affiliation(s)
- Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha J. Balboa
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katarzyna M. Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Debnath SK, Srivastava R, Debnath M, Omri A. Status of inhalable antimicrobial agents for lung infection: progress and prospects. Expert Rev Respir Med 2021; 15:1251-1270. [PMID: 33866900 DOI: 10.1080/17476348.2021.1919514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Available parenteral and oral administration of antimicrobial agents (AMAs) in respiratory infections often show less penetration into the lung parenchyma. Due to inappropriate dose availability, the rate of antibiotic resistance is increasing gradually. Inhaled antibiotics intensely improve the availability of drugs at the site of respiratory infections. This targeted delivery minimizes systemic exposure and associated toxicity.Area covers: This review was performed by searching in the scientific database like PubMed and several trusted government sites like fda.gov, cdc.gov, ClinicalTrials.gov, etc. For better understanding, AMAs are classified in different stages of approval. Mechanism and characterization of pulmonary drug deposition section helps to understand the effective delivery of AMAs to the respiratory tract. There is a need for proper adoption of delivery devices for inhalable AMAs. Thus, delivery devices are extensively explained. Inspiratory flow has a remarkable impact on the delivery device that has been explained in detail.Expert opinion: Pulmonary delivery restricts the bulk administration of drugs in comparison with other routes. Therefore, novel AMAs with higher bactericidal activity at lower concentrations need to be synthesized. Extensive research is indeed in developing innovative delivery devices that would able to deliver higher doses of AMAs through the pulmonary route.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Monalisha Debnath
- School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, India
| | - Abdelwahab Omri
- Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
23
|
Synchrotron-based X-ray fluorescence microscopy reveals accumulation of polymyxins in single human alveolar epithelial cells. Antimicrob Agents Chemother 2021; 65:AAC.02314-20. [PMID: 33649114 PMCID: PMC8092916 DOI: 10.1128/aac.02314-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 μM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 μM, respectively. The corresponding intracellular concentrations following the treatment at 5 μM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.
Collapse
|
24
|
Wickremasinghe H, Yu HH, Azad MAK, Zhao J, Bergen PJ, Velkov T, Zhou QT, Zhu Y, Li J. Clinically Relevant Concentrations of Polymyxin B and Meropenem Synergistically Kill Multidrug-Resistant Pseudomonas aeruginosa and Minimize Biofilm Formation. Antibiotics (Basel) 2021; 10:405. [PMID: 33918040 PMCID: PMC8069709 DOI: 10.3390/antibiotics10040405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of chronic respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. Since the reintroduction of polymyxins as a last-line therapy against MDR Gram-negative bacteria, resistance to its monotherapy and recurrent infections continue to be reported and synergistic antibiotic combinations have been investigated. In this study, comprehensive in vitro microbiological evaluations including synergy panel screening, population analysis profiling, time-kill kinetics, anti-biofilm formation and membrane damage analysis studies were conducted to evaluate the combination of polymyxin B and meropenem against biofilm-producing, polymyxin-resistant MDR P. aeruginosa. Two phylogenetically unrelated MDR P. aeruginosa strains, FADDI-PA060 (MIC of polymyxin B [MICpolymyxin B], 64 mg/L; MICmeropenem, 64 mg/L) and FADDI-PA107 (MICpolymyxin B, 32 mg/L; MICmeropenem, 4 mg/L) were investigated. Genome sequencing identified 57 (FADDI-PA060) and 50 (FADDI-PA107) genes predicted to confer resistance to a variety of antimicrobials, as well as multiple virulence factors in each strain. The presence of resistance genes to a particular antibiotic class generally aligned with MIC results. For both strains, all monotherapies of polymyxin B failed with substantial regrowth and biofilm formation. The combination of polymyxin B (16 mg/L)/meropenem (16 mg/L) was most effective, enhancing initial bacterial killing of FADDI-PA060 by ~3 log10 CFU/mL, followed by a prolonged inhibition of regrowth for up to 24 h with a significant reduction in biofilm formation (* p < 0.05). Membrane integrity studies revealed a substantial increase in membrane depolarization and membrane permeability in the surviving cells. Against FADDI-PA107, planktonic and biofilm bacteria were completely eradicated. In summary, the combination of polymyxin B and meropenem demonstrated synergistic bacterial killing while reinstating the efficacy of two previously ineffective antibiotics against difficult-to-treat polymyxin-resistant MDR P. aeruginosa.
Collapse
Affiliation(s)
- Hasini Wickremasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Heidi H. Yu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Mohammad A. K. Azad
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Jinxin Zhao
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3053, Australia;
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 1047907, USA;
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Jian Li
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| |
Collapse
|
25
|
Chen J, Ahmed MU, Zhu C, Yu S, Pan W, Velkov T, Li J, Tony Zhou Q. In vitro evaluation of drug delivery behavior for inhalable amorphous nanoparticle formulations in a human lung epithelial cell model. Int J Pharm 2021; 596:120211. [PMID: 33486036 DOI: 10.1016/j.ijpharm.2021.120211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Respiratory tract infections caused by multidrug-resistant (MDR) Gram-negative bacteria such as Pseudomonas aeruginosa are serious burdens to public health, especially in cystic fibrosis patients. The combination of colistin, a cationic polypeptide antibiotic, and ivacaftor, a cystic fibrosis transmembrane regulator (CFTR) protein modulator, displays a synergistic antibacterial effect against P. aeruginosa. The primary aim of the present study is to investigate the transport, accumulation and toxicity of a novel nanoparticle formulation containing colistin and ivacaftor in lung epithelial Calu-3 cells. The cell viability results demonstrated that ivacaftor alone or in combination with colistin in the physical mixture showed significant toxicity at an ivacaftor concentration of 10 μg/mL or higher. However, the cellular toxicity was significantly reduced in the nanoparticle formulation. Ivacaftor transport into the cells reached a plateau rapidly as compared to colistin. Colistin transport across the Calu-3 cell monolayer was less than ivacaftor. A substantial amount (46-83%) of ivacaftor, independent of dose, was accumulated in the cell monolayer following transport from the apical into the basal chamber, whereas the intracellular accumulation of colistin was relatively low (2-15%). The nanoparticle formulation significantly reduced the toxicity of colistin and ivacaftor to Calu-3 cells by reducing the accumulation of both drugs in the cell and potential protective effects by bovine serum albumin (BSA), which could be a promising safer option for the treatment of respiratory infections caused by MDR P. aeruginosa.
Collapse
Affiliation(s)
- Jianting Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Maizbha U Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Chune Zhu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Yang Q, Pogue JM, Li Z, Nation RL, Kaye KS, Li J. Agents of Last Resort: An Update on Polymyxin Resistance. Infect Dis Clin North Am 2020; 34:723-750. [PMID: 33011049 DOI: 10.1016/j.idc.2020.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymyxin resistance is a major public health threat, because the polymyxins represent last-line therapeutics for gram-negative pathogens resistant to essentially all other antibiotics. Minimizing any potential emergence and dissemination of polymyxin resistance relies on an improved understanding of mechanisms of and risk factors for polymyxin resistance, infection prevention and stewardship strategies, together with optimization of dosing of polymyxins (eg, combination regimens).
Collapse
Affiliation(s)
- Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China.
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Zekun Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Keith S Kaye
- Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Jian Li
- Laboratory of Antimicrobial Systems Pharmacology, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
27
|
Chang RYK, Kwok PCL, Ghassabian S, Brannan JD, Koskela HO, Chan H. Cough as an adverse effect on inhalation pharmaceutical products. Br J Pharmacol 2020; 177:4096-4112. [PMID: 32668011 PMCID: PMC7443471 DOI: 10.1111/bph.15197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Cough is an adverse effect that may hinder the delivery of drugs into the lungs. Chemical or mechanical stimulants activate the transient receptor potential in some airway afferent nerves (C-fibres or A-fibres) to trigger cough. Types of inhaler device and drug, dose, excipients and formulation characteristics, including pH, tonicity, aerosol output and particle size may trigger cough by stimulating the cough receptors. Release of inflammatory mediators may increase the sensitivity of the cough receptors to stimulants. The cough-provoking effect of aerosols is enhanced by bronchoconstriction in diseased airways and reduces drug deposition in the target pulmonary regions. In this article, we review the factors by which inhalation products may cause cough.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Sussan Ghassabian
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - John D. Brannan
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNewcastleNSWAustralia
| | - Heikki O. Koskela
- Unit for Medicine and Clinical Research, Pulmonary DivisionKuopio University HospitalKuopioFinland
- School of Medicine, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Hak‐Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
28
|
Yu S, Yuan H, Chai G, Peng K, Zou P, Li X, Li J, Zhou F, Chan HK, Zhou QT. Optimization of inhalable liposomal powder formulations and evaluation of their in vitro drug delivery behavior in Calu-3 human lung epithelial cells. Int J Pharm 2020; 586:119570. [PMID: 32593649 PMCID: PMC7423715 DOI: 10.1016/j.ijpharm.2020.119570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Inhalation therapy has advantages for the treatment of multidrug resistant bacterial lung infections with high drug concentrations at the infection sites in the airways and reduced systemic exposure. We have developed liposomal formulations for pulmonary delivery of synergistic ciprofloxacin (Cipro) and colistin (Col) as the potential candidate for treatment of lung infections caused by multidrug resistant Gram-negative bacteria. This study aims to: (1) further optimize the powder formulation by adding drying stabilizers (polyvinyl pyrrolidone or poloxamer) to protect the liposomes during spray-freeze-drying; (2) evaluate the transport and cellular uptake of drugs in a human lung epithelial Calu-3 cell model. The liposomal powder formulations were produced using the ultrasonic spray-freeze-drying technique. The optimal formulation (F5) used mannitol (8% w/v) and sucrose (2% w/v) as the internal lyoprotectants. Adding external lyoprotectants/aerosolization enhancers (i.e. 8% w/v mannitol, 2% w/v sucrose and 1%, w/w PVP 10) produced the superior rehydrated EE values of ciprofloxacin and colistin (50.2 ± 0.9% for Cipro and 37.8 ± 1.2% for Col) as well as satisfactory aerosol performance (FPF: 34.2 ± 0.8% for Cipro and 33.6 ± 0.9% for Col). The cytotoxicity study indicated that F5 with the colistin concentration at 50 μg/mL and ciprofloxacin at 200 μg/mL was not cytotoxic to human lung epithelial Calu-3 cells. The intracellular uptake of ciprofloxacin was concentration-dependent in Calu-3 cells and the uptake of A-B was more than that of B-A for all samples (p < 0.05). This study demonstrates that co-delivery of ciprofloxacin and colistin in a single liposome can lower the transport capability of both drugs across the Calu-3 cell monolayer and their accumulation in the cells. These findings indicate that co-loaded liposomal powder of ciprofloxacin and colistin is a promising potential treatment for respiratory infections caused by multidrug resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Huiya Yuan
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Guihong Chai
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Kuan Peng
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peizhi Zou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Xuxi Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Hak-Kim Chan
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
29
|
Zhu C, Chen J, Yu S, Que C, Taylor LS, Tan W, Wu C, Zhou QT. Inhalable Nanocomposite Microparticles with Enhanced Dissolution and Superior Aerosol Performance. Mol Pharm 2020; 17:3270-3280. [PMID: 32643939 DOI: 10.1021/acs.molpharmaceut.0c00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that combining colistin (Col), a cationic polypeptide antibiotic, with ivacaftor (Iva), a cystic fibrosis (CF) drug, could achieve synergistic antibacterial effects against Pseudomonas aeruginosa. The purpose of this study was to develop dry powder inhaler formulations for co-delivery of Col and Iva, aiming to treat CF and lung infection simultaneously. In order to improve solubility and dissolution for the water-insoluble Iva, Iva was encapsulated into bovine serum albumin (BSA) nanoparticles (Iva-BSA-NPs). Inhalable composite microparticles of Iva-BSA-NPs were produced by spray-freeze-drying using water-soluble Col as the matrix material and l-leucine as an aerosol enhancer. The optimal formulation showed an irregularly shaped morphology with fine particle fraction (FPF) values of 73.8 ± 5.2% for Col and 80.9 ± 4.1% for Iva. Correlations between "D×ρtapped" and FPF were established for both Iva and Col. The amorphous solubility of Iva is 66 times higher than the crystalline solubility in the buffer. Iva-BSA-NPs were amorphous and remained in the amorphous state after spray-freeze-drying, as examined by powder X-ray diffraction. In vitro dissolution profiles of the selected DPI formulation indicated that Col and Iva were almost completely released within 3 h, which was substantially faster regarding Iva release than the jet-milled physical mixture of the two drugs. In summary, this study developed a novel inhalable nanocomposite microparticle using a synergistic water-soluble drug as the matrix material, which achieved reduced use of excipients for high-dose medications, improved dissolution rate for the water-insoluble drug, and superior aerosol performance.
Collapse
Affiliation(s)
- Chune Zhu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jianting Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chailu Que
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Wen Tan
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuan West Road, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou 510006, China
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Ahmed MU, Velkov T, Zhou QT, Fulcher AJ, Callaghan J, Zhou F, Chan K, Azad MAK, Li J. Intracellular localization of polymyxins in human alveolar epithelial cells. J Antimicrob Chemother 2020; 74:48-57. [PMID: 30357331 DOI: 10.1093/jac/dky409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background Current inhaled polymyxin therapy is empirical and often large doses are administered, which can lead to pulmonary adverse effects. There is a dearth of information on the mechanisms of polymyxin-induced lung toxicity and their intracellular localization in lung epithelial cells. Objectives To investigate the intracellular localization of polymyxins in human lung epithelial A549 cells. Methods A549 cells were treated with polymyxin B and intracellular organelles (early and late endosomes, endoplasmic reticulum, mitochondria, lysosomes and autophagosomes), ubiquitin protein and polymyxin B were visualized using immunostaining and confocal microscopy. Fluorescence intensities of the organelles and polymyxin B were quantified and correlated for co-localization using ImageJ and Imaris platforms. Results Polymyxin B co-localized with early endosomes, lysosomes and ubiquitin at 24 h. Significantly increased lysosomal activity and the autophagic protein LC3A were observed after 0.5 and 1.0 mM polymyxin B treatment at 24 h. Polymyxin B also significantly co-localized with mitochondria (Pearson's R = 0.45) and led to the alteration of mitochondrial morphology from filamentous to fragmented form (n = 3, P < 0.001). These results are in line with the polymyxin-induced activation of the mitochondrial apoptotic pathway observed in A549 cells. Conclusions Accumulation of polymyxins on mitochondria probably caused mitochondrial toxicity, resulting in increased oxidative stress and cell death. The formation of autophagosomes and lysosomes was likely a cellular response to the polymyxin-induced stress and played a defensive role by disassembling dysfunctional organelles and proteins. Our study provides new mechanistic information on polymyxin-induced lung toxicity, which is vital for optimizing inhaled polymyxins in the clinic.
Collapse
Affiliation(s)
- Maizbha U Ahmed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Victoria, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Victoria, Australia
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Kim Chan
- School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Mohammad A K Azad
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
31
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Lee W, Cai Y, Lim TP, Teo J, Chua SC, Kwa ALH. In vitro Pharmacodynamics and PK/PD in Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:105-116. [PMID: 31364074 DOI: 10.1007/978-3-030-16373-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In the last decade, considerable advancements have been made to identify the pharmacokinetic/pharmacodynamic (PK/PD) index that defines the antimicrobial activity of polymyxins. Dose-fractionation studies performed in hollow-fiber models found that altering the dosing schedule had little impact on the killing or suppression of resistance emergence, alluding to AUC/MIC as the pharmacodynamic index that best describes polymyxin's activity. For in vivo efficacy, the PK/PD index that was the most predictive of the antibacterial effect of colistin against P. aeruginosa and A. baumannii was ƒAUC/MIC.
Collapse
Affiliation(s)
- Winnie Lee
- Singapore General Hospital, Singapore, Singapore
| | - Yiying Cai
- Singapore General Hospital, Singapore, Singapore
| | - Tze-Peng Lim
- Singapore General Hospital, Singapore, Singapore
| | - Jocelyn Teo
- Singapore General Hospital, Singapore, Singapore
| | - Sonja Courtney Chua
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Singapore General Hospital, Singapore, Singapore. .,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore. .,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
33
|
Pharmacokinetic/Pharmacodynamic Evaluation of Solithromycin against Streptococcus pneumoniae Using Data from a Neutropenic Murine Lung Infection Model. Antimicrob Agents Chemother 2019; 63:AAC.02606-18. [PMID: 31182534 DOI: 10.1128/aac.02606-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/09/2019] [Indexed: 01/16/2023] Open
Abstract
Solithromycin (CEM-101) is a novel fluoroketolide antimicrobial agent with activity against typical and atypical pathogens associated with community-acquired bacterial pneumonia. Using a neutropenic murine lung infection model, the objectives of this study were to identify the pharmacokinetic/pharmacodynamic (PK/PD) index most closely associated with efficacy and the magnitude of such indices associated with solithromycin efficacy against Streptococcus pneumoniae Plasma and epithelial lining fluid (ELF) samples for pharmacokinetics (PK) were collected serially over 24 hours from healthy mice administered single doses of solithromycin (0.625 to 40 mg/kg). Neutropenic CD-1 mice infected with 108 CFUs of one of five S. pneumoniae isolates were administered solithromycin (0.156 to 160 mg/kg/day) via oral gavage. Doses were administered in a fractionated manner for mice infected with one isolate, while mice infected with the remaining four isolates received solithromycin as either a regimen every 6 hours or every 12 hours. A three-compartment model best described solithromycin PK in the plasma and ELF (r2 = 0.935 and 0.831, respectively). The ratio of total-drug ELF to free-drug plasma area under the concentration-time curve (AUC) from time 0 to 24 hours was 2.7. Free-drug plasma and total-drug ELF AUC to minimum inhibitory concentration ratios (AUC/MIC ratios) were most predictive of efficacy (r2 = 0.851 and 0.850, respectively). The magnitude of free-drug plasma/total-drug ELF AUC/MIC ratios associated with net bacterial stasis and a 1- and 2-log10 CFU reduction from baseline was 1.65/1.26, 6.31/15.1, and 12.8/59.8, respectively. These data provided dose selection support for solithromycin for clinical trials in patients with community-acquired bacterial pneumonia.
Collapse
|
34
|
Novel Polymyxin Combination with the Antiretroviral Zidovudine Exerts Synergistic Killing against NDM-Producing Multidrug-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.02176-18. [PMID: 30670431 DOI: 10.1128/aac.02176-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Polymyxins are used as a last-line therapy against multidrug-resistant (MDR) New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae However, polymyxin resistance can emerge with monotherapy; therefore, novel strategies are urgently needed to minimize the resistance and maintain their clinical utility. This study aimed to investigate the pharmacodynamics of polymyxin B in combination with the antiretroviral drug zidovudine against K. pneumoniae Three isolates were evaluated in static time-kill studies (0 to 64 mg/liter) over 48 h. An in vitro one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model (IVM) was used to simulate humanized dosage regimens of polymyxin B (4 mg/liter as continuous infusion) and zidovudine (as bolus dose thrice daily to achieve maximum concentration of drug in broth [C max] of 6 mg/liter) against K. pneumoniae BM1 over 72 h. The antimicrobial synergy of the combination was further evaluated in a murine thigh infection model against K. pneumoniae 02. In the static time-kill studies, polymyxin B monotherapy produced rapid and extensive killing against all three isolates followed by extensive regrowth, whereas zidovudine produced modest killing followed by significant regrowth at 24 h. Polymyxin B in combination with zidovudine significantly enhanced the antimicrobial activity (≥4 log10 CFU/ml) and minimized bacterial regrowth. In the IVM, the combination was synergistic and the total bacterial loads were below the limit of detection for up to 72 h. In the murine thigh infection model, the bacterial burden at 24 h in the combination group was ≥3 log10 CFU/thigh lower than each monotherapy against K. pneumoniae 02. Overall, the polymyxin B-zidovudine combination demonstrates superior antimicrobial efficacy and minimized emergence of resistance to polymyxins.
Collapse
|
35
|
A Breath of Fresh Air in the Fog of Antimicrobial Resistance: Inhaled Polymyxins for Gram-Negative Pneumonia. Antibiotics (Basel) 2019; 8:antibiotics8010027. [PMID: 30884839 PMCID: PMC6466860 DOI: 10.3390/antibiotics8010027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Despite advancements in therapy, pneumonia remains the leading cause of death due to infectious diseases. Novel treatment strategies are desperately needed to optimize the antimicrobial therapy of patients suffering from this disease. One such strategy that has recently garnered significant attention is the use of inhaled antibiotics to rapidly achieve therapeutic concentrations directly at the site of infection. In particular, there is significant interest in the role of inhaled polymyxins for the treatment of nosocomial pneumonia, including ventilator-associated pneumonia, due to their retained activity against multi-drug resistant Gram-negative pathogens, including Acinetobacter baumannii and Pseudomonas aeruginosa. This review will provide a comprehensive overview of the pharmacokinetic/pharmacodynamic profile, clinical outcomes, safety, and potential role of inhaled polymyxins in clinical practice.
Collapse
|
36
|
Nang SC, Morris FC, McDonald MJ, Han ML, Wang J, Strugnell RA, Velkov T, Li J. Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. J Antimicrob Chemother 2018; 73:1604-1610. [PMID: 29514208 PMCID: PMC6693033 DOI: 10.1093/jac/dky061] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives The discovery of mobile colistin resistance mcr-1, a plasmid-borne polymyxin resistance gene, highlights the potential for widespread resistance to the last-line polymyxins. In the present study, we investigated the impact of mcr-1 acquisition on polymyxin resistance and biological fitness in Klebsiella pneumoniae. Methods K. pneumoniae B5055 was used as the parental strain for the construction of strains carrying vector only (pBBR1MCS-5) and mcr-1 recombinant plasmids (pmcr-1). Plasmid stability was determined by serial passaging for 10 consecutive days in antibiotic-free LB broth, followed by patching on gentamicin-containing and antibiotic-free LB agar plates. Lipid A was analysed using LC-MS. The biological fitness was examined using an in vitro competition assay analysed with flow cytometry. The in vivo fitness cost of mcr-1 was evaluated in a neutropenic mouse thigh infection model. Results Increased polymyxin resistance was observed following acquisition of mcr-1 in K. pneumoniae B5055. The modification of lipid A with phosphoethanolamine following mcr-1 addition was demonstrated by lipid A profiling. The plasmid stability assay revealed the instability of the plasmid after acquiring mcr-1. Reduced in vitro biological fitness and in vivo growth were observed with the mcr-1-carrying K. pneumoniae strain. Conclusions Although mcr-1 confers a moderate level of polymyxin resistance, it is associated with a significant biological fitness cost in K. pneumoniae. This indicates that mcr-1-mediated resistance in K. pneumoniae could be attenuated by limiting the usage of polymyxins.
Collapse
Affiliation(s)
- Sue C Nang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Faye C Morris
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Michael J McDonald
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Victoria, Australia
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
37
|
Polymyxin B in Combination with Enrofloxacin Exerts Synergistic Killing against Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.00028-18. [PMID: 29632010 DOI: 10.1128/aac.00028-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa, with ≥2 to 4 log10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations.
Collapse
|
38
|
Lin YW, Chen K, Wang J, Velkov T, Zhou QT, Li J. A Proof-of-Concept Study of the Efficacy of Systemically Administered Polymyxins in Mouse Burn Wound Infection Caused by Multidrug-Resistant Gram-Negative Pathogens. Antimicrob Agents Chemother 2018; 62:e02527-17. [PMID: 29439974 PMCID: PMC5923121 DOI: 10.1128/aac.02527-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/08/2018] [Indexed: 01/14/2023] Open
Abstract
The efficacy of subcutaneously administered polymyxins against burn wound infections caused by Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae was examined in a murine infection model. Subcutaneously administered colistin and polymyxin B (30 mg/kg thrice daily) achieved a ≥2-log10 reduction in the bacterial load for P. aeruginosa and A. baumannii infections, whereas wound infections by K. pneumoniae were less responsive (<1-log10 reduction). This study highlights the potential therapeutic benefits of parenteral polymyxins for treating burn wound infections.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ke Chen
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Antimicrob Agents Chemother 2018; 62:AAC.01714-17. [PMID: 29158280 DOI: 10.1128/aac.01714-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage therapy is a promising alternative treatment to antibiotics, as it has been documented to be efficacious against multidrug-resistant bacteria with minimal side effects. Several groups have demonstrated the efficacy of phage suspension in vivo to treat lung infections using intranasal delivery; however, phage dry-powder administration to the lungs has not yet been explored. Powder formulations provide potential advantages over a liquid formulation, including easy storage, transport, and administration. The purpose of this study was to assess the bactericidal activities of phage dry-powder formulations against multidrug-resistant (MDR) strain Pseudomonas aeruginosa FADDI-PA001 in a mouse lung infection model. Phage PEV20 spray dried with lactose and leucine produced an inhalable powder at a concentration of 2 × 107 PFU/mg. P. aeruginosa lung infection was established by intratracheal administration of the bacterial suspension to neutropenic mice. At 2 h after the bacterial challenge, the infected mice were treated with 2 mg of the phage powder using a dry-powder insufflator. At 24 h after the phage treatment, the bacterial load in the lungs was decreased by 5.3 log10 (P < 0.0005) in the phage-treated group compared with that in the nontreated group. Additionally, the phage concentration in the lungs was increased by 1 log10 at 24 h in the treated group. These results demonstrate the feasibility of a pulmonary delivery of phage PEV20 dry-powder formulation for the treatment of lung infection caused by antibiotic-resistant P. aeruginosa.
Collapse
|