1
|
AlQadeeb H, Baltazar M, Cazares A, Poonpanichakul T, Kjos M, French N, Kadioglu A, O’Brien M. The Streptococcus agalactiae LytSR two-component regulatory system promotes vaginal colonization and virulence in vivo. Microbiol Spectr 2024; 12:e0197024. [PMID: 39400158 PMCID: PMC11537067 DOI: 10.1128/spectrum.01970-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Streptococcus agalactiae (or group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis globally. To sense and respond to variations in its environment, GBS possesses multiple two-component regulatory systems (TCSs), such as LytSR. Here, we aimed to investigate the role of LytSR in GBS pathogenicity. We generated an isogenic lytS knockout mutant in a clinical GBS isolate and used a combination of phenotypic in vitro assays and in vivo murine models to investigate the contribution of lytS to the colonization and invasive properties of GBS. Deletion of the lytS gene in the GBS chromosome resulted in significantly higher survival rates in mice during sepsis, accompanied by reduced bacterial loads in blood, lung, spleen, kidney, and brain tissues compared to infection with the wild-type strain. In a mouse model of GBS vaginal colonization, we also observed that the lytS knockout mutant was cleared more readily from the vaginal tract compared to its wild-type counterpart. Interestingly, lower levels of proinflammatory cytokines were found in the serum of mice infected with the lytS mutant. Our results demonstrate that the LytSR TCS plays a key role in GBS tissue invasion and pathogenesis, and persistence of mucosal colonization.IMPORTANCEStreptococcus agalactiae (group B Streptococcus, or GBS) is a common commensal of the female urogenital tract and one of WHO's priority pathogens. The bacterium has evolved mechanisms to adapt and survive in its host, many of which are regulated via two-component signal transduction systems (TCSs); however, the exact contributions of TCSs toward GBS pathogenicity remain largely obscure. We have constructed a TCS lytS-deficient mutant in a CC-17 hypervirulent GBS clinical isolate. Using murine models, we showed that LytSR regulatory system is essential for vaginal colonization via promoting biofilm production. We also observed that lytS deficiency led to significantly attenuated virulence properties and lower levels of proinflammatory cytokines in blood. Our findings are of significant importance in that they unveil a previously unreported role for LytSR in GBS and pave the way toward a better understanding of its ability to transition from an innocuous commensal to a deadly pathogen.
Collapse
Affiliation(s)
- Hajar AlQadeeb
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Adrian Cazares
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tiraput Poonpanichakul
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Marie O’Brien
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- ReNewVax Ltd, Liverpool, United Kingdom
| |
Collapse
|
2
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Liu J, Huang T, Xu Z, Mao Y, Soteyome T, Liu G, Qu C, Yuan L, Ma Q, Zhou F, Seneviratne G. Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm 2023; 6:100156. [PMID: 37779859 PMCID: PMC10539642 DOI: 10.1016/j.bioflm.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen, a potential "Super-bug" and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fang Zhou
- The First Affiliated Hospital, Sun Yan-Sen University, Guangzhou, 510080, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| |
Collapse
|
4
|
Lo HY, Long DR, Holmes EA, Penewit K, Hodgson T, Lewis JD, Waalkes A, Salipante SJ. Transposon sequencing identifies genes impacting Staphylococcus aureus invasion in a human macrophage model. Infect Immun 2023; 91:e0022823. [PMID: 37676013 PMCID: PMC10580828 DOI: 10.1128/iai.00228-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.
Collapse
Affiliation(s)
- Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizbeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Li L, Zhang H, Meng D, Yin H. Transcriptomics of Lactobacillus paracasei: metabolism patterns and cellular responses under high-density culture conditions. Front Bioeng Biotechnol 2023; 11:1274020. [PMID: 37901845 PMCID: PMC10601642 DOI: 10.3389/fbioe.2023.1274020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Lactobacillus paracasei has significant potential for development and application in the environmental field, particularly in addressing malodor pollution. This study aims to investigate the cellular response of L. paracasei B1 under high-density culture conditions. The selected strain has previously shown effective deodorizing and bacteriostatic abilities. Transcriptomics techniques are employed to dissect the nutrient metabolism pattern of L. paracasei B1 and its response mechanism under environmental stress. The study characterizes the functions of key differentially expressed genes during growth before and after optimizing the culture conditions. The optimization of fermentation culture conditions provides a suitable growth environment for L. paracasei B1, inducing an enhancement of its phosphotransferase system for sugar source uptake and maintaining high levels of glycolysis and pyruvate metabolism. Consequently, the strain is able to grow and multiply rapidly. Under acid stress conditions, glycolysis and pyruvate metabolism are inhibited, and L. paracasei B1 generates additional energy through aerobic respiration to meet the energy demand. The two-component system and quorum sensing play roles in the response and regulation of L. paracasei B1 to adverse environments. The strain mitigates oxygen stress damage through glutathione metabolism, cysteine and methionine metabolism, base excision repair, and purine and pyrimidine metabolism. Additionally, the strain enhances lysine synthesis, the alanine, aspartate, and glutamate metabolic pathways, and relies on the ABC transport system to accumulate amino acid-compatible solutes to counteract acid stress and osmotic stress during pH regulation. These findings establish a theoretical basis for the further development and application of L. paracasei B1 for its productive properties.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hetian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
6
|
Sionov RV, Banerjee S, Bogomolov S, Smoum R, Mechoulam R, Steinberg D. Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int J Mol Sci 2022; 23:7798. [PMID: 35887146 PMCID: PMC9319909 DOI: 10.3390/ijms23147798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Shreya Banerjee
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Sergei Bogomolov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Reem Smoum
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| |
Collapse
|
7
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
8
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
9
|
Kretschmer D, Breitmeyer R, Gekeler C, Lebtig M, Schlatterer K, Nega M, Stahl M, Stapels D, Rooijakkers S, Peschel A. Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Front Immunol 2021; 12:701093. [PMID: 34552584 PMCID: PMC8451722 DOI: 10.3389/fimmu.2021.701093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Ricarda Breitmeyer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Marco Lebtig
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Katja Schlatterer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Mulugeta Nega
- Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany.,Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daphne Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Peschel
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
10
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
11
|
Cafiso V, Stracquadanio S, Lo Verde F, De Guidi I, Zega A, Pigola G, Stefani S. Genomic and Long-Term Transcriptomic Imprints Related to the Daptomycin Mechanism of Action Occurring in Daptomycin- and Methicillin-Resistant Staphylococcus aureus Under Daptomycin Exposure. Front Microbiol 2020; 11:1893. [PMID: 32922373 PMCID: PMC7456847 DOI: 10.3389/fmicb.2020.01893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
Daptomycin (DAP) is one of the last-resort treatments for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. DAP resistance (DAP-R) is multifactorial and mainly related to cell-envelope modifications caused by single-nucleotide polymorphisms and/or modulation mechanisms of transcription emerging as result of a self-defense process in response to DAP exposure. Nevertheless, the role of these adaptations remains unclear. We aim to investigate the comparative genomics and late post-exponential growth-phase transcriptomics of two DAP-resistant/DAP-susceptible (DAPR/S) methicillin-resistant S. aureus (MRSA) clinical strain pairs to focalize the genomic and long-term transcriptomic fingerprinting and adaptations related to the DAP mechanism of action acquired in vivo under DAP pressure using Illumina whole-genome sequencing (WGS), RNA-seq, bioinformatics, and real-time qPCR validation. Comparative genomics revealed that membrane protein and transcriptional regulator coding genes emerged as shared functional coding-gene clusters harboring mutational events related to the DAP-R onset in a strain-dependent manner. Pairwise transcriptomic enrichment analysis highlighted common and strain pair-dependent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, whereas DAPR/S double-pair cross-filtering returned 53 differentially expressed genes (DEGs). A multifactorial long-term transcriptomic-network characterized DAPR MRSA includes alterations in (i) peptidoglycan biosynthesis, cell division, and cell-membrane (CM) organization genes, as well as a cidB/lytS autolysin genes; (ii) ldh2 involved in fermentative metabolism; (iii) CM-potential perturbation genes; and (iv) oxidative and heat/cold stress response-related genes. Moreover, a D-alanyl–D-alanine decrease in cell-wall muropeptide characterized DAP/glycopeptide cross-reduced susceptibility mechanisms in DAPR MRSA. Our data provide a snapshot of DAPR MRSA genomic and long-term transcriptome signatures related to the DAP mechanism of action (MOA) evidencing that a complex network of genomic changes and transcriptomic adaptations is required to acquire DAP-R.
Collapse
Affiliation(s)
- Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Flavia Lo Verde
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irene De Guidi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Zega
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Pigola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
12
|
The Response of nor and nos Contributes to Staphylococcus aureus Virulence and Metabolism. J Bacteriol 2019; 201:JB.00107-19. [PMID: 30782631 DOI: 10.1128/jb.00107-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCE Staphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.
Collapse
|
13
|
Cosgriff CJ, White CR, Teoh WP, Grayczyk JP, Alonzo F. Control of Staphylococcus aureus Quorum Sensing by a Membrane-Embedded Peptidase. Infect Immun 2019; 87:e00019-19. [PMID: 30833334 PMCID: PMC6479040 DOI: 10.1128/iai.00019-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gram-positive bacteria process and release small peptides, or pheromones, that act as signals for the induction of adaptive traits, including those involved in pathogenesis. One class of small signaling pheromones is the cyclic autoinducing peptides (AIPs), which regulate expression of genes that orchestrate virulence and persistence in a range of microbes, including staphylococci, listeriae, clostridia, and enterococci. In a genetic screen for Staphylococcus aureus secreted virulence factors, we identified an S. aureus mutant containing an insertion in the gene SAUSA300_1984 (mroQ), which encodes a putative membrane-embedded metalloprotease. A ΔmroQ mutant exhibited impaired induction of Toll-like receptor 2-dependent inflammatory responses from macrophages but elicited greater production of the inflammatory cytokine interleukin-1β and was attenuated in a murine skin and soft tissue infection model. The ΔmroQ mutant phenocopies an S. aureus mutant containing a deletion of the accessory gene regulatory system (Agr), wherein both strains have significantly reduced production of secreted toxins and virulence factors but increased surface protein A abundance. The Agr system controls virulence factor gene expression in S. aureus by sensing the accumulation of AIP via the histidine kinase AgrC and the response regulator AgrA. We provide evidence to suggest that MroQ acts within the Agr pathway to facilitate the optimal processing or export of AIP for signal amplification through AgrC/A and induction of virulence factor gene expression. Mutation of MroQ active-site residues significantly reduces AIP signaling and attenuates virulence. Altogether, this work identifies a new component of the Agr quorum-sensing circuit that is critical for the production of S. aureus virulence factors.
Collapse
Affiliation(s)
- Chance J Cosgriff
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Chelsea R White
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Wei Ping Teoh
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
14
|
Characterization of a Two-Component System Transcriptional Regulator, LtdR, That Impacts Group B Streptococcal Colonization and Disease. Infect Immun 2018; 86:IAI.00822-17. [PMID: 29685987 DOI: 10.1128/iai.00822-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is often a commensal bacterium that colonizes healthy adults asymptomatically and is a frequent inhabitant of the vaginal tract in women. However, in immunocompromised individuals, particularly the newborn, GBS may transition to an invasive pathogen and cause serious disease. Despite the use of the currently recommended intrapartum antibiotic prophylaxis for GBS-positive mothers, GBS remains a leading cause of neonatal septicemia and meningitis. To adapt to the various host environments encountered during its disease cycle, GBS possesses multiple two-component regulatory systems (TCSs). Here we investigated the contribution of a transcriptional regulator containing a LytTR domain, LtdR, to GBS pathogenesis. Disruption of the ltdR gene in the GBS chromosome resulted in a significant increase in bacterial invasion into human cerebral microvascular endothelial cells (hCMEC) in vitro as well as the greater penetration of the blood-brain barrier (BBB) and the development of meningitis in vivo Correspondingly, infection of hCMEC with the ΔltdR mutant resulted in increased secretion of the proinflammatory cytokines interleukin-8 (IL-8), CXCL-1, and IL-6. Further, using a mouse model of GBS vaginal colonization, we observed that the ΔltdR mutant was cleared more readily from the vaginal tract and also that infection with the ΔltdR mutant resulted in increased cytokine production from human vaginal epithelial cells. RNA sequencing revealed global transcriptional differences between the ΔltdR mutant and the parental wild-type GBS strain. These results suggest that LtdR regulates many bacterial processes that can influence GBS-host interactions to promote both bacterial persistence and disease progression.
Collapse
|
15
|
Lee GY, Kang KM, Back SH, Baek JY, Kim SH, Park JH, Yang SJ. Adaptations of Vancomycin-Intermediate Sequence Type 72 Methicillin-Resistant Staphylococcus aureus for Daptomycin Nonsusceptibility. Microb Drug Resist 2018; 24:1489-1496. [PMID: 29927700 DOI: 10.1089/mdr.2018.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Korea, the major clonal type of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is sequence type 72 (ST72) with staphylococcal cassette chromosome mec (SCCmec) type IV (ST72-MRSA-IV). In this study, we used a previously well-characterized isogenic pair of ST72 vancomycin (VAN) susceptible-and VAN intermediate-MRSA strains (VSSA303 and VISA072) and several VSSA strains complemented with plasmids expressing single-point mutated genes (dprAG196C, femAF92C, vraRE127K, and vraSRE127K) identified in the VISA strain. Using the strain set, we assessed the (1) susceptibilities to daptomycin (DAP) and cationic antimicrobial peptides (CAMPs), (2) alterations in cell envelope phenotypes, such as cell wall autolysis, surface positive charge, and membrane potential (ΔΨ), (3) transcriptional expression profiles of genes involved in surface charge regulation and changes of ΔΨ, and (4) cytokine stimulation profiles in murine macrophages. The vraRE127K mutation could enhance surface positive charge through mprF- and dltABCD-independent mechanisms with thickened cell wall. However, none of the single-point mutated genes increased DAP resistance. The DAP nonsusceptible (DAP-NS) phenotype observed in VISA072 strain likely resulted from the combined effects of low ΔΨ and increased positive surface charge. These results suggest that physicochemical alterations in cell envelope are involved in the survival response of DAP-NS VISA072 in sites of infections.
Collapse
Affiliation(s)
- Gi Yong Lee
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| | - Kyung Mi Kang
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| | - Seung Hyun Back
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| | - Jin Yang Baek
- 2 Asia Pacific Foundation for Infectious Diseases (APFID) , Seoul, Korea
- 3 Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | - So Hyun Kim
- 2 Asia Pacific Foundation for Infectious Diseases (APFID) , Seoul, Korea
- 3 Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | - Jong-Hwan Park
- 4 Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University , Gwangju, Korea
| | - Soo-Jin Yang
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| |
Collapse
|
16
|
Peng Q, Wu J, Chen X, Qiu L, Zhang J, Tian H, Song F. Disruption of Two-component System LytSR Affects Forespore Engulfment in Bacillus thuringiensis. Front Cell Infect Microbiol 2017; 7:468. [PMID: 29164075 PMCID: PMC5675857 DOI: 10.3389/fcimb.2017.00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory systems (TCSs) play pivotal roles in bacteria sensing many different stimuli from environment. Here, we investigated the role of the LytSR TCS in spore formation in Bacillus thuringiensis (Bt) subsp. kurstaki HD73. lacZ gene fusions revealed that the transcription of the downstream genes, lrgAB, encoding two putative membrane-associated proteins, is regulated by LytSR. The sporulation efficiency of a lytSR mutant was significantly lower than that of wild-type HD73. A confocal microscopic analysis demonstrated that LytSR modulates the process of forespore engulfment. Moreover, the transcription of the lytSR operon is regulated by the mother-cell transcription factor SigE, whereas the transcription of the sporulation gene spoIIP was reduced in the lytSR mutant, as demonstrated with a β-galactosidase activity assay. These results suggest that LytSR modulates forespore engulfment by affecting the transcription of the spoIIP gene in Bt.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaomin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongtao Tian
- Institute of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Fields RN, Roy H. Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances. RNA Biol 2017; 15:480-491. [PMID: 28816600 PMCID: PMC6103681 DOI: 10.1080/15476286.2017.1356980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
tRNA-dependent addition of amino acids to lipids on the outer surface of the bacterial membrane results in decreased effectiveness of antimicrobials such as cationic antimicrobial peptides (CAMPs) that target the membrane, and increased virulence of several pathogenic species. After a brief introduction to CAMPs and the various bacterial resistance mechanisms used to counteract these compounds, this review focuses on recent advances in tRNA-dependent pathways for lipid modification in bacteria. Phenotypes associated with amino acid lipid modifications and regulation of their expression will also be discussed.
Collapse
Affiliation(s)
- Rachel N Fields
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| | - Hervé Roy
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| |
Collapse
|
18
|
Nam EY, Yang SJ, Kim ES, Cho JE, Park KH, Jung SI, Yoon N, Kim DM, Lee CS, Jang HC, Park Y, Lee KS, Kwak YG, Lee JH, Park SY, Hwang JH, Kim M, Song KH, Kim HB. Emergence of Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Clinical Isolates Among Daptomycin-Naive Patients in Korea. Microb Drug Resist 2017; 24:534-541. [PMID: 29863982 DOI: 10.1089/mdr.2017.0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study was conducted to assess emergence of daptomycin-nonsusceptible (DAP-NS) phenotype in DAP-naive patients with invasive Staphylococcus aureus (ISA) infections in Korea. A total of 208 S. aureus clinical isolates were selected from a previous prospective study on ISA infections and evaluated for DAP-NS. Although DAP has never been introduced in Korea, five DAP-NS S. aureus strains (2.4%) were identified among 208 S. aureus strains collected from ISA infections. The DAP-NS phenotype was observed only in methicillin-resistant S. aureus (MRSA) strains, but not in methicillin-susceptible S. aureus strains. One DAP-NS MRSA strain belonged to sequence type 72 (ST72) and four were ST5 MRSA strains, three of which were heteroresistant vancomycin (VAN)-intermediate S. aureus. All these five DAP-NS MRSA strains were from healthcare-associated infections without prior exposure to VAN within 30 days. While the ST72 MRSA strain exhibited DAP-NS phenotype via charge repulsion mechanism, four ST5 DAP-NS S. aureus strains had charge-independent DAP-NS mechanism. None of the five DAP-NS strains displayed significant increase in cell wall thickness, indicating that altered cell wall thickness was not associated with the observed DAP-NS phenotype.
Collapse
Affiliation(s)
- Eun Young Nam
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea.,2 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Soo-Jin Yang
- 3 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Republic of Korea
| | - Eu Suk Kim
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea.,2 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Jeong Eun Cho
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea
| | - Kyung-Hwa Park
- 4 Department of Internal Medicine, Chonnam National University Hospital , Gwangju, Republic of Korea
| | - Sook-In Jung
- 4 Department of Internal Medicine, Chonnam National University Hospital , Gwangju, Republic of Korea
| | - Nara Yoon
- 5 Department of Internal Medicine, Chosun University Hospital , Gwangju, Republic of Korea
| | - Dong-Min Kim
- 5 Department of Internal Medicine, Chosun University Hospital , Gwangju, Republic of Korea
| | - Chang-Seop Lee
- 6 Department of Internal Medicine, Chonbuk National University , Jeonju, Republic of Korea
| | - Hee-Chang Jang
- 7 Department of Internal Medicine, Chonnam National University Hwasun Hospital , Hwasun, Republic of Korea
| | - Yoonseon Park
- 8 Department of Internal Medicine, National Health Insurance Corporation Ilsan Hospital , Goyang, Republic of Korea
| | - Kkot Sil Lee
- 9 Department of Internal Medicine, Myongji Hospital , Goyang, Republic of Korea
| | - Yee Gyung Kwak
- 10 Department of Internal Medicine, Inje University Ilsan Paik Hospital , Goyang, Republic of Korea
| | - Jae Hoon Lee
- 11 Department of Internal Medicine, Wonkwang University Hospital , Iksan, Republic of Korea
| | - Seong Yeon Park
- 12 Department of Internal Medicine, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Joo-Hee Hwang
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea.,2 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Moonsuk Kim
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea.,2 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Kyoung-Ho Song
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea.,2 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Hong Bin Kim
- 1 Department of Internal Medicine, Seoul National University Bundang Hospital , Seongnam, Republic of Korea.,2 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| |
Collapse
|
19
|
Kang KM, Mishra NN, Park KT, Lee GY, Park YH, Bayer AS, Yang SJ. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. J Microbiol 2017; 55:153-159. [PMID: 28120188 DOI: 10.1007/s12275-017-6509-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/28/2022]
Abstract
Daptomycin (DAP) has potent activity in vitro and in vivo against both methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. DAP-resistance (DAP-R) in S. aureus has been mainly observed in MRSA strains, and has been linked to single nucleotide polymorphisms (SNPs) within the mprF gene leading to altered cell membrane (CM) phospholipid (PL) profiles, enhanced positive surface charge, and changes in CM fluidity. The current study was designed to delineate whether these same genotypic and phenotypic perturbations are demonstrated in clinically-derived DAP-R MSSA strains. We used three isogenic DAP-susceptible (DAP-S)/DAP-R strainpairs and compared: (i) presence of mprF SNPs, (ii) temporal expression profiles of the two key determinants (mprF and dltABCD) of net positive surface charge, (iii) increased production of mprF-dependent lysinylated-phosphatidylglycerol (L-PG), (iv) positive surface charge assays, and (v) susceptibility to cationic host defense peptides (HDPs) of neutrophil and platelet origins. Similar to prior data in MRSA, DAP-R (vs DAP-S) MSSA strains exhibited hallmark hot-spot SNPs in mprF, enhanced and dysregulated expression of both mprF and dltA, L-PG overproduction, HDP resistance and enhanced positive surface charge profiles. However, in contrast to most DAP-R MRSA strains, there were no changes in CM fluidity seen. Thus, charge repulsion via mprF-and dlt-mediated enhancement of positive surface charge may be the main mechanism to explain DAP-R in MSSA strains.
Collapse
Affiliation(s)
- Kyoung-Mi Kang
- School of Bioresources and Bioscience, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Nagendra N Mishra
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,The David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kun Taek Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi-Yong Lee
- School of Bioresources and Bioscience, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arnold S Bayer
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,The David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
20
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
21
|
Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl Microbiol Biotechnol 2015; 99:8847-55. [PMID: 26307444 PMCID: PMC4619455 DOI: 10.1007/s00253-015-6926-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) are components of the innate immune system in many species of animals. Their diverse spectrum of activity against microbial pathogens, both as innate defense molecules and immunomodulators, makes them attractive candidates for the development of a new generation of antibiotics. Although the potential immunogenicity of AMPs means they are not suitable for injection and their susceptibility to digestive peptidases is likely to reduce their oral efficacy, they are ideal for topical formulations such as lotions, creams, shampoos, and wound dressings and could therefore be valuable products for the cosmetic industry. In this context, short AMPs (<20 amino acids) lacking disulfide bonds combine optimal antimicrobial activity with inexpensive chemical synthesis and are therefore more compatible with large-scale production and the modifications required to ensure stability, low toxicity, and microbial specificity. Proof-of-concept for the application of AMPs as novel anti-infectives has already been provided in clinical trials. This perspective considers the anti-infective properties of short AMPs lacking disulfide bonds, which are active against dermatologically important microflora. We consider the challenges that need to be addressed to facilitate the prophylactic application of AMPs in personal care products.
Collapse
|
22
|
Xiong YQ, Yang SJ, Tong SYC, Alvarez DN, Mishra NN. The role of Staphylococcal carotenogenesis in resistance to host defense peptides and in vivo virulence in experimental endocarditis model. Pathog Dis 2015; 73:ftv056. [PMID: 26242278 DOI: 10.1093/femspd/ftv056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
The defining hallmark of the newly described species, Staphylococcus argenteus, in comparison to its sister species, S. aureus and S. schweitzeri, is the absence of production of the carotenoid pigment, staphyloxanthin. Staphylococcus argenteus lacks the responsible genetic locus crtOPQMN. We examined the impact of carotenoid synthesis in two non-pigmented S. argenteus strains, MSHR1132 and SCC1165. Following complementation with a plasmid containing the carotenoid operon (pTX-crtOPQMN), compared to wild type, both complemented strains showed substantial carotenoid production, with a resultant increase in cell membrane rigidity. Surprisingly, both crtOPQMN-complemented strains exhibited increased susceptibility to the host defense peptides, LL-37 and hNP-1 in vitro, and reduced virulence in an experimental rabbit endocarditis model.
Collapse
Affiliation(s)
- Yan Q Xiong
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at UCLA Medical Center Torrance, CA 90502, USA David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, 4726 Seodong-daero, Daedeokl-myeon, Anseong-si, Gyeonggi-do 456-756 Republic of Korea
| | - Steven Y C Tong
- Menzies School of Health Research, Charles Darwin University, Darwin 0810, Australia
| | - Danya N Alvarez
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at UCLA Medical Center Torrance, CA 90502, USA
| | - Nagendra N Mishra
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at UCLA Medical Center Torrance, CA 90502, USA David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Patel K, Golemi-Kotra D. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS. F1000Res 2015; 4:79. [PMID: 27127614 PMCID: PMC4830213 DOI: 10.12688/f1000research.6213.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of
Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of
cidABC and
lrgAB operons, the gene products of which are involved in programmed cell death and lysis.
Invivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the
lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the
in vivo observations that regulation of the
lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of
lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS.
Collapse
Affiliation(s)
- Kevin Patel
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| | - Dasantila Golemi-Kotra
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada; Department of Biology, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
24
|
Craney A, Romesberg FE. A putative cro-like repressor contributes to arylomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:3066-74. [PMID: 25753642 PMCID: PMC4432125 DOI: 10.1128/aac.04597-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 01/26/2023] Open
Abstract
Antibiotic-resistant bacteria are a significant public health concern and motivate efforts to develop new classes of antibiotics. One such class of antibiotics is the arylomycins, which target type I signal peptidase (SPase), the enzyme responsible for the release of secreted proteins from their N-terminal leader sequences. Despite the essentiality, conservation, and relative accessibility of SPase, the activity of the arylomycins is limited against some bacteria, including the important human pathogen Staphylococcus aureus. To understand the origins of the limited activity against S. aureus, we characterized the susceptibility of a panel of strains to two arylomycin derivatives, arylomycin A-C16 and its more potent analog arylomycin M131. We observed a wide range of susceptibilities to the two arylomycins and found that resistant strains were sensitized by cotreatment with tunicamycin, which inhibits the first step of wall teichoic acid synthesis. To further understand how S. aureus responds to the arylomycins, we profiled the transcriptional response of S. aureus NCTC 8325 to growth-inhibitory concentrations of arylomycin M131 and found that it upregulates the cell wall stress stimulon (CWSS) and an operon consisting of a putative transcriptional regulator and three hypothetical proteins. Interestingly, we found that mutations in the putative transcriptional regulator are correlated with resistance, and selection for resistance ex vivo demonstrated that mutations in this gene are sufficient for resistance. The results begin to elucidate how S. aureus copes with secretion stress and how it evolves resistance to the inhibition of SPase.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
25
|
Joo HS, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3055-61. [PMID: 25701233 DOI: 10.1016/j.bbamem.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Staphylococci are commensal bacteria living on the epithelial surfaces of humans and other mammals. Many staphylococci, including the dangerous pathogen Staphylococcus aureus, can cause severe disease when they breach the epithelial barrier. Both during their commensal life and during infection, staphylococci need to evade mechanisms of innate host defense, of which antimicrobial peptides (AMPs) play a key role in particular on the skin. Mechanisms that staphylococci have developed to evade the bactericidal activity of AMPs are manifold, comprising repulsion of AMPs via alteration of cell wall and membrane surface charges, proteolytic inactivation, sequestration, and secretion. Furthermore, many staphylococci form biofilms, which represents an additional way of protection from antimicrobial agents, including AMPs. Finally, staphylococci can sense the presence of AMPs by sensor/regulator systems that control many of those resistance mechanisms. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
26
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
27
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
28
|
Community-acquired meticillin-resistant Staphylococcus aureus strain USA300 resists staphylococcal protein A modulation by antibiotics and antimicrobial peptides. Int J Antimicrob Agents 2014; 45:19-24. [PMID: 25450803 DOI: 10.1016/j.ijantimicag.2014.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
Abstract
Community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) causes severe diseases through virulence factors such as staphylococcal protein A (SpA), which favours immune evasion. We have previously shown that antimicrobial peptides (AMPs) and antibiotics decrease SpA expression in CA-MRSA strains. Here we examined the effects of antibiotics and AMPs, alone and in combination, on SpA expression in various CA-MRSA strains. Six S. aureus isolates corresponding to the major worldwide CA-MRSA clones (ST8-USA300, ST80 and ST30) were selected. Strains were cultured to exponential growth phase and were subsequently incubated with antibiotics (tigecycline, linezolid, clindamycin and vancomycin) at 0.25× MIC or with AMPs [human neutrophil peptide (HNP)-1-3] at the LD50, alone and in combination. After 6h, cultures were assessed for spa mRNA by RT-PCR, whilst SpA protein was measured by specific ELISA after 18h. When used alone, antibiotics (clindamycin, linezolid and tigecycline) or HNPs significantly reduced both SpA production and mRNA levels in ST30 and ST80 strains. When used in combination, HNPs and clindamycin, linezolid or tigecycline synergistically reduced SpA production (6-100-fold) and spa mRNA levels (4-20-fold) in ST80 and ST30 strains. In contrast, for USA300 strains, among all antibiotics, clindamycin alone reduced SpA production (3.5-fold), whereas with combined treatments including HNPs, only a slight reduction in SpA production (1.7-2.2-fold) was observed. In conclusion, antibiotics and AMPs do not modulate SpA expression in USA300, unlike in other CA-MRSA clones. This observation suggests that the virulence and successful spread of USA300 strains is associated with a specific regulatory network.
Collapse
|
29
|
Mishra NN, Bayer AS, Weidenmaier C, Grau T, Wanner S, Stefani S, Cafiso V, Bertuccio T, Yeaman MR, Nast CC, Yang SJ. Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS One 2014; 9:e107426. [PMID: 25226591 PMCID: PMC4166420 DOI: 10.1371/journal.pone.0107426] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/09/2014] [Indexed: 12/18/2022] Open
Abstract
Development of in vivo daptomycin resistance (DAP-R) among Staphylococcus aureus clinical isolates, in association with clinical treatment failures, has become a major therapeutic problem. This issue is especially relevant to methicillin-resistant S. aureus (MRSA) strains in the context of invasive endovascular infections. In the current study, we used three well-characterized and clinically-derived DAP-susceptible (DAP-S) vs. resistant (DAP-R) MRSA strain-pairs to elucidate potential genotypic mechanisms of the DAP-R phenotype. In comparison to the DAP-S parental strains, DAP-R isolates demonstrated (i) altered expression of two key determinants of net positive surface charge, either during exponential or stationary growth phases (i.e., dysregulation of dltA and mprF), (ii) a significant increase in the D-alanylated wall teichoic acid (WTA) content in DAP-R strains, reflecting DltA gain-in-function; (iii) heightened elaboration of lysinylated-phosphatidylglyderol (L-PG) in DAP-R strains, reflecting MprF gain-in-function; (iv) increased cell membrane (CM) fluidity, and (v) significantly reduced susceptibility to prototypic cationic host defense peptides of platelet and leukocyte origins. In the tested DAP-R strains, genes conferring positive surface charge were dysregulated, and their functionality altered. However, there were no correlations between relative surface positive charge or cell wall thickness and the observed DAP-R phenotype. Thus, charge repulsion mechanisms via altered surface charge may not be sufficient to explain the DAP-R outcome. Instead, changes in the compositional or biophysical order of the DAP CM target of such DAP-R strains (i.e., increased fluidity) may be essential to this phenotype. Taken together, DAP-R in S. aureus appears to involve multi-factorial and strain-specific adaptive mechanisms.
Collapse
Affiliation(s)
- Nagendra N. Mishra
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Arnold S. Bayer
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Timo Grau
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefanie Wanner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefania Stefani
- Department of Biomedical Sciences-Microbiology, University of Catania, Catania, Italy
| | - Viviana Cafiso
- Department of Biomedical Sciences-Microbiology, University of Catania, Catania, Italy
| | - Taschia Bertuccio
- Department of Biomedical Sciences-Microbiology, University of Catania, Catania, Italy
| | - Michael R. Yeaman
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Cynthia C. Nast
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Soo-Jin Yang
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|