1
|
Pestana K, Ford A, Rama R, Abagero B, Kepple D, Tomida J, Popovici J, Yewhalaw D, Lo E. Copy Number Variations of Plasmodium vivax DBP1, EBP/DBP2, and RBP2b in Ethiopians Who Are Duffy Positive and Duffy Negative. J Infect Dis 2024; 230:1004-1012. [PMID: 39102894 PMCID: PMC11481331 DOI: 10.1093/infdis/jiae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Recent evidence challenges the belief that individuals who are Duffy-negative are resistant to Plasmodium vivax due to lacking the Duffy antigen receptor for chemokines. Erythrocyte-binding protein (EBP/DBP2) has shown moderate binding to Duffy-negative erythrocytes in vitro. Reticulocyte-binding protein 2b (RBP2b) interactions with transferrin receptor 1 suggest involvement in Duffy-negative infections. Gene copy number variations in PvDBP1, PvEBP/DBP2, and PvRBP2b were investigated in Duffy-positive and Duffy-negative P vivax infections from Ethiopia. Among Duffy-positive samples, 34% displayed PvDBP1 duplications (Cambodian type). In Duffy-negative infections, 30% showed duplications, mostly Cambodian type. For PvEBP/DBP2 and PvRBP2b, Duffy-positive samples exhibited higher duplication rates (1-8 copies for PvEBP/DBP2, 46%; 1-5 copies for PvRBP2b, 43%) as compared with Duffy-negative samples (20.8% and 26%, respectively). The range of copy number variations was lower in Duffy-negative infections. Demographic and clinical factors associated with gene multiplications in both Duffy types were explored, enhancing understanding of P vivax evolution in Africans who are Duffy negative.
Collapse
Affiliation(s)
- Kareen Pestana
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Rei Rama
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Beka Abagero
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Junya Tomida
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Malaria Translational Research Unit, Institut Pasteur du Cambodge, Institut Pasteur, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Millogo KS, Kaboré B, Sondo P, Compaoré EW, Kouevi AFC, Kambou SAE, Rouamba T, Kazienga A, Ilboudo H, Tahita MC, Bouda I, Derra K, Bamba S, Tinto H. Trend of N86Y and Y184F Mutations in Pfmdr1 Gene in Children Under Seasonal Malaria Chemoprevention Coverage in Nanoro, Burkina Faso. Acta Parasitol 2024:10.1007/s11686-024-00923-x. [PMID: 39356425 DOI: 10.1007/s11686-024-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Seasonal malaria chemoprevention (SMC) is an effective malaria preventive intervention in sub-Sahara Africa. However, as with any other drug-based intervention, the large-scale deployment of this strategy could lead to Amodiaquine plus Sulfadoxine-Pyrimethamine (AQSP) drug pressure on the circulating parasites population with selection for specific alleles that could compromise the impact of the intervention in the near future. This study aimed to assess the distribution of the Pfmdr1 mutation involved in resistance to AQ before and after the annual campaign of SMC in the health district of Nanoro. METHODS Randomly selected dried blood spots collected prior (n = 100) and after (n = 100) the 2021 SMC campaign were used for the detection of mutation in codons 86 and 184 of the Pfmdr1 gene using a nested PCR with restriction fragment length polymorphism approach. RESULTS No significant change in the prevalence of Pfmdr1 N86Y mutation was observed before and after the SMC campaign (p = 0.28). The mutant allele 86Y was observed at low prevalences, representing only 2.17% and 6.12%, respectively, before and after the SMC campaign. Patients harboring the mutant Pfmdr1 86Y allele exhibited higher parasite densities compared to patients with the wild-type Pfmdr1 N86 allele (p = 0.04). A significant increase in the prevalence of the mutant allele 184 F was observed in the period before and after the SMC campaign (p = 0.03). CONCLUSION This selective pressure needs to be closely monitored in order to preserve the efficacy of this intervention for a long-term period in Burkina Faso.
Collapse
Affiliation(s)
- Kié Solange Millogo
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso.
| | - Bérenger Kaboré
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Paul Sondo
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Eulalie W Compaoré
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Amélé Fifi Chantal Kouevi
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Sié A Elisée Kambou
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Adama Kazienga
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Marc Christian Tahita
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Ismaila Bouda
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Karim Derra
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Sanata Bamba
- Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, Bobo Dioulasso,, Burkina Faso
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| |
Collapse
|
3
|
Muhamad P, Phompradit P, Chaijaroenkul W, Na-Bangchang K. Distribution patterns of molecular markers of antimalarial drug resistance in Plasmodium falciparum isolates on the Thai-Myanmar border during the periods of 1993-1998 and 2002-2008. BMC Genomics 2024; 25:269. [PMID: 38468205 DOI: 10.1186/s12864-023-09814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/17/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Polymorphisms of Plasmodium falciparum chloroquine resistance transporter (pfcrt), Plasmodium falciparum multi-drug resistance 1 (pfmdr1) and Plasmodium falciparum kelch 13-propeller (pfk13) genes are accepted as valid molecular markers of quinoline antimalarials and artemisinins. This study investigated the distribution patterns of these genes in P. falciparum isolates from the areas along the Thai-Myanmar border during the two different periods of antimalarial usage in Thailand. RESULTS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were used to detect pfcrt mutations at codons 76, 220, 271, 326, 356, and 371 as well as pfmdr1 mutation at codon 86. The prevalence of pfcrt mutations was markedly high (96.4-99.7%) in samples collected during both periods. The proportions of mutant genotypes (number of mutant/total isolate) at codons 76, 220, 271, 326, 356 and 371 in the isolates collected during 1993-1998 (period 1) compared with 2002-2008 (period 2) were 97.9% (137/140) vs. 97.1% (401/413), 97.9% (140/143) vs. 98.8% (171/173), 97.2% (139/143) vs. 97.1% (333/343), 98.6% (140/142) vs. 99.7% (385/386), 96.4% (134/139) vs. 98.2% (378/385) and 97.8% (136/139) vs. 98.9% (375/379), respectively. Most isolates carried pfmdr1 wild-type at codon 86, with a significant difference in proportions genotypes (number of wild type/total sample) in samples collected during period 1 [92.9% (130/140)] compared with period 2 [96.9% (379/391)]. Investigation of pfmdr1 copy number was performed by real-time PCR. The proportions of isolates carried 1, 2, 3 and 4 or more than 4 copies of pfmdr1 (number of isolates carried correspondent copy number/total isolate) were significantly different between the two sample collecting periods (65.7% (90/137) vs. 87.8% (390/444), 18.2% (25/137) vs. 6.3%(28/444), 5.1% (7/137) vs. 1.4% (6/444) and 11.0% (15/137) vs. 4.5% (20/444), for period 1 vs. period 2, respectively). No pfk13 mutation was detected by nested PCR and nucleotide sequencing in all samples with successful analysis (n = 68). CONCLUSIONS The persistence of pfcrt mutations and pfmdr1 wild-types at codon 86, along with gene amplification in P. falciparum, contributes to the continued resistance of chloroquine and mefloquine in P. falciparum isolates in the study area. Regular surveillance of antimalarial drug resistance in P. falciparum, incorporating relevant molecular markers and treatment efficacy assessments, should be conducted.
Collapse
Affiliation(s)
- Phunuch Muhamad
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Papichaya Phompradit
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Kesara Na-Bangchang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathumthani, 12120, Thailand.
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
4
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
5
|
Mairet-Khedim M, Roesch C, Khim N, Srun S, Bouillon A, Kim S, Ke S, Kauy C, Kloeung N, Eam R, Khean C, Kul C, Chy S, Leang R, Ringwald P, Barale JC, Witkowski B. Prevalence and characterization of piperaquine, mefloquine and artemisinin derivatives triple-resistant Plasmodium falciparum in Cambodia. J Antimicrob Chemother 2022; 78:411-417. [PMID: 36508338 PMCID: PMC9890270 DOI: 10.1093/jac/dkac403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In early 2016, in Preah Vihear, Northern Cambodia, artesunate/mefloquine was used to cope with dihydroartemisinin/piperaquine-resistant Plasmodium falciparum parasites. Following this policy, P. falciparum strains harbouring molecular markers associated with artemisinin, piperaquine and mefloquine resistance have emerged. However, the lack of a viable alternative led Cambodia to adopt artesunate/mefloquine countrywide, raising concerns about a surge of triple-resistant P. falciparum strains. OBJECTIVES To assess the prevalence of triple-resistant parasites after artesunate/mefloquine implementation countrywide in Cambodia and to characterize their phenotype. METHODS For this multicentric study, 846 samples were collected from 2016 to 2019. Genotyping of molecular markers associated with artemisinin, piperaquine and mefloquine resistance was coupled with phenotypic analyses. RESULTS Only four triple-resistant P. falciparum isolates (0.47%) were identified during the study period. These parasites combined the pfk13 polymorphism with pfmdr1 amplification, pfpm2 amplification and/or pfcrt mutations. They showed significantly higher tolerance to artemisinin, piperaquine and mefloquine and also to the mefloquine and piperaquine combination. CONCLUSIONS The use of artesunate/mefloquine countrywide in Cambodia has not led to a massive increase of triple-resistant P. falciparum parasites. However, these parasites circulate in the population, and exhibit clear resistance to piperaquine, mefloquine and their combination in vitro. This study demonstrates that P. falciparum can adapt to more complex drug associations, which should be considered in future therapeutic designs.
Collapse
Affiliation(s)
| | | | - Nimol Khim
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Sreynet Srun
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Anthony Bouillon
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015 Paris, France,Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France
| | - Saorin Kim
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Sopheakvatey Ke
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Chhayleang Kauy
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Nimol Kloeung
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Rotha Eam
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Chanra Khean
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Chanvong Kul
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Sophy Chy
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Rithea Leang
- National Centre for Malariology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | | | | |
Collapse
|
6
|
Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT. PLoS Biol 2022; 20:e3001616. [PMID: 35507548 PMCID: PMC9067703 DOI: 10.1371/journal.pbio.3001616] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.
Collapse
|
7
|
Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing. Antimicrob Agents Chemother 2021; 66:e0116321. [PMID: 34694871 PMCID: PMC8765236 DOI: 10.1128/aac.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research efforts to combat antimalarial drug resistance rely on quick, robust, and sensitive methods to genetically characterize Plasmodium falciparum parasites. We developed a single-nucleotide polymorphism (SNP)-based genotyping method that can assess 33 drug resistance-conferring SNPs in dhfr, dhps, pfmdr1, pfcrt, and k13 in nine PCRs, performed directly from P. falciparum cultures or infected blood. We also optimized multiplexed fragment analysis and gel electrophoresis-based microsatellite typing methods using a set of five markers that can distinguish 12 laboratory strains of diverse geographical and temporal origin. We demonstrate how these methods can be applied to screen for the multidrug-resistant KEL1/PLA1/PfPailin (KelPP) lineage that has been sweeping across the Greater Mekong Subregion, verify parasite in vitro SNP-editing, identify novel recombinant genetic cross progeny, or cluster strains to infer their geographical origins. Results were compared with Illumina-based whole-genome sequence analysis that provides the most detailed sequence information but is cost-prohibitive. These adaptable, simple, and inexpensive methods can be easily implemented into routine genotyping of P. falciparum parasites in both laboratory and field settings.
Collapse
|
8
|
Evolution of multidrug resistance in Plasmodium falciparum: a longitudinal study of genetic resistance markers in the Greater Mekong Subregion. Antimicrob Agents Chemother 2021; 65:e0112121. [PMID: 34516247 PMCID: PMC8597770 DOI: 10.1128/aac.01121-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People’s Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.
Collapse
|
9
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Duvalsaint M, Conrad MD, Tukwasibwe S, Tumwebaze PK, Legac J, Cooper RA, Rosenthal PJ. Balanced impacts of fitness and drug pressure on the evolution of PfMDR1 polymorphisms in Plasmodium falciparum. Malar J 2021; 20:292. [PMID: 34193148 PMCID: PMC8247092 DOI: 10.1186/s12936-021-03823-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Anti-malarial drug resistance may be limited by decreased fitness in resistant parasites. Important contributors to resistance are mutations in the Plasmodium falciparum putative drug transporter PfMDR1. Methods Impacts on in vitro fitness of two common PfMDR1 polymorphisms, N86Y, which is associated with sensitivity to multiple drugs, and Y184F, which has no clear impact on drug sensitivity, were evaluated to study associations between resistance mediators and parasite fitness, measured as relative growth in competitive culture experiments. NF10 P. falciparum lines engineered to represent all PfMDR1 N86Y and Y184F haplotypes were co-cultured for 40 days, and the genetic make-up of the cultures was characterized every 4 days by pyrosequencing. The impacts of culture with anti-malarials on the growth of different haplotypes were also assessed. Lastly, the engineering of P. falciparum containing another common polymorphism, PfMDR1 D1246Y, was attempted. Results Co-culture results were as follows. With wild type (WT) Y184 fixed (N86/Y184 vs. 86Y/Y184), parasites WT and mutant at 86 were at equilibrium. With mutant 184 F fixed (N86/184F vs. 86Y/184F), mutants at 86 overgrew WT. With WT N86 fixed (N86/Y184 vs. N86/184F), WT at 184 overgrew mutants. With mutant 86Y fixed (86Y/Y184 vs. 86Y/184F), WT and mutant at 86 were at equilibrium. Parasites with the double WT were in equilibrium with the double mutant, but 86Y/Y184 overgrew N86/184F. Overall, WT N86/mutant 184F parasites were less fit than parasites with all other haplotypes. Parasites engineered for another mutation, PfMDR1 1246Y, were unstable in culture, with reversion to WT over time. Thus, the N86 WT is stable when accompanied by the Y184 WT, but incurs a fitness cost when accompanied by mutant 184F. Culturing in the presence of chloroquine favored 86Y mutant parasites and in the presence of lumefantrine favored N86 WT parasites; piperaquine had minimal impact. Conclusions These results are consistent with those for Ugandan field isolates, suggest reasons for varied haplotypes, and highlight the interplay between drug pressure and fitness that is guiding the evolution of resistance-mediating haplotypes in P. falciparum.
Collapse
Affiliation(s)
- Marvin Duvalsaint
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | - Jennifer Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
11
|
Boonyalai N, Thamnurak C, Sai-Ngam P, Ta-Aksorn W, Arsanok M, Uthaimongkol N, Sundrakes S, Chattrakarn S, Chaisatit C, Praditpol C, Fagnark W, Kirativanich K, Chaorattanakawee S, Vanachayangkul P, Lertsethtakarn P, Gosi P, Utainnam D, Rodkvamtook W, Kuntawunginn W, Vesely BA, Spring MD, Fukuda MM, Lanteri C, Walsh D, Saunders DL, Smith PL, Wojnarski M, Sirisopana N, Waters NC, Jongsakul K, Gaywee J. Plasmodium falciparum phenotypic and genotypic resistance profile during the emergence of Piperaquine resistance in Northeastern Thailand. Sci Rep 2021; 11:13419. [PMID: 34183715 PMCID: PMC8238947 DOI: 10.1038/s41598-021-92735-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Piyaporn Sai-Ngam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Winita Ta-Aksorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Montri Arsanok
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nichapat Uthaimongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siratchana Sundrakes
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Utainnam
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wuttikon Rodkvamtook
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M Fukuda
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Charlotte Lanteri
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Douglas Walsh
- Department of Dermatology, Syracuse VA medical center, Syracuse, USA
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Narongrid Sirisopana
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krisada Jongsakul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jariyanart Gaywee
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
12
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
13
|
In Vitro Susceptibility of Plasmodium falciparum Isolates from the China-Myanmar Border Area to Piperaquine and Association with Candidate Markers. Antimicrob Agents Chemother 2021; 65:AAC.02305-20. [PMID: 33685900 PMCID: PMC8092910 DOI: 10.1128/aac.02305-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum from the Greater Mekong subregion has evolved resistance to the artemisinin-based combination therapy dihydroartemisinin and the partner drug piperaquine. To monitor the potential westward spread or independent evolution of piperaquine resistance, we evaluated the in vitro susceptibility of 120 P. falciparum isolates collected at the China-Myanmar border during 2007-2016. The parasite isolates displayed a relatively wide range of piperaquine susceptibility estimates. While 56.7% of the parasites showed bimodal drug response curves, all but five generated area-under-the-curve (AUC) estimates consistent with a susceptible phenotype. Using the piperaquine survival assay (PSA), 5.6% parasites showed reduced susceptibility. Of note, parasites from 2014-2016 showed the highest AUC value and the highest proportion with a bimodal curve, suggesting falling effectiveness in these later years. Unsupervised K-mean analysis of the combined data assigned parasites into three clusters and identified significant correlations between IC50, IC90, and AUC values. No parasites carried the E415G mutation in a putative exo-nuclease, new mutations in PfCRT, or amplification of the plasmepsin 2/3 genes, suggesting mechanisms of reduced piperaquine susceptibility that differ from those described in other countries of the region. The association of increased AUC, IC50, and IC90 values with major PfK13 mutations (F446I and G533S) suggests that piperaquine resistance may evolve in these PfK13 genetic backgrounds. Additionally, the Pfmdr1 F1226Y mutation was associated with significantly higher PSA values. Further elucidation of piperaquine resistance mechanisms and continuous surveillance are warranted.
Collapse
|
14
|
Kunkel A, White M, Piola P. Novel anti-malarial drug strategies to prevent artemisinin partner drug resistance: A model-based analysis. PLoS Comput Biol 2021; 17:e1008850. [PMID: 33764971 PMCID: PMC8023453 DOI: 10.1371/journal.pcbi.1008850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/06/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Emergence of resistance to artemisinin and partner drugs in the Greater Mekong Subregion has made elimination of malaria from this region a global priority; it also complicates its achievement. Novel drug strategies such as triple artemisinin combination therapies (ACTs) and chemoprophylaxis have been proposed to help limit resistance and accelerate elimination. The objective of this study was to better understand the potential impacts of triple ACTs and chemoprophylaxis, using a mathematical model parameterized using data from Cambodia. We used a simple compartmental model to predict trends in malaria incidence and resistance in Cambodia from 2020-2025 assuming no changes in transmission since 2018. We assessed three scenarios: a status quo scenario with artesunate-mefloquine (ASMQ) as treatment; a triple ACT scenario with dihydroartemisinin-piperaquine (DP) plus mefloquine (MQ) as treatment; and a chemoprophylaxis scenario with ASMQ as treatment plus DP as chemoprophylaxis. We predicted MQ resistance to increase under the status quo scenario. Triple ACT treatment reversed the spread of MQ resistance, but had no impact on overall malaria incidence. Joint MQ-PPQ resistance declined under the status quo scenario for the baseline parameter set and most sensitivity analyses. Compared to the status quo, triple ACT treatment limited spread of MQ resistance but also slowed declines in PPQ resistance in some sensitivity analyses. The chemoprophylaxis scenario decreased malaria incidence, but increased the spread of strains resistant to both MQ and PPQ; both effects began to reverse after the intervention was removed. We conclude that triple ACTs may limit spread of MQ resistance in the Cambodia, but would have limited impact on malaria incidence and might slow declines in PPQ resistance. Chemoprophylaxis could have greater impact on incidence but also carries higher risks of resistance. Aggressive strategies to limit transmission the GMS are needed to achieve elimination goals, but any intervention should be accompanied by monitoring for drug resistance.
Collapse
Affiliation(s)
- Amber Kunkel
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
- * E-mail:
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris, France
| | - Patrice Piola
- Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
15
|
Lawong A, Gahalawat S, Okombo J, Striepen J, Yeo T, Mok S, Deni I, Bridgford JL, Niederstrasser H, Zhou A, Posner B, Wittlin S, Gamo FJ, Crespo B, Churchyard A, Baum J, Mittal N, Winzeler E, Laleu B, Palmer MJ, Charman SA, Fidock DA, Ready JM, Phillips MA. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem 2021; 64:2739-2761. [PMID: 33620219 DOI: 10.1021/acs.jmedchem.0c02022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Benigno Crespo
- Medicines Development Campus, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
16
|
Minnow YVT, Harijan RK, Schramm VL. A resistant mutant of Plasmodium falciparum purine nucleoside phosphorylase uses wild-type neighbors to maintain parasite survival. J Biol Chem 2021; 296:100342. [PMID: 33524395 PMCID: PMC7949152 DOI: 10.1016/j.jbc.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) catalyzes an essential step in purine salvage for parasite growth. 4′-Deaza-1′-Aza-2′-Deoxy-1′-(9-Methylene)-Immucillin-G (DADMe-ImmG) is a transition state analog inhibitor of this enzyme, and P. falciparum infections in an Aotus primate malaria model can be cleared by oral administration of DADMe-ImmG. P. falciparum cultured under increasing DADMe-ImmG drug pressure exhibited PfPNP gene amplification, increased protein expression, and point mutations involved in DADMe-ImmG binding. However, the weak catalytic properties of the M183L resistance mutation (∼17,000-fold decrease in catalytic efficiency) are inconsistent with the essential function of PfPNP. We hypothesized that M183L subunits may form mixed oligomers of native and mutant PfPNP monomers to give hybrid hexameric enzymes with properties conferring DADMe-ImmG resistance. To test this hypothesis, we designed PfPNP constructs that covalently linked native and the catalytically weak M183L mutant subunits. Engineered hybrid PfPNP yielded trimer-of-dimer hexameric protein with alternating native and catalytically weak M183L subunits. This hybrid PfPNP gave near-native Km values for substrate, but the affinity for DADMe-ImmG and catalytic efficiency were both reduced approximately ninefold relative to a similar construct of native subunits. Contact between the relatively inactive M183L and native subunits is responsible for altered properties of the hybrid protein. Thus, gene amplification of PfPNP provides adequate catalytic activity while resistance to DADMe-ImmG occurs in the hybrid oligomer to promote parasite survival. Coupled with the slow development of drug resistance, this resistance mechanism highlights the potential for DADMe-ImmG use in antimalarial combination therapies.
Collapse
Affiliation(s)
- Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
17
|
Expansion of a Specific Plasmodium falciparum PfMDR1 Haplotype in Southeast Asia with Increased Substrate Transport. mBio 2020; 11:mBio.02093-20. [PMID: 33262257 PMCID: PMC7733942 DOI: 10.1128/mbio.02093-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms. Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.
Collapse
|
18
|
Pimpat Y, Saralamba N, Boonyuen U, Pukrittayakamee S, Nosten F, Smithuis F, Day NPJ, Dondorp AM, Imwong M. Genetic analysis of the orthologous crt and mdr1 genes in Plasmodium malariae from Thailand and Myanmar. Malar J 2020; 19:315. [PMID: 32867773 PMCID: PMC7461347 DOI: 10.1186/s12936-020-03391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium malariae is a widely spread but neglected human malaria parasite, which causes chronic infections. Studies on genetic polymorphisms of anti-malarial drug target genes in P. malariae are limited. Previous reports have shown polymorphisms in the P. malariae dihydrofolate reductase gene associated with pyrimethamine resistance and linked to pyrimethamine drug pressure. This study investigated polymorphisms of the P. malariae homologous genes, chloroquine resistant transporter and multidrug resistant 1, associated with chloroquine and mefloquine resistance in Plasmodium falciparum. Methods The orthologous P. malariae crt and mdr1 genes were studied in 95 patients with P. malariae infection between 2002 and 2016 from Thailand (N = 51) and Myanmar (N = 44). Gene sequences were analysed using BioEdit, MEGA7, and DnaSP programs. Mutations and gene amplifications were compared with P. falciparum and Plasmodium vivax orthologous genes. Protein topology models derived from the observed pmcrt and pmmdr1 haplotypes were constructed and analysed using Phyre2, SWISS MODEL and Discovery Studio Visualization V 17.2. Results Two non-synonymous mutations were observed in exon 2 (H53P, 40%) and exon 8 (E278D, 44%) of pmcrt. The topology model indicated that H53P and E278D were located outside of the transmembrane domain and were unlikely to affect protein function. Pmmdr1 was more diverse than pmcrt, with 10 non-synonymous and 3 synonymous mutations observed. Non-synonymous mutations were located in the parasite cytoplasmic site, transmembrane 11 and nucleotide binding domains 1 and 2. Polymorphisms conferring amino acid changes in the transmembrane and nucleotide binding domains were predicted to have some effect on PmMDR1 conformation, but were unlikely to affect protein function. All P. malariae parasites in this study contained a single copy of the mdr1 gene. Conclusions The observed polymorphisms in pmcrt and pmmdr1 genes are unlikely to affect protein function and unlikely related to chloroquine drug pressure. Similarly, the absence of pmmdr1 copy number variation suggests limited mefloquine drug pressure on the P. malariae parasite population, despite its long time use in Thailand for the treatment of falciparum malaria.
Collapse
Affiliation(s)
- Yupawadee Pimpat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Frank Smithuis
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Medical Action Myanmar, Yangon, Myanmar
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Upadhyay C, Chaudhary M, De Oliveira RN, Borbas A, Kempaiah P, Singh P, Rathi B. Fluorinated scaffolds for antimalarial drug discovery. Expert Opin Drug Discov 2020; 15:705-718. [PMID: 32202162 DOI: 10.1080/17460441.2020.1740203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The unique physicochemical properties and chemical diversity of organofluorine compounds have remarkably contributed for their wide utility in the area of pharmaceuticals, materials and agrochemicals. The noteworthy characteristics of fluorine include high electron affinity, lipophilicity and bioavailability, extending the half-life of the drugs. The incorporation of fluorine substituents, particularly trifluoromethyl groups, into organic molecules has led to their high potency against various diseases, including malaria. Hence, organofluorinated molecules offer valuable avenues for the design of new drug candidates against malaria. AREAS COVERED In this review, the authors discuss the importance of fluorine substituents present in the chemical compounds, and their potential applications for antimalarial drug discovery. EXPERT OPINION Fluorinated molecules represent a reliable strategy to develop new antimalarial drugs. Fluorine or fluorinated groups have been identified as a promising precursor, and their presence in approximately twenty-five percent of approved drugs is notable. Selective fluorination of chemical entities has the potential to be applied not only to improve the activity profile against the malaria parasite, but could be extrapolated for favorable pharmacological applications. Hazardous reagents such as HF, F2 and SF4 used for fluorination, are not considered as safe, and therefore, this process remains challenging, particularly for the pharmaceutical industry.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Monika Chaudhary
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| | - Ronaldo N De Oliveira
- Laboratory of Synthesis of Bioactive Compounds, Department of Chemistry, Federal Rural University of Pernambuco , Recife, Brazil
| | - Aniko Borbas
- Department of Pharmaceutical Chemistry, University of Debrecen , Debrecen, Hungary
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Stritch School of Medicine , Chicago, USA
| | - Poonam Singh
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| |
Collapse
|
20
|
Ikegbunam MN, Nkonganyi CN, Thomas BN, Esimone CO, Velavan TP, Ojurongbe O. Analysis of Plasmodium falciparum Pfcrt and Pfmdr1 genes in parasite isolates from asymptomatic individuals in Southeast Nigeria 11 years after withdrawal of chloroquine. Malar J 2019; 18:343. [PMID: 31590670 PMCID: PMC6781387 DOI: 10.1186/s12936-019-2977-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A reversal of chloroquine (CQ) resistance following a period of withdrawal has raised the possibility of its re-introduction. This study evaluated the current prevalence of Pfcrt and Pfmdr1 alleles in Plasmodium falciparum isolates, 11 years after CQ withdrawal in Southeast Nigeria. METHODS Filter-paper blood samples were collected from 725 non-febrile individuals, comprising 250 children (≤ 12 years), 250 pregnant women and 225 other adults, between October 2014 and February 2015 in Nnewi town, Southeast Nigeria. Nested PCR followed by direct sequencing was employed for the genotyping of Pfcrt and Pfmdr1 genes. RESULTS A total of 103 parasites-positive samples were recovered, comprising of 48 (19.20%) among children, 20 (20.00%) among pregnant women and 35 (15.50%) among other adults cohort. The frequency of the mutant genotype of Pfcrt 76T, 75E and 74I was 94.50% each. Parasite isolates from children had a frequency of 100% for mutant alleles in all Pfcrt codons while isolates from pregnant women and other adults had a frequency of 91% each in all codons. Haplotype distribution of pfcrt gene were 5.45, 0.00 and 76.37% for CVMNK, SVMNT and CVIET, respectively. For Pfmdr1 gene, the frequency of 86Y, 184F and 1246Y mutant alleles were 8.54, 29.27 and 3.66%, respectively. Amongst the Pfmdr1 haplotypes analysed, NFD had the highest frequency of 24.4%, followed by YFD at 6.10%. NYF and NYY occurred the least (1.20%). CONCLUSION The high level of Pfcrt mutations is suggestive of a sustained CQ pressure on P. falciparum isolates in the study area, despite the change of first line treatment from CQ to artemisinin combination therapy for 11 years. A new strategy to ensure the complete withdrawal of CQ from the country is recommended.
Collapse
Affiliation(s)
- Moses N Ikegbunam
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria.
- Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria.
| | | | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
- Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
21
|
Lo E, Hostetler JB, Yewhalaw D, Pearson RD, Hamid MMA, Gunalan K, Kepple D, Ford A, Janies DA, Rayner JC, Miller LH, Yan G. Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance. PLoS Negl Trop Dis 2019; 13:e0007222. [PMID: 31509523 PMCID: PMC6756552 DOI: 10.1371/journal.pntd.0007222] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly. Plasmodium vivax invasion of human erythrocytes relies on interaction between the Duffy antigen and P. vivax Duffy Binding Protein (PvDBP). Whole genome sequences from P. vivax field isolates in Madagascar identified a duplication of the PvDBP gene and PvDBP duplication has also been detected in non-African P. vivax-endemic countries. Two types of PvDBP duplications have been reported, termed Cambodian and Malagasy-type duplications. Our study used a combination of PCR-based diagnostic method, a novel quantitative real-time PCR assay, and whole genome sequencing to determine the prevalence and type of PvDBP duplications, as well as PvDBP copy number on a broad number of P. vivax samples in Ethiopia. We found that over 65% of P. vivax isolated from the symptomatic infections were detected with PvDBP duplications and PvDBP varied from 1 to >4 copies. The majority of PvDBP duplications belongs to the Cambodian-type while the Malagasy-type duplications was also detected. For the asymptomatic infections, despite a small sample size, the majority of P. vivax were detected with a single-copy based on both PCR and qPCR assays. There was no significant difference in PvDBP copy number between Duffy-null heterozygote and Duffy-positive homozygote/heterozygote. Further investigation is needed with expanded Duffy-null homozygotes to examine the functional significance of PvDBP expansion.
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Richard D. Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muzamil M. A. Hamid
- Department of Parasitology and Medical Entomology, University of Khartoum, Khartoum, Sudan
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
- * E-mail: (EL); (LHM); (GY)
| |
Collapse
|
22
|
Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 2018; 9:3314. [PMID: 30115924 PMCID: PMC6095916 DOI: 10.1038/s41467-018-05652-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
The widely used antimalarial combination therapy dihydroartemisinin + piperaquine (DHA + PPQ) has failed in Cambodia. Here, we perform a genomic analysis that reveals a rapid increase in the prevalence of novel mutations in the Plasmodium falciparum chloroquine resistance transporter PfCRT following DHA + PPQ implementation. These mutations occur in parasites harboring the K13 C580Y artemisinin resistance marker. By introducing PfCRT mutations into sensitive Dd2 parasites or removing them from resistant Cambodian isolates, we show that the H97Y, F145I, M343L, or G353V mutations each confer resistance to PPQ, albeit with fitness costs for all but M343L. These mutations sensitize Dd2 parasites to chloroquine, amodiaquine, and quinine. In Dd2 parasites, multicopy plasmepsin 2, a candidate molecular marker, is not necessary for PPQ resistance. Distended digestive vacuoles were observed in pfcrt-edited Dd2 parasites but not in Cambodian isolates. Our findings provide compelling evidence that emerging mutations in PfCRT can serve as a molecular marker and mediator of PPQ resistance. Increasing resistance of Plasmodium falciparum strains to piperaquine (PPQ) in Southeast Asia is of concern and resistance mechanisms are incompletely understood. Here, Ross et al. show that mutations in the P. falciparum chloroquine resistance transporter are rapidly increasing in prevalence in Cambodia and confer resistance to PPQ.
Collapse
|
23
|
Park KS, Malik SK, Lee JH, Karim AM, Lee SH. Commentary: Malaria elimination in India and regional implications. Front Microbiol 2018; 9:992. [PMID: 29867890 PMCID: PMC5963121 DOI: 10.3389/fmicb.2018.00992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sumera Kausar Malik
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jung Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea.,Department of Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| |
Collapse
|
24
|
Next-Generation Sequencing and Bioinformatics Protocol for Malaria Drug Resistance Marker Surveillance. Antimicrob Agents Chemother 2018; 62:AAC.02474-17. [PMID: 29439965 DOI: 10.1128/aac.02474-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/29/2018] [Indexed: 11/20/2022] Open
Abstract
The recent advances in next-generation sequencing technologies provide a new and effective way of tracking malaria drug-resistant parasites. To take advantage of this technology, an end-to-end Illumina targeted amplicon deep sequencing (TADS) and bioinformatics pipeline for molecular surveillance of drug resistance in P. falciparum, called malaria resistance surveillance (MaRS), was developed. TADS relies on PCR enriching genomic regions, specifically target genes of interest, prior to deep sequencing. MaRS enables researchers to simultaneously collect data on allele frequencies of multiple full-length P. falciparum drug resistance genes (crt, mdr1, k13, dhfr, dhps, and the cytochrome b gene), as well as the mitochondrial genome. Information is captured at the individual patient level for both known and potential new single nucleotide polymorphisms associated with drug resistance. The MaRS pipeline was validated using 245 imported malaria cases that were reported to the Centers for Disease Control and Prevention (CDC). The chloroquine resistance crt CVIET genotype (mutations underlined) was observed in 42% of samples, the highly pyrimethamine-resistant dhpsIRN triple mutant in 92% of samples, and the sulfadoxine resistance dhps mutation SGEAA in 26% of samples. The mdr1 NFSND genotype was found in 40% of samples. With the exception of two cases imported from Cambodia, no artemisinin resistance k13 alleles were identified, and 99% of patients carried parasites susceptible to atovaquone-proguanil. Our goal is to implement MaRS at the CDC for routine surveillance of imported malaria cases in the United States and to aid in the adoption of this system at participating state public health laboratories, as well as by global partners.
Collapse
|
25
|
Conrad MD, Mota D, Musiime A, Kilama M, Rek J, Kamya M, Dorsey G, Rosenthal PJ. Comparative Prevalence of Plasmodium falciparum Resistance-Associated Genetic Polymorphisms in Parasites Infecting Humans and Mosquitoes in Uganda. Am J Trop Med Hyg 2017; 97:1576-1580. [PMID: 29016309 PMCID: PMC5817777 DOI: 10.4269/ajtmh.17-0351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Controlling malaria in high transmission areas, such as much of sub-Saharan Africa, will require concerted efforts to slow the spread of drug resistance and to impede malaria transmission. Understanding the fitness costs associated with the development of drug resistance, particularly within the context of transmission, can help guide policy decisions to accomplish these goals, as fitness constraints might lead to decreased transmission of drug-resistant strains. To determine if Plasmodium falciparum resistance-mediating polymorphisms impact on development at different parasite stages, we compared the genotypes of parasites infecting humans and mosquitoes from households in Uganda. Genotypes at 14 polymorphic loci in genes encoding putative transporters (pfcrt and pfmdr1) and folate pathway enzymes (pfdhfr and pfdhps) were characterized using ligase detection reaction-fluorescent microsphere assays. In paired analysis using the Wilcoxon signed-rank test, prevalences of mutations at 12 loci did not differ significantly between parasites infecting humans and mosquitoes. However, compared with parasites infecting humans, those infecting mosquitoes were enriched for the pfmdr1 86Y mutant allele (P = 0.0001) and those infecting Anopheles gambiae s.s. were enriched for the pfmdr1 86Y (P = 0.0001) and pfcrt 76T (P = 0.0412) mutant alleles. Our results suggest modest directional selection resulting from varied fitness costs during the P. falciparum life cycle. Better appreciation of the fitness implications of drug resistance mediating mutations can inform optimal malaria treatment and prevention strategies.
Collapse
Affiliation(s)
- Melissa D. Conrad
- Department of Medicine, University of California, San Francisco, California
| | - Daniel Mota
- Department of Medicine, University of California, San Francisco, California
| | - Alex Musiime
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Maxwell Kilama
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Moses Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda;,Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, California
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California;,Address correspondence to Philip J. Rosenthal, Department of Medicine, University of California, Box 0811, San Francisco, CA 94946. E-mail:
| |
Collapse
|
26
|
Abstract
Increasing antimalarial drug resistance once again threatens effective antimalarial drug treatment, malaria control, and elimination. Artemisinin combination therapies (ACTs) are first-line treatment for uncomplicated falciparum malaria in all endemic countries, yet partial resistance to artemisinins has emerged in the Greater Mekong Subregion. Concomitant emergence of partner drug resistance is now causing high ACT treatment failure rates in several areas. Genetic markers for artemisinin resistance and several of the partner drugs have been established, greatly facilitating surveillance. Single point mutations in the gene coding for the Kelch propeller domain of the K13 protein strongly correlate with artemisinin resistance. Novel regimens and strategies using existing antimalarial drugs will be needed until novel compounds can be deployed. Elimination of artemisinin resistance will imply elimination of all falciparum malaria from the same areas. In vivax malaria, chloroquine resistance is an increasing problem.
Collapse
Affiliation(s)
- Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh 12201, Cambodia
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| |
Collapse
|
27
|
Mvumbi DM, Bobanga TL, Kayembe JMN, Mvumbi GL, Situakibanza HNT, Benoit-Vical F, Melin P, De Mol P, Hayette MP. Molecular surveillance of Plasmodium falciparum resistance to artemisinin-based combination therapies in the Democratic Republic of Congo. PLoS One 2017; 12:e0179142. [PMID: 28594879 PMCID: PMC5464640 DOI: 10.1371/journal.pone.0179142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
Malaria is a major public health problem in the Democratic Republic of Congo. Despite progress achieved over the past decade in the fight against malaria, further efforts have to be done such as in the surveillance and the containment of Plasmodium falciparum resistant strains. We investigated resistance to artemisinin-based combination therapies currently in use in Democratic Republic of Congo by surveying molecular polymorphisms in three genes: pfcrt, pfmdr1 and pfk13 to explore possible emergence of amodiaquine, lumefantrine or artemisinin resistance in Democratic Republic of Congo. This study essentially revealed that resistance to chloroquine is still decreasing while polymorphism related to amodiaquine resistance seems to be not present in Democratic Republic of Congo, that three samples, located in the east of the country, harbor Pfmdr1 amplification and that none of the mutations found in South-East Asia correlated with artemisinine resistance have been found in Democratic Republic of Congo. But new mutations have been identified, especially the M476K, occurred in the same position that the M476I previously identified in the F32-ART strain, strongly resistant to artemisinine. Antimalarial first-line treatments currently in use in Democratic Republic of Congo are not associated with emergence of molecular markers of resistance.
Collapse
Affiliation(s)
- Dieudonné Makaba Mvumbi
- Biochemistry and Molecular Biology Unit, Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Department of Clinical Microbiology, University Hospital of Liege, Liege, Belgium
- * E-mail:
| | - Thierry Lengu Bobanga
- Department of Parasitology and Tropical Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean-Marie Ntumba Kayembe
- Department of Internal Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Georges Lelo Mvumbi
- Biochemistry and Molecular Biology Unit, Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Hippolyte Nani-Tuma Situakibanza
- Department of Parasitology and Tropical Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Department of Internal Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), Toulouse et Université de Toulouse, UPS, France
| | - Pierrette Melin
- Department of Clinical Microbiology, University Hospital of Liege, Liege, Belgium
| | - Patrick De Mol
- Department of Clinical Microbiology, University Hospital of Liege, Liege, Belgium
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, University Hospital of Liege, Liege, Belgium
| |
Collapse
|
28
|
Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J 2017; 16:152. [PMID: 28420389 PMCID: PMC5395969 DOI: 10.1186/s12936-017-1806-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/07/2017] [Indexed: 12/29/2022] Open
Abstract
Background Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present study characterized the genetic profile of both markers in the most common genes associated with drug resistance in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published elsewhere applying a systematic review of the literature published over a 20-year time period. Methods The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 (pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 and pfcrt genes were assessed by PCR–RFLP. A literature search for studies that analysed CNP in the same genes of P. falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases. Results All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agreement with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described worldwide, with exceptions in French Guiana, Cambodia, Thailand and Brazil. Conclusions The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeutic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for isolates circulating in Northern Brazil. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1806-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Lara Cotta Amaral
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
30
|
Srimuang K, Miotto O, Lim P, Fairhurst RM, Kwiatkowski DP, Woodrow CJ, Imwong M. Analysis of anti-malarial resistance markers in pfmdr1 and pfcrt across Southeast Asia in the Tracking Resistance to Artemisinin Collaboration. Malar J 2016; 15:541. [PMID: 27825353 PMCID: PMC5101715 DOI: 10.1186/s12936-016-1598-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Background Declining anti-malarial efficacy of artemisinin-based combination therapy, and reduced Plasmodium falciparum susceptibility to individual anti-malarials are being documented across an expanding area of Southeast Asia (SEA). Genotypic markers complement phenotypic studies in assessing the efficacy of individual anti-malarials. Methods The markers pfmdr1 and pfcrt were genotyped in parasite samples obtained in 2011–2014 at 14 TRAC (Tracking Resistance to Artemisinin Collaboration) sites in mainland Southeast Asia using a combination of PCR and next-generation sequencing methods. Results Pfmdr1 amplification, a marker of mefloquine and lumefantrine resistance, was highly prevalent at Mae Sot on the Thailand–Myanmar border (59.8% of isolates) and common (more than 10%) at sites in central Myanmar, eastern Thailand and western Cambodia; however, its prevalence was lower than previously documented in Pailin, western Cambodia. The pfmdr1 Y184F mutation was common, particularly in and around Cambodia, and the F1226Y mutation was found in about half of samples in Mae Sot. The functional significance of these two mutations remains unclear. Other previously documented pfmdr1 mutations were absent or very rare in the region. The pfcrt mutation K76T associated with chloroquine resistance was found in 98.2% of isolates. The CVIET haplotype made up 95% or more of isolates in western SEA while the CVIDT haplotype was common (30–40% of isolates) in north and northeastern Cambodia, southern Laos, and southern Vietnam. Conclusions These findings generate cause for concern regarding the mid-term efficacy of artemether–lumefantrine in Myanmar, while the absence of resistance-conferring pfmdr1 mutations and SVMNT pfcrt haplotypes suggests that amodiaquine could be an efficacious component of anti-malarial regimens in SEA. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1598-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krongkan Srimuang
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Wellcome Trust Sanger Institute, Hinxton, UK.,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, UK.,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | | |
Collapse
|
31
|
Volkman SK, Herman J, Lukens AK, Hartl DL. Genome-Wide Association Studies of Drug-Resistance Determinants. Trends Parasitol 2016; 33:214-230. [PMID: 28179098 DOI: 10.1016/j.pt.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance.
Collapse
Affiliation(s)
- Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Simmons College, School of Nursing and Health Science, Boston, MA, USA.
| | - Jonathan Herman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Amanda K Lukens
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA
| | - Daniel L Hartl
- The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, USA
| |
Collapse
|
32
|
Anderson TJC, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, McGready R, Ashley E, Pyae Phyo A, White NJ, Nosten F. Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites. Mol Biol Evol 2016; 34:131-144. [PMID: 28025270 PMCID: PMC5216669 DOI: 10.1093/molbev/msw228] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple kelch13 alleles conferring artemisinin resistance (ART-R) are currently spreading through Southeast Asian malaria parasite populations, providing a unique opportunity to observe an ongoing soft selective sweep, investigate why resistance alleles have evolved multiple times and determine fundamental population genetic parameters for Plasmodium. We sequenced kelch13 (n = 1,876), genotyped 75 flanking SNPs, and measured clearance rate (n = 3,552) in parasite infections from Western Thailand (2001–2014). We describe 32 independent coding mutations including common mutations outside the kelch13 propeller associated with significant reductions in clearance rate. Mutations were first observed in 2003 and rose to 90% by 2014, consistent with a selection coefficient of ∼0.079. ART-R allele diversity rose until 2012 and then dropped as one allele (C580Y) spread to high frequency. The frequency with which adaptive alleles arise is determined by the rate of mutation and the population size. Two factors drive this soft sweep: (1) multiple kelch13 amino-acid mutations confer resistance providing a large mutational target—we estimate the target is 87–163 bp. (2) The population mutation parameter (Θ = 2Neμ) can be estimated from the frequency distribution of ART-R alleles and is ∼5.69, suggesting that short term effective population size is 88 thousand to 1.2 million. This is 52–705 times greater than Ne estimated from fluctuation in allele frequencies, suggesting that we have previously underestimated the capacity for adaptive evolution in Plasmodium. Our central conclusions are that retrospective studies may underestimate the complexity of selective events and the Ne relevant for adaptation for malaria is considerably higher than previously estimated.
Collapse
Affiliation(s)
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Ian H Cheeseman
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Standwell Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Fatma Bilgic
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Auburn S, Serre D, Pearson RD, Amato R, Sriprawat K, To S, Handayuni I, Suwanarusk R, Russell B, Drury E, Stalker J, Miotto O, Kwiatkowski DP, Nosten F, Price RN. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand. J Infect Dis 2016; 214:1235-42. [PMID: 27456706 PMCID: PMC5034950 DOI: 10.1093/infdis/jiw323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research institute, Ohio
| | - Richard D. Pearson
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Rossarin Suwanarusk
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | - Olivo Miotto
- Wellcome Trust Sanger Institute, Hinxton,Medical Research Council Centre for Genomics and Global Health,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics,Medical Research Council Centre for Genomics and Global Health
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom,Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom
| |
Collapse
|
34
|
Parallel inhibition of amino acid efflux and growth of erythrocytic Plasmodium falciparum by mefloquine and non-piperidine analogs: Implication for the mechanism of antimalarial action. Bioorg Med Chem Lett 2016; 26:4846-4850. [DOI: 10.1016/j.bmcl.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022]
|
35
|
Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, Nair S, White MM, Dziekan J, Ling C, Proux S, Konghahong K, Jeeyapant A, Woodrow CJ, Imwong M, McGready R, Lwin KM, Day NPJ, White NJ, Nosten F. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors. Clin Infect Dis 2016; 63:784-791. [PMID: 27313266 PMCID: PMC4996140 DOI: 10.1093/cid/ciw388] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. METHODS Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. RESULTS Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. CONCLUSIONS The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Elizabeth A Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tim J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Zbynek Bozdech
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Marina McDew White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Jerzy Dziekan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Atthanee Jeeyapant
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
36
|
Win AA, Imwong M, Kyaw MP, Woodrow CJ, Chotivanich K, Hanboonkunupakarn B, Pukrittayakamee S. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar. Malar J 2016; 15:110. [PMID: 26911145 PMCID: PMC4765153 DOI: 10.1186/s12936-016-1147-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/04/2016] [Indexed: 11/11/2022] Open
Abstract
Background Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. Methods A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210–726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. Results K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p < 0.0001). The overall proportion of parasites with multiple pfmdr1 copies (greater than 1.5) was 5.5 %. Seven samples showed both k13 mutation and multiple copies of pfmdr1. Only one of 36 patients followed up after artemether-lumefantrine treatment still had parasites at day 3; molecular analysis indicated wild-type k13 and single copy pfmdr1. Conclusion The proportion of P. falciparum isolates with mutations in the propeller region of k13 indicates that artemisinin resistance extends across much of Myanmar. There is a low prevalence of parasites with multiple pfmdr1 copies across the country. The efficacy of artemisinin-based combination therapy containing mefloquine and lumefantrine is, therefore, expected to be high, although regular monitoring of efficacy will be important. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1147-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aye A Win
- Department of Medicine, Institute of Medicine 1, Yangon, Myanmar.
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Myat P Kyaw
- Department of Medical Research (Lower Myanmar), Yangon, Myanmar.
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK.
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
37
|
Reamtong O, Srimuang K, Saralamba N, Sangvanich P, Day NP, White NJ, Imwong M. Protein profiling of mefloquine resistant Plasmodium falciparum using mass spectrometry-based proteomics. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 391:82-92. [PMID: 26869851 PMCID: PMC4708064 DOI: 10.1016/j.ijms.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 05/30/2023]
Abstract
Malaria is a mosquito borne infectious disease caused by protozoa of genus Plasmodium. There are five species of Plasmodium that are found to infect humans. Plasmodium falciparum can cause severe malaria leading to higher morbidity and mortality of malaria than the other four species. Antimalarial resistance is the major obstacle to control malaria. Mefloquine was used in combination with Artesunate for uncomplicated P. falciparum in South East Asia and it has developed and established mefloquine resistance in this region. Here, gel-enhanced liquid chromatography/tandem mass spectrometry (GeLC-MS/MS)-based proteomics and label-free quantification were used to explore the protein profiles of mefloquine-sensitive and -induced resistant P. falciparum. A Thai P. falciparum isolate (S066) was used as a model in this research. Our data revealed for the first time that 69 proteins exhibited at least 2-fold differences in their expression levels between the two parasite lines. Of these, 36 were up-regulated and 33 were down-regulated in the mefloquine-resistant line compared with the mefloquine-sensitive line. These findings are consistent with those of past studies, where the multidrug resistance protein Pgh1 showed an up-regulation pattern consistent with that expected from its average 3-copy pfmdr1 gene number. Pgh1 and eight other up-regulated proteins (i.e., histo-aspartyl protease protein, exportin 1, eukaryotic translation initiation factor 3 subunit 8, peptidyl-prolyl cis-trans isomerase, serine rich protein homologue, exported protein 1, ATP synthase beta chain and phospholipid scramblase 1) were further validated for their expression levels using reverse transcriptase quantitative real-time PCR. The data support the up-regulation status in the mefloquine-resistant parasite line of all the candidate genes referred to above. Therefore, GeLC-MS/MS-based proteomics combined with label-free quantification is a reliable approach for exploring mefloquine resistance biomarkers in P. falciparum. Identification of these proteins leads to better understanding of mefloquine resistant mechanisms in malaria parasites.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Krongkan Srimuang
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nicholas P.J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
38
|
Cheeseman IH, Miller B, Tan JC, Tan A, Nair S, Nkhoma SC, De Donato M, Rodulfo H, Dondorp A, Branch OH, Mesia LR, Newton P, Mayxay M, Amambua-Ngwa A, Conway DJ, Nosten F, Ferdig MT, Anderson TJC. Population Structure Shapes Copy Number Variation in Malaria Parasites. Mol Biol Evol 2015; 33:603-20. [PMID: 26613787 PMCID: PMC4760083 DOI: 10.1093/molbev/msv282] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.
Collapse
Affiliation(s)
- Ian H Cheeseman
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Becky Miller
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - John C Tan
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - Asako Tan
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Marcos De Donato
- Lab. Genetica Molecular, IIBCAUDO, Universidad De Oriente, Cumana, Venezuela
| | - Hectorina Rodulfo
- Lab. Genetica Molecular, IIBCAUDO, Universidad De Oriente, Cumana, Venezuela
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Oralee H Branch
- Division of Parasitology, Department of Microbiology, New York University School of Medicine
| | - Lastenia Ruiz Mesia
- Laboratorio De Investigaciones De Productos Naturales Y Antiparasitarios, Universidad Nacional De La Amazonia Peruana, Iquitos, Peru
| | - Paul Newton
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| | | | - David J Conway
- Medical Research Council Unit, Fajara, Banjul, The Gambia Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Michael T Ferdig
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - Tim J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
39
|
Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network. Am J Trop Med Hyg 2015; 93:57-68. [PMID: 26259943 PMCID: PMC4574275 DOI: 10.4269/ajtmh.15-0007] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/27/2015] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs.
Collapse
Affiliation(s)
- Liwang Cui
- *Address correspondence to Liwang Cui, Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, E-mail: or Philip J. Rosenthal, Department of Medicine, Box 0811, University of California, San Francisco, CA 94110. E-mail:
| | | | | | | | - Philip J. Rosenthal
- *Address correspondence to Liwang Cui, Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, E-mail: or Philip J. Rosenthal, Department of Medicine, Box 0811, University of California, San Francisco, CA 94110. E-mail:
| |
Collapse
|
40
|
Identification of chloroquine resistance Pfcrt-K76T and determination of Pfmdr1-N86Y copy number by SYBR Green I qPCR. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci 2015; 1342:10-8. [PMID: 25694157 DOI: 10.1111/nyas.12662] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs that target the folate-synthesis pathway have a long history of effectiveness against a variety of pathogens. As antimalarials, the antifolates were safe and well tolerated, but resistance emerged quickly and has persisted even with decreased drug pressure. The primary determinants of resistance in Plasmodium falciparum are well-described point mutations in the enzymes dihydropteroate synthase and dihydrofolate reductase targeted by the combination sulfadoxine-pyrimethamine. Recent work has highlighted the contributions of additional parasite adaptation to antifolate resistance. In fact, the evolution of antifolate-resistant parasites is multifaceted and complex. Gene amplification of the first enzyme in the parasite folate synthesis pathway, GTP-cyclohydrolase, is strongly associated with resistant parasites and potentially contributes to persistence of resistant parasites. Further understanding of how parasites adjust flux through the folate pathway is important to the further development of alternative agents targeting this crucial synthesis pathway.
Collapse
|
42
|
Hines SA, Ramsay JD, Kappmeyer LS, Lau AO, Ojo KK, Van Voorhis WC, Knowles DP, Mealey RH. Theileria equi isolates vary in susceptibility to imidocarb dipropionate but demonstrate uniform in vitro susceptibility to a bumped kinase inhibitor. Parasit Vectors 2015; 8:33. [PMID: 25600252 PMCID: PMC4311422 DOI: 10.1186/s13071-014-0611-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variation in clinical response to therapy has been observed. Methods We quantified the in vitro susceptibility of two T. equi isolates and a lab generated variant to both imidocarb dipropionate and a bumped kinase inhibitor compound 1294. We also evaluated the capacity of in vitro imidocarb dipropionate exposure to decrease susceptibility to that drug. The efficacy of imidocarb dipropionate for clearing infection in four T. equi infected ponies was also assessed. Results We observed an almost four-fold difference in imidocarb dipropionate susceptibility between two distinct isolates of T. equi. Four ponies infected with the less susceptible USDA Florida strain failed to clear the parasite despite two rounds of treatment. Importantly, a further 15-fold decrease in susceptibility was produced in this strain by continuous in vitro imidocarb dipropionate exposure. Despite a demonstrated difference in imidocarb dipropionate susceptibility, there was no difference in the susceptibility of two T. equi isolates to bumped kinase inhibitor 1294. Conclusions The observed variation in imidocarb dipropionate susceptibility, further reduction in susceptibility caused by drug exposure in vitro, and failure to clear T. equi infection in vivo, raises concern for the emergence of drug resistance in clinical cases undergoing treatment. Bumped kinase inhibitors may be effective as alternative drugs for the treatment of resistant T. equi parasites.
Collapse
Affiliation(s)
- Siddra A Hines
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Joshua D Ramsay
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Lowell S Kappmeyer
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA. .,Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164-6630, USA.
| | - Audrey Ot Lau
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Kayode K Ojo
- Division of Allergy and Infectious Diseases and Center for Emerging and Re-emerging Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, 98109-4766, USA.
| | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases and Center for Emerging and Re-emerging Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, 98109-4766, USA.
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA. .,Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164-6630, USA.
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
43
|
Li J, Chen J, Xie D, Monte-Nguba SM, Eyi JUM, Matesa RA, Obono MMO, Ehapo CS, Yang L, Lu D, Yang H, Yang HT, Lin M. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Pathog Glob Health 2014; 108:339-43. [PMID: 25348116 DOI: 10.1179/2047773214y.0000000158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Drug resistance against Plasmodium falciparum has been recognized as the crucial obstacle to curbing mortality and morbidity from malaria. To investigate the distribution and pattern of multidrug resistance 1 (pfmdr1) gene polymorphisms in P. falciparum, isolates collected from the malaria high-endemic Bioko Island, Equatorial Guinea. METHODS Blood samples were collected from 217 patients with P. falciparum malaria during rainy season in 2012 on Bioko Island. These samples were extracted using Chelex to obtain parasite DNA. Nest-polymerase chain reaction (PCR) and sequencing were employed to detect mutations (N86Y, E130K, Y184F, S1034C, N1042D, V1109I, and D1246Y) and haplotypes in pfmdr1 gene. RESULTS A total of 151 samples were successfully detected for pfmdr1 mutations from the 217 patients. Pfmdr1 mutations were found in 91·39% (138/151) P. falciparum isolates. However, no mutation at 130 and 1109 was identified from these samples. Four haplotypes coding 86, 184, 1034, 1,042, and 1,246 were found including NYSND, YYSND, NFSND, and YFSND, which accounted for 8·61% (13/151), 2·65% (4/151), 29·80% (45/151), and 58·94% (89/151), respectively. CONCLUSIONS Our results exhibited hypersensitivity to lumefantrine (LU) and mefloquine (MQ) and resistance to chloroquine (CQ) and amodiaquine (AQ) in P. falciparum isolates from Bioko Island. This information will be useful for anti-malarial drug policy in Equatorial Guinea.
Collapse
|
44
|
Chen K, Sun L, Lin Y, Fan Q, Zhao Z, Hao M, Feng G, Wu Y, Cui L, Yang Z. Competition between Plasmodium falciparum strains in clinical infections during in vitro culture adaptation. INFECTION GENETICS AND EVOLUTION 2014; 24:105-10. [PMID: 24667050 DOI: 10.1016/j.meegid.2014.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022]
Abstract
We evaluated the dynamics of parasite populations during in vitro culture adaptation in 15 mixed Plasmodium falciparum infections, which were collected from a hypoendemic area near the China-Myanmar border. Allele types at the msp1 block 2 in the initial clinical samples and during subsequent culture were quantified weekly using a quantitative PCR method. All mixed infections carried two allele types based on the msp1 genotyping result. We also genotyped several polymorphic sites in the dhfr, dhps and mdr1 genes on day 0 and day 28, which showed that most of the common sites analyzed were monomorphic. Two of the three clinical samples mixed at dhps 581 remained stable while one changed to wild-type during the culture. During in vitro culture, we observed a gradual loss of parasite populations with 10 of the 15 mixed infections becoming monoclonal by day 28 based on the msp1 allele type. In most cases, the more abundant msp1 allele types in the clinical blood samples at the beginning of culture became the sole or predominant allele types on day 28. These results suggest that some parasites may have growth advantages and the loss of parasite populations during culture adaptation of mixed infections may lead to biased results when comparing the phenotypes such as drug sensitivity of the culture-adapted parasites.
Collapse
Affiliation(s)
- Kexuan Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Yunnan Province 650500, China
| | - Ling Sun
- Department of Pathogen Biology and Immunology, Kunming Medical University, Yunnan Province 650500, China
| | - Yingxue Lin
- Center for Disease Control and Prevention, Yingjiang, Yunnan Province 679300, China
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning Province, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning Province, China
| | - Mingming Hao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Yunnan Province 650500, China
| | - Guohua Feng
- Center for Biomedical Engineering Research, Kunming Medical University, Yunnan Province 650500, China
| | - Yanrui Wu
- Department of Cell Biology and Genetics, Kunming Medical University, Yunnan Province 650500, China
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg., University Park, PA 16802, USA.
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Yunnan Province 650500, China.
| |
Collapse
|
45
|
Rosenthal PJ. The interplay between drug resistance and fitness in malaria parasites. Mol Microbiol 2013; 89:1025-38. [PMID: 23899091 DOI: 10.1111/mmi.12349] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2013] [Indexed: 12/01/2022]
Abstract
Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
46
|
Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in western, northern, and eastern Cambodia, 2011-2012: association with molecular markers. Antimicrob Agents Chemother 2013; 57:5277-83. [PMID: 23939897 DOI: 10.1128/aac.00687-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance. To monitor for resistance to PPQ and other antimalarials, we measured drug susceptibilities for parasites collected in 2011 and 2012 from Pursat, Preah Vihear, and Ratanakiri, in western, northern, and eastern Cambodia, respectively. Using a SYBR green I fluorescence assay, we calculated the ex vivo 50% inhibitory concentrations (IC50s) of 310 parasites to six antimalarials: chloroquine (CQ), mefloquine (MQ), quinine (QN), PPQ, artesunate (ATS), and DHA. Geometric mean IC50s (GMIC50s) for all drugs (except PPQ) were significantly higher in Pursat and Preah Vihear than in Ratanakiri (P ≤ 0.001). An increased copy number of P. falciparum mdr1 (pfmdr1), an MQ resistance marker, was more prevalent in Pursat and Preah Vihear than in Ratanakiri and was associated with higher GMIC50s for MQ, QN, ATS, and DHA. An increased copy number of a chromosome 5 region (X5r), a candidate PPQ resistance marker, was detected in Pursat but was not associated with reduced susceptibility to PPQ. The ex vivo IC50 and pfmdr1 copy number are important tools in the surveillance of multidrug-resistant (MDR) parasites in Cambodia. While MDR P. falciparum is prevalent in western and northern Cambodia, there is no evidence for PPQ resistance, suggesting that DHA-PPQ treatment failures result mainly from ART resistance.
Collapse
|
47
|
Fitness Consequences of Plasmodium falciparum pfmdr1 Polymorphisms Inferred from Ex Vivo Culture of Ugandan Parasites. Antimicrob Agents Chemother 2013; 57:4245-4251. [PMID: 23796921 DOI: 10.1128/aac.00161-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/14/2013] [Indexed: 01/15/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) gene impact sensitivity to multiple antimalarials. In Africa, polymorphisms at N86Y and D1246Y are common and have various impacts on sensitivity to different drugs. To gain insight into the fitness consequences of these polymorphisms, we cultured parasites isolated from children with malaria in Tororo, Uganda, where the multiplicity of infection is high, and used pyrosequencing to follow polymorphism prevalences in culture over time. Of 71 cultures, parasites in 69 were successfully analyzed at N86Y and parasites in 68 were successfully analyzed at D1246Y over 3 to 36 days of culture. For position 86, the sequences of 39/69 (56.5%) parasites remained stable (>90% prevalence over 2 to 17 time points), with 82.1% of these being stable for the 86Y mutation. For position 1246, the sequences of 31/68 (45.6%) parasites remained stable, with 64.5% of these being stable for the wild-type D1246 sequence (P = 0.0002 for comparison of stable mutant genotypes for the two alleles). Defining allele selection as a ≥15% change in prevalence between the first and last samples assessed, for position 86, 11 samples showed selection, with selection toward 86Y occurring in 72.7% of alleles; for position 1246, 14 samples showed selection, with selection toward D1246 occurring in 64.3% of alleles (P = 0.11 for comparison of selection of mutations at the two alleles). Among the 7 samples with selection at both alleles, 5 showed selection for both 86Y and D1246. Overall, consistent trends in the direction of selection were seen, although differences were not statistically significant. Our results suggest fitness advantages for parasites with the pfmdr1 86Y mutation and wild-type D1246, highlighting the complex interplay between drug resistance and fitness in malaria parasites. (This study has been registered at ClinicalTrials.gov under registration no. NCT00948896 and NCT00993031.).
Collapse
|
48
|
Miotto O, Almagro-Garcia J, Manske M, MacInnis B, Campino S, Rockett KA, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Duong S, Nguon C, Chuor CM, Saunders D, Se Y, Lon C, Fukuda MM, Amenga-Etego L, Hodgson AVO, Asoala V, Imwong M, Takala-Harrison S, Nosten F, Su XZ, Ringwald P, Ariey F, Dolecek C, Hien TT, Boni MF, Thai CQ, Amambua-Ngwa A, Conway DJ, Djimdé AA, Doumbo OK, Zongo I, Ouedraogo JB, Alcock D, Drury E, Auburn S, Koch O, Sanders M, Hubbart C, Maslen G, Ruano-Rubio V, Jyothi D, Miles A, O’Brien J, Gamble C, Oyola SO, Rayner JC, Newbold CI, Berriman M, Spencer CCA, McVean G, Day NP, White NJ, Bethell D, Dondorp AM, Plowe CV, Fairhurst RM, Kwiatkowski DP. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 2013; 45:648-55. [PMID: 23624527 PMCID: PMC3807790 DOI: 10.1038/ng.2624] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/04/2013] [Indexed: 11/09/2022]
Abstract
We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.
Collapse
Affiliation(s)
- Olivo Miotto
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jacob Almagro-Garcia
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Magnus Manske
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Bronwyn MacInnis
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Susana Campino
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Kirk A Rockett
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Jennifer M Anderson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Socheat Duong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Char Meng Chuor
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Youry Se
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Phnom Penh, Cambodia
| | - Chantap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Phnom Penh, Cambodia
| | - Mark M Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
- Armed Forces Health Surveillance Center, Silver Spring MD 20904, USA
| | | | | | | | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Shannon Takala-Harrison
- Howard Hughes Medical Institute, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Shoklo Malaria Research Unit, Mae Sot, Tak 63110, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Frédéric Ariey
- Unité d’Immunologie Moléculaire des Parasites, Institut Pasteur, Paris 75015, France
| | - Christiane Dolecek
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Maciej F Boni
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Cao Quang Thai
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | - David J Conway
- MRC Laboratories, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Abdoulaye A Djimdé
- Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Mali
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouést, Bobo-Dioulasso, Burkina Faso
| | - Jean-Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouést, Bobo-Dioulasso, Burkina Faso
| | - Daniel Alcock
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Eleanor Drury
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territories 0811, Australia
| | - Oliver Koch
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gareth Maslen
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Valentin Ruano-Rubio
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Dushyanth Jyothi
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Alistair Miles
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - John O’Brien
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Chris Gamble
- Department of Statistics, University of Oxford, Oxford, OX1 3TG, UK
| | - Samuel O Oyola
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chris I Newbold
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chris CA Spencer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Delia Bethell
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Christopher V Plowe
- Howard Hughes Medical Institute, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Rick M Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dominic P Kwiatkowski
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
49
|
Guler JL, Freeman DL, Ahyong V, Patrapuvich R, White J, Gujjar R, Phillips MA, DeRisi J, Rathod PK. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications. PLoS Pathog 2013; 9:e1003375. [PMID: 23717205 PMCID: PMC3662640 DOI: 10.1371/journal.ppat.1003375] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes. Malaria parasites kill up to a million people around the world every year. Emergence of resistance to drugs remains a key obstacle against elimination of malaria. In the laboratory, parasites can efficiently acquire resistance to experimental antimalarials by changing DNA at the target locus. This happens efficiently even for an antimalarial that the parasite has never encountered in a clinical setting. In this study, we formally demonstrate how parasites achieve this feat: first, individual parasites in a population of millions randomly amplify large regions of DNA between short sequence repeats of adenines (A) or thymines (T) that are peppered throughout the malaria parasite genome. The rare lucky parasite that amplifies DNA coding for the target of the antimalarial, along with dozens of its neighboring genes, gains an evolutionary advantage and survives. In a second step, to withstand increasing drug pressure and to achieve higher levels of resistance, each parasite line makes additional copies of this region. This second expansion does not rely on the random A/T-based DNA rearrangements but, instead, a more precise amplification mechanism that retains the unique signature of co-amplified genes created earlier in each parasite. Generation of multiple copies of the target genes in the parasite genome may be the beginning of other beneficial changes for the parasite, including the future acquisition of mutations.
Collapse
Affiliation(s)
- Jennifer L. Guler
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Daniel L. Freeman
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Vida Ahyong
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Rapatbhorn Patrapuvich
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ramesh Gujjar
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joseph DeRisi
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pradipsinh K. Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
50
|
Heinberg A, Siu E, Stern C, Lawrence EA, Ferdig MT, Deitsch KW, Kirkman LA. Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum. Mol Microbiol 2013; 88:702-12. [PMID: 23347134 DOI: 10.1111/mmi.12162] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2013] [Indexed: 11/29/2022]
Abstract
Resistance to antimalarials targeting the folate pathway is widespread. GTP-cyclohydrolase (gch1), the first enzyme in this pathway, exhibits extensive copy number variation (CN) in parasite isolates from areas with a history of longstanding antifolate use. Increased CN of gch1 is associated with a greater number of point mutations in enzymes targeted by the antifolates, pyrimethamine and sulphadoxine. While these observations suggest that increases in gch1 CN are an adaptation to drug pressure, changes in CN have not been experimentally demonstrated to directly alter drug susceptibility. To determine if changes in gch1 expression alone modify pyrimethamine sensitivity, we manipulated gch1 CN in several parasite lines to test the effect on drug sensitivity. We report that increases in gch1 CN alter pyrimethamine resistance in most parasites lines. However we find evidence of a detrimental effect of very high levels of gch1 overexpression in parasite lines with high endogenous levels of gch1 expression, revealing the importance of maintaining balance in the folate pathway and implicating changes in gch1 expression in preserving proper metabolic flux. This work expands our understanding of parasite adaptation to drug pressure and provides a possible mechanism for how specific mutations become fixed within parasite populations.
Collapse
Affiliation(s)
- Adina Heinberg
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|