1
|
Zhao Z, Yang T, Xiang G, Zhang S, Cai Y, Zhong G, Pu J, Shen C, Zeng J, Chen C, Huang B. A novel small RNA PhaS contributes to polymyxin B-heteroresistance in carbapenem-resistant Klebsiella pneumoniae. Emerg Microbes Infect 2024; 13:2366354. [PMID: 38979571 PMCID: PMC11238654 DOI: 10.1080/22221751.2024.2366354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tingting Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shebin Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yimei Cai
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Guosheng Zhong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Jones SU, Kee BP, Chew CH, Yeo CC, Chua KH, Puah SM. Differential expression of small RNAs in biofilm-producing clinical methicillin-susceptible Staphylococcus aureus recovered from human urine. Heliyon 2024; 10:e39634. [PMID: 39506957 PMCID: PMC11538773 DOI: 10.1016/j.heliyon.2024.e39634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Bacterial small RNAs (sRNAs) play crucial roles in coordinating gene regulatory networks in various physiological processes, including biofilm formation. In this study, RNA sequencing was performed on biofilm (n = 4) and planktonic (n = 4) cells harvested at 10 h (pre-stationary phase of biofilm development) to identify biofilm-associated sRNAs in human methicillin-susceptible Staphylococcus aureus (MSSA) recovered from urine isolate. A total of 56 highly expressed sRNAs were identified with 15 overlapping sRNA genes (srn_9348, sprD, sRNA205, sRNA288, srn_2467, Sau-25, srn_2468, sRNA260, sRNA200, RsaE, sRNA397, Teg55, Teg60, RsaX05 and Teg140). Further validation through RT-qPCR analysis of nine sRNAs revealed that srn_9348 and sRNA260 were significantly expressed in the biofilm cells of urine sample. Both sRNAs were predicted to interact with mRNA genes including intracellular adhesin A (icaA) and host factor protein (hfq) involved in biofilm formation via cis-acting and trans-acting using CopraRNA analysis. Therefore, both sRNAs merit further investigations via reverse genetic approaches to elucidate their mechanism of translational regulation. In summary, the transcriptomic analysis conducted in this study offers new insights into the potential regulatory roles of sRNAs in MSSA biofilm development within the urinary environment.
Collapse
Affiliation(s)
- Sherry Usun Jones
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, 20400, Kuala Terengganu, Terengganu, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Wu W, Pang CNI, Mediati DG, Tree JJ. The functional small RNA interactome reveals targets for the vancomycin-responsive sRNA RsaOI in vancomycin-tolerant Staphylococcus aureus. mSystems 2024; 9:e0097123. [PMID: 38534138 PMCID: PMC11019875 DOI: 10.1128/msystems.00971-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Small RNAs have been found to control a broad range of bacterial phenotypes including tolerance to antibiotics. Vancomycin tolerance in multidrug resistance Staphylococcus aureus is correlated with dysregulation of small RNAs although their contribution to antibiotic tolerance is poorly understood. RNA-RNA interactome profiling techniques are expanding our understanding of sRNA-mRNA interactions in bacteria; however, determining the function of these interactions for hundreds of sRNA-mRNA pairs is a major challenge. At steady-state, protein and mRNA abundances are often highly correlated and lower than expected protein abundance may indicate translational repression of an mRNA. To identify sRNA-mRNA interactions that regulate mRNA translation, we examined the correlation between gene transcript abundance, ribosome occupancy, and protein levels. We used the machine learning technique self-organizing maps (SOMs) to cluster genes with similar transcription and translation patterns and identified a cluster of mRNAs that appeared to be post-transcriptionally repressed. By integrating our clustering with sRNA-mRNA interactome data generated in vancomycin-tolerant S. aureus by RNase III-CLASH, we identified sRNAs that may be mediating translational repression. We have confirmed sRNA-dependant post-transcriptional repression of several mRNAs in this cluster. Two of these interactions are mediated by RsaOI, a sRNA that is highly upregulated by vancomycin. We demonstrate the regulation of HPr and the cell-wall autolysin Atl. These findings suggest that RsaOI coordinates carbon metabolism and cell wall turnover during vancomycin treatment. IMPORTANCE The emergence of multidrug-resistant Staphylococcus aureus (MRSA) is a major public health concern. Current treatment is dependent on the efficacy of last-line antibiotics like vancomycin. The most common cause of vancomycin treatment failure is strains with intermediate resistance or tolerance that arise through the acqusition of a diverse repertoire of point mutations. These strains have been shown to altered small RNA (sRNA) expression in response to antibiotic treatment. Here, we have used a technique termed RNase III-CLASH to capture sRNA interactions with their target mRNAs. To understand the function of these interactions, we have looked at RNA and protein abundance for mRNAs targeted by sRNAs. Messenger RNA and protein levels are generally well correlated and we use deviations from this correlation to infer post-transcriptional regulation and the function of individual sRNA-mRNA interactions. Using this approach we identify mRNA targets of the vancomycin-induced sRNA, RsaOI, that are repressed at the translational level. We find that RsaOI represses the cell wall autolysis Atl and carbon transporter HPr suggestion a link between vancomycin treatment and suppression of cell wall turnover and carbon metabolism.
Collapse
Affiliation(s)
- Winton Wu
- School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia
| | | | - Daniel G. Mediati
- School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia
| | - Jai Justin Tree
- School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Kenesheva ST, Taukobong S, Shilov SV, Kuznetsova TV, Jumagaziyeva AB, Karpenyuk TA, Reva ON, Ilin AI. The Effect of Three Complexes of Iodine with Amino Acids on Gene Expression of Model Antibiotic Resistant Microorganisms Escherichia coli ATCC BAA-196 and Staphylococcus aureus ATCC BAA-39. Microorganisms 2023; 11:1705. [PMID: 37512878 PMCID: PMC10383335 DOI: 10.3390/microorganisms11071705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
1. BACKGROUND Iodine is a broad-spectrum antimicrobial disinfectant for topical application. Recent studies have shown promising results on the applicability of an iodine-containing complex, FS-1, against antibiotic-resistant pathogens. It was hypothesized that the antimicrobial activity of iodine-containing complexes may be modulated by the organic moiety of the complex, i.e., amino acids. 2. METHODS Gene regulation and metabolic alterations were studied in two model multidrug-resistant microorganisms, Staphylococcus aureus ATCC BAA-39, and Escherichia coli ATCC BAA-196, treated with three complexes containing iodine and three different amino acids: glycine, L-alanine, and L-isoleucine. The bacterial cultures were exposed to sub-lethal concentrations of the complexes in the lagging and logarithmic growth phases. Gene regulation was studied by total RNA sequencing and differential gene expression analysis. 3. RESULTS The central metabolism of the treated bacteria was affected. An analysis of the regulation of genes involved in stress responses suggested the disruption of cell wall integrity, DNA damage, and oxidative stress in the treated bacteria. 4. CONCLUSIONS Previous studies showed that the application of iodine-containing complexes, such as FS-1, serves as a supplement to common antibiotics and can be a promising way to combat antibiotic-resistant pathogens. Current results shed light on possible mechanisms of this action by disrupting the cell wall barriers and imposing oxidative stress. It was also found that the effect of the complexes on metabolic pathways varied in the tested microorganisms depending on the organic moiety of the complexes and the growth phase when the complexes had been applied.
Collapse
Affiliation(s)
- Sabina T Kenesheva
- Scientific Center for Anti-Infectious Drugs, Almaty 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Setshaba Taukobong
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Sergey V Shilov
- Scientific Center for Anti-Infectious Drugs, Almaty 050060, Kazakhstan
| | | | | | - Tatyana A Karpenyuk
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Oleg N Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Aleksandr I Ilin
- Scientific Center for Anti-Infectious Drugs, Almaty 050060, Kazakhstan
| |
Collapse
|
5
|
Al Ali A, Alsulami J, Aubee JI, Idowu A, Tomlinson BR, Felton EA, Jackson JK, Kennedy SJ, Torres NJ, Shaw LN, Thompson KM. Staphylococcus aureus SigS Induces Expression of a Regulatory Protein Pair That Modulates Its mRNA Stability. J Bacteriol 2023; 205:e0039222. [PMID: 37255480 PMCID: PMC10294688 DOI: 10.1128/jb.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
SigS is the sole extracytoplasmic function sigma factor in Staphylococcus aureus and is necessary for virulence, immune evasion, and adaptation to toxic chemicals and environmental stressors. Despite the contribution of SigS to a myriad of critical phenotypes, the downstream effectors of SigS-dependent pathogenesis, immune evasion, and stress adaptation remain elusive. To address this knowledge gap, we analyzed the S. aureus transcriptome following transient overexpression of SigS. We identified a bicistronic transcript, upregulated 1,000-fold, containing two midsized genes, each containing single domains of unknown function (DUFs). We renamed these genes SigS-regulated orfA (sroA) and SigS-regulated orfB (sroB). We demonstrated that SigS regulation of the sroAB operon is direct by using in vitro transcription analysis. Using Northern blot analysis, we also demonstrated that SroA and SroB have opposing autoregulatory functions on the transcriptional architecture of the sigS locus, with SroA stimulating SigS mRNA levels and SroB stimulating s750 (SigS antisense) levels. We hypothesized that these opposing regulatory effects were due to a direct interaction. We subsequently demonstrated a direct interaction between SroA and SroB using an in vivo surrogate genetics approach via bacterial adenylate cyclase-based two-hybrid (BACTH) analysis. We demonstrated that the SroA effect on SigS is at the posttranscriptional level of mRNA stability, highlighting a mechanism likely used by S. aureus to tightly control SigS levels. Finally, we demonstrate that the sroAB locus promotes virulence in a murine pneumonia model of infection. IMPORTANCE SigS is necessary for S. aureus virulence, immune evasion, and adaptation to chemical and environmental stressors. These processes are critically important for the ability of S. aureus to cause disease. However, the SigS-dependent transcriptome has not been identified, hindering our ability to identify downstream effectors of SigS that contribute to these pathogenic and adaptive phenotypes. Here, we identify a regulatory protein pair that is a major direct target of SigS, known as SroA and SroB. SroA also acts to stimulate SigS expression at the posttranscriptional level of RNA turnover, providing insight into intrinsically low levels of SigS. The discovery of SroA and SroB increases our understanding of SigS and the S. aureus pathogenesis process.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Jamilah Alsulami
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Joseph I. Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ayotimofe Idowu
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, USA
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Emily A. Felton
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jessica K. Jackson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Sarah J. Kennedy
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Nathanial J. Torres
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Karl M. Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
6
|
Transcriptome analysis of sRNA responses to four different antibiotics in Pseudomonas aeruginosa PAO1. Microb Pathog 2022; 173:105865. [DOI: 10.1016/j.micpath.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
7
|
Gao L, Ma X. Transcriptome Analysis of Acinetobacter baumannii in Rapid Response to Subinhibitory Concentration of Minocycline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16095. [PMID: 36498165 PMCID: PMC9741440 DOI: 10.3390/ijerph192316095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The increasing emergence of multidrug-resistant Acinetobacter baumannii brings great threats to public health. Minocycline is a kind of semisynthetic derivative of the antibacterial drug tetracycline and is often used to treat infections caused by multidrug-resistant A. baumannii with other antibiotics. However, minocycline-resistant A. baumannii appears constantly. To rapidly explore the response of A. baumannii to minocycline stress, RNA-seq was carried out to compare the difference in the transcriptome of A. baumannii ATCC19606 in the presence or absence of minocycline. The results showed that 25 genes were differentially expressed, including 10 downregulated genes and 15 upregulated genes, and 24 sRNA were upregulated and 24 were downregulated based on the filter criteria (Log2FC > 1 or <−1 and FDR < 0.05). RtcB family protein and ABC transporter ATP-binding protein were upregulated by 2.6- and 11.3-fold, and molecular chaperone GroES, chaperonin GroL, class C beta-lactamase ADC-158, amino acid ABC transporter permease, and APC family permease were downregulated by at least two-fold in the presence of half-MIC minocycline. The differentially expressed genes are mainly involved in the stress response, the GroES/GroEL chaperonin system, and transport metabolic pathways. sRNA 1248 was significantly upregulated, and sRNA 1767, 5182, and 6984 were downregulated in a rapid response to minocycline. These results provide insights into the adaptive mechanism of A. baumannii to minocycline.
Collapse
Affiliation(s)
- Lili Gao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaochun Ma
- Experimental Animal Center, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
8
|
Lemenze A, Mittal N, Perryman AL, Daher SS, Ekins S, Occi J, Ahn YM, Wang X, Russo R, Patel JS, Daugherty RM, Wood DO, Connell N, Freundlich JS. Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022; 8:1280-1290. [PMID: 35748568 PMCID: PMC9912140 DOI: 10.1021/acsinfecdis.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Alexander Lemenze
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Department of Pathology, Immunology, and Laboratory Medicine, Rutgers University - New Jersey Medical School, Cancer Center Building, 205 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Nisha Mittal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Bristol Myers Squibb, 1 Squibb Drive, Building 85 Room A-WS216D, New Brunswick, New Jersey 08901, United States
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Repare Therapeutics, 7171 Rue Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada
| | - Samer S. Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Ambrx, 10975 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, North Carolina 27526, United States; Present Address: Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| | - James Occi
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue, New Brunswick, New Jersey 08901, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Riccardo Russo
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jimmy S. Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365-A Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Robin M. Daugherty
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, United States
| | - David O. Wood
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, United States
| | - Nancy Connell
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: U.S. National Academies of Science, Engineering and Medicine, 500 5th Street NW, Washington, District of Columbia 20002, United States
| | - Joel S. Freundlich
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens and Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| |
Collapse
|
9
|
Forecasting Staphylococcus aureus Infections Using Genome-Wide Association Studies, Machine Learning, and Transcriptomic Approaches. mSystems 2022; 7:e0037822. [PMID: 35862809 PMCID: PMC9426533 DOI: 10.1128/msystems.00378-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human and animal pathogen, colonizing diverse ecological niches within its hosts. Predicting whether an isolate will infect a specific host and its subsequent clinical fate remains unknown. In this study, we investigated the S. aureus pangenome using a curated set of 356 strains, spanning a wide range of hosts, origins, and clinical display and antibiotic resistance profiles. We used genome-wide association study (GWAS) and random forest (RF) algorithms to discriminate strains based on their origins and clinical sources. Here, we show that the presence of sak and scn can discriminate strains based on their host specificity, while other genes such as mecA are often associated with virulent outcomes. Both GWAS and RF indicated the importance of intergenic regions (IGRs) and coding DNA sequence (CDS) but not sRNAs in forecasting an outcome. Additional transcriptomic analyses performed on the most prevalent clonal complex 8 (CC8) clonal types, in media mimicking nasal colonization or bacteremia, indicated three RNAs as potential RNA markers to forecast infection, followed by 30 others that could serve as infection severity predictors. Our report shows that genetic association and transcriptomics are complementary approaches that will be combined in a single analytical framework to improve our understanding of bacterial pathogenesis and ultimately identify potential predictive molecular markers. IMPORTANCE Predicting the outcome of bacterial colonization and infections, based on extensive genomic and transcriptomic data from a given pathogen, would be of substantial help for clinicians in treating and curing patients. In this report, genome-wide association studies and random forest algorithms have defined gene combinations that differentiate human from animal strains, colonization from diseases, and nonsevere from severe diseases, while it revealed the importance of IGRs and CDS, but not small RNAs (sRNAs), in anticipating an outcome. In addition, transcriptomic analyses performed on the most prevalent clonal types, in media mimicking either nasal colonization or bacteremia, revealed significant differences and therefore potent RNA markers. Overall, the use of both genomic and transcriptomic data in a single analytical framework can enhance our understanding of bacterial pathogenesis.
Collapse
|
10
|
Menard G, Silard C, Suriray M, Rouillon A, Augagneur Y. Thirty Years of sRNA-Mediated Regulation in Staphylococcus aureus: From Initial Discoveries to In Vivo Biological Implications. Int J Mol Sci 2022; 23:ijms23137346. [PMID: 35806357 PMCID: PMC9266662 DOI: 10.3390/ijms23137346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is a widespread livestock and human pathogen that colonizes diverse microenvironments within its host. Its adaptation to the environmental conditions encountered within humans relies on coordinated gene expression. This requires a sophisticated regulatory network, among which regulatory RNAs (usually called sRNAs) have emerged as key players over the last 30 years. In S. aureus, sRNAs regulate target genes at the post-transcriptional level through base–pair interactions. The functional characterization of a subset revealed that they participate in all biological processes, including virulence, metabolic adaptation, and antibiotic resistance. In this review, we report 30 years of S. aureus sRNA studies, from their discovery to the in-depth characterizations of some of them. We also discuss their actual in vivo contribution, which is still lagging behind, and their place within the complex regulatory network. These shall be key aspects to consider in order to clearly uncover their in vivo biological functions.
Collapse
Affiliation(s)
- Guillaume Menard
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Chloé Silard
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Marie Suriray
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Astrid Rouillon
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Yoann Augagneur
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
- Correspondence: ; Tel.: +33-223234631
| |
Collapse
|
11
|
Mediati DG, Wong JL, Gao W, McKellar S, Pang CNI, Wu S, Wu W, Sy B, Monk IR, Biazik JM, Wilkins MR, Howden BP, Stinear TP, Granneman S, Tree JJ. RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3'UTR required for intermediate vancomycin resistance. Nat Commun 2022; 13:3558. [PMID: 35732665 PMCID: PMC9217812 DOI: 10.1038/s41467-022-31177-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart McKellar
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sylvania Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna M Biazik
- Electron Microscopy Unit, University of New South Wales, Kensington, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sander Granneman
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
12
|
McKellar SW, Ivanova I, Arede P, Zapf RL, Mercier N, Chu LC, Mediati DG, Pickering AC, Briaud P, Foster RG, Kudla G, Fitzgerald JR, Caldelari I, Carroll RK, Tree JJ, Granneman S. RNase III CLASH in MRSA uncovers sRNA regulatory networks coupling metabolism to toxin expression. Nat Commun 2022; 13:3560. [PMID: 35732654 PMCID: PMC9217828 DOI: 10.1038/s41467-022-31173-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen responsible for significant human morbidity and mortality. Post-transcriptional regulation by small RNAs (sRNAs) has emerged as an important mechanism for controlling virulence. However, the functionality of the majority of sRNAs during infection is unknown. To address this, we performed UV cross-linking, ligation, and sequencing of hybrids (CLASH) in MRSA to identify sRNA-RNA interactions under conditions that mimic the host environment. Using a double-stranded endoribonuclease III as bait, we uncovered hundreds of novel sRNA-RNA pairs. Strikingly, our results suggest that the production of small membrane-permeabilizing toxins is under extensive sRNA-mediated regulation and that their expression is intimately connected to metabolism. Additionally, we also uncover an sRNA sponging interaction between RsaE and RsaI. Taken together, we present a comprehensive analysis of sRNA-target interactions in MRSA and provide details on how these contribute to the control of virulence in response to changes in metabolism.
Collapse
Affiliation(s)
- Stuart W McKellar
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Ivayla Ivanova
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Pedro Arede
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Rachel L Zapf
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Noémie Mercier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000, Strasbourg, France
| | - Liang-Cui Chu
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Amy C Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, UK
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Robert G Foster
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, UK
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000, Strasbourg, France
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
- The Infectious and Tropical Disease Institute, Ohio University, Athens, OH, 45701, USA
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
13
|
Subramanian D, Natarajan J. Leveraging big data bioinformatics approaches to extract knowledge from Staphylococcus aureus public omics data. Crit Rev Microbiol 2022; 49:391-413. [PMID: 35468027 DOI: 10.1080/1040841x.2022.2065905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is a notorious pathogen posing challenges in the medical industry due to drug resistance and biofilm formation. The horizon of knowledge on S. aureus pathogenesis has expanded with the advancement of data-driven bioinformatics techniques. Mining information from sequenced genomes and their expression data is an economic approach that alleviates wastage of resources and redundancy in experiments. The current review covers how big data bioinformatics has been used in the analysis of S. aureus from publicly available -omics data to uncover mechanisms of infection and inhibition. Particularly, advances in the past two decades in biomarker discovery, host responses, phenotype identification, consolidation of information, and drug development are discussed highlighting the challenges and shortcomings. Overall, the review summarizes the diverse aspects of scrupulous re-analysis of S. aureus proteomic and transcriptomic expression datasets retrieved from public repositories in terms of the efforts taken, benefits offered, and follow-up actions. The detailed review thus serves as a reference and aid for (i) Computational biologists by briefing the approaches utilized for bacterial omics re-analysis concerning S. aureus and (ii) Experimental biologists by elucidating the potential of bioinformatics in biological research to generate reliable postulates in a prompt and economical manner.
Collapse
Affiliation(s)
- Devika Subramanian
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| |
Collapse
|
14
|
徐 丽, 刘 姗, 王 敏, 刘 芳, 张 容, 张 凯. [Regulatory role of small RNA srn821978 in mutacin IV expression in Streptococcus mutans]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1725-1732. [PMID: 34916201 PMCID: PMC8685694 DOI: 10.12122/j.issn.1673-4254.2021.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To analyze the role of small RNA srn821798 in posttranscriptional regulation of mutacin IV expression in Streptococcus mutans. METHODS The potential target genes of srn821978 were predicted using RNAhybrid, RNAPredator and IntaRNA. We collected 10 Streptococcus mutans (S.muans) strains with high expression of mutacin IV and another 10 S.muans strains that did not express mutacin IV screened by inhibition zone test, and the expression levels of srn821798 and the candidate target genes in these strains were detected by qPCR. Using synthesized mimics and inhibitors of srn821798, we constructed S.muans strains with high or low srn821798 expression via electroporation based on the standard strain of S.muans UA159, and analyzed the expression levels of srn821798 and its candidate target genes in these strains. We also examined the binding ability of srn821798 to its target gene sepM using electrophoresis and a dual- luciferase reporter system. RESULTS The expression levels of the candidate target genes of srn821798 including sepM, comD, comE, nlmA and nlmB were significantly higher while the expression level of srn821798 was significantly lower in clinical S.muans strains with high expression of mutacin IV than in those without mutacin IV expression (P < 0.05). Although the expression levels of the candidate target genes in strains with up- regulated or down- regulated srn821798 expression did not differ significantly from those in the standard strain, the expression level of sepM showed a trend of differential distribution, and srn821798 was predicted to have a strong binding ability to sepM action site. CONCLUSION srn821798 may play a regulatory role in the expression of mutacin IV in S.muans, but the underlying mechanism remains to be explored.
Collapse
Affiliation(s)
- 丽 徐
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 姗姗 刘
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 敏 王
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital of Bengbu Medical College, Bengbu233040, China
| | - 芳 刘
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 容秀 张
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 凯 张
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| |
Collapse
|
15
|
Dynamic changes of inflammatory response and oxidative stress induced by methicillin-resistant Staphylococcus aureus in mice. Eur J Clin Microbiol Infect Dis 2021; 41:79-86. [PMID: 34562152 DOI: 10.1007/s10096-021-04349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
This study is to analyze the dynamic changes of inflammation and oxidative stress in mice infected with MRSA and to provide experimental basis for clinically formulating reasonable treatment plans. We established a model of MRSA infection in mice, detected the fluctuations in the concentration of proinflammatory cytokines and oxidative stress factors with time, and combined with the results of microscopic examination of tissue sections to explain the infection in vivo caused by MRSA. The results showed that on the 1st, 3rd, and 7th day of MRSA infection, the number of leukocytes and eosinophils decreased at first and then increased, monocytes increased continuously, and neutrophils and basophils decreased. At the same time, the levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α increased. The concentration of glutathione peroxide decreased, and the oxidative metabolites increased. Tissue sections also showed that inflammation and oxidative stress occurred in mice. It is obvious that MRSA infection can lead to significant inflammation and oxidative stress. Therefore, while treating MRSA infection, attention should be paid to the levels of inflammation and oxidative stress in different periods to achieve better treatment effects.
Collapse
|
16
|
Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens. Front Microbiol 2021; 12:719977. [PMID: 34447363 PMCID: PMC8383071 DOI: 10.3389/fmicb.2021.719977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression is under the control of a large set of molecules acting at multiple levels. In addition to the transcription factors (TFs) already known to be involved in global regulation of gene expression, small regulatory RNAs (sRNAs) are emerging as major players in gene regulatory networks, where they allow environmental adaptation and fitness. Developments in high-throughput screening have enabled their detection in the entire bacterial kingdom. These sRNAs influence a plethora of biological processes, including but not limited to outer membrane synthesis, metabolism, TF regulation, transcription termination, virulence, and antibiotic resistance and persistence. Almost always noncoding, they regulate target genes at the post-transcriptional level, usually through base-pair interactions with mRNAs, alone or with the help of dedicated chaperones. There is growing evidence that sRNA-mediated mechanisms of actions are far more diverse than initially thought, and that they go beyond the so-called cis- and trans-encoded classifications. These molecules can be derived and processed from 5' untranslated regions (UTRs), coding or non-coding sequences, and even from 3' UTRs. They usually act within the bacterial cytoplasm, but recent studies showed sRNAs in extracellular vesicles, where they influence host cell interactions. In this review, we highlight the various functions of sRNAs in bacterial pathogens, and focus on the increasing examples of widely diverse regulatory mechanisms that might compel us to reconsider what constitute the sRNA.
Collapse
Affiliation(s)
- Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Yoann Augagneur
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| |
Collapse
|
17
|
Prezza G, Ryan D, Mädler G, Reichardt S, Barquist L, Westermann AJ. Comparative genomics provides structural and functional insights into Bacteroides RNA biology. Mol Microbiol 2021; 117:67-85. [PMID: 34379855 DOI: 10.1111/mmi.14793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of the RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homologue to have an RNA-related function. We apply an in-silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions, and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic co-conservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Gohar Mädler
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Sun Y, Meng L, Zhang Y, Zhao D, Lin Y. The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research. Curr Stem Cell Res Ther 2021; 16:66-73. [PMID: 32436832 DOI: 10.2174/1574888x15666200521084417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Barrientos L, Mercier N, Lalaouna D, Caldelari I. Assembling the Current Pieces: The Puzzle of RNA-Mediated Regulation in Staphylococcus aureus. Front Microbiol 2021; 12:706690. [PMID: 34367109 PMCID: PMC8334554 DOI: 10.3389/fmicb.2021.706690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023] Open
Abstract
The success of the major opportunistic human Staphylococcus aureus relies on the production of numerous virulence factors, which allow rapid colonization and dissemination in any tissues. Indeed, regulation of its virulence is multifactorial, and based on the production of transcriptional factors, two-component systems (TCS) and small regulatory RNAs (sRNAs). Advances in high-throughput sequencing technologies have unveiled the existence of hundreds of potential RNAs with regulatory functions, but only a fraction of which have been validated in vivo. These discoveries have modified our thinking and understanding of bacterial physiology and virulence fitness by placing sRNAs, alongside transcriptional regulators, at the center of complex and intertwined regulatory networks that allow S. aureus to rapidly adapt to the environmental cues present at infection sites. In this review, we describe the recently acquired knowledge of characterized regulatory RNAs in S. aureus that are associated with metal starvation, nutrient availability, stress responses and virulence. These findings highlight the importance of sRNAs for the comprehension of S. aureus infection processes while raising questions about the interplay between these key regulators and the pathways they control.
Collapse
Affiliation(s)
- Laura Barrientos
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Noémie Mercier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| |
Collapse
|
20
|
da Cunha BR, Zoio P, Fonseca LP, Calado CRC. Technologies for High-Throughput Identification of Antibiotic Mechanism of Action. Antibiotics (Basel) 2021; 10:565. [PMID: 34065815 PMCID: PMC8151116 DOI: 10.3390/antibiotics10050565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
There are two main strategies for antibiotic discovery: target-based and phenotypic screening. The latter has been much more successful in delivering first-in-class antibiotics, despite the major bottleneck of delayed Mechanism-of-Action (MOA) identification. Although finding new antimicrobial compounds is a very challenging task, identifying their MOA has proven equally challenging. MOA identification is important because it is a great facilitator of lead optimization and improves the chances of commercialization. Moreover, the ability to rapidly detect MOA could enable a shift from an activity-based discovery paradigm towards a mechanism-based approach. This would allow to probe the grey chemical matter, an underexplored source of structural novelty. In this study we review techniques with throughput suitable to screen large libraries and sufficient sensitivity to distinguish MOA. In particular, the techniques used in chemical genetics (e.g., based on overexpression and knockout/knockdown collections), promoter-reporter libraries, transcriptomics (e.g., using microarrays and RNA sequencing), proteomics (e.g., either gel-based or gel-free techniques), metabolomics (e.g., resourcing to nuclear magnetic resonance or mass spectrometry techniques), bacterial cytological profiling, and vibrational spectroscopy (e.g., Fourier-transform infrared or Raman scattering spectroscopy) were discussed. Ultimately, new and reinvigorated phenotypic assays bring renewed hope in the discovery of a new generation of antibiotics.
Collapse
Affiliation(s)
- Bernardo Ribeiro da Cunha
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
| | - Paulo Zoio
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Luís P. Fonseca
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
| | - Cecília R. C. Calado
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| |
Collapse
|
21
|
Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O'Brien‐Simpson NM, Hill AF, Stinear TP, Kaparakis‐Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021; 10:e12080. [PMID: 33815695 PMCID: PMC8015888 DOI: 10.1002/jev2.12080] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host.
Collapse
Affiliation(s)
- Natalie J. Bitto
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Lesley Cheng
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ella L. Johnston
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Rishi Pathirana
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Thanh Kha Phan
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ivan K. H. Poon
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Neil M. O'Brien‐Simpson
- Centre for Oral Health ResearchMelbourne Dental SchoolBio21 InstituteThe University of MelbourneParkvilleVictoria3010Australia
| | - Andrew F. Hill
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty InstituteUniversity of MelbourneParkvilleVictoria3010Australia
| | - Maria Kaparakis‐Liaskos
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| |
Collapse
|
22
|
Dejoies L, Le Neindre K, Reissier S, Felden B, Cattoir V. Distinct expression profiles of regulatory RNAs in the response to biocides in Staphylococcus aureus and Enterococcus faecium. Sci Rep 2021; 11:6892. [PMID: 33767282 PMCID: PMC7994832 DOI: 10.1038/s41598-021-86376-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the study was to characterize the antimicrobial activity of clinically-relevant biocides (chlorhexidine digluconate, benzalkonium chloride, PVP-iodine and triclosan) and to determine the sRNA expression profiles under biocide exposure in two major bacterial opportunistic pathogens, Enterococcus faecium and Staphylococcus aureus. In vitro activities were evaluated against S. aureus HG003 and E. faecium Aus0004. We determined MIC, MBC, sub-inhibitory concentrations (SIC) and growth curves under SIC conditions. sRNA expression study under SIC exposure of biocides was performed by RT-qPCR on 3 sRNAs expressed in S. aureus (RNAIII, SprD and SprX) and the first 9 sRNAs identified as expressed in E. faecium. MICs were higher against E. faecium than for S. aureus. Growth curves under increasing biocide concentrations highlighted two types of bactericidal activity: "on/off" effect for chlorhexidine, benzalkonium chloride, PVP-iodine and a "concentration-dependent" activity for triclosan. Exposure to biocide SICs led to an alteration of several sRNA expression profiles, mostly repressed. The distinct biocide activity profiles must be evaluated with other compounds and bacterial species to enrich the prediction of resistance risks associated with biocide usage. Biocide exposure induces various sRNA-mediated responses in both S. aureus and E. faecium, and further investigations are needed to decipher sRNA-driven regulatory networks.
Collapse
Affiliation(s)
- Loren Dejoies
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France
| | - Killian Le Neindre
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France
| | - Sophie Reissier
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France
| | - Brice Felden
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France.
| | - Vincent Cattoir
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France.
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France.
- National Reference Center for Antimicrobial Resistance (Lab 'Enterococci'), Rennes, France.
| |
Collapse
|
23
|
Comparison of Transcriptional Responses and Metabolic Alterations in Three Multidrug-Resistant Model Microorganisms, Staphylococcus aureus ATCC BAA-39, Escherichia coli ATCC BAA-196, and Acinetobacter baumannii ATCC BAA-1790, on Exposure to Iodine-Containing Nano-micelle Drug FS-1. mSystems 2021; 6:6/2/e01293-20. [PMID: 33727401 PMCID: PMC8547003 DOI: 10.1128/msystems.01293-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iodine is one of the oldest antimicrobial agents. Until now, there have been no reports on acquiring resistance to iodine. Recent studies showed promising results on application of iodine-containing nano-micelles, FS-1, against antibiotic-resistant pathogens as a supplement to antibiotic therapy. The mechanisms of the action, however, remain unclear. The aim of this study was to perform a holistic analysis and comparison of gene regulation in three phylogenetically distant multidrug-resistant reference strains representing pathogens associated with nosocomial infections from the ATCC culture collection: Escherichia coli BAA-196, Staphylococcus aureus BAA-39, and Acinetobacter baumannii BAA-1790. These cultures were treated by a 5-min exposure to sublethal concentrations of the iodine-containing drug FS-1 applied in the late lagging phase and the middle of the logarithmic growth phase. Complete genome sequences of these strains were obtained in the previous studies. Gene regulation was studied by total RNA extraction and Ion Torrent sequencing followed by mapping the RNA reads against the reference genome sequences and statistical processing of read counts using the DESeq2 algorithm. It was found that the treatment of bacteria with FS-1 profoundly affected the expression of many genes involved in the central metabolic pathways; however, alterations of the gene expression profiles were species specific and depended on the growth phase. Disruption of respiratory electron transfer membrane complexes, increased penetrability of bacterial cell walls, and osmotic and oxidative stresses leading to DNA damage were the major factors influencing the treated bacteria.IMPORTANCE Infections caused by antibiotic-resistant bacteria threaten public health worldwide. Combinatorial therapy in which antibiotics are administered together with supplementary drugs improving susceptibility of pathogens to the regular antibiotics is considered a promising way to overcome this problem. An induction of antibiotic resistance reversion by the iodine-containing nano-micelle drug FS-1 has been reported recently. This drug is currently under clinical trials in Kazakhstan against multidrug-resistant tuberculosis. The effects of released iodine on metabolic and regulatory processes in bacterial cells remain unexplored. The current work provides an insight into gene regulation in the antibiotic-resistant nosocomial reference strains treated with iodine-containing nanoparticles. This study sheds light on unexplored bioactivities of iodine and the mechanisms of its antibacterial effect when applied in sublethal concentrations. This knowledge will aid in the future design of new drugs against antibiotic-resistant infections.
Collapse
|
24
|
Joshi B, Singh B, Nadeem A, Askarian F, Wai SN, Johannessen M, Hegstad K. Transcriptome Profiling of Staphylococcus aureus Associated Extracellular Vesicles Reveals Presence of Small RNA-Cargo. Front Mol Biosci 2021; 7:566207. [PMID: 33521050 PMCID: PMC7838569 DOI: 10.3389/fmolb.2020.566207] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial extracellular vesicles (EVs) have a vital role in bacterial pathogenesis. However, to date, the small RNA-cargo of EVs released by the opportunistic pathogen Staphylococcus aureus has not been characterized. Here, we shed light on the association of small RNAs with EVs secreted by S. aureus MSSA476 cultured in iron-depleted bacteriologic media supplemented with a subinhibitory dosage of vancomycin to mimic infection condition. Confocal microscopy analysis on intact RNase-treated EVs indicated that RNA is associated with EV particles. Transcriptomic followed by bioinformatics analysis of EV-associated RNA revealed the presence of potential gene regulatory small RNAs and high levels of tRNAs. Among the EV-associated enriched small RNAs were SsrA, RsaC and RNAIII. Our finding invites new insights into the potential role of EV-associated RNA as a modulator of host-pathogen interaction.
Collapse
Affiliation(s)
- Bishnu Joshi
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bhupender Singh
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aftab Nadeem
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Fatemeh Askarian
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway.,Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sun Nyunt Wai
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mona Johannessen
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| |
Collapse
|
25
|
Mediati DG, Wu S, Wu W, Tree JJ. Networks of Resistance: Small RNA Control of Antibiotic Resistance. Trends Genet 2020; 37:35-45. [PMID: 32951948 DOI: 10.1016/j.tig.2020.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
The golden age of antibiotics has passed, and the threat of untreatable antimicrobial resistant infections is now a reality for many individuals. Understanding how bacteria resist antimicrobial treatment and regulate gene expression in response to antibiotics is an important step towards combating resistance. In this review we focus on a ubiquitous class of bacterial gene regulators termed regulatory small RNAs (sRNAs) and how they contribute to antimicrobial resistance and tolerance. Small RNAs have notable roles in modulating the composition of the bacterial envelope, and through these functions control intrinsic antimicrobial resistance in many human pathogens. Recent technical advances that allow profiling of the 'sRNA interactome' have revealed a complex post-transcriptional network of sRNA interactions that can be used to identify network hubs and regulatory bottlenecks. Sequence-specific inhibition of these sRNAs with programmable RNA-targeting therapeutics may present avenues for treating antimicrobial resistant pathogens or resensitizing to our current antibiotics.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sylvania Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Maertens L, Leys N, Matroule JY, Van Houdt R. The Transcriptomic Landscape of Cupriavidus metallidurans CH34 Acutely Exposed to Copper. Genes (Basel) 2020; 11:E1049. [PMID: 32899882 PMCID: PMC7563307 DOI: 10.3390/genes11091049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria are increasingly used for biotechnological applications such as bioremediation, biorecovery, bioproduction, and biosensing. The development of strains suited for such applications requires a thorough understanding of their behavior, with a key role for their transcriptomic landscape. We present a thorough analysis of the transcriptome of Cupriavidus metallidurans CH34 cells acutely exposed to copper by tagRNA-sequencing. C. metallidurans CH34 is a model organism for metal resistance, and its potential as a biosensor and candidate for metal bioremediation has been demonstrated in multiple studies. Several metabolic pathways were impacted by Cu exposure, and a broad spectrum of metal resistance mechanisms, not limited to copper-specific clusters, was overexpressed. In addition, several gene clusters involved in the oxidative stress response and the cysteine-sulfur metabolism were induced. In total, 7500 transcription start sites (TSSs) were annotated and classified with respect to their location relative to coding sequences (CDSs). Predicted TSSs were used to re-annotate 182 CDSs. The TSSs of 2422 CDSs were detected, and consensus promotor logos were derived. Interestingly, many leaderless messenger RNAs (mRNAs) were found. In addition, many mRNAs were transcribed from multiple alternative TSSs. We observed pervasive intragenic TSSs both in sense and antisense to CDSs. Antisense transcripts were enriched near the 5' end of mRNAs, indicating a functional role in post-transcriptional regulation. In total, 578 TSSs were detected in intergenic regions, of which 35 were identified as putative small regulatory RNAs. Finally, we provide a detailed analysis of the main copper resistance clusters in CH34, which include many intragenic and antisense transcripts. These results clearly highlight the ubiquity of noncoding transcripts in the CH34 transcriptome, many of which are putatively involved in the regulation of metal resistance.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium;
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
| |
Collapse
|
27
|
Melior H, Maaß S, Li S, Förstner KU, Azarderakhsh S, Varadarajan AR, Stötzel M, Elhossary M, Barth-Weber S, Ahrens CH, Becher D, Evguenieva-Hackenberg E. The Leader Peptide peTrpL Forms Antibiotic-Containing Ribonucleoprotein Complexes for Posttranscriptional Regulation of Multiresistance Genes. mBio 2020; 11:e01027-20. [PMID: 32546623 PMCID: PMC7298713 DOI: 10.1128/mbio.01027-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Bacterial ribosome-dependent attenuators are widespread posttranscriptional regulators. They harbor small upstream open reading frames (uORFs) encoding leader peptides, for which no functions in trans are known yet. In the plant symbiont Sinorhizobium meliloti, the tryptophan biosynthesis gene trpE(G) is preceded by the uORF trpL and is regulated by transcription attenuation according to tryptophan availability. However, trpLE(G) transcription is initiated independently of the tryptophan level in S. meliloti, thereby ensuring a largely tryptophan-independent production of the leader peptide peTrpL. Here, we provide evidence for a tryptophan-independent role of peTrpL in trans We found that peTrpL increases the resistance toward tetracycline, erythromycin, chloramphenicol, and the flavonoid genistein, which are substrates of the major multidrug efflux pump SmeAB. Coimmunoprecipitation with a FLAG-peTrpL suggested smeR mRNA, which encodes the transcription repressor of smeABR, as a peptide target. Indeed, upon antibiotic exposure, smeR mRNA was destabilized and smeA stabilized in a peTrpL-dependent manner, showing that peTrpL acts in the differential regulation of smeABR Furthermore, smeR mRNA was coimmunoprecipitated with peTrpL in antibiotic-dependent ribonucleoprotein (ARNP) complexes, which, in addition, contained an antibiotic-induced antisense RNA complementary to smeRIn vitro ARNP reconstitution revealed that the above-mentioned antibiotics and genistein directly support complex formation. A specific region of the antisense RNA was identified as a seed region for ARNP assembly in vitro Altogether, our data show that peTrpL is involved in a mechanism for direct utilization of antimicrobial compounds in posttranscriptional regulation of multiresistance genes. Importantly, this role of peTrpL in resistance is conserved in other AlphaproteobacteriaIMPORTANCE Leader peptides encoded by transcription attenuators are widespread small proteins that are considered nonfunctional in trans We found that the leader peptide peTrpL of the soil-dwelling plant symbiont Sinorhizobium meliloti is required for differential, posttranscriptional regulation of a multidrug resistance operon upon antibiotic exposure. Multiresistance achieved by efflux of different antimicrobial compounds ensures survival and competitiveness in nature and is important from both evolutionary and medical points of view. We show that the leader peptide forms antibiotic- and flavonoid-dependent ribonucleoprotein complexes (ARNPs) for destabilization of smeR mRNA encoding the transcription repressor of the major multidrug resistance operon. The seed region for ARNP assembly was localized in an antisense RNA, whose transcription is induced by antimicrobial compounds. The discovery of ARNP complexes as new players in multiresistance regulation opens new perspectives in understanding bacterial physiology and evolution and potentially provides new targets for antibacterial control.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Konrad U Förstner
- ZB MED-Information Centre for Life Sciences, University of Cologne, Cologne, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Muhammad Elhossary
- ZB MED-Information Centre for Life Sciences, University of Cologne, Cologne, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Christian H Ahrens
- Agroscope & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
28
|
Du J, Zhang W, Li XH, Li YJ. Bioinformatics analysis of small RNAs in Helicobacter pylori and the role of NAT‑67 under tinidazole treatment. Mol Med Rep 2020; 22:1227-1234. [PMID: 32626984 PMCID: PMC7339756 DOI: 10.3892/mmr.2020.11232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Helicobacter pylori (Hp) infection is a major cause of gastrointestinal disease. However, the pathogenesis of gastric mucosa injury by Hp has remained elusive. Small non-coding RNA (sRNA) is a type of widespread RNA in prokaryotic organisms and regulates bacterial growth, reproduction and virulence. In the present study, Hp sRNA profiles were generated to reveal the sequences and possible functions of sRNA by bioinformatics analysis. The role of sRNA in tinidazole (TNZ) treatment was also explored. Total sRNAs of HP26695 were sequenced using an Illumina HiSeq2000. Detected Tags were then compared with a known sRNA database to build an sRNA profile. Reverse transcription-quantitative (RT-q)PCR products were sequenced directly and agarose gel electrophoresis was used to identify NAT-67 and 5′ureB-sRNA in HP. Furthermore, HP was treated with TNZ for 6, 12 and 24 h. The bacterial concentration was measured, the expression of NAT-67, 5′ureB-sRNA and ceuE was determined by RT-qPCR and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) production were detected. A total of 163 sRNA tags were predicted in Hp through bioinformatics analysis. Among them, 35 tags were evolutionarily aconserved in different Hp strains. By target prediction, it was indicated that certain candidate sRNAs were associated with bacterial oxidative stress, virulence and chemotaxis. It was also observed that NAT-67 and 5′ureB-sRNA were downregulated in TNZ-treated HP. TNZ treatment inhibited the growth of Hp, which was accompanied by downregulation of ceuE and SOD activity, as well as upregulation of ROS. RNA sequencing and bioinformatics are valuable in predicting the expression profile and function of sRNA in HP. sRNA-targeted genes may be associated with virulence, oxidative stress and chemokines. Downregulation of NAT-67 by TNZ may be involved in Hp oxidative stress regulation, which may comprise one of the mechanisms of the antibacterial effects of TNZ.
Collapse
Affiliation(s)
- Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wang Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
29
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
30
|
Comparative Transcriptomic and Functional Assessments of Linezolid-Responsive Small RNA Genes in Staphylococcus aureus. mSystems 2020; 5:5/1/e00665-19. [PMID: 31911464 PMCID: PMC6946794 DOI: 10.1128/msystems.00665-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are RNA molecules that can have important regulatory roles across gene expression networks. There is a growing understanding of the scope and potential breadth of impact of sRNAs on global gene expression patterns in Staphylococcus aureus, a major human pathogen. Here, transcriptome comparisons were used to examine the roles of sRNA genes with a potential role in the response of S. aureus to antibiotic exposure. Although no measurable impact on key bacterial phenotypes was observed after deleting each of 18 sRNAs identified by these comparisons, this research is significant because it underscores the subtle modes of action of these sometimes abundant molecules within the bacterium. Staphylococcus aureus contains a repertoire of at least 50 and possibly 500 small RNAs (sRNAs). The functions of most sRNAs are not understood, although some are known to respond to environmental changes, including the presence of antibiotics. Here, in an effort to better understand the roles of sRNAs in the context of antibiotic exposure, we took a clinical methicillin-resistant S. aureus (MRSA) isolate and separately deleted eight sRNAs that were significantly upregulated in response to the last-line antibiotic linezolid as revealed by transcriptome sequencing (RNA-seq) comparisons. We also deleted an additional 10 sRNAs that were either highly expressed or previously found to respond to antibiotic exposure. There were no significant changes for any of the 18 mutants in a variety of phenotypic screens, including MIC screens, growth competition assays in the presence of linezolid, biofilm formation, and resistance to whole-blood killing. These data suggest sRNA functional redundancy, because despite their high expression levels upon antibiotic exposure, individual sRNA genes do not affect readily observable bacterial phenotypes. The sRNA transcriptional changes we measured during antibiotic exposure might also reflect sRNA “indifference,” that is, a general stress response not specifically related to sRNA function. These data underscore the need for sensitive assays and new approaches to try and decipher the functions of sRNA genes in S. aureus. IMPORTANCE Bacterial small RNAs (sRNAs) are RNA molecules that can have important regulatory roles across gene expression networks. There is a growing understanding of the scope and potential breadth of impact of sRNAs on global gene expression patterns in Staphylococcus aureus, a major human pathogen. Here, transcriptome comparisons were used to examine the roles of sRNA genes with a potential role in the response of S. aureus to antibiotic exposure. Although no measurable impact on key bacterial phenotypes was observed after deleting each of 18 sRNAs identified by these comparisons, this research is significant because it underscores the subtle modes of action of these sometimes abundant molecules within the bacterium.
Collapse
|
31
|
Augagneur Y, King AN, Germain-Amiot N, Sassi M, Fitzgerald JW, Sahukhal GS, Elasri MO, Felden B, Brinsmade SR. Analysis of the CodY RNome reveals RsaD as a stress-responsive riboregulator of overflow metabolism in Staphylococcus aureus. Mol Microbiol 2019; 113:309-325. [PMID: 31696578 DOI: 10.1111/mmi.14418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 11/28/2022]
Abstract
In Staphylococcus aureus, the transcription factor CodY modulates the expression of hundreds of genes, including most virulence factors, in response to the availability of key nutrients like GTP and branched-chain amino acids. Despite numerous studies examining how CodY controls gene expression directly or indirectly, virtually nothing is known about the extent to which CodY exerts its effect through small regulatory RNAs (sRNAs). Herein, we report the first set of sRNAs under the control of CodY. We reveal that staphylococcal sRNA RsaD is overexpressed >20-fold in a CodY-deficient strain in three S. aureus clinical isolates and in S. epidermidis. We validated the CodY-dependent regulation of rsaD and demonstrated that CodY directly represses rsaD expression by binding the promoter. Using a combination of molecular techniques, we show that RsaD posttranscriptionally regulates alsS (acetolactate synthase) mRNA and enzyme levels. We further show that RsaD redirects carbon overflow metabolism, contributing to stationary phase cell death during exposure to weak acid stress. Taken together, our data delineate a role for CodY in controlling sRNA expression in a major human pathogen and indicate that RsaD may integrate nutrient depletion and other signals to mount a response to physiological stress experienced by S. aureus in diverse environments.
Collapse
Affiliation(s)
- Yoann Augagneur
- INSERM U1230 Biochimie Pharmaceutique, Université de Rennes I, Rennes, France
| | - Alyssa N King
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Mohamed Sassi
- INSERM U1230 Biochimie Pharmaceutique, Université de Rennes I, Rennes, France
| | | | - Gyan S Sahukhal
- Center of Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Mohamed O Elasri
- Center of Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Brice Felden
- INSERM U1230 Biochimie Pharmaceutique, Université de Rennes I, Rennes, France
| | | |
Collapse
|
32
|
Subramanian D, Bhasuran B, Natarajan J. Genomic analysis of RNA-Seq and sRNA-Seq data identifies potential regulatory sRNAs and their functional roles in Staphylococcus aureus. Genomics 2019; 111:1431-1446. [DOI: 10.1016/j.ygeno.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
|
33
|
Germain-Amiot N, Augagneur Y, Camberlein E, Nicolas I, Lecureur V, Rouillon A, Felden B. A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells. Nucleic Acids Res 2019; 47:1759-1773. [PMID: 30544243 PMCID: PMC6393315 DOI: 10.1093/nar/gky1257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial type I toxin–antitoxin (TA) systems are widespread, and consist of a stable toxic peptide whose expression is monitored by a labile RNA antitoxin. We characterized Staphylococcus aureus SprA2/SprA2AS module, which shares nucleotide similarities with the SprA1/SprA1AS TA system. We demonstrated that SprA2/SprA2AS encodes a functional type I TA system, with the cis-encoded SprA2AS antitoxin acting in trans to prevent ribosomal loading onto SprA2 RNA. We proved that both TA systems are distinct, with no cross-regulation between the antitoxins in vitro or in vivo. SprA2 expresses PepA2, a toxic peptide which internally triggers bacterial death. Conversely, although PepA2 does not affect bacteria when it is present in the extracellular medium, it is highly toxic to other host cells such as polymorphonuclear neutrophils and erythrocytes. Finally, we showed that SprA2AS expression is lowered during osmotic shock and stringent response, which indicates that the system responds to specific triggers. Therefore, the SprA2/SprA2AS module is not redundant with SprA1/SprA1AS, and its PepA2 peptide exhibits an original dual mode of action against bacteria and host cells. This suggests an altruistic behavior for S. aureus in which clones producing PepA2 in vivo shall die as they induce cytotoxicity, thereby promoting the success of the community.
Collapse
Affiliation(s)
- Noëlla Germain-Amiot
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Yoann Augagneur
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Emilie Camberlein
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Irène Nicolas
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Valérie Lecureur
- Université de Rennes 1, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, 35000 Rennes, France
| | - Astrid Rouillon
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
34
|
Subramanian D, Natarajan J. RNA-seq analysis reveals resistome genes and signalling pathway associated with vancomycin-intermediate Staphylococcus aureus. Indian J Med Microbiol 2019; 37:173-185. [PMID: 31745016 DOI: 10.4103/ijmm.ijmm_18_311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Vancomycin-intermediate Staphylococcus aureus remains one of the most prevalent multidrug-resistant pathogens causing healthcare infections that are difficult to treat. Aims This study uses a comprehensive computational analysis to systematically investigate various gene expression profiles of resistant and sensitive S. aureus strains on exposure to antibiotics. Settings and Design The transcriptional changes leading to the development of multiple antibiotic resistance were examined by an integrative analysis of nine differential expression experiments under selected conditions of vancomycin-intermediate and -sensitive strains for four different antibiotics using publicly available RNA-Seq datasets. Materials and Methods For each antibiotic, three experimental conditions for expression analysis were selected to identify those genes that are particularly involved in the development of resistance. The results were further scrutinised to generate a resistome that can be analysed for their role in the development or adaptation to antibiotic resistance. Results The 99 genes in the resistome are then compiled to create a multiple drug resistome of 25 known and novel genes identified to play a part in antibiotic resistance. The inclusion of agr genes and associated virulence factors in the identified resistome supports the role of agr quorum sensing system in multiple drug resistance. In addition, enrichment analysis also identified the kyoto encyclopedia of genes and genomes (KEGG) pathways - quorum sensing and two-component system pathways - in the resistome gene set. Conclusion Further studies on understanding the role of the identified molecular targets such as SAA6008_00181, SAA6008_01127, agrA, agrC and coa in adapting to the pressure of antibiotics at sub-inhibitory concentrations can help in learning the molecular mechanisms causing resistance to the pathogens as well as finding other potential therapeutics.
Collapse
Affiliation(s)
- Devika Subramanian
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeyakumar Natarajan
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
35
|
Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI. Omics of antimicrobials and antimicrobial resistance. Expert Opin Drug Discov 2019; 14:455-468. [DOI: 10.1080/17460441.2019.1588880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vladislav M. Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Olga A. Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Alexey A. Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Leonid L. Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Rustam I. Aminov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
- Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
36
|
Bronesky D, Desgranges E, Corvaglia A, François P, Caballero CJ, Prado L, Toledo-Arana A, Lasa I, Moreau K, Vandenesch F, Marzi S, Romby P, Caldelari I. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J 2019; 38:e99363. [PMID: 30760492 PMCID: PMC6418428 DOI: 10.15252/embj.201899363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023] Open
Abstract
Pathogenic bacteria must rapidly adapt to ever-changing environmental signals resulting in metabolism remodeling. The carbon catabolite repression, mediated by the catabolite control protein A (CcpA), is used to express genes involved in utilization and metabolism of the preferred carbon source. Here, we have identified RsaI as a CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations. When glucose is consumed, RsaI represses translation initiation of mRNAs encoding a permease of glucose uptake and the FN3K enzyme that protects proteins against damage caused by high glucose concentrations. RsaI also binds to the 3' untranslated region of icaR mRNA encoding the transcriptional repressor of exopolysaccharide production and to sRNAs induced by the uptake of glucose-6 phosphate or nitric oxide. Furthermore, RsaI expression is accompanied by a decreased transcription of genes involved in carbon catabolism pathway and an activation of genes involved in energy production, fermentation, and nitric oxide detoxification. This multifaceted RNA can be considered as a metabolic signature when glucose becomes scarce and growth is arrested.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anna Corvaglia
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | | | - Laura Prado
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-GN, Navarra, Spain
| | | | - Inigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Karen Moreau
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
The Small RNA Teg41 Regulates Expression of the Alpha Phenol-Soluble Modulins and Is Required for Virulence in Staphylococcus aureus. mBio 2019; 10:mBio.02484-18. [PMID: 30723124 PMCID: PMC6428751 DOI: 10.1128/mbio.02484-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The alpha phenol-soluble modulins (αPSMs) are among the most potent toxins produced by Staphylococcus aureus. Their biological role during infection has been studied in detail; however, the way they are produced by the bacterial cell is not well understood. In this work, we identify a small RNA molecule called Teg41 that plays an important role in αPSM production by S. aureus. Teg41 positively influences αPSM production. The importance of Teg41 is highlighted by the fact that a strain containing a deletion in the 3′ end of Teg41 produces significantly less αPSMs and is attenuated for virulence in a mouse abscess model of infection. As the search for new therapeutic strategies to combat S. aureus infection proceeds, Teg41 may represent a novel target. Small RNAs (sRNAs) remain an understudied class of regulatory molecules in bacteria in general and in Gram-positive bacteria in particular. In the major human pathogen Staphylococcus aureus, hundreds of sRNAs have been identified; however, only a few have been characterized in detail. In this study, we investigate the role of the sRNA Teg41 in S. aureus virulence. We demonstrate that Teg41, an sRNA divergently transcribed from the locus that encodes the cytolytic alpha phenol-soluble modulin (αPSM) peptides, plays a critical role in αPSM production. Overproduction of Teg41 leads to an increase in αPSM levels and a corresponding increase in hemolytic activity from S. aureus cells and cell-free culture supernatants. To identify regions of Teg41 important for its function, we performed an in silico RNA-RNA interaction analysis which predicted an interaction between the 3′ end of Teg41 and the αPSM transcript. Deleting a 24-nucleotide region from the S. aureus genome, corresponding to the 3′ end of Teg41, led to a 10-fold reduction in αPSM-dependent hemolytic activity and attenuation of virulence in a murine abscess model of infection. Restoration of hemolytic activity in the Teg41Δ3′ strain was possible by expressing full-length Teg41 in trans. Restoration of hemolytic activity was also possible by expressing the 3′ end of Teg41, suggesting that this region of Teg41 is necessary and sufficient for αPSM-dependent hemolysis. Our results show that Teg41 is positively influencing αPSM production, demonstrating for the first time regulation of the αPSM peptides by an sRNA in S. aureus.
Collapse
|
38
|
Lalaouna D, Desgranges E, Caldelari I, Marzi S. MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus. Methods Enzymol 2018; 612:393-411. [PMID: 30502950 DOI: 10.1016/bs.mie.2018.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive major human pathogen involved in a wide range of human infectious diseases (from minor skin infections to septicemia, endocarditis or toxic shock syndrome). The treatment of S. aureus infections is very challenging due to the emergence of multiple antibiotic-resistant isolates. The high diversity of clinical symptoms caused by S. aureus depends on the precise expression of numerous virulence factors and stress response pathways, which are tightly regulated at every level (transcriptional, posttranscriptional, translational, and posttranslational). During the last two decades, it has become evident that small regulatory RNAs (sRNAs) play a major role in fast adaptive responses, mainly by targeting mRNA translation. sRNAs act as antisense RNAs by forming noncontiguous pairings with their target mRNAs and their mechanisms of action vary according to the interaction site. To obtain a global and detailed view of the regulatory networks involved in the adaptive processes of S. aureus, we have adapted the MAPS approach to get individual sRNA targetomes. We also set up different strategies to validate MAPS results and establish sRNA regulatory activities. As this method has been first developed in Gram-negative bacteria, we provide here a protocol for its application in S. aureus and highlight underlying differences. Finally, we discuss several points that have been and could be further improved and provide a workflow file for the automatic analysis of the sequencing in Galaxy.
Collapse
Affiliation(s)
- David Lalaouna
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| |
Collapse
|
39
|
French S, Coutts BE, Brown ED. Open-Source High-Throughput Phenomics of Bacterial Promoter-Reporter Strains. Cell Syst 2018; 7:339-346.e3. [PMID: 30172841 DOI: 10.1016/j.cels.2018.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/25/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022]
Abstract
Open-source electronics are becoming more prevalent in biological sciences, enabling novel and unique means of data acquisition. Here, we present 3D-printed, open-source tools to acquire fluorescence phenotypes with high temporal resolution. Printed fluorescence imaging boxes (PFIboxes) cost approximately 200 US dollars to assemble, can be placed in incubators or hypoxic chambers, and accurately read high-density colony arrays of microorganisms. We demonstrate the utility of PFIboxes using a time course gene expression approach, examining global Escherichia coli promoter activity using a fluorescent reporter library across a diverse panel of 15 antibiotics, each at several concentrations. Many secondary and indirect effects were observed when E. coli was challenged with various drugs, including increased gene expression in carbon metabolism processes. Further, kinetic data acquisition enabled non-destructive time course gene expression, clustering of which revealed patterns of co-expression. In all, PFIboxes provide an open solution to gene expression, for about 2 US dollars per treatment condition, including technical replicates.
Collapse
Affiliation(s)
- Shawn French
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Brittney E Coutts
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
40
|
Schleimer N, Kaspar U, Drescher M, Seggewiß J, von Eiff C, Proctor RA, Peters G, Kriegeskorte A, Becker K. The Energy-Coupling Factor Transporter Module EcfAA'T, a Novel Candidate for the Genetic Basis of Fatty Acid-Auxotrophic Small-Colony Variants of Staphylococcus aureus. Front Microbiol 2018; 9:1863. [PMID: 30154773 PMCID: PMC6102330 DOI: 10.3389/fmicb.2018.01863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Staphylococcal small-colony variants (SCVs) are invasive and persistent due to their ability to thrive intracellularly and to evade the host immune response. Thus, the course of infections due to this phenotype is often chronic, relapsing, and therapy-refractory. In order to improve treatment of patients suffering from SCV-associated infections, it is of major interest to understand triggers for the development of this phenotype, in particular for strains naturally occurring in clinical settings. Within this study, we comprehensively characterized two different Staphylococcus aureus triplets each consisting of isogenic strains comprising (i) clinically derived SCV phenotypes with auxotrophy for unsaturated fatty acids, (ii) the corresponding wild-types (WTs), and (iii) spontaneous in vitro revertants displaying the normal phenotype (REVs). Comparison of whole genomes revealed that clinical SCV isolates were closely related to their corresponding WTs and REVs showing only seven to eight alterations per genome triplet. However, both SCVs carried a mutation within the energy-coupling factor (ECF) transporter-encoding ecf module (EcfAA’T) resulting in truncated genes. In both cases, these mutations were shown to be naturally restored in the respective REVs. Since ECF transporters are supposed to be essential for optimal bacterial growth, their dysfunction might constitute another mechanism for the formation of naturally occurring SCVs. Another three triplets analyzed revealed neither mutations in the EcfAA’T nor in other FASII-related genes underlining the high diversity of mechanisms leading to the fatty acid-dependent phenotype. This is the first report on the ECF transporter as genetic basis of fatty acid–auxotrophic staphylococcal SCVs.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Mike Drescher
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jochen Seggewiß
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Christof von Eiff
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - André Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
41
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
42
|
Abstract
Noncoding RNAs (ncRNAs) regulating virulence have been identified in most pathogens. This review discusses RNA-mediated mechanisms exploited by bacterial pathogens to successfully infect and colonize their hosts. It discusses the most representative RNA-mediated regulatory mechanisms employed by two intracellular [Listeria monocytogenes and Salmonella enterica serovar Typhimurium (S. Typhimurium)] and two extracellular (Vibrio cholerae and Staphylococcus aureus) bacterial pathogens. We review the RNA-mediated regulators (e.g., thermosensors, riboswitches, cis- and trans-encoded RNAs) used for adaptation to the specific niches colonized by these bacteria (intestine, blood, or the intracellular environment, for example) in the framework of the specific pathophysiological aspects of the diseases caused by these microorganisms. A critical discussion of the newest findings in the field of bacterial ncRNAs shows how examples in model pathogens could pave the way for the discovery of new mechanisms in other medically important bacterial pathogens.
Collapse
Affiliation(s)
- Juan J Quereda
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; , .,Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France.,Institut National de la Recherche Agronomique, USC2020, Paris F-75015, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; , .,Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France.,Institut National de la Recherche Agronomique, USC2020, Paris F-75015, France
| |
Collapse
|
43
|
Le Scornet A, Redder P. Post-transcriptional control of virulence gene expression in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:734-741. [PMID: 29705591 DOI: 10.1016/j.bbagrm.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Opportunistic pathogens have to be ready to change life-style whenever the occasion arises, and therefore need to keep tight control over the expression of their virulence factors. Doubly so for commensal bacteria, such as Staphylococcus aureus, which should avoid harming their hosts when they are in a state of peaceful co-existence. S. aureus carries very few sigma factors to help define the transcriptional programs, but instead uses a plethora of small RNA molecules and RNA-RNA interactions to regulate gene expression post-transcriptionally. The endoribonucleases RNase III and RNase Y contribute to this regulatory diversity, and provide a link to RNA-decay and intra-cellular spatiotemporal control of expression. In this review we describe some of these post-transcriptional mechanisms as well as some of the novel transcriptomic approaches that have been used to find and to study them.
Collapse
Affiliation(s)
- Alexandre Le Scornet
- LMGM, Centre de Biologie Integrative, Paul Sabatier University, 118, Route de Narbonne, 31062 Toulouse, France
| | - Peter Redder
- LMGM, Centre de Biologie Integrative, Paul Sabatier University, 118, Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
44
|
Abstract
The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance.
Collapse
|
45
|
Liu W, Rochat T, Toffano-Nioche C, Le Lam TN, Bouloc P, Morvan C. Assessment of Bona Fide sRNAs in Staphylococcus aureus. Front Microbiol 2018. [PMID: 29515534 PMCID: PMC5826253 DOI: 10.3389/fmicb.2018.00228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial regulatory RNAs have been extensively studied for over a decade, and are progressively being integrated into the complex genetic regulatory network. Transcriptomic arrays, recent deep-sequencing data and bioinformatics suggest that bacterial genomes produce hundreds of regulatory RNAs. However, while some have been authenticated, the existence of the others varies according to strains and growth conditions, and their detection fluctuates with the methodologies used for data acquisition and interpretation. For example, several small RNA (sRNA) candidates are now known to be parts of UTR transcripts. Accurate annotation of regulatory RNAs is a complex task essential for molecular and functional studies. We defined bona fide sRNAs as those that (i) likely act in trans and (ii) are not expressed from the opposite strand of a coding gene. Using published data and our own RNA-seq data, we reviewed hundreds of Staphylococcus aureus putative regulatory RNAs using the DETR'PROK computational pipeline and visual inspection of expression data, addressing the question of which transcriptional signals correspond to sRNAs. We conclude that the model strain HG003, a NCTC8325 derivative commonly used for S. aureus genetic regulation studies, has only about 50 bona fide sRNAs, indicating that these RNAs are less numerous than commonly stated. Among them, about half are associated to the S. aureus sp. core genome and a quarter are possibly expressed in other Staphylococci. We hypothesize on their features and regulation using bioinformatic approaches.
Collapse
Affiliation(s)
- Wenfeng Liu
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Rochat
- VIM, Institut National de la Recherche Agronomique, Université Paris-Saclay, Institut National de la Recherche Agronomique Centre Jouy-en-Josas, Jouy-en-Josas, France
| | - Claire Toffano-Nioche
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thao Nguyen Le Lam
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Claire Morvan
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
46
|
Shin J, Prabhakaran VS, Kim KS. The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microb Pathog 2018; 116:209-214. [PMID: 29407230 DOI: 10.1016/j.micpath.2018.01.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
Multidrug-resistant (MDR) pathogens are currently causing serious problems globally in the medical setting. Improper and extensive usage of antibiotics results in a selective pressure supporting the rise of antibiotic-resistant microbes. Many key cellular bacterial components, including enzymes and small noncoding RNAs (sRNAs), and their involvement in MDR have been well studied, but exploiting such components in eradicating these pathogens requires further study. Delineation of many mechanisms that underpin the known MDR pathways necessitates urgent development of new specific strategies to control the rise of MDR pathogens. Botanical derivatives are comparatively safer than currently used antibiotics and exert multiple therapeutic benefits associated with their high efficacy. Numerous plant-derived compounds display synergistic activity with antibiotics against many MDR pathogens. Such plant derivatives include alkaloids, flavonoids, terpenoids, and tannins. A synthetic biological approach, e.g., metabolic engineering of secondary metabolites, can be utilized to exploit the natural metabolic pathways against MDR microbes. In this review, we focused on the major threats of antibiotic resistance, and the utilization of plant-derived compounds as alternative therapeutic agents to limit the rise of MDR pathogens.
Collapse
Affiliation(s)
- Jonghoon Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Vasantha-Srinivasan Prabhakaran
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
47
|
Chan H, Ho J, Liu X, Zhang L, Wong SH, Chan MT, Wu WK. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review. Infect Drug Resist 2017; 10:521-532. [PMID: 29290689 PMCID: PMC5736357 DOI: 10.2147/idr.s148444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Hung Chan
- Department of Anesthesia and Intensive Care
| | - Jeffery Ho
- Department of Anesthesia and Intensive Care
| | | | - Lin Zhang
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,School of Biomedical Sciences, Faculty of Medicine
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - William Kk Wu
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences
| |
Collapse
|
48
|
Stamatopoulou V, Apostolidi M, Li S, Lamprinou K, Papakyriakou A, Zhang J, Stathopoulos C. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Nucleic Acids Res 2017; 45:10242-10258. [PMID: 28973457 PMCID: PMC5622331 DOI: 10.1093/nar/gkx663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 11/14/2022] Open
Abstract
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators.
Collapse
Affiliation(s)
| | - Maria Apostolidi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | - Katerina Lamprinou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
49
|
French S, Ellis MJ, Coutts BE, Brown ED. Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria. Curr Opin Microbiol 2017; 39:42-47. [PMID: 28957731 DOI: 10.1016/j.mib.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023]
Abstract
In an effort to combat the perpetual emergence of new antibiotic-resistant human pathogens, research in industry and academe aims to find new means of controlling infection. The discovery of new antimicrobial chemicals is not the bottleneck in an era where high-throughput screening rapidly uncovers new bioactive compounds. Rather, the rate-limiting step in antimicrobial discovery pipelines is identifying mechanisms of action (MOA) of bioactive molecules produced by these increasingly large-scale efforts. Chemical genomics has proven to be of high value in providing mechanistic hypotheses for novel bioactive chemical matter. Several techniques fall under this blanket term, including interactions with deletion or transposon libraries, fluorescent or luminescent reporter library profiles, or deep sequencing approaches. Each of these provide unique and complementary outputs, and have high value in generating target lists for chemical screens, or assisting in downstream MOA discovery. We review here the broad usefulness of this technique to aid in MOA determination, to identify targets for new lead molecules, and to expand our mechanistic understanding of existing drugs.
Collapse
Affiliation(s)
- Shawn French
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Michael J Ellis
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Brittney E Coutts
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada.
| |
Collapse
|
50
|
Sinel C, Augagneur Y, Sassi M, Bronsard J, Cacaci M, Guérin F, Sanguinetti M, Meignen P, Cattoir V, Felden B. Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Sci Rep 2017; 7:11067. [PMID: 28894187 PMCID: PMC5593968 DOI: 10.1038/s41598-017-11265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Vancomycin-resistant Enterococcus faecium is a leading cause of hospital-acquired infections and outbreaks. Regulatory RNAs (sRNAs) are major players in adaptive responses, including antibiotic resistance. They were extensively studied in gram-negative bacteria, but less information is available for gram-positive pathogens. No sRNAs are described in E. faecium. We sought to identify a set of sRNAs expressed in vancomycin-resistant E. faecium Aus0004 strain to assess their roles in daptomycin response and resistance. Genomic and transcriptomic analyses revealed a set of 61 sRNA candidates, including 10 that were further tested and validated by Northern and qPCR. RNA-seq was performed with and without subinhibitory concentrations (SICs) of daptomycin, an antibiotic used to treat enterococcal infections. After daptomycin SIC exposure, the expression of 260 coding and srna genes was altered, with 80 upregulated and 180 downregulated, including 51% involved in carbohydrate and transport metabolisms. Daptomycin SIC exposure significantly affected the expression of seven sRNAs, including one experimentally confirmed, sRNA_0160. We studied sRNA expression in isogenic mutants with increasing levels of daptomycin resistance and observed that expression of several sRNAs, including sRNA_0160, was modified in the stepwise mutants. This first genome-wide sRNA identification in E. faecium suggests that some sRNAs are linked to antibiotic stress response and resistance.
Collapse
Affiliation(s)
- Clara Sinel
- University of Caen Normandie, EA4655, Caen, France
| | - Yoann Augagneur
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Mohamed Sassi
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Julie Bronsard
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Margherita Cacaci
- Catholic University of Sacred Heart, Institute of Microbiology, Rome, Italy
| | - François Guérin
- University of Caen Normandie, EA4655, Caen, France.,Caen University Hospital, Department of Clinical Microbiology, Caen, France
| | | | - Pierrick Meignen
- University of Caen Normandie, IUT (department "STID"), Caen, France
| | - Vincent Cattoir
- University of Caen Normandie, EA4655, Caen, France. .,Caen University Hospital, Department of Clinical Microbiology, Caen, France. .,National Reference Center for Antimicrobial Resistance (lab Enterococci), Caen, France. .,Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| | - Brice Felden
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| |
Collapse
|